1
|
Cao Y, Wei Y, Hu Y, Liu D, Liu M, Wang J, Li C, Wang P, Hu L, Li F. Silver-catalyzed generation of acyl radicals from α-imino-oxy acids: access to acylated 3-CF 3-2-oxindoles. Org Biomol Chem 2025; 23:5106-5110. [PMID: 40331326 DOI: 10.1039/d5ob00262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
A unified strategy to generate acyl radicals from α-imino-oxy acids via selective C-C bond activation is reported. In the presence of a silver catalyst, α-imino-oxy acids could undergo decarboxylation and N-O and C-C bond homolysis to deliver the acyl radicals, which were subsequently captured by N-alkyl-N-aryl-2-(trifluoromethyl)acrylamides to access acylated 3-CF3-2-oxindoles.
Collapse
Affiliation(s)
- Yating Cao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, 113001, P. R. China.
| | - Yushan Wei
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| | - Yingxin Hu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, 113001, P. R. China.
| | - Daosheng Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, 113001, P. R. China.
| | - Mengyao Liu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| | - Jingjing Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| | - Chong Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| | - Pinpin Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| | - Liyan Hu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| | - Feng Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, P. R. China.
| |
Collapse
|
2
|
Panchal B, Panchal B, Talukdar M, Bhar A, Naveen T, Begari E. Bismuth(III)chloride catalyzed one-pot synthesis of thioenol ethers from 1,3-dicabonyls/2-oxindoles under ultrasonic irradiation. Org Biomol Chem 2025; 23:4934-4939. [PMID: 40289755 DOI: 10.1039/d5ob00250h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An efficient one-pot, three-component strategy has been devised for the facile construction of thioenol ethers related to biologically potent scaffolds. This method employs β-ketoesters or 1,3-diones or 2-oxindole, N,N-dimethylformamide dimethylacetal (DMF-DMA), and thiols under BiCl3-catalyzed, ultrasound-assisted conditions. This methodology's key features include readily accessible building blocks, a cost-effective and environmentally friendly catalytic system, solvent-free reaction conditions, shorter reaction times, broad substrate scope, and good isolated yields.
Collapse
Affiliation(s)
- Bhoomikaben Panchal
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Bhaveshkumar Panchal
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Mrinal Talukdar
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anindita Bhar
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat 395 007, India.
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
3
|
Gowda PS, Sharada DS, Satyanarayana G. A TBADT-enabled photo-induced radical cyclization pathway: concise access to functionalized oxindoles. Chem Commun (Camb) 2025. [PMID: 40356488 DOI: 10.1039/d5cc01590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein, this work describes a mild and general protocol for photo-induced cascade cyclisation of arylalkynamides resulting in diversely functionalized oxindoles. This strategy enables the construction of two C-C bonds through a radical cascade process via a hydrogen atom transfer pathway employing the decatungstate anion ([W10O32]4-) as an efficient HAT photocatalyst. Interestingly, pivaldehyde afforded unexpected Z-indolinones stereospecifically in our strategy.
Collapse
Affiliation(s)
- Punith S Gowda
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| | - Duddu S Sharada
- Department of Green Energy Technology, Pondicherry University, Pondicherry, 605014, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
4
|
Lu M, Chen K, Wu T, Cai H. Metal-Free Electrochemistry-Driven Decarboxylative Primary Alkyl-Alkoxylation of Olefins. Angew Chem Int Ed Engl 2025:e202506639. [PMID: 40355387 DOI: 10.1002/anie.202506639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
Here, a primary alkylative difunctionalization of olefins based on the decarboxylation of carboxylate ions to obtain alkyl radicals by electrochemical anodic oxidation is reported. The reaction employs quaternary ammonium carboxylates as the source of alkyl radicals and does not require additional oxidizing agents or electrolytes. The reaction exhibits a broad substrate range and functional group compatibility. It gently converts mono- or disubstituted styrene substrates and alkyl carboxylate anions of various carbon chain lengths and substituents to products under the reaction conditions. Furthermore, it is important to note that not only alcohols but carboxylic acids and water can also serve as nucleophilic reagents to participate in the reaction and yield the corresponding products. Preliminary mechanistic studies have demonstrated that the reaction is enabled by the lower oxidation potential of the carboxylate anion compared to that of the olefin. The anodic oxidation of the carboxylate anion occurs prior to the oxidation of the olefin, followed by decarboxylation to obtain alkyl radicals.
Collapse
Affiliation(s)
- Meiqun Lu
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Kailun Chen
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
5
|
Chen KQ, Zhang J, Chen XB, Sun DQ. Halogen Bonding Promoted Photoinduced Synthesis of 3,3-Disubstituted Oxindoles. J Org Chem 2025; 90:6318-6322. [PMID: 40275433 DOI: 10.1021/acs.joc.4c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
A photoinduced and catalyst-free radical cyclization process for the synthesis of 3,3-disubstituted oxindoles is reported. This method utilizes readily available α-bromoanilides as substrates, showcasing a broad substrate scope. The reaction mechanism is facilitated by a photoactivated charge transfer complex based on the halogen bonding of α-bromoanilide with TMG and alcohol.
Collapse
Affiliation(s)
- Kun-Quan Chen
- School of Pharmacy and Medical Technology, Putian University, Key Laboratory of Medical Microecology (Putian University), Putian 351100, China
| | - Jia Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiao-Bo Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - De-Qun Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
6
|
Huong TTL, Kim HK, Thien ND, Dung DTM, Kim JS, Kim J, Kang JS, Oanh DTK, Tung TT, Thang NQ, Anh DT, Han SB, Nam NH. Design, synthesis and biological evaluation of novel hydroxamic acid-derived histone deacetylase inhibitors bearing a 2-oxoindoline scaffold as potential antitumor agents. Bioorg Med Chem 2025; 122:118143. [PMID: 40054131 DOI: 10.1016/j.bmc.2025.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Histone deacetylases (HDACs) have emerged as compelling targets in developing anticancer therapeutics. This study outlines the development, synthesis, and biological evaluation of novel hydroxamic acid derivatives featuring a 2-oxoindoline scaffold, which exhibit high HDAC inhibitory activity and potential anticancer effects. Three series of N-hydroxycinnamamides, N-hydroxyheptanamides, and N-hydroxybenzamides were synthesized and assessed for their biological activity. The results of the biological activity evaluation indicated that the synthesized derivatives exhibited notable inhibitory effects against SW620 (colon cancer) and HCT116 (human colorectal carcinoma). Compound N-hydroxy-7-(2-oxoindolin-1-yl)heptanamide (6a) exhibited remarkable HDAC inhibitory activity, achieving sub-nanomolar potency with an IC50 value of less than 0.001 µM. While this potent HDAC inhibition suggests strong enzymatic activity, the anticancer activity of 6a against SW620 and HCT116 was comparable to that of SAHA (IC50 of 0.101 µM). Analysis of selected compound 6a also revealed that this compound effectively triggered both early and late stages of apoptosis and caused cell cycle arrest at the G2/M phase in SW620 cells. Finally, docking studies and molecular dynamics study conducted on the HDAC isoforms for series 6a-e identified key structural features that play a significant role in the inhibitory activity of the synthesized compounds.
Collapse
Affiliation(s)
| | - Hwa Kyung Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | - Do Thi Mai Dung
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | - Ji Su Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jiyeon Kim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jong Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, Republic of Korea
| | - Dao Thi Kim Oanh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | | | | | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam.
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Wang Y, Shou X, Xu Y, Zhou X. Versatile C─H Alkylation and Alkylidenation via Catalytic Alkylidene Transfer of Enones. Angew Chem Int Ed Engl 2025; 64:e202502619. [PMID: 40085079 DOI: 10.1002/anie.202502619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025]
Abstract
The alkylidene transfer reactions of alkenes are of particular significance but challenging. Here, we report that enones can serve as diverse alkylidene sources for catalyst-controlled selective C─H alkylation and/or alkylidenation of various nucleophiles. Treatment of a mixture of ketone (or lactam), enone, and diarylmethanol, with a catalytic amount of Y[N(TMS)2]3, gave the corresponding α-C─H bond alkylation products derived from the alkylidene transfer from enones to ketones/lactams, whereas the reaction of enones with various C-nucleophiles in the presence of KOH as a catalyst resulted in C─H alkylidenation. Moreover, the application of these strategies for the late-stage modification or structural simplification of some bioactive molecules is also presented. These alkylidene transfer reactions are characterized by operational simplicity, mild reaction conditions, and remarkable catalyst-controlled product outcomes. These results not only demonstrate a significant potential for easily accessible and recyclable enones to serve as versatile alkylidene sources in C─H alkylation and alkylidenation but also provide an attractive and concise method for hydrodealkylidenation of electron-deficient alkenes.
