1
|
Zhang L, Zhao Y, Chen H, Yu Y, Zhao H, Lan M, Yang X, Xiang C, An S, Guo X, Yang Y, Xu TR. Parishin A alleviates insomnia by regulating hypothalamic-pituitary-adrenal axis homeostasis and directly targeting orexin receptor OX 2. Eur J Pharmacol 2025; 998:177498. [PMID: 40064224 DOI: 10.1016/j.ejphar.2025.177498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Parishin A (PA), a bioactive compound derived from Gastrodia elata Blume, has been used as a herbal remedy for insomnia. Nevertheless, the mechanism underlying the effect of PA on promotion of sleep and its potential targets remain to be elucidated. This study aimed to investigate the potential of PA in ameliorating insomnia, probing into its interactions with the orexin receptor 2 (OX2), antagonists of which are used clinically for the treatment of sleep disorders. We employed an array of methodologies, including in vivo experiments involving the assessment of the impacts of PA on sleep behavior in a p-chlorophenylalanine (PCPA)-induced insomnia mouse model, and the detection of neurotransmitters, inflammatory factors, and hypothalamic-pituitary-adrenal (HPA) axis-related hormones. In vitro experiments, such as extracellular signal-regulated kinase (ERK) 1/2 phosphorylation assay, drug-receptor binding stability assay (DARTS), cellular thermal shift assay (CETSA), solvent-induced protein precipitation (SIP), and molecular docking, were performed to validate the interaction between PA and OX2. The results showed that PA relieved insomnia in mice by effectively increasing the content of 5-hydroxytryptamine (5-HT) while reducing those of dopamine (DA), norepinephrine (NE) and glutamine/γ-aminobutyric acid (Glu/GABA), as well as the inflammatory factor tumor necrosis factor-alpha (TNF-α) in the hypothalamus. PA also improved the morphological changes in the hippocampus of insomnia mice and decreased the levels of HPA axis-related hormones. Furthermore, OX2 was found to be a potential direct target of PA. In conclusion, PA might be an antagonist of OX2 because of its ability to inhibit OX2-induced ERK 1/2 activation. These findings provide valuable insights into the therapeutic potential of PA in insomnia.
Collapse
Affiliation(s)
- Lijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ya Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yue Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huanchun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mengli Lan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiuyu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Wang LX, Liu YM, Gu YF, Li L, Qiu RH, Wang YK, Yang J, Wang J, Zhang Y, Li S, Fan QY, Xue R, Li JC, Zhang YZ. Sedative and hypnotic effects of nuciferine: enhancing rodent sleep via serotonergic system modulation. Int J Neuropsychopharmacol 2025; 28:pyaf019. [PMID: 40160035 PMCID: PMC12084828 DOI: 10.1093/ijnp/pyaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/28/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Insomnia is the most prevalent sleep disorder globally. Nuciferine (NF), a bioactive constituent extracted from Nelumbo nucifera leaves, is recognized for its diverse pharmacological activities. However, its sleep-regulating effects have not been investigated. This study aimed to delineate the therapeutic effects and underlying mechanisms of NF in mitigating insomnia. METHODS The sedative-hypnotic effects of NF were assessed employing locomotor activity test, pentobarbital-induced sleep test, and electroencephalography-based sleep profiling. Insomnia symptoms in rodents were induced by serotonin (5-HT) depletion and environmental stress. The potential mechanisms of NF's action through the regulation of central serotonin system were also explored. RESULTS Nuciferine attenuated locomotor activity and extended pentobarbital-induced sleep duration in a dose-dependent manner. It also significantly augmented total and non-rapid eye movement (NREM) sleep time and enhanced delta power at frequencies of 0.5 and 1 Hz in normal rats. Sleep analysis revealed that NF effectively reversed the reduction in total and NREM sleep time caused by environmental stress from cage changing. NF treatment also proved effective against insomnia induced by 5-HT depletion, as evidenced by increased sleep duration and reduced sleep latency. Further investigation revealed a synergetic effect of NF and 5-hydroxytryptophan, alone with increased 5-HT and 5-HT1A receptor levels in the hypothalamus of insomniac mice following NF administration. CONCLUSIONS The results demonstrate NF's hypnotic effects and its ability to alleviate insomnia, providing preclinical evidence for its potential as a naturally derived treatment for insomnia.
Collapse
Affiliation(s)
- Luo-Xuan Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yu-Meng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yong-Fang Gu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lu Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ren-Hong Qiu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yan-Kai Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jin Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ji Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qiong-Yin Fan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing-Cao Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
3
|
Wang YT, Wang XL, Lei L, Zhang Y. Efficacy of ginsenoside Rg1 on rodent models of depression: A systematic review and meta-analysis. Psychopharmacology (Berl) 2025; 242:1137-1155. [PMID: 39039242 DOI: 10.1007/s00213-024-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
RATIONALE Depression is a prevalent psychiatric disease, and ginsenoside Rg1 is a bioactive compound extracted from the root of Panax ginseng C.A.Mey. To systematically investigate the effectiveness of Rg1 in rodent models of depression and provide evidence-based references for treating depression. METHODS Electronic searches for rodent studies were performed from inception to October 2022, e.g., PUBMED and EMBASE. Data extraction and quality evaluation were performed for the references, and meta-analysis was performed on the selected data using Review Manager 5.3.5. The outcomes were analyzed via a random-effect model and presented as mean difference (MD) with 95% confidence intervals (CIs). RESULTS A total of 24 studies and 678 animals were included in this meta-analysis. Rg1 remarkably improved depressive-like symptoms of depressed rodents, including the sucrose preference test (25.08, 95% CI: 20.17-30.00, Z = 10.01, P < 0.00001), forced swimming test (MD = -37.69, 95% CI: (-45.18, -30.2); Z = 9.86, P < 0.00001), and the tail suspension test (MD = -22.93, seconds, 95% CI: (-38.49, -7.37); Z = 2.89, P = 0.004). CONCLUSIONS The main antidepressant mechanism of Rg1 was concluded to be the neurotransmitter system, oxidant stress system, and inflammation. Conclusively, this study indicated the possible protective and therapeutic effects of Rg1 for treating depression via multiple mechanisms.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
4
|