Collapse
Affiliation(s)
- Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xiaoke Shou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yi Xu
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, 200032, China
| |
Collapse
|
8
|
Ahmad I, Alam W, Pirzada AS, Darwish HW, Zafar R, Daglia M, Khan H. Oxindole derivatives alleviate paracetamol-induced nephrotoxicity and hepatotoxicity: biochemical, histological, and computational expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5273-5285. [PMID: 39545986 DOI: 10.1007/s00210-024-03568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Oxindole is a nature-derived heteroaromatic nucleus with a history of preclinical uses in various conditions. In this study, oxindole derivatives, 6-chloro-3-(3-hydroxybenzylidene) indolin-2-one (3OH) and 6-chloro-3-(4-hydroxybenzylidene) indolin-2-one (4OH) were evaluated for nephroprotective and hepatoprotective effects. Paracetamol-induced nephrotoxicity and hepatotoxicity model was used in mice. Tissue histology and serum biochemistry were carried out to further support in vivo activity. Compound 3OH reduced serum urea and creatinine levels by 51.8% and 64.6%, respectively (p < 0.0001). Excretion of creatinine by 3OH 10 mg was 52.8% as compared to silymarin. In case of urinary excretion of urea, the significant rise in excretion was observed in 4OH 15 mg (30.4%; p < 0.05) and 3OH 10 mg group (29.24%; p < 0.05). The compound 3OH exhibited restorative pattern of the renal tissues with slight inflammatory infiltrations. In case of hepatoprotective activity, 3OH reduced (59.9%; p < 0.0001) serum ALT at 5 mg even more than silymarin and all other doses of oxindole derivatives. In case of serum AST, all treatment groups produced significant (p < 0.0001) reduction except 3OH 15 mg. Computational studies supported the results as both derivatives were found to have promising interactions with enzymes at lower binding energies. Compound 3OH which possesses a hydroxyl group based on aromatic ring at meta position was the most successful drug candidate throughout this study. In a nutshell, the selected compounds elicited significant nephroprotective and hepatoprotective-like effects in mice.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Abdul Saboor Pirzada
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International Unversity, Islamabad, 44000, Pakistan
- School of Pharmacy, Iqra Institute of Health Sciences, Islamabad, 44000, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Campania, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
9
|
Chen F, Guo JY, Jia YH, Li J, Zhu YJ, Lai YX, Zhang YN, Tian SY, Wang SM, Zheng Y, Lv Y. Photocatalytic Three-Component Radical Sulfonarylation of Alkenes: Preparation of γ-Keto-Sulfone-Substituted Oxindoles. J Org Chem 2025; 90:4261-4270. [PMID: 40091200 DOI: 10.1021/acs.joc.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A photocatalytic radical sulfonarylation of N-arylacrylamides via a three-component cascade cyclopropyl alcohol ring opening/sulfur dioxide insertion/sulfonyl radical addition/cyclization sequence has been developed. This method employs cyclopropyl alcohols as the precursors of β-carbonyl alkyl radicals and Na2S2O5 as a cheap source of sulfur dioxide. By using this cascade procedure, a wide variety of γ-keto-sulfone-substituted oxindoles were facilely synthesized.
Collapse
Affiliation(s)
- Fei Chen
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jun-Ya Guo
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yun-Hong Jia
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jingze Li
- College of Life Sciences, Shanghai Normal University, Shanghai 200233, P. R. China
| | - Yi-Jie Zhu
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yu-Xin Lai
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yi-Nan Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Si-Yu Tian
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Shu-Man Wang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yang Zheng
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yunhe Lv
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
10
|
Scaringi M, Pintus E, Nový P, Božiková K, Maršík P, Ros-Santaella JL. Uncaria tomentosa extract exerts antimicrobial activity against boar seminal bacteria and influences sperm resilience under different conditions. Front Vet Sci 2025; 12:1558650. [PMID: 40191089 PMCID: PMC11968748 DOI: 10.3389/fvets.2025.1558650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Uncaria tomentosa (UT) or cat's claw, is a vine belonging to the Rubiaceae family and native to South and Central America. Various parts of the plant, including bark, showed many therapeutic activities (e.g., antioxidant and antibacterial), but the in vitro effects on gametes have still not been investigated. During boar semen storage for artificial insemination purposes, oxidative stress and bacterial contamination negatively affect sperm quality. In this study, we evaluated the tolerance of boar sperm to UT ethanolic extract at four concentrations (1.6 to 0.025 μg/mL). The analyses were carried out on sperm samples under oxidative stress, induced by H2O2 and Fe2+/Ascorbate, and during 96 h of semen storage at 17°C. The antibacterial activity of the extract (1,024 to 8 μg/mL) was tested against commercial strains and bacteria isolated from the semen. The treatments ranging from 0.4 to 0.025 μg/mL protected sperm membrane (p < 0.05) and preserved some kinetic parameters in samples under oxidative stress (Fe2+/Ascorbate). During semen storage, the extract did not show any cytotoxicity, and mean values of some sperm parameters were higher than the control group, although not significant (p > 0.05). All tested Gram-positive bacteria exhibited growth inhibition. The most frequently isolated Gram-negative bacteria from semen (i.e., Citrobacter koseri, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) also showed complete growth inhibition, while the remaining strains showed a partial decrease in growth. Taken together, our findings show that Uncaria tomentosa is a promising plant-based additive for boar semen storage.
Collapse
Affiliation(s)
- Maria Scaringi
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Nový
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Katerina Božiková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jose Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
11
|
Simhadri VK, Sur R, Yatham VR. CO 2•- Enabled Synthesis of Phenanthridinones, Oxindoles, Isoindolinones, and Spirolactams. J Org Chem 2025; 90:3557-3562. [PMID: 40021455 DOI: 10.1021/acs.joc.4c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
We report herein that photoinduced CO2•- enabled reductive intramolecular radical cyclization of a variety of aryl iodide derivatives to the corresponding phenanthridinone, oxindole, isoindolinone, and spirolactam derivatives in good yields. Preliminary mechanistic studies suggested the generation of CO2•- through homolysis of cesium formate in the presence of light, and the further involvement of CO2•- and the aryl radical was directly proved by trapping with diphenyl styrene and TEMPO.
Collapse
Affiliation(s)
- Vijay Kumar Simhadri
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Rupam Sur
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
12
|
Geurs S, Staessens E, Bredael K, Borghgraef S, De Ridder J, Persoons L, De Jonghe S, Schols D, Mann MK, Harding RJ, Franceus J, Desmet T, Van Hecke K, Clarisse D, De Bosscher K, D'hooghe M. Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain. Eur J Med Chem 2025; 285:117208. [PMID: 39823806 DOI: 10.1016/j.ejmech.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy. Despite the importance of the UBD in proteostasis and viral infection, its pharmacological inhibition has been minimally explored thus far, with research largely focused on the deacetylase domain. We synthesized a diverse library of new compounds designed to target the HDAC6-UBD, termed HZUBi, with varied core structures including quinazolinone, oxindole and tetrahydrothiopyrano[4,3-b]indole, aimed at enhancing UBD interaction and extending into the side pocket. New structure-activity relationships were established, computational docking and molecular dynamics studies were performed and the functional impact of selected inhibitors was assessed in the context of multiple myeloma and viral infection. Several new HZUBi could displace a ubiquitin peptide from HDAC6-UBD in a differential manner, although to a lower extent than the literature reference compound HZUBi-3e. Despite exhibiting in vitro target engagement, neither HZUBi-3e nor its ester prodrug HZUBi-1e enhanced proteasome inhibitor-mediated multiple myeloma cell killing. Finally, none of the screened HZUBi triggered anti-viral activity.