Zhang L, Wang X, Zhou S, Feng Y. LDHA enhances brain injury and apoptosis after intracerebral hemorrhage by promoting P53 transcription through increasing P53 lactylation. Brain Res Bull 2025; 224:111292. [PMID: 40057050 DOI: 10.1016/j.brainresbull.2025.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Intracerebral hemorrhage(ICH) is a cerebrovascular disease with high disability and fatality rate, and inhibition of neuronal cell death is the key to improve ICH injury. Histone lactylation is induced by lactate, it role in ICH remains unclear. P53 plays a key role in apoptosis. This study aims to investigate the role of lactate dehydrogenase A(LDHA), a key factor in the production of lactate, in the development of ICH and its regulation of P53. In vitro and in vivo ICH model was construct by stimulation of hemin on PC12 cells and collagenase IV injection in C57BL/6 J mice. Lactate production was detected using a lactate kit. LDHA and P53 expression was measured by quantitative real-time PCR. Western blot was performed to detect the protein level of pan-kla, apoptosis-related factors and histone lactylation. Impact of LDHA in ICH was evaluated by measuring cell viability, proliferation, apoptosis, neurobehavioral function assessment and pathological observation. Results showed that lactate production, LDHA expression and histone lactylation were increased after ICH. LDHA knockdown promoted cell viability and proliferation but suppressed apoptosis after ICH in vitro, and improved neurological function, brain injury and apoptosis after ICH in vivo. Mechanically, LDHA knockdown inhibited P53 transcription by decreasing lactylation on P53 promoter. Moreover, P53 overexpression restored apoptosis and brain injury after ICH improved by LDHA knockdown. In conclusion, we demonstrated that LDHA enhanced brain injury and apoptosis after ICH by promoting P53 transcription through increasing lactylation on P53 promoter. These results may provide a novel therapeutic target for ICH injury.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoming Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjian Feng
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Yao C, Zeng X, Zhang S, Xiao B, Sun P, Kong L, Tao J, Fang M. Acupoint massage: a comprehensive descriptive review of its forms, applications, and underlying mechanisms. Chin Med 2025; 20:54. [PMID: 40270014 PMCID: PMC12020265 DOI: 10.1186/s13020-025-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Acupoint massage is a non-invasive traditional therapy that has demonstrated reliable clinical outcomes in pain management, mental health relief, sleep disorder regulation, gastrointestinal treatment, and as an adjunct therapy for cancer. Its convenience and cost-effectiveness further enhance its appeal. However, the existing English literature lacks a systematic review that encompasses the various forms of acupoint massage. The acupoint massage forms adaptability is particularly notable when considering the diverse conditions, it addresses, as well as its applicability across different age groups and gender differences. Providing a comprehensive understanding, it is crucial to outline common practices and explore specific applications in key areas. The comprehensive understanding can create opportunities for effective collaboration between preclinical and clinical studies. Defining and categorizing different forms of acupoint massage is essential, alongside investigating the neural circuits involved in touch sensation. Future efforts should enhance collaboration with modern biology, facilitating the transition from empirical to evidence-based practice. This review summarizes forms, applications, and mechanisms of mainstream acupoint massage and provides insights for future research and applications, promoting deeper integration into healthcare.
Collapse
Affiliation(s)
- Chongjie Yao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xinyu Zeng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuaipan Zhang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Bin Xiao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Pingping Sun
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Lingjun Kong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiming Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Min Fang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
6
|
Zhou G, Zheng S, Xu Y. Molecular Insights into Propofol's Neurotoxic Effects: Targeting the HTR1A/cAMP Signaling Pathway. Chem Res Toxicol 2025; 38:561-572. [PMID: 40168001 DOI: 10.1021/acs.chemrestox.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Propofol, a commonly used anesthetic in clinical practice, is favored for its rapid onset and short duration of action. Despite its widespread use, the potential neurotoxic effects of propofol remain insufficiently understood. This study utilized high-throughput transcriptome sequencing and network pharmacology to investigate the mechanisms by which propofol induces neurotoxicity in rat hippocampal neural progenitor cells (NPCs), focusing on the HTR1A/cAMP signaling pathway. Our findings reveal that propofol significantly inhibits the HTR1A/cAMP pathway, leading to altered expression of key genes that affect neuronal activity, inflammatory responses, and apoptosis. In vivo experiments further demonstrate that propofol impairs spatial learning and memory in rats, an effect that is partially reversed by overexpression of HTR1A. These results not only elucidate the molecular mechanisms underlying propofol-induced neuronal damage but also provide critical insights into the safe application of propofol in clinical settings.
Collapse
Affiliation(s)
- Gongrui Zhou
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Shubin Zheng
- Department of Anesthesiology, Air Force Medical Center, Beijing 100142, China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing 100142, China
| |
Collapse
|
7
|
Zhang B, Wang Q, Zhang Y, Wang H, Kang J, Zhu Y, Wang B, Feng S. Treatment of Insomnia With Traditional Chinese Medicine Presents a Promising Prospect. Phytother Res 2025. [PMID: 40251853 DOI: 10.1002/ptr.8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Insomnia, a prevalent sleep disorder, significantly impacts global health. While Western medications provide temporary relief, their risks of dependency and cognitive impairment have spurred the search for safer alternatives. Traditional Chinese Medicine (TCM) offers a promising approach to treating insomnia by focusing on harmonizing the balance of Yin and Yang and the functions of internal organs. This review explores recent research advances in TCM for insomnia treatment, integrating classical theories with modern scientific understanding of key pathological mechanisms, including neurotransmitter regulation (GABA, monoamines), immune-inflammatory responses, the HPA axis, and interactions with the gut microbiota. Growing clinical evidence supports the effectiveness of classical TCM prescriptions and treatments like acupuncture in improving sleep quality, particularly when combined with Western medications to enhance efficacy and reduce dependency. However, TCM also has its limitations. Future research directions should focus on modernizing TCM applications, addressing comorbidities associated with insomnia, exploring the role of gut microbiota, and optimizing medicinal and edible homologous products. By integrating traditional knowledge with cutting-edge technologies, TCM holds great potential for advancing personalized and effective insomnia treatments globally.