Collapse
Affiliation(s)
- Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Eleni Staessens
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kato Bredael
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stefaan Borghgraef
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jordy De Ridder
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leentje Persoons
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Molecular Structural and Translational Virology Research Group, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Molecular Structural and Translational Virology Research Group, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mandeep K Mann
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jorick Franceus
- Center for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Center for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
13
|
Iglhaut M, Bach T. Stereochemical Editing at sp 3-Hybridized Carbon Centers by Reversible, Photochemically Triggered Hydrogen Atom Transfer. Acc Chem Res 2025; 58:777-786. [PMID: 39969052 PMCID: PMC11883745 DOI: 10.1021/acs.accounts.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
ConspectusMillions of chiral compounds contain a stereogenic sp3-hybridized carbon center with a hydrogen atom as one of the four different substituents. The stereogenic center can be edited in an increasing number of cases by selective hydrogen atom transfer (HAT) to and from a photocatalyst. This Account describes the development of photochemical deracemization reactions using chiral oxazole-annulated benzophenones with a bonding motif that allows them to recognize chiral lactam substrates by two-point hydrogen bonding. The backbone of the catalysts consists of a chiral azabicyclo[3.3.1]nonan-2-one with a U-shaped geometry, which enables substrate recognition to occur parallel to the benzoxazole part of the aromatic ketones. The photocatalysts facilitate a catalytic photochemical deracemization of several compound classes including hydantoins, N-carboxyanhydrides, oxindoles, 2,5-diketopiperazines, and 4,7-diaza-1-isoindolinones. In addition, if more than one stereogenic center is present, the editing delivers a distinct diastereoisomer upon the appropriate selection of the respective photocatalyst enantiomer. The chiral photocatalysts operate via the benzophenone triplet that selectively abstracts a properly positioned hydrogen atom in exclusively one of the two substrate enantiomers. The photochemical step creates a planar carbon-centered radical and erases the absolute configuration at this position. While returning HAT to the same position would likely recreate the stereogenic center with the same absolute configuration, spectroscopic and quantum chemical studies suggest that the hydrogen atom is delivered from the photocatalyst to a heteroatom that is in conjugation to the radical center. Two scenarios can be distinguished for the hydrogen atom shuttling process. For hydantoins, N-carboxyanhydrides, and 4,7-diaza-1-isoindolinones, the back HAT occurs to a carbonyl oxygen atom or an imine-type nitrogen atom which is not involved in binding to the catalyst. For oxindoles and 2,5-diketopiperazines, a single lactam carbonyl group in the substrate is available to accept the hydrogen atom. It is currently assumed that back HAT occurs to this group, although the carbonyl oxygen atom is involved in hydrogen bonding to the catalyst. In comparison to the former reaction pathway, the latter process appears to be less efficient and more prone to side reactions. For both cases, an achiral enol or enamine is formed, which delivers upon dissociation from the catalyst statistically either one of the two stereoisomers of the substrate. Since only one substrate enantiomer (or diastereoisomer) is processed, a high enantioselectivity (or diastereoselectivity) results. Even though the editing is a contra-thermodynamic process, the described decoupling of a photochemical and a thermal step allows the usage of a single catalyst in loadings that vary between 2.5 and 10 mol % depending on the specific mode of action.
Collapse
Affiliation(s)
- Maximilian Iglhaut
- Department of Chemistry and
Catalysis Research Center (CRC), Technical
University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and
Catalysis Research Center (CRC), Technical
University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
14
|
Shin I, Nguyen RC, Montoya SR, Liu A. Structural insights into 2-oxindole-forming monooxygenase MarE: Divergent architecture and substrate positioning versus tryptophan dioxygenases. J Biol Chem 2025; 301:108241. [PMID: 39880093 PMCID: PMC11904535 DOI: 10.1016/j.jbc.2025.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-l-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.45 Å resolution. These structures establish MarE as a member of the heme-dependent aromatic oxygenase (HDAO) superfamily and reveal its evolutionary link to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). While MarE adopts a global structure resembling the homotetrameric TDO, it features a simplified α6 helix compared to TDO's more elaborate αE and αH helices with additional αF and αG regions. Despite differing oxygen activation outcomes, MarE shares a substrate binding mode similar to IDO and TDO, with the indole nitrogen of its substrate oriented toward the heme iron in the ternary cyano complex, interacting with His55. The substrate's carboxylate group engages Arg118, with mutational studies confirming the roles of these residues in substrate binding. However, the second-sphere interactions with the substrate's α-amino nitrogen differ between MarE and TDO, and the substrate's orientation in the binary complex remains ambiguous due to two possible conformations. Notably, TDO features an extensive hydrogen-bonding network around the heme propionate below the heme plane, which is absent in MarE, suggesting mechanistic differences. These structural insights lay a foundation for further mechanistic studies, particularly for understanding how heme-dependent enzymes oxygenate tryptophan-derived metabolites.
Collapse
Affiliation(s)
- Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Samuel R Montoya
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas, United States.
| |
Collapse
|
15
|
Rosen HT, Li K, Li EL, Currier B, Brittain SM, Garcia FJ, Beard DC, Haenni-Holzinger S, Dovala D, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Sulfinyl Aziridines as Stereoselective Covalent Destabilizing Degraders of the Oncogenic Transcription Factor MYC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639755. [PMID: 40060528 PMCID: PMC11888305 DOI: 10.1101/2025.02.24.639755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
While MYC is a significant oncogenic transcription factor driver of cancer, directly targeting MYC has remained challenging due to its intrinsic disorder and poorly defined structure, deeming it "undruggable." Whether transient pockets formed within intrinsically disordered and unstructured regions of proteins can be selectively targeted with small molecules remains an outstanding challenge. Here, we developed a bespoke stereochemically-paired spirocyclic oxindole aziridine covalent library and screened this library for degradation of MYC. Through this screen, we identified a hit covalent ligand KL2-236, bearing a unique sulfinyl aziridine warhead, that engaged MYC in vitro as pure MYC/MAX protein complex and in situ in cancer cells to destabilize MYC, inhibit MYC transcriptional activity and degrade MYC in a proteasome-dependent manner through targeting intrinsically disordered C203 and D205 residues. Notably, this reactivity was most pronounced for specific stereoisomers of KL2-236 with a diastereomer KL4-019 that was largely inactive. Mutagenesis of both C203 and D205 completely attenuated KL2-236-mediated MYC degradation. We have also optimized our initial KL2-236 hit compound to generate a more durable MYC degrader KL4-219A in cancer cells. Our results reveal a novel ligandable site within MYC and indicate that certain intrinsically disordered regions within high-value protein targets, such as MYC, can be interrogated by isomerically unique chiral small molecules, leading to destabilization and degradation.
Collapse
Affiliation(s)
- Hannah T. Rosen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Kelvin Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Brynne Currier
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Scott M. Brittain
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Francisco J. Garcia
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Diana C. Beard
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Sandra Haenni-Holzinger
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Dustin Dovala
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Jeffrey M. McKenna
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Markus Schirle
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Biomedical Research, Emeryville, CA USA; Cambridge, MA USA; Basel, Switzerland
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| |
Collapse
|
16
|
Yang P, Wang L, Yan M, Yuan J, Xiao Y, Yang L, Xu X, Qu L. Visible-light-induced radical-cascade alkylation/cyclization of acrylamides: access to 3,3-dialkylated oxindoles. Org Biomol Chem 2025; 23:1653-1661. [PMID: 39777436 DOI: 10.1039/d4ob01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A visible-light-induced deoxygenative alkylation/cyclization of acrylamides with alcohols activated by CS2 has been developed by using xanthate salts as alkyl radical precursors in the presence of tricyclohexylphosphine. It proceeds through a tandem radical addition/cyclization process, and this protocol provides a reliable and practical approach to building the skeleton of 3,3-disubstituted oxindoles in moderate to good yields. Notable features of this reaction include readily available starting reagents, broad substrate scope and mild reaction conditions.
Collapse
Affiliation(s)
- Pengyuan Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liangru Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiujuan Xu
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Lingbo Qu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Zhongyuan Institute of Science and Technology, Zhengzhou 451400, China
| |
Collapse
|
17
|
Dharavath P, Vaggu R, Manda R, Grée R, Das S. Visible-Light-Induced Insertion of Siloxycarbene into Amide N-H Bonds: Synthesis of Carbinolamides from Acylsilanes and Amides. J Org Chem 2025; 90:1727-1732. [PMID: 39831927 DOI: 10.1021/acs.joc.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The insertion of carbene into secondary amide N-H bonds remains underexplored in organic synthesis. In this work, we discovered the visible-light-induced insertion of siloxycarbene into amide N-H bonds. This metal-free, facile reaction proceeds with atom economy under mild conditions with a broad range of secondary N-H amides, including benzanilide, acetanilide, oxindole, isatin, quinolinone, and maleimide, affording stable N- and O-acetals in excellent isolated yields. In addition, the chemoselective insertion reveals the robustness of this chemical transformation.
Collapse
Affiliation(s)
- Praveen Dharavath
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Vaggu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh Manda
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - René Grée
- Institute for Chemical Sciences in Rennes, University of Rennes, CNRS UMR 6226, 35000 Rennes, France
| | - Saibal Das
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Li C, Ma J, Guo L, Xu C, Zhong Z, Li P, Tang Y, Wang W, Li D, Ye T, Guo Z, Chen Y. Selective Synthesis of Cyclopeptides with a 2-Oxindole or 3a-Hydroxy-hexahydropyrrolo-[2,3- b]indole Structure by Cytochrome P450 Enzymes. J Am Chem Soc 2025; 147:3304-3314. [PMID: 39818795 DOI: 10.1021/jacs.4c13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-b]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner. A universal catalytic mechanism was proposed for the five cpOPMOs, in which two conserved residues, Asp and Ser (Thr for LtzR), were proposed to divergently open the epoxide intermediates, thereby forming a 2-oxindole or HO-HPI moiety. Based on this, we constructed ten Asp or Ser/Thr mutants of cpOPMOs, which could synthesize cyclopeptides with an HO-HPI or 2-oxindole structure, selectively, under appropriate reaction conditions. All of the ten cpOPMO mutants exhibited high substrate promiscuities and usually performed well with cyclopeptides that are structurally similar to their native substrates. Overall, our work discovers a group of intriguing P450 enzymes, the cpOPMOs, and provides a powerful enzymatic toolkit for the selective synthesis of HO-HPI- or 2-oxindole-containing cyclopeptides.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, Guangdong, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Xu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zijian Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Defeng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhengyan Guo
- NHC Key Laboratory of Biotechnology for Microbial Drugs; CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Department of Microbial Metabolic Engineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Rajakulasooriya RSR, Fernando SSN, Gunasekara TDCP, Jayaweera PM, Kumarasinghe KGUR, Thabrew HHPMJ, Chan E, Buddhika RBJ, Weerasinghe GGYH, Karunarathna KAAU. In vivo toxicological evaluation of 3-benzylideneindolin-2-one: antifungal activity against clinical isolates of dermatophytes. BMC Pharmacol Toxicol 2025; 26:16. [PMID: 39849631 PMCID: PMC11759438 DOI: 10.1186/s40360-025-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models. METHODS The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method. The fungicidal activity was evaluated using time-kill assays. Toxicological effects were investigated using the brine shrimp lethality assay to determine Artemia salina nauplii mortality after 48 h of exposure, and the fish embryo acute toxicity test, which assessed lethality and developmental abnormalities in zebrafish (Danio rerio) embryos over a 96 h post-fertilization period. RESULTS 3-Benzylideneindolin-2-one exhibited consistent fungicidal activity across all dermatophyte species, with MICs ranging from 0.25 to 8 mg/L and MFCs ranging from 1 to 32 mg/L. Time-kill assays revealed a concentration-dependent fungicidal effect on the microconidia. The compound exhibited moderate toxicity to A. salina nauplii, with LC50 values of 69.94 mg/L and 52.70 mg/L at 24 and 48 h, respectively, while showing no significant lethality within the MIC range. In zebrafish embryos, concentrations below 7.5 mg/L did not significantly affect lethality, hatchability, or induce morphological abnormalities. However, at a concentration of 10 mg/L, the compound induced mild toxicity in embryos, evidenced by a significant increase in mortality and the presence of morphological anomalies such as yolk-sac and pericardial edema compared to the control group. CONCLUSIONS The consistent antifungal activity of 3-benzylideneindolin-2-one against clinically significant dermatophyte species, combined with its low toxicity within the therapeutic window, underscores its potential as a promising lead compound for the development of effective therapeutics for dermatophytosis.
Collapse
Affiliation(s)
- R Shashika R Rajakulasooriya
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka.
| | - S S Neluka Fernando
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - T D Chinthika P Gunasekara
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Pradeep M Jayaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K G Upul R Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Enoch Chan
- Discipline of Pharmacy, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - R B J Buddhika
- Department of Pharmacy, Faculty of Health Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - G G Yashoda H Weerasinghe
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - K A A Ureshani Karunarathna
- Department of Basic Sciences, Faculty of Allied Health Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
20
|
Lata R, Gond SK. Antibacterial and antioxidant potentials, detection of host origin compounds, and metabolic profiling of endophytic Bacillus spp. isolated from Rauvolfia serpentina (L.) Benth. ex Kurz. Sci Rep 2025; 15:2094. [PMID: 39814849 PMCID: PMC11736096 DOI: 10.1038/s41598-024-84893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts. Nine bacterial isolates were obtained from R. serpentina leaves. These isolates exhibited positive results in various biochemical tests including indole production, methyl red, Voges-Proskauer, citrate utilization, catalase and oxidase production, nitrate reduction, oxidative fermentation, and citrate reduction tests. Endophytic isolates RSLB3 and RSLB18 exhibited most potential antibacterial activity against tested human pathogenic bacteria and were identified as Bacillus sp. The extract of RSLB3 and RSLB18 also showed significant antioxidant activity compared to leaf extract. The total phenol content was similar in both these isolates while flavonoids content and DPPH scavenging activity was higher in isolate RSLB3. RPHPLC analysis confirmed the presence of reserpine in bacterial metabolites when compared to a standard reference. UHPLC-HRMS profiling unveiled a diverse range of host-derived compounds and reaction intermediates with known and unknown bioactive properties in leaf extract, RSLB3, and RSLB18. To our knowledge, this is the first study to achieve a comprehensive profiling.
Collapse
Affiliation(s)
- Rusi Lata
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
21
|
Gu K, Hall MT, Tucker ZD, Durling GM, Ashfeld BL. Catalyst-controlled directing group translocation in the site selective C-H functionalization of 3-carboxamide indoles and metallocarbenes. Nat Commun 2025; 16:97. [PMID: 39746950 PMCID: PMC11697359 DOI: 10.1038/s41467-024-55246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Complementary methods toward the selective functionalization of indole and oxindole frameworks employing an alternative strategy in heteroaryl C-H functionalizations are presented herein. This work focuses on a catalyst-controlled, site selective C-H activation/functionalization of 3-acyl indoles, wherein an amide serves as a robust and versatile directing group capable of undergoing concomitant 1,2-acyl translocation/C-H functionalization in the presence of a RhI/AgI co-catalysts to provide the cross-coupled adducts in high yields. In contrast, the use of IrIII/AgI catalysts subverted the 1,2-acyl migration to afford the corresponding C2-functionalized products in good to excellent yields. A notable feature of the catalyst systems was the exceptional level of site selectivity observed in which the corresponding C-H functionalized indoles were obtained exclusively. Mechanistic experiments indicate a concerted 1,2-acyl migration step and indole metallation occurring through an electrophilic aromatic substitution process.
Collapse
Affiliation(s)
- Kuang Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mary T Hall
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zachary D Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gregory M Durling
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
22
|
Ayad Mohamed Rasheed H, Al-Majidi SMH. 5-nitro isatin containing heterocyclics derivatives: synthesis, antioxidant activity, anticancer activity and molecular docking. Nat Prod Res 2025; 39:56-65. [PMID: 37615126 DOI: 10.1080/14786419.2023.2250898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The manuscript describes the synthesis of eight Novel 1,2,4-triazine and 1,2-diazino derivatives having the 5-nitro isatin moiety. Antiradical and anticancer activities were evaluated using the DPPH method and the MTT assay against breast cancer (MCF-7) cell lines. The compound with the strongest antioxidant and anticancer properties after 24 h was compound 9 (1,2,4-triazine-3-thione) but after 48 h, compound 7 (1,2,4- triazine-3-ol) with good anticancer activity while compound 11 (1,2-diazino) after 72 h.
Collapse
Affiliation(s)
| | - Suaad M H Al-Majidi
- Department of chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
23
|
Rauf A, Alam W, Khan M, Darwish HW, Daglia M, Elhenawy AA, Khan H. Exploring the in vitro anti-diabetic potential and in silico studies of 2, 3 and 2, 6-dichloroIndolinone. Drug Target Insights 2025; 19:11-17. [PMID: 40109326 PMCID: PMC11920718 DOI: 10.33393/dti.2025.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Adequate hyperglycemic control is still a huge challenge with the clinically used therapeutics. New, more effective anti-diabetic agents are on the top list of drug discovery projects. Methods This article deals with the in vitro anti-diabetic potential of 2, 3 dichloroIndolinone (C1) and 2, 6-dichloroIndolinone (C2) on α-glucosidase and α-amylase followed by in silico analysis. Results Both compounds, C-1 and C-2, caused significant inhibition of α-glucosidase at various test concentrations with IC50 of 35.266 μM and 38. 379 μM, respectively. Similarly, compounds C-1 and C-2 elicited significant anti-α-amylase action with IC50 values of 42.449 μM and 46.708 μM, respectively. The molecular docking investigation regarding the α-glucosidase and α-amylase binding site was implemented to attain better comprehension with respect to the pattern in which binding mechanics occur between the C1 and C2 molecules and the active sites, which illustrated a higher binding efficacy in appraisal with reference inhibitor and acarbose. The interactions between the active compounds C1 and C2 with the active site residues were mainly polar bonds, hydrogen bonding, π-π, and π-H interactions, which contributed to a strong alignment with the enzyme backbone. Similarly, effective binding is frequently indicated by a strong and stable hydrogen-bonding pattern, which is suggested by the minimal fluctuation in MM-PBSA values. Conclusion In short, this study will contribute to providing these compounds with an improved anti-diabetic profile and decreased toxicity.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Pharmacy, Abdul Wali Khan University, Mardan - Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan - Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan - Pakistan
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh - Kingdom of Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II- Italy
| | - Ahmed A Elhenawy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo - Egypt
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan - Pakistan
- Department of Pharmacy, Korea University, Sejong - South Korea
| |
Collapse
|
24
|
Selg C, Gordić V, Krajnović T, Buzharevski A, Laube M, Kazimir A, Lönnecke P, Wolniewicz M, Sárosi MB, Schädlich J, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Re-design and evaluation of diclofenac-based carborane-substituted prodrugs and their anti-cancer potential. Sci Rep 2024; 14:30488. [PMID: 39681576 DOI: 10.1038/s41598-024-81414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we investigated a novel anti-cancer drug design approach by revisiting diclofenac-based carborane-substituted prodrugs. The redesigned compounds combine the robust carborane scaffold with the oxindole framework, resulting in four carborane-derivatized oxindoles and a unique zwitterionic amidine featuring a nido-cluster. We tested the anti-cancer potential of these prodrugs against murine colon adenocarcinoma (MC38), human colorectal carcinoma (HCT116), and human colorectal adenocarcinoma (HT29). The tests showed that diclofenac and the carborane-substituted oxindoles exhibited no cytotoxicity, the dichlorophenyl-substituted oxindole had moderate anti-cancer activity, while with the amidine this effect was strongly potentiated with activity mapping within low micromolar range. Compound 3 abolished the viability of selected colon cancer cell line MC38 preferentially through strong inhibition of cell division and moderate apoptosis accompanied by ROS/RNS depletion. Our findings suggest that carborane-based prodrugs could be a promising direction for new anti-cancer therapies. Inhibition assays for COX-1 and COX-2 revealed that while diclofenac had strong COX inhibition, the re-engineered carborane compounds demonstrated a varied range of anti-cancer effects, probably owing to both, COX inhibition and COX-independent pathways.