Collapse
Affiliation(s)
- Boyi Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Yuhang Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hanyu Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingyu Kang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yandi Zhu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou, China
| |
Collapse
|
8
|
Fan R, Jia Y, Chen Z, Li S, Qi B, Ma A. Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods 2025; 14:1080. [PMID: 40238208 PMCID: PMC11988850 DOI: 10.3390/foods14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Insomnia affects one-third of the world's population; the negative effects of insomnia are significant, and traditional insomnia medications have numerous side effects and cause considerable suffering. This has aroused interest in obtaining sleep-improving substances from foods. This study conducted a comprehensive literature review using Web of Science and PubMed with keywords like "sleep", "insomnia", and "food". A subsequent summary of the literature revealed that certain foods, including milk, Ziziphus jujuba, Lactuca sativa, ginseng, Schisandra chinensis, and Juglans regia, etc., are purported to enhance sleep quality by prolonging sleep duration, reducing sleep latency, and alleviating anxiety. The mechanisms of these foods' effects mainly occur via the central nervous system, particularly the gamma-aminobutyric acid (GABA)ergic and 5-hydroxytryptamine (5-HT)ergic systems. Although this review supports the fact that they have potential, further research is needed. There are also issues such as more limited foods, fewer mechanisms, fewer pharmacokinetic studies, and more traditional research models being involved. These need to be addressed in the future to adequately address the problem of insomnia. It is hoped that this study will contribute to research into foods with sleep-improving properties and, in the future, provide an effective natural alternative for those seeking medication.
Collapse
Affiliation(s)
- Rui Fan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Bing Qi
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui 053000, China;
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| |
Collapse
|
9
|
Zhang Y, Jin Y, Zhao N, Wang T, Wang X, Li Z, Yan Y. Mechanistic insights into Suanzaoren Decoction's improvement of cardiac contractile function in anxiety-induced cardiac insufficiency. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118860. [PMID: 39341264 DOI: 10.1016/j.jep.2024.118860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine, Anxiety-induced cardiac blood insufficiency leads to palpitations and restlessness. Suanzaoren Decoction (SD) is effective in replenishing blood and promoting blood circulation. Clinical practice has shown that it has a better therapeutic effect on cardiac insufficiency. However, its mechanism of action is still unclear. AIM OF THE STUDY The study aims to determine the mechanism by which SD treats chronic restraint stress (CRS)-induced anxiety-induced cardiac insufficiency (ACI). MATERIALS AND METHODS SD was orally administered to mice with CRS-induced ACI. Firstly, we constructed an anxiety model in mice by CRS. Subsequently, SD was investigated to assess cardiac function and pathological changes through echocardiography, H&E staining, and Masson staining. Thirdly, the function of sympathetic and parasympathetic nerves was evaluated using enzyme-linked immunosorbent assay (ELISA) and enzyme activity assays. Network pharmacology and molecular docking were employed to predict potential targets for SD treatment of cardiac insufficiency. CaMKII expression was scrutinized utilizing publicly accessible databases. CaMKII was identified as a target through immunohistochemistry and Western Blot analysis in mouse hearts. Finally, the therapeutic mechanism of SD was confirmed in injured cardiomyocytes via Western Blot and quantitative PCR. RESULTS SD exerted anxiolytic effects by increasing the frequency of entries into and the duration spent in open arms while reducing the time spent in the light chamber and increasing the number of transitions between light and dark chambers. Additionally, it mitigated cardiac insufficiency, as evidenced by the enhancement of left ventricular ejection fraction (LVEF) and attenuation of cardiomyocyte damage and inflammatory infiltration. However, SD did not alleviate the elevated norepinephrine (NE) and decreased Acetylcholine (Ach) in anxiety states. To investigate the mechanism of action of SD, we constructed a Drug-Component-Target-Disease network, identifying 13 potential active compounds. Additionally, leveraging bioinformatics analysis and molecular docking targeting heart diseases characterized by clinical left ventricular ejection fraction (LVEF), we focused on the CaMKII target. The ability of SD to modulate CaMKII expression and phosphorylation in the mouse heart was investigated using immunohistochemistry and Western blotting. SD was found to alleviate NE-injured cardiomyocytes by modulating the Ca2+/CaMKII/MEF2 and GATA4 pathways. CONCLUSION SD is a potential formula for the treatment of chronic restraint stress (CRS)-induced ACI that ameliorates cardiomyocyte injury and improves cardiac function. Its efficacy is associated with the inhibition of the Ca2+/CaMKII/MEF2 and GATA4 signaling pathways.
Collapse
Affiliation(s)
- Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, 541004, China.
| | - Yue Jin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ni Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ting Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Xuanlin Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
10
|
Li R, Pan Y, Jing N, Wang T, Shi Y, Hao L, Zhu J, Lu J. Flavonoids from mulberry leaves exhibit sleep-improving effects via regulating GABA and 5-HT receptors. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118734. [PMID: 39374877 DOI: 10.1016/j.jep.2024.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaf (Folium Mori) is a dried leaf of the dicotyledonous mulberry tree and is a homologous food and medicine. Treating insomnia with it is a common practice in traditional Chinese medicine. But still, its potential sleep-improving mechanism remains to be elucidated. AIM OF REVIEW Potential bioactive components and mechanisms of the sleep-improving effect of purified flavone from mulberry leaves (MLF) were explored through in vivo experiments, network pharmacology analysis, and molecular experimental validation. MATERIALS AND METHODS The mice model was established by pentobarbital sodium induction to evaluate the sleep-improving effect of MLF. The MLF's chemical composition was identified through a liquid chromatograph quadrupole time-of-flight mass spectrometer (Q-TOF LC/MS) to elucidate its sleep-improving active ingredient. At last, the underlying mechanism of MLF's sleep-improving effect was elucidated through neurotransmitter detection (ELISA), network pharmacology analysis, and molecular experimental validation (quantitative real-time PCR and western blotting). RESULTS MLF could dramatically reduce sleep latency by 35%, prolong sleep duration by 123%, and increase the sleep rate of mice through increasing γ-aminobutyric acid (GABA) and serotonin (5-HT) release in serum, hypothalamus, and hippocampus. Q-TOF LC/MS identified 17 flavonoid components in MLF. Network pharmacological analysis suggested that the key sleep-improving active ingredients in MLF might be quercetin, kaempferol, morin, and delphinidin. The key path for MLF to improve sleep might be the tryptophan metabolism and neuroactive ligand-receptor interaction, and the key targets might be gamma-aminobutyric acid type A receptor subunit alpha2 Gene (GABRA2) and serotonin 1A (5-HT1A) receptors. CONCLUSIONS MLF has shown significant sleep-improving effects in mice and may take effect through regulating the GABA and 5-HT receptors.