Collapse
Affiliation(s)
- Christoph Selg
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Vuk Gordić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Antonio Buzharevski
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Aleksandr Kazimir
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Peter Lönnecke
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Mara Wolniewicz
- Department of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Menyhárt B Sárosi
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Evamarie Hey-Hawkins
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
25
|
Vrzalová A, Vrzal R, Nádvorník P, Šebela M, Dvořák Z. Modulation of aryl hydrocarbon receptor activity by halogenated indoles. Bioorg Med Chem 2024; 114:117964. [PMID: 39454560 DOI: 10.1016/j.bmc.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles. We evaluated the transcriptional activity of AhR and cell viability in the human LS174T-AhR-luc reporter cell line. Among the tested compounds, 4-FI, 7-FI, 6-BrI, 7-BrI, 6-Cl-2-ox, 5-Br-2-ox, and 6-Br-2-ox activated AhR in a concentration-dependent manner, displaying high efficacy and potency. Molecular docking analysis revealed moderate binding affinities of these compounds to the PAS-B domain of AhR, corroborated by competitive radioligand binding assays. Functional assays showed that halogenated indoles induce the formation of AhR-ARNT heterodimer and enhance the binding of the AhR to the CYP1A1 promoter. Additionally, 4-FI and 7-FI exhibited anti-inflammatory properties in Caco-2 cell models, highlighting their potential for therapeutic applications. This study underscores the significance of the type and position of halogen moiety in indole scaffold, suggesting their potential as candidates for developing therapeutics drugs to treat conditions such as inflammatory bowel disease via AhR activation.
Collapse
Affiliation(s)
- Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
26
|
Hublikar M, Kadu V, Edake N, Raut D, Shirame S, Ahmed MZ, Makam P, Ahmad MS, Meshram RJ, Bhosale R. Design, Synthesis, Anti-Cancer, Anti-Inflammatory and In Silico Studies of 3-Substituted-2-Oxindole Derivatives. Chem Biodivers 2024; 21:e202400844. [PMID: 39078869 DOI: 10.1002/cbdv.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
This study focuses on the design and synthesis of 3-substituted-2-oxindole derivatives aimed at developing dual-active molecules with anti-cancer and anti-inflammatory properties. The molecules were designed with diverse structural and functional features while adhering to Lipinski, Veber, and Leeson criteria. Physicochemical properties were assessed using SWISSADME to ensure drug-likeness and favourable pharmacokinetics. Multistep synthetic procedures were employed for molecule synthesis. In vitro evaluations confirmed the dual activity of the derivatives, with specific emphasis on the significance of dialkyl aminomethyl substitutions for potency against various cell lines. 4 a exhibited GI50 value 3.00E-05 against MDA-MB-231, 4 b has shown GI50 value 2E-05 against MDA-MB-231, 4 c has shown GI50 value 6E-05 against VERO, 4 d has shown GI50 value 8E-05 each against both the MDA-MB-231 and MCF-7 and 4 e has shown GI50 values 2E-05 and 5E-05 each against both the MCF-7 and VERO. The analysis indicates that compounds 3 c (71.19 %), 3 e (66.84 %), and 3 g (63.04 %) exhibited significant anti-inflammatory activity. Additionally, in silico binding free energy analysis and interaction studies revealed significant correlations between in vitro and computational data, identifying compounds 4 d, 4 e, 3 b, 3 i, and 3 e as promising candidates. Key residues such as Glu917, Cys919, Lys920, Glu850, Lys838, and Asp1046 were found to play critical roles in ligand binding and kinase inhibition, providing valuable insights for designing potent VEGFR2 inhibitors. The Quantum Mechanics-based Independent Gradient Model analysis further highlighted the electronic interaction landscape, showing larger attractive peaks and higher electron density gradients for compounds 4 d and 4 e compared to Sunitinib, suggesting stronger and more diverse attractive forces. These findings support the potential of these compounds for further development and optimization in anticancer drug design.
Collapse
Affiliation(s)
- Mahesh Hublikar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Vikas Kadu
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Nagesh Edake
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Dattatraya Raut
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Sachin Shirame
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Mahammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Md Sibgatullah Ahmad
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 248007, India
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 248007, India
| | - Raghunath Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| |
Collapse
|
27
|
Lin ZF, Yang GP, Jiang WJ, Chen JC, Liu YF. The Assembly of Cerium(III)-Containing Silicotungstate with Lewis Acid-Base Sites Enables the Selective C3-Alkenylation of Oxindole. Inorg Chem 2024; 63:19390-19395. [PMID: 39350542 DOI: 10.1021/acs.inorgchem.4c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A cerium(III)-containing silicotungstate, [H2N(CH3)2]10NaK[KCe(SiW11O39)2(H2O)]·18.5H2O (CeSiW), was successfully synthesized and characterized. Structure analysis reveals that CeSiW is composed of two {SiW11O39} units connected by one cerium(III) cation to form a typical 1:2 sandwich structure, which is further expanding into a 1D chain linked by K+ ions. The oxygen-enriched surfaces of {SiW11O39} units and open cerium sites provide abundant Lewis base and acid sites in CeSiW. As a result, CeSiW efficiently catalyzed the C3-alkenylation of oxindoles with aldehydes through the simultaneous activation of both reaction substrates on its crystal framework. Various 3-benzylidene-oxindoles are synthesized with excellent yields and high E-selectivity under solvent-free conditions.
Collapse
Affiliation(s)
- Zhou-Fu Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
- College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Wen-Jun Jiang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Jin-Cao Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, Jiangxi 330013, China
- College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
28
|
Imani K, Shirazi H, Golchin G, Bazgir A. Reaction of Isatin and 2-Chloropyridinium Salt: An Efficient and Diastereoselective Synthesis of α,β-Unsaturated Oxindoles. J Org Chem 2024; 89:13937-13946. [PMID: 39308001 DOI: 10.1021/acs.joc.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A new, mild, and diastereoselective method has been developed for the synthesis of β-pyridone-α,β-unsaturated oxindoles by the reaction of isatins and 2-chloropyridinium salts in EtOH at room temperature for 5 min. This method operates under mild reaction conditions, providing the product with a good yield and diastereoselectivity, and it exhibits excellent tolerance toward various functional groups. The predominant isomer is the Z isomer, which can convert to the E isomer in the presence of NaN3.
Collapse
Affiliation(s)
- Kaveh Imani
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Hamideh Shirazi
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Golnaz Golchin
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Ayoob Bazgir
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
29
|
Yi Y, Yuan Y, Zhu S, Wang J, Wang Z, Zhang J, Gao G, Sun T. Accessing Furan-Linked Methylene Oxindoles/Benzofurans via Stereoselective Palladium-Catalyzed Domino Cyclization/Cycloisomerization. J Org Chem 2024; 89:12085-12093. [PMID: 39180542 DOI: 10.1021/acs.joc.4c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
A palladium-catalyzed domino cyclization/cycloisomerization reaction of alkyne-tethered carbamoyl chlorides with (E)-β-chloroenones is reported. This reaction proceeds via a syn-carbopalladation of the alkyne, followed by a vinyl-PdII-catalyzed cycloisomerization of the (E)-β-chloroenone cascade, which provides an efficient method to synthesize furan-linked methylene oxindoles. The reaction features stereodefined vinyl-PdII species, high to excellent 5-exo/6-endo selectivity, excellent Z/E selectivity, and the sequential formation of three bonds and bis-heterocycles. The strategy for the synthesis of furan-containing benzofurans has also been demonstrated.