Collapse
Affiliation(s)
- Rui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Nannan Jing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| |
Collapse
|
11
|
Zhu W, Yang X, Li N, Zhang B, Huang L, Cheng H, Wu X, Zhang D, Li S, Xu H. Analyzing gene-based apoptotic biomarkers in insomnia using bioinformatics. Medicine (Baltimore) 2025; 104:e40965. [PMID: 39833072 PMCID: PMC11749514 DOI: 10.1097/md.0000000000040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Insomnia is increasingly common and poses significant health risks. The aims of this study are to identify apoptosis-related genes and potential biomarkers for insomnia and to find new therapeutic targets. Insomnia gene expression profiles were downloaded from the Gene Expression Omnibus database, and differentially expressed genes in normal and insomnia samples were identified by limma rapid differential analysis, and then the major modular genes with clinical relevance to insomnia were analyzed using the Weighted Gene Co-Expression Network Analysis, and intersections were obtained with the differentially expressed genes as well as with apoptotic gene databases. We validated apoptosis-related differentially expressed genes, enriched and analyzed the specific biological process of insomnia and related signaling pathways. In addition, we constructed a protein-protein interaction network and obtained Top10 hub genes using Cytoscape. We selected 3 of them as hub genes and compared their expression in normal hippocampal neuronal cells and hippocampal neuronal cells of the model group exposed to corticosterone induction by Western Blot and qRT-PCR experiments. A total of 190 differentially expressed apoptosis-related genes were identified in insomnia, and BCL2, SOCS3, and IL7R were identified as important hub genes. Enrichment analysis showed that the occurrence of apoptosis in insomnia was mainly related to "PI3K-Akt signaling pathway," "JAK-STAT signaling pathway," "P53 signaling pathway" and so on. GO analysis showed that apoptosis in insomnia was mainly related to "immune response," "T cell differentiation in thymus," and "positive regulation of MAPK cascade." Western Blot and qRT-PCR experiments showed that BCL2, SOCS3, IL7R antiapoptotic indexes were under-expressed in modeled hippocampal neuronal cells compared to normal hippocampal neuronal cells. This study emphasizes the role of apoptosis-related genes in insomnia and preliminarily predicts that the occurrence of insomnia is closely related to apoptosis. Compared to the normal group, the antiapoptotic ability of hippocampal neurons in the model group is reduced. Although BCL2 has been studied in the context of sleep deprivation, SOCS3 and IL7R have not yet been explored in insomnia. Insomnia and sleep deprivation involve similar pathways, but due to different mechanisms and types of insomnia, gene expression may vary.
Collapse
Affiliation(s)
- Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingchun Yang
- Department of Acupuncture and Tuina, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxing Cheng
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Wu
- Department of Acupuncture and Tuina, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Dechou Zhang
- Department of Acupuncture and Tuina, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Department of Orthopedic Surgery, Division of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Yan A, Li Z, Gao Y, Hu F, Han S, Liu F, Liu Z, Chen J, Yuan C, Zhou C. Isobicyclogermacrenal ameliorates hippocampal ferroptosis involvement in neurochemical disruptions and neuroinflammation induced by sleep deprivation in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156306. [PMID: 39647468 DOI: 10.1016/j.phymed.2024.156306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sleep deprivation (SLD) is a widespread condition that disrupts physiological functions and may increase mortality risk. Valeriana officinalis, a traditional medicinal herb known for its sedative and hypnotic properties, contains isobicyclogermacrenal (IG), a newly isolated active compound. However, research on the therapeutic potential of IG for treating SLD remains limited. METHODS In this study, IG was extracted and characterized from Valeriana officinalis, and an SLD model was established in rats using p-chlorophenylalanine (PCPA). Behavioral tests and pathological studies were conducted to assess the effects of IG on SLD, and transcriptomic and metabolomic analyses were utilized to investigate its underlying mechanisms. RESULTS IG administration significantly improved the cognitive performance of SLD rats in behavioral tests and ameliorated histological injuries in the hippocampus and cerebral cortex. IG treatment increased the levels of brain-derived neurotrophic factor (BDNF) and neurotransmitters such as serotonin (5-HT) in SLD rats. Additionally, IG directly targets TFRC, thereby improving iron metabolism in the hippocampus. Comprehensive transcriptomic and metabolomic analyses revealed that the improvements from IG stemmed from the mitigation of abnormalities in iron metabolism, cholesterol metabolism, and glutathione metabolism, leading to reduced oxidative stress, ferroptosis, and neuroinflammation in the hippocampus caused by SLD. CONCLUSIONS Collectively, these findings suggest that IG has the potential to ameliorate neurological damage and cognitive impairment caused by SLD, offering a novel strategy for protection against the adverse effects of SLD.
Collapse
Affiliation(s)
- Ao Yan
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhejin Li
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yuanwei Gao
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fanglong Hu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Shuo Han
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fengjie Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jinting Chen
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Chengyan Zhou
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
13
|
Ma J, Huang S, Shi L, Shen Y, Gao S, Wu Z. Research progress on the effect of medicine and food homology resources for sleep improvement. Heliyon 2024; 10:e40067. [PMID: 39583811 PMCID: PMC11584607 DOI: 10.1016/j.heliyon.2024.e40067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Insomnia can have a negative impact on people's life or even cause mental or physical diseases. In China, the usage of medicine food homology herbal resources to treat insomnia has a long history. This review, which is based on the theory of traditional Chinese medicine (TCM), summarizes the research progress of medicine and food homology (MFH) resources in treating insomnia. Through literature search from the last 8 years, we compared the understanding of insomnia between TCM and modern pharmacology, found 21 kinds of MFH plants and 15 kinds of prescriptions containing MFH plants that have the effect of improving sleep and summarized the mechanism of their treatment of insomnia. Our study will provide theoretical support for the development and utilization of MFH plant resources with sleep-enhancing properties and provide positive insights and direction references for more effective treatment of insomnia disease.
Collapse
Affiliation(s)
- Jingxuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shan Huang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shiyu Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
14
|
Zhang H, Gao T, Zhao F, Wang N, Li Z, Qin X, Liu Y, Wang R. Integrated gut microbiome and metabolomic analyses elucidate the therapeutic mechanisms of Suanzaoren decoction in insomnia and depression models. Front Neurosci 2024; 18:1459141. [PMID: 39464422 PMCID: PMC11502468 DOI: 10.3389/fnins.2024.1459141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Insomnia and depression are psychiatric disorders linked to substantial health burdens. The gut microbiome and metabolomic pathways are increasingly recognized as key contributors to these conditions' pathophysiology. Suanzaoren Decoction (SZRD), a traditional Chinese herbal formulation, has demonstrated significant therapeutic benefits for both insomnia and depression. This study aims to elucidate the mechanistic effects of SZRD on insomnia and depression by integrating gut microbiome and metabolomic analyses and to assess the differential impacts of SZRD dosages. Using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), we identified 66 chemical constituents within SZRD. Behavioral assays indicated that low-dose SZRD (LSZRD) significantly ameliorated insomnia symptoms in rat models, whereas high-dose SZRD (HSZRD) markedly improved depressive behaviors. 16S rRNA sequencing revealed that SZRD modulated gut microbiome dysbiosis induced by insomnia and depression, characterized by an increased abundance of short-chain fatty acid (SCFA)-producing genera. Metabolomic profiling demonstrated reduced plasma amino acid metabolites and disrupted γ-aminobutyric acid (GABA) and L-glutamic acid metabolism in the hippocampus of affected rats. SZRD administration restored fecal SCFA levels and ameliorated metabolic imbalances in both plasma and hippocampal tissues. These findings underscore the pivotal role of gut microbiome modulation and metabolic regulation in the therapeutic effects of SZRD, providing a scientific basis for its use in treating insomnia and depression.
Collapse
Affiliation(s)
- Hongxiong Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Taixiang Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feng Zhao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Nan Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhixuan Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ying Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
15
|
Wang Z, Li D, Chen M, Yu X, Chen C, Chen Y, Zhang L, Shu Y. A comprehensive study on the regulation of Compound Zaoren Granules on cAMP/CREB signaling pathway and metabolic disorder in CUMS-PCPA induced insomnia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118401. [PMID: 38815875 DOI: 10.1016/j.jep.2024.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Zaoren Granules (CZG), an optimized herbal formulation based on the traditional Chinese medicine prescription Suanzaoren decoction, are designed specifically for insomnia treatment. However, the mechanisms underlying its efficacy in treating insomnia are not yet fully understood. AIM OF THE STUDY The research investigated the mechanisms of CZG's improvement in insomnia by regulating cAMP/CREB signaling pathway and metabolic profiles. METHODS The main components of CZG were characterized by liquid chromatography-mass spectrometry (LC-MS). Subsequently, these validated components were applied to network pharmacological analysis to predict signaling pathways associated with insomnia. We evaluated the effect of CZG on BV-2 cells in vitro. We also evaluated the behavioral indexes of CUMS combined with PCPA induced insomnia in rats. HE staining and Nissl staining were used to observe the pathological damage of hippocampus. ELISA was used to detect the levels of various neurotransmitters, orexins, HPA axis, and inflammatory factors in insomnia rats. Then we detected the expression of cAMP/CREB signaling pathway through ELISA, WB, and IHC. Finally, the metabolomics was further analyzed by using UHPLC-QTOF-MS/MS to investigate the changes in the hippocampus of insomnia rats and the possible metabolic pathways were also speculated. RESULTS The results of CZG in vitro experiments showed that CZG has protective and anti-inflammatory effects on LPS induced BV-2 cells. A total of 161 chemical components were identified in CZG. After conducting network pharmacology analysis through these confirmed components, we select the cAMP/CREB signaling pathway for further investigate. The behavioral research results on insomnia rats showed that CZG significantly prolonged sleep time, mitigated brain tissue pathological damage, and exhibited liver protective properties. CZG treats insomnia by regulating the content of various neurotransmitters, reducing levels of orexin, HPA axis, and inflammatory factors. It can also treat insomnia by upregulating the expression of the cAMP/CREB signaling pathway. Hippocampus metabolomics analysis identified 69 differential metabolites associated with insomnia. The metabolic pathways related to these differential metabolites have also been predicted. CONCLUSION These results indicate that CZG can significantly prolong sleep time. CZG is used to treat insomnia by regulating various neurotransmitters, HPA axis, inflammatory factors, cAMP/CREB signaling pathways, and metabolic disorders.
Collapse
Affiliation(s)
- Zekun Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Danting Li
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Key laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiaocong Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Chen Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Yajun Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Lingfeng Zhang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Seaside Rehabilitation Hospital, Lianyungang, 222042, China.
| |
Collapse
|
16
|
Wang Q, Zhou Q, Du Z, Lu R, Jiang Y, Zhu H. Clinical safety of daridorexant in insomnia treatment: Analysis of FDA adverse event reports. J Affect Disord 2024; 362:552-559. [PMID: 39019232 DOI: 10.1016/j.jad.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Daridorexant, a novel dual orexin receptor antagonist, was approved by the FDA in 2022 for the treatment of insomnia in adults. The aim of this study is to delve into the adverse events (AEs) of daridorexant by analyzing data from the FAERS database, to assess its safety and effectiveness in clinical applications. METHODS This study selected data from the FAERS database from the first quarter of 2022 to the third quarter of 2023. Various data analysis methods were used, including the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM), to assess AEs related to daridorexant. RESULTS The study analyzed a total of 2,624,030 AE reports, of which 1318 were related to daridorexant. It identified 59 preferred terms (PTs) involving 23 system organ classes (SOCs). Signal mining identified new potential AEs related to daridorexant, including sleep-related psychiatric symptoms (nightmare, abnormal dreams, sleep terror, etc.), emotional and perceptual abnormalities (hallucination, depression, agitation), physiological and behavioral responses (palpitations, dry mouth, energy increased, etc.), suicide risk (suicidal ideation, intentional overdose), and other special concern AEs (tachyphrenia, sleep-related eating disorder, hypersensitivity). CONCLUSION Although some new potential AEs have been identified, these findings need further verification in broader datasets and long-term studies due to limitations in data sources and analysis methods. Future research should comprehensively assess the safety and effectiveness of daridorexant, providing more accurate guidance for medical professionals in the treatment of insomnia.
Collapse
Affiliation(s)
- Qi Wang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| | - Haohao Zhu
- Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China.
| |
Collapse
|
17
|
Guan HR, Li B, Zhang ZH, Wu HS, Wang N, Chen XF, Zhou CL, Bian XR, Li L, Xu WF, He XL, Dong YJ, Jiang NH, Su J, Lv GY, Chen SH. Exploring the efficacy and mechanism of Bailing capsule to improve polycystic ovary syndrome in mice based on intestinal-derived LPS-TLR4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118274. [PMID: 38697410 DOI: 10.1016/j.jep.2024.118274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. AIM OF THE STUDY To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. METHODS In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. RESULTS The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. CONCLUSION The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.