Collapse
Affiliation(s)
- Yujie Yi
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Songsong Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Jinbei Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaolin Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jingli Zhang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Guanbin Gao
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
30
|
Qiu Y, Wu Z, Ou X, Zhao Q, Lei H, Wang C. Construction of Functionalized Oxindoles by Quinone-Carbonate Synergistically Triggered Intermolecular Radical Coupling. J Org Chem 2024; 89:12753-12761. [PMID: 39189527 DOI: 10.1021/acs.joc.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We disclose a rapid and nontoxic procedure to construct various oxindoles. This method harnesses the power of a catalytic amount of quinone in synergy with Cs2CO3, showcasing remarkable compatibility with a wide range of functional groups. Mechanistic investigations reveal that it operates via a radical pathway, likely initiated by the single-electron transfer from quinone-Cs2CO3 complexes. This pivotal electron transfer event leads to the generation of a crucial alkyl radical intermediate, contributing to the overall success and efficacy of the transformation.
Collapse
Affiliation(s)
- Yun Qiu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Zecheng Wu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xingyun Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Qiuting Zhao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Hao Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 511443, China
| |
Collapse
|
31
|
Pavlovic L, Carvalho B, Hopmann KH. Revisiting the Mechanism of Asymmetric Ni-Catalyzed Reductive Carbo-Carboxylation with CO 2: The Additives Affect the Product Selectivity. Chemistry 2024; 30:e202401631. [PMID: 38924598 DOI: 10.1002/chem.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Bjørn Carvalho
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| |
Collapse
|
32
|
Eldafashi N, Waaz S, Ali TFS, Zaki MYW, Nazmy MH, Fathy M. The protective role of two oxindole derivatives is mediated by modulating NLRP3/caspase-1 and PI3K/AKT pathways in a preclinical animal model of hepatic ischemia reperfusion injury. Life Sci 2024; 352:122872. [PMID: 38942361 DOI: 10.1016/j.lfs.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Aim Hepatic ischemia reperfusion injury (HIRI) is a leading cause of mortality post liver transplantation, hypovolemic shock and trauma. In this study, we tested, on molecular bases, the possible protective role of two different derivatives of 2-oxindole in a preclinical model of HIRI in rats. MAIN METHODS HIRI was operated in male Wistar albino rats and prophylactic treatment with oxindole-curcumin (Coxi) or oxindole-vanillin (Voxi) was carried out before the operation. The biochemical and histopathological investigations, in addition to the mechanistic characterizations of the effect of the tested drugs were performed. KEY FINDINGS HIRI was assured with elevated liver enzymes and marked changes in histopathological features, inflammatory response and oxidative stress. Pretreatment with Coxi and Voxi improved the hepatic histopathological alterations, reduced the elevated serum liver enzymes level and hepatic Malondialdehyde (MDA) content, increased the hepatic Superoxide Dismutase (SOD) activity and reduced Glutathione (GSH) content, downregulated the expression of TNF-α, IL-6, Nod-Like Receptor p3 (NLRP3), Cleaved caspase1, Cleaved caspase 3 proteins, alongside the expression level of IL-1β, ICAM-1, VCAM-1 and BAX genes, attenuated NF-кB p-P65 Ser536 and Myeloperoxidase (MPO)-positive neutrophils, and activated the PI3K/AKT pathway. SIGNIFICANCE Coxi and Voxi have promising hepatoprotective activity against HIRI in rats through ameliorating the biochemical and histopathological alterations, attenuating inflammatory and oxidative stress status by modulating the inflammatory TNF-α/ICAM-1, the pyroptosis NLRP3/Caspase-1, and the antioxidant PI3K/AKT pathways.
Collapse
Affiliation(s)
- Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Shaimaa Waaz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Marco Y W Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
33
|
Lamba M, Singh PR, Tanmay, Goswami A. Metal-Free Switchable Chemo- and Regioselective Alkylation of Oxindoles Using Secondary Alcohols. J Org Chem 2024; 89:11244-11260. [PMID: 39106447 DOI: 10.1021/acs.joc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In this study, we have disclosed N-alkylation and C-alkylation reactions of 2-oxindoles with secondary alcohols. Interestingly, these chemoselective reactions are tunable by changing the reaction conditions. Utilization of protic solvent and Brønsted acid catalyst afforded C-alkylation, whereas, aprotic solvent and Lewis acid catalyst afforded N-alkylation of 2-oxindoles in good to excellent yields. Regioselectivity is achieved by protecting the N-center of the oxindole and C5 alkylated product is furnished exclusively. This protocol is notable because it demonstrates functionalization at the C7 position of oxindole without the need for any directing group at the N-center. Further, a new protocol has been reported for C-H oxygenation at the benzylic position of one of the C5 alkylated derivative.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Tanmay
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology Ropar, Punjab140001, India
| |
Collapse
|
34
|
Suzuki H, Sekino K, Kondo S, Minamikawa R, Matsuda T. Modular synthesis of 3,3-disubstituted oxindoles from nitrones and acrylic acids. Org Biomol Chem 2024; 22:6282-6287. [PMID: 39034769 DOI: 10.1039/d4ob00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We developed a modular synthesis for 3,3-disubstituted oxindoles, utilising readily accessible nitrones and acrylic acids. This approach facilitates the preparation of a diverse array of oxindoles through the variation of the starting materials. We demonstrated the applicability of this method through a gram-scale reaction and a synthesis of esermethole.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan.
| | - Kaisei Sekino
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sora Kondo
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Ryo Minamikawa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
35
|
Jeong YJ, Lee HR, Park SA, Lee JW, Kim LK, Kim HJ, Seo JH, Heo TH. A derivative of 3-(1,3-diarylallylidene)oxindoles inhibits dextran sulfate sodium-induced colitis in mice. Pharmacol Rep 2024; 76:851-862. [PMID: 38916850 PMCID: PMC11294400 DOI: 10.1007/s43440-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND IA-0130 is a derivative of 3-(1,3-diarylallylidene)oxindoles, which is a selective estrogen receptor modulator (SERM). A previous study demonstrated that SERM exhibits anti-inflammatory effects on colitis by promoting the anti-inflammatory phenotype of monocytes in murine colitis. However, the therapeutic effects of oxindole on colitis remain unknown. Therefore, we evaluated the efficacy of IA-0130 on dextran sulfate sodium (DSS)-induced mouse colitis. METHODS The DSS-induced colitis mouse model was established by administration of 2.5% DSS for 5 days. Mice were orally administered with IA-0130 (0.01 mg/kg or 0.1 mg/kg) or cyclosporin A (CsA; 30 mg/kg). Body weight, disease activity index score and colon length of mice were calculated and histological features of mouse colonic tissues were analyzed using hematoxylin and eosin staining. The expression of inflammatory cytokines and tight junction (TJ) proteins were analyzed using quantitative real-time PCR and enzyme-linked immunosorbent assay. The expression of interleukin-6 (IL-6) signaling molecules in colonic tissues were investigated using Western blotting and immunohistochemistry (IHC). RESULTS IA-0130 (0.1 mg/kg) and CsA (30 mg/kg) prevented colitis symptom, including weight loss, bleeding, colon shortening, and expression of pro-inflammatory cytokines in colon tissues. IA-0130 treatment regulated the mouse intestinal barrier permeability and inhibited abnormal TJ protein expression. IA-0130 down-regulated IL-6 expression and prevented the phosphorylation of signaling molecules in colonic tissues. CONCLUSIONS This study demonstrated that IA-0130 suppressed colitis progression by inhibiting the gp130 signaling pathway and expression of pro-inflammatory cytokines, and maintaining TJ integrity.