Collapse
Affiliation(s)
- Hao-Ru Guan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang Province, 313000, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xian-Fang Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xue-Ren Bian
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Lu Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xing-Lishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-Jie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China.
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang Province, 313000, PR China.
| |
Collapse
|
18
|
Hu Y, He X, Wu Y, Zhang W, Feng H, Liu H, Wu Q, Gao L, Long Y, Li X, Deng J, Ma Y, Li N. Sedative-Hypnotic Effect and Mechanism of Carbon Nanofiber Loaded with Essential Oils of Ligusticum chuanxiong ( Ligusticum chuanxiong Hort.) and Finger Citron ( Citrus medica L. var. sarcodactylis) on Mice Models of Insomnia. Biomolecules 2024; 14:1102. [PMID: 39334868 PMCID: PMC11430208 DOI: 10.3390/biom14091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Insomnia is a neurological illness that poses a significant threat to both physical and mental health. It results in the activation of neuroglial cells, heightened neuroinflammation, oxidative stress, and disruptions in the Hypothalamic-Pituitary-Adrenal (HPA) axis. Ligusticum Chuanxiong (CX) and Finger citron (FC) are frequently utilized botanicals for addressing sleeplessness. Both herbs possess notable anti-inflammatory properties in their volatile oils. However, their effectiveness is hindered by the nasal mucosal irritation and instability they exhibit. (2) Methods: This study involved the preparation of a nanofiber composite system using carbon nanofiber (CNF) suspensions containing essential oils of Ligusticum chuanxiong-Finger citron (CXEO-FCEO-CNF). The effects and mechanisms of these essential oils in improving insomnia were investigated using an insomnia mouse model after encapsulation. (3) Results: The CXEO-FCEO-CNF had an average particle size of 103.19 ± 1.64 nm. The encapsulation rates of essential oils of Ligusticum chuanxiong (CXEO) and essential oils of Finger citron (FCEO) were 44.50% and 46.15%, respectively. This resulted in a considerable improvement in the stability of the essential oils over a period of 30 days. The essential oils effectively decreased the irritation of the nasal mucosa following encapsulation. Furthermore, CXEO-FCEO-CNF enhanced voluntary activity and sleep in mice with insomnia, notably boosted the activity of superoxide dismutase (SOD), reduced the concentration of lipoxidized malondialdehyde (MDA), decreased the levels of hormones associated with the HPA axis, and regulated the levels of neurotransmitters, resulting in a beneficial therapeutic outcome. CXEO-FCEO-CNF contains a total of 23 active ingredients, such as alpha-Asarone, (E)-methyl isoeugenol, and Senkyunolide. These ingredients primarily work by modulating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling system to decrease oxidative stress and inflammatory reactions. (4) Conclusions: This study presented initial evidence that the combination of CXEO and FCEO in nanofiber formulations effectively reduces the nasal mucosal irritation and instability of essential oils. Furthermore, it demonstrated the potential anti-neuroinflammatory and therapeutic effects of these formulations in treating insomnia. Overall, this study provides a theoretical foundation for developing new essential oil formulations derived from herbs.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenjie Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Huiyi Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haolin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qianqian Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Leying Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
19
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Pan LM, Hong ZB, Guan RQ. Research progress on insomnia treated by traditional Chinese medicine and acupuncture based on microbial-gut-brain axis theory. World J Clin Cases 2024; 12:3314-3320. [PMID: 38983433 PMCID: PMC11229893 DOI: 10.12998/wjcc.v12.i18.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Insomnia, as one of the emotional diseases, has been increasing in recent years, which has a great impact on people's life and work. Therefore, researchers are eager to find a more perfect treatment. The microbiome-gut-brain axis is a new theory that has gradually become popular abroad in recent years and has a profound impact in the field of insomnia. In recent years, traditional Chinese medicine (TCM) has played an increasingly important role in the treatment of insomnia, especially acupuncture and Chinese herbal medicine. It is the main method of TCM in the treatment of insomnia. This paper mainly reviews the combination degree of "microorganism-gut-brain axis" theory with TCM and acupuncture under the system of TCM. To explore the mechanism of TCM and acupuncture in the treatment of insomnia under the guidance of "microorganism-gut-brain axis" theory, in order to provide a new idea for the diagnosis and treatment of insomnia.
Collapse
Affiliation(s)
- Li-Min Pan
- Department of Outpatient Deputy Chief Physician, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Haerbin 150010, Heilongjiang Province, China
| | - Zhi-Bo Hong
- School of Heilongjiang University of Chinese Medicine Graduate, Heilongjiang University of Chinese Medicine, Haerbin 150000, Heilongjiang Province, China
| | - Rui-Qian Guan
- Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Haerbin 150010, Heilongjiang Province, China
| |
Collapse
|
21
|
Fu X, Yan S, Hu Z, Sheng W, Li W, Kuang S, Feng X, Liu L, Zhang W, He Q. Guhan Yangsheng Jing mitigates hippocampal neuronal pyroptotic injury and manifies learning and memory capabilities in sleep deprived mice via the NLRP3/Caspase1/GSDMD signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117972. [PMID: 38403005 DOI: 10.1016/j.jep.2024.117972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1β (IL-1β) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1β and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.
Collapse
Affiliation(s)
- Xinying Fu
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Siyang Yan
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Zongren Hu
- College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Wen Sheng
- College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Wanyu Li
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China
| | - Shida Kuang
- College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Xue Feng
- Qidi Pharmaceutical Group Co., Ltd, Hengyang, Hunan, 421099, China
| | - Lumei Liu
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China.
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China.
| | - Qinghu He
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China.
| |
Collapse
|
22
|
Liu YM, Li JC, Gu YF, Qiu RH, Huang JY, Xue R, Li S, Zhang Y, Zhang K, Zhang YZ. Cannabidiol Exerts Sedative and Hypnotic Effects in Normal and Insomnia Model Mice Through Activation of 5-HT 1A Receptor. Neurochem Res 2024; 49:1150-1165. [PMID: 38296858 DOI: 10.1007/s11064-024-04102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.
Collapse
Affiliation(s)
- Yu-Meng Liu
- Shenyang Pharmaceutical University, Shenyang, 110016, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jin-Cao Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yong-Fang Gu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Ren-Hong Qiu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jia-Ying Huang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Kuo Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - You-Zhi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
23
|
Li B, Chen XF, Wu HS, Su J, Ding YY, Zhang ZH, Rong M, Dong YJ, He X, Li LZ, Lv GY, Chen SH. The anti-hyperlipidemia effect of Atractylodes macrocephala Rhizome increased HDL via reverse cholesterol transfer. Heliyon 2024; 10:e28019. [PMID: 38560167 PMCID: PMC10979170 DOI: 10.1016/j.heliyon.2024.e28019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Aim Atractylodes macrocephala Rhizome (AM) has been used to treat hyperlipidemia for centuries, but its functional components and mechanisms are not clear. This research aimed to investigate the active components in AM and the mechanisms that underlie its anti-hyperlipidemia effect. Methods SD rats were fed a high-sucrose high-fat diet in conjunction with alcohol (HSHFDAC) along with different AM extracts (AMW, AMO, AME, and AMP) for 4 weeks. AM's active components were analyzed using multiple databases, and their mechanisms were explored through network pharmacology. The relationship between AM's effect of enhancing serum HDL-c and regulating the expression of reverse cholesterol transport (RCT)-related proteins (Apo-A1, LCAT, and SR-BI) was further validated in the HSHFDAC-induced hyperlipidemic rats. The kidney and liver functions of the rats were measured to evaluate the safety of AM. Results AMO, mainly comprised of volatile and liposoluble components, contributed the most significant anti-hyperlipidemia effect among the four extracts obtained from AM, significantly improving the blood lipid profile. Network pharmacology analysis also suggested that volatile and liposoluble components, comprise AM's main active components and they might act on signaling pathways associated with elevated HDL-c. Validation experiments found that AMO substantially and dose-dependently increased HDL-c levels, upregulated the expression of Apo-A1, SR-BI, and LCAT, improved the pathological changes in the kidney and liver, and significantly reduced the serum creatinine levels in rats with hyperlipidemia. Conclusion The main anti-hyperlipidemia active components of AM are its volatile and liposoluble components, which may enhance serum HDL-c by increasing the expression of the RCT-related proteins Apo-A1, LCAT, and SR-BI.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China
- Zhejiang Synergetic Traditional Chinese Medicine Research and Development Co., Ltd, Huzhou, Zhejiang, 313200, PR China
| | - Xian-fang Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yan-yan Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ze-hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Mei Rong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Lin-zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Gui-yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Su-hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang Province, 313200, PR China
- Zhejiang Synergetic Traditional Chinese Medicine Research and Development Co., Ltd, Huzhou, Zhejiang, 313200, PR China
| |
Collapse
|
24
|
Zhao FY, Spencer SJ, Kennedy GA, Zheng Z, Conduit R, Zhang WJ, Xu P, Yue LP, Wang YM, Xu Y, Fu QQ, Ho YS. Acupuncture for primary insomnia: Effectiveness, safety, mechanisms and recommendations for clinical practice. Sleep Med Rev 2024; 74:101892. [PMID: 38232645 DOI: 10.1016/j.smrv.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Primary insomnia (PI) is an increasing concern in modern society. Cognitive-behavioral therapy for insomnia is the first-line recommendation, yet limited availability and cost impede its widespread use. While hypnotics are frequently used, balancing their benefits against the risk of adverse events poses challenges. This review summarizes the clinical and preclinical evidence of acupuncture as a treatment for PI, discussing its potential mechanisms and role in reliving insomnia. Clinical trials show that acupuncture improves subjective sleep quality, fatigue, cognitive impairments, and emotional symptoms with minimal adverse events. It also positively impacts objective sleep processes, including prolonging total sleep time, improving sleep efficiency, reducing sleep onset latency and wake after sleep onset, and enhancing sleep architecture/structure, including increasing N3% and REM%, and decreasing N1%. However, methodological shortcomings in some trials diminish the overall quality of evidence. Animal studies suggest that acupuncture restores circadian rhythms in sleep-deprived rodents and improves their performance in behavioral tests, possibly mediated by various clinical variables and pathways. These may involve neurotransmitters, brain-derived neurotrophic factors, inflammatory cytokines, the hypothalamic-pituitary-adrenal axis, gut microbiota, and other cellular events. While the existing findings support acupuncture as a promising therapeutic strategy for PI, additional high-quality trials are required to validate its benefits.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia; Institute of Health and Wellbeing, Federation University, Mount Helen, Victoria, Australia; Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Xu
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China.
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
25
|
Fan X, Zhang A, Zhang T, Tu M, Du Q, Ling N, Wu J, Zeng X, Wu Z, Pan D. Effects of Semen Ziziphi Spinosae extract and binary probiotics co-fermentation on the quality of yogurt and their underlying molecular mechanisms. Food Chem X 2024; 21:101191. [PMID: 38357367 PMCID: PMC10864216 DOI: 10.1016/j.fochx.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The study aimed to investigate the impact of water-soluble extract from Semen Ziziphi Spinosae (SZSE) on yogurt quality and understand the underlying mechanism. The results demonstrated that adding 0.5% (w/v) SZSE had a significant effect on reducing yogurt syneresis and resulted in a more compact and uniform casein gel. Notably, the co-fermented yogurt with binary probiotics (Lacticaseibacillus casei CGMCC1.5956 and Levilactobacillus brevis CGMCC1.5954) along with SZSE led to increased viable probiotics and a higher odor score (23.23). This effect might be attributed to the increased amino acid utilization by binary probiotics through biosynthesis of valine, leucine and isoleucine, metabolic pathways, and amino acid biosynthesis to produce amino acid derivatives such as N5-(l-1-carboxyethyl)-l-ornithine and diaminopyrimidine acid. The yogurt contained 79 volatile flavor compounds, with hexanoic acid, 2-heptanone, and 2-nonanone potentially contributing to the high odor scores. These findings have strategic implications for developing yogurt with high gel characteristics and distinctive flavor.