Collapse
Affiliation(s)
- Young-Jin Jeong
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Hae-Ri Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Joong-Woon Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea
| | - Jae Hong Seo
- Laboratory of Pharmaceutical Manufacturing Chemistry, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-Ro, Bucheon‑si, Gyeonggi‑do, 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, NP512, Hall of Cardinal Jin-Suk Cheong, 43 Jibong-Ro, Bucheon-Si, Gyeonggi‑do, 14662, Republic of Korea.
| |
Collapse
|
36
|
Bogdanov AV, Ivanova AA, Voloshina AD, Rakhmatullin RR, Samorodov AV, Valiullina ZA, Krylova ID, Bukharov SV. Synthesis and Antitumor Activity of Hybrid Compounds Based on Aryl-Substituted Isatins and 2-Chloroethynyl (4-(Dimetylamino)phenyl)(2-hydrazinyl-2-oxoethyl)phosphinate. RUSS J GEN CHEM+ 2024; 94:1962-1966. [DOI: 10.1134/s1070363224080085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 05/10/2025]
|
37
|
Nimmo AJ, Kasten K, White G, Roeterdink J, McKay AP, Cordes DB, Smith AD. One-Pot Access to Functionalised Malamides via Organocatalytic Enantioselective Formation of Spirocyclic β-Lactone-Oxindoles and Double Ring-Opening. Molecules 2024; 29:3635. [PMID: 39125040 PMCID: PMC11313722 DOI: 10.3390/molecules29153635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Malamides (diamide derivatives of malic acid) are prevalent in nature and of significant biological interest, yet only limited synthetic methods to access functionalised enantiopure derivatives have been established to date. Herein, an effective synthetic method to generate this molecular class is developed through in situ formation of spirocyclic β-lactone-oxindoles (employing a known enantioselective isothiourea-catalysed formal [2+2] cycloaddition of C(1)-ammonium enolates and isatin derivatives) followed by a subsequent dual ring-opening protocol (of the β-lactone and oxindole) with amine nucleophiles. The application of this protocol is demonstrated across twelve examples to give densely functionalised malamide derivatives with high enantio- and diastereo-selectivity (up to >95:5 dr and >99:1 er).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew David Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK; (A.J.N.); (K.K.); (G.W.); (J.R.); (A.P.M.)
| |
Collapse
|
38
|
Mondal PP, Chungath AA, Krishnan M, Das S, Mandodi A, Sahoo B. Synthesis of Unsymmetrical 3,3'-Dialkyloxindole Boronic Esters from 3-Alkylidene-2-oxindoles Enabled by Copper Catalysis. J Org Chem 2024; 89:10403-10408. [PMID: 38970159 DOI: 10.1021/acs.joc.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
We describe a 1,2-alkylboration of 3-alkylidene-2-oxindoles with a diboron reagent and alkyl bromides and iodides enabled by copper/bisphosphine catalysis. This scalable alkylboration method provides facile access to 3,3'-dialkyloxindole boronic esters featuring an all-carbon quaternary stereocenter and an increased F(sp3) fraction. In addition to good functional group tolerance and prolific utilization of drug/pesticide-derived alkyl iodides, the conversion of the C-B bond to a C-C/C-X bond offers further opportunities for structural variation of 3,3'-dialkyloxindoles.
Collapse
Affiliation(s)
- Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Alvin Antony Chungath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Malavika Krishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Subham Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Aarya Mandodi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
39
|
Zhang X, Gao Y, Mai Z, Li Y, Wang J, Zhao X, Zhang Y. Untargeted Metabolomic Analysis Reveals Plasma Differences between Mares with Endometritis and Healthy Ones. Animals (Basel) 2024; 14:1933. [PMID: 38998045 PMCID: PMC11240781 DOI: 10.3390/ani14131933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group (n = 8) and the healthy control group (n = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics. A total of 28 differentially abundant metabolites were identified by screening and identifying differentially abundant metabolites and analyzing the pathway enrichment of differentially. Ten metabolites were identified as potential biomarkers for the diagnosis of endometritis in mares. Among them, seven exhibited a decrease in the endometritis groups, including hexadecanedioic acid, oleoyl ethanolamide (OEA), [fahydroxy(18:0)]12_13-dihydroxy-9z-octa (12,13-diHOME), deoxycholic acid 3-glucuronide (DCA-3G), 2-oxindole, and (+/-)9-HPODE, and 13(S)-HOTRE. On the other hand, three metabolites, adenosine 5'-monophosphate (AMP), 5-hydroxy-dl-tryptophan (5-HTP), and l-formylkynurenine, demonstrated an increase. These substances primarily participate in the metabolism of tryptophan and linolenic acid, as well as fat and energy. In conclusion, metabolomics revealed differentially abundant metabolite changes in patients with mare endometritis. These specific metabolites can be used as potential biomarkers for the non-invasive diagnosis of mare endometritis.
Collapse
Affiliation(s)
- Xijun Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Jiamian Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
40
|
Jin YH, Wang XP, Ning LW, Wang RJ, Li Y, Zhang Y, Chen LY. Organocatalyzed Asymmetric Michael Addition of 3-Fluorooxindole to Vinylidene Bisphosphonates. J Org Chem 2024; 89:8435-8446. [PMID: 38843406 DOI: 10.1021/acs.joc.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Both the 3-fluorooxindole and germinal bisphosphonate structural motifs are prevalent in bioactive molecules because of their associated biological activities. We describe an approach to accessing 3,3-disubstituted 3-fluorooxindoles bearing a geminal bisphosphate fragment through a highly enantioselective Michael addition reaction between 3-fluorooxindoles and vinylidene bisphosphonates. These reactions are catalyzed by a commercially available cinchona alkaloid catalyst, have a broad substrate scope concerning 3-fluorooxindoles, and provide the corresponding addition products in a yield of up to 95% with an enantiomeric excess of up to 95%. A reasonable reaction pathway to explain the observed stereochemistry is also proposed.
Collapse
Affiliation(s)
- Yi-Hu Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Xiao-Ping Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Li-Wen Ning
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ren-Jie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Youcan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Ling-Yan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| |
Collapse
|
41
|
Marques CS, González-Bakker A, Padrón JM. The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids. Beilstein J Org Chem 2024; 20:1213-1220. [PMID: 38887573 PMCID: PMC11181168 DOI: 10.3762/bjoc.20.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 μM.
Collapse
Affiliation(s)
- Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000-641, Évora, Portugal
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| |
Collapse
|
42
|
Wang B, Gao JK, Sun S, Shen ZL, Yang YF, Liang RX, Jia YX. Pd-Catalyzed Asymmetric Intramolecular Dearomatizing Reductive Heck Reaction of Indoles. Org Lett 2024; 26:3739-3743. [PMID: 38679883 DOI: 10.1021/acs.orglett.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
An enantioselective Pd-catalyzed intramolecular dearomative reductive Heck reaction of N-(o-bromoaryl) indole-3-carboxamide is developed. By employing Pd(dba)2/SPINOL-based phosphoramidite as the chiral catalyst and HCO2Na as the hydride source, a series of enantioenriched spiro indolines bearing vicinal stereocenters were afforded in moderate to good yields with excellent enantioselectivities. The reductive Heck reaction of formal tetrasubstituted alkene bearing β-hydrogens is therefore realized by inhibiting β-H elimination.
Collapse
Affiliation(s)
- Bi Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jing-Kun Gao
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Shuo Sun
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Zhen-Lu Shen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
43
|
Hu YG, Battini N, Fang B, Zhou CH. Discovery of indolylacryloyl-derived oxacins as novel potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 270:116392. [PMID: 38608408 DOI: 10.1016/j.ejmech.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 μg/mL) and hydroxyethyl IDO 10e (0.25-1 μg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.
Collapse
Affiliation(s)
- Yue-Gao Hu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
44
|
Ezelarab HAA, Ali TFS, Abbas SH, Sayed AM, Beshr EAM, Hassan HA. New antiproliferative 3-substituted oxindoles inhibiting EGFR/VEGFR-2 and tubulin polymerization. Mol Divers 2024; 28:563-580. [PMID: 36790582 PMCID: PMC11070402 DOI: 10.1007/s11030-023-10603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| |
Collapse
|
45
|
Ezelarab HAA, Abd El-Hafeez AA, Ali TFS, Sayed AM, Hassan HA, Beshr EAM, Abbas SH. New 2-oxoindole derivatives as multiple PDGFRα/ß and VEGFR-2 tyrosine kinase inhibitors. Bioorg Chem 2024; 145:107234. [PMID: 38412650 DOI: 10.1016/j.bioorg.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRβ, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRβ active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
46
|
Pirzada AS, Khan H, Alam W, Darwish HW, Elhenawy AA, Kuznetsov A, Daglia M. Physicochemical properties, pharmacokinetic studies, DFT approach, and antioxidant activity of nitro and chloro indolinone derivatives. Front Chem 2024; 12:1360719. [PMID: 38562526 PMCID: PMC10982469 DOI: 10.3389/fchem.2024.1360719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
The process of developing of new drugs is greatly hampered by their inadequate physicochemical, pharmacokinetic, and intrinsic characteristics. In this regard, the selected chloro indolinone, (Z)-6-chloro-3-(2-chlorobenzylidene)indolin-2-one (C1), and nitro indolinone, (Z)-6-chloro-3-(2-nitrobenzylidene)indolin-2-one (C2), were subjected to SwissADME and density function theory (DFT) analysis. For compounds C1 and C2, the BOILED-Egg pharmacokinetic model predicted intestinal absorption, blood-brain barrier (BBB) penetration, and p-glycoprotein interaction. According to the physicochemical analysis, C1 has exceptional drug-like characteristics suitable for oral absorption. Despite only being substrates for some of the major CYP 450 isoforms, compounds C1 and C2 were anticipated to have strong plasma protein binding and efficient distribution and block these isoforms. The DFT study using the B3LYP/6-311G(d,p) approach with implicit water effects was performed to assess the structural features, electronic properties, and global reactivity parameters (GRP) of C1 and C2. The DFT results provided further support for other studies, implying that C2 is more water-soluble than C1 and that both compounds can form hydrogen bonds and (weak) dispersion interactions with other molecules, such as solvents and biomolecules. Furthermore, the GRP study suggested that C1 should be more stable and less reactive than C2. A concentration-dependent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was shown by both C1 and C2. In brief, this finding has provided a strong foundation to explore further the therapeutic potential of these molecules against a variety of human disorders.
Collapse
Affiliation(s)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Aleksey Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Santiago, Chile
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Lin J, Jia M, Song X, Yu H, Ma S. Pd-Catalyzed Enantioselective Creation of All-Carbon Quaternary Center with 2,3-Allenylic Carbonates. Org Lett 2024. [PMID: 38489519 DOI: 10.1021/acs.orglett.2c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Enantioselective construction of all-carbon quaternary centers has been achieved via the palladium-catalyzed highly enantioselective allenylation of oxindoles with 2,3-allenylic carbonates to afford a variety of optically active allene products, which contain oxindole units with different functional groups, in high ee. The corresponding synthetic applications have also been demonstrated.
Collapse
Affiliation(s)
- Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Xu Song
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hao Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
48
|
Jeon JS, Kim H, Jo S, Sim J, Kim SK. Role of microsomal metabolism in bromfenac-induced cytotoxicity. Chem Biol Interact 2024; 391:110903. [PMID: 38331335 DOI: 10.1016/j.cbi.2024.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
This study delves into the intricate mechanisms underlying drug-induced liver injury (DILI) with a specific focus on bromfenac, the withdrawn nonsteroidal anti-inflammatory drug. DILI is a pervasive concern in drug development, prompting market withdrawals and posing significant challenges to healthcare. Despite the withdrawal of bromfenac due to DILI, the exact role of its microsomal metabolism in inducing hepatotoxicity remains unclear. Herein, employing HepG2 cells with human liver microsomes and UDP-glucuronic acid (UDPGA), our investigation revealed a substantial increase in bromfenac-induced cytotoxicity in the presence of UDPGA, pointing to the significance of UDP-glucuronosyltransferase (UGT)-dependent metabolism in augmenting toxicity. Notably, among the recombinant UGTs examined, UGT2B7 emerged as a pivotal enzyme in the metabolic activation of bromfenac. Metabolite identification studies disclosed the formation of reactive intermediates, with bromfenac indolinone (lactam) identified as a potential mediator of hepatotoxic effects. Moreover, in cytotoxicity experiments, the toxicity of bromfenac lactam exhibited a 34-fold increase, relative to bromfenac. The toxicity of bromfenac lactam was mitigated by nicotinamide adenine dinucleotide phosphate-dependent metabolism. This finding underscores the role of UGT-dependent metabolism in generating reactive metabolites that contribute to the observed hepatotoxicity associated with bromfenac. Understanding these metabolic pathways and the involvement of specific enzymes, such as UGT2B7, provides crucial insights into the mechanisms of bromfenac-induced liver injury. In conclusion, this research sheds light on the metabolic intricacies leading to cytotoxicity induced by bromfenac, especially emphasizing the role of UGT-dependent metabolism and the formation of reactive intermediates like bromfenac lactam. These findings offer insight into the mechanistic basis of DILI and emphasize the importance of understanding metabolism-mediated toxicity.
Collapse
Affiliation(s)
- Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
49
|
Singh PR, Lamba M, Goswami A. Copper-Catalyzed Chemoselective O-Arylation of Oxindoles: Access to Cyclic Aryl Carboxyimidates. J Org Chem 2024; 89:2926-2938. [PMID: 38354326 DOI: 10.1021/acs.joc.3c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed a highly efficient base- and additive-free chemoselective CuO-catalyzed strategy for the O-arylation of 2-oxindoles to synthesize 2-phenoxy-3H-indole and 2-phenoxy-1H-indole derivatives in the presence of diaryl iodonium salts. This method offers a variety of O-arylated oxindoles in good to excellent yields under relatively milder reaction conditions. Furthermore, this methodology was extended for the O-arylation of 2-pyridinone and isoindoline-1-one derivatives as well.
Collapse
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| |
Collapse
|
50
|
Velavalapalli VM, Maddipati V, Gurská S, Annadurai N, Lišková B, Katari NK, Džubák P, Hajdúch M, Das V, Gundla R. Novel 5-Substituted Oxindole Derivatives as Bruton's Tyrosine Kinase Inhibitors: Design, Synthesis, Docking, Molecular Dynamics Simulation, and Biological Evaluation. ACS OMEGA 2024; 9:8067-8081. [PMID: 38405484 PMCID: PMC10882696 DOI: 10.1021/acsomega.3c08343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Bruton's tyrosine kinase (BTK) is a non-RTK cytoplasmic kinase predominantly expressed by hemopoietic lineages, particularly B-cells. A new oxindole-based focused library was designed to identify potent compounds targeting the BTK protein as anticancer agents. This study used rational approaches like structure-based pharmacophore modeling, docking, and ADME properties to select compounds. Molecular dynamics simulations carried out at 20 ns supported the stability of compound 9g within the binding pocket. All the compounds were synthesized and subjected to biological screening on two BTK-expressing cancer cell lines, RAMOS and K562; six non-BTK cancer cell lines, A549, HCT116 (parental and p53-/-), U2OS, JURKAT, and CCRF-CEM; and two non-malignant fibroblast lines, BJ and MRC-5. This study resulted in the identification of four new compounds, 9b, 9f, 9g, and 9h, possessing free binding energies of -10.8, -11.1, -11.3, and -10.8 kcal/mol, respectively, and displaying selective cytotoxicity against BTK-high RAMOS cells. Further analysis demonstrated the antiproliferative activity of 9h in RAMOS cells through selective inhibition of pBTK (Tyr223) without affecting Lyn and Syk, upstream proteins in the BCR signaling pathway. In conclusion, we identified a promising oxindole derivative (9h) that shows specificity in modulating BTK signaling pathways.
Collapse
Affiliation(s)
- Vani Madhuri Velavalapalli
- GITAM
School of Pharmacy, GITAM Deemed to Be University, Hyderabad, Telangana 502329, India
- Department
of Chemistry, GITAM School of Science, GITAM
Deemed to Be University, Hyderabad, Telangana 502329, India
| | | | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital
Olomouc, Hněvotínská
1333/5, Olomouc 77900, Czech Republic
- Czech
Advanced Technologies and Research Institute (CATRIN), Institute of
Molecular and Translational Medicine, Palacký
University Olomouc, Olomouc 77900, Czech Republic
| | - Narendran Annadurai
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital
Olomouc, Hněvotínská
1333/5, Olomouc 77900, Czech Republic
| | - Barbora Lišková
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital
Olomouc, Hněvotínská
1333/5, Olomouc 77900, Czech Republic
| | - Naresh Kumar Katari
- Department
of Chemistry, GITAM School of Science, GITAM
Deemed to Be University, Hyderabad, Telangana 502329, India
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital
Olomouc, Hněvotínská
1333/5, Olomouc 77900, Czech Republic
- Czech
Advanced Technologies and Research Institute (CATRIN), Institute of
Molecular and Translational Medicine, Palacký
University Olomouc, Olomouc 77900, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital
Olomouc, Hněvotínská
1333/5, Olomouc 77900, Czech Republic
- Czech
Advanced Technologies and Research Institute (CATRIN), Institute of
Molecular and Translational Medicine, Palacký
University Olomouc, Olomouc 77900, Czech Republic
| | - Viswanath Das
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital
Olomouc, Hněvotínská
1333/5, Olomouc 77900, Czech Republic
- Czech
Advanced Technologies and Research Institute (CATRIN), Institute of
Molecular and Translational Medicine, Palacký
University Olomouc, Olomouc 77900, Czech Republic
| | - Rambabu Gundla
- Department
of Chemistry, GITAM School of Science, GITAM
Deemed to Be University, Hyderabad, Telangana 502329, India
| |
Collapse
|