Collapse
Affiliation(s)
- Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ang Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Maolin Tu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiwei Du
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Nan Ling
- Nanjing Weigang Dairy Co., Nanjing 211100, China
| | - Jihuan Wu
- Ningbo Yifule Biotechnology Co., Ltd., Ningbo 315500, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
26
|
Wu Y, Yao C, Zhang L, Wu G. Sophora flavescens alcohol extract ameliorates insomnia and promotes PI3K/AKT/BDNF signaling transduction in insomnia model rats. Neuroreport 2024; 35:275-282. [PMID: 38407863 DOI: 10.1097/wnr.0000000000001999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Active ingredient of Sophora flavescens is reported to promote non-rapid eye movement (NREM) sleep. However, the role of Sophora flavescens alcohol extract in insomnia is elusive, which is addressed in this study, together with the exploration on its potential mechanism. An insomnia model of rats was established by para-chlorophenylalanine induction and further treated with SFAE or Zaoren Anshen capsule (ZRAS; positive control drug). Sleep quality and sleep architecture of rats were evaluated by the sleep test, electroencephalogram and electromyogram. The levels of monoamine neurotransmitters in rat hypothalamus were determined using ELISA, and the transduction of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/brain-derived neurotrophic factor (BDNF) signaling in the brain tissues of rats was examined by Western blot. SFAE and ZRAS increased the sleeping time and decreased the sleep latency of insomnia rats. SFAE reduced waking time and increased NREM and REM time, while changing power density of wakefulness, NREM sleep, and REM sleep in insomnia rats. SFAE and ZRAS upregulated levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, and downregulated those of norepinephrine and dopamine in insomnia rats. Besides, SFAE and ZRAS elevated BDNF expression as well as the ratios of phosphorylated (p)-PI3K/PI3K and p-AKT/AKT. The role of SFAE in insomnia model rats was similar with that of ZRAS. SFAE reduces insomnia and enhances the PI3K/AKT/BDNF signaling transduction in insomnia model rats, which can function as a drug candidate for insomnia.
Collapse
Affiliation(s)
- Yanyan Wu
- Department of Medicine, Tongde Hospital of Zhejiang Province
| | - Chenhang Yao
- School of Medical Imaging, Hangzhou Medical College
| | - Lan Zhang
- Department of Medicine, Tongde Hospital of Zhejiang Province
| | - Guoqing Wu
- Department of Medicine, Tongde Hospital of Zhejiang Province
- Zhejiang Institute of Traditional Chinese Medicine
- Zhejiang Provincial Key Laboratory of New Chinese Medicine Research and Development, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Wang Q, Gao T, Zhang W, Liu D, Li X, Chen F, Mei J. Causal relationship between the gut microbiota and insomnia: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1279218. [PMID: 38500501 PMCID: PMC10945026 DOI: 10.3389/fcimb.2024.1279218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Changes in the gut microbiota are closely related to insomnia, but the causal relationship between them is not yet clear. Objective To clarify the relationship between the gut microbiota and insomnia and provide genetic evidence for them, we conducted a two-sample Mendelian randomization study. Methods We used a Mendelian randomized two-way validation method to discuss the causal relationship. First, we downloaded the data of 462,341 participants relating to insomnia, and the data of 18,340 participants relating to the gut microbiota from a genome-wide association study (GWAS). Then, we used two regression models, inverse-variance weighted (IVW) and MR-Egger regression, to evaluate the relationship between exposure factors and outcomes. Finally, we took a reverse MR analysis to assess the possibility of reverse causality. Results The combined results show 19 gut microbiotas to have a causal relationship with insomnia (odds ratio (OR): 1.03; 95% confidence interval (CI): 1.01, 1.05; p=0.000 for class. Negativicutes; OR: 1.03; 95% CI: 1.01, 1.05; p=0.000 for order.Selenomonadales; OR: 1.01; 95% CI: 1.00, 1.02; p=0.003 for genus.RikenellaceaeRC9gutgroup). The results were consistent with sensitivity analyses for these bacterial traits. In reverse MR analysis, we found no statistical difference between insomnia and these gut microbiotas. Conclusion This study can provide a new direction for the causal relationship between the gut microbiota (class.Negativicutes, order.Selenomonadales, genus.Lactococcus) and insomnia and the treatment or prevention strategies of insomnia.
Collapse
Affiliation(s)
- Qianfei Wang
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tianci Gao
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weichao Zhang
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dong Liu
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Li
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fenqiao Chen
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianqiang Mei
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
28
|
Wang S, Liu L, Liang S, Yang J, Zhang Y, Liu X. Effects of BXSMD on ESR1 and ESR2 expression in CSD female mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116973. [PMID: 37517566 DOI: 10.1016/j.jep.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Due to the rapid pace of modern society, chronic insomnia has become universal phenomenon. In China, Banxia Shumi Decoction (BXSMD) has been used in treating chronic insomnia for thousands of years, but its chemical composition and action mechanism are still unknown. AIM OF THE STUDY This study aims to explore the chemical composition of BXSMD and its effects on Estrogen receptor 1 (ESR1) and Estrogen receptor 2 (ESR2) in mice with chronic sleep deprivation (CSD). MATERIALS AND METHODS UHPLC-Q-Orbitrap-MS/MS was applied in determining the chemical composition of BXSMD. After 21-day sleep deprivation (SD) in platform water environment, CSD mice model was prepared. By conducting open field test, 24-h autonomic diurnal and nocturnal activity of mice in each group was detected. ELISA was employed to measure the contents of 5-HT, DA, NE, GABA, Glu, and MT. With RT-PCR, Western blot (WB), and immunohistochemistry (IHC), mRNA and protein expressions of ESR1 and ESR2 in the hypothalamus and hippocampus were tested. RESULTS BXSMD included ferulic acid, kaverol, daidzein, apigenin, berberine, adenosine, aesculin, vanillin, naringin, and glycine, which might constitute the material basis forthe improvement of chronic insomnia. With BXSMD, the total moving distance and the rest time in dark period of CSD mice were shortened, while its rest time in light period was increased. Besides, BXSMD enhanced the contents of 5-HT, GABA, and MT in CSD mice, and decreased the contents of Glu, NE, and DA. BXSMD elevated the mRNA of Esr1 and Esr2, and elevated the protein expressions of ESR1 and ESR2 in the hypothalamus and hippocampus of CSD mice. CONCLUSIONS BXSMD contains various chemical components for sleep-wake regulation, with the mechanism of stimulating estrogen signaling pathway by regulating the expressions of ESR1 and ESR2, ultimately realizing the regulation to sleep-wake disorder caused by CSD.
Collapse
Affiliation(s)
- Shujun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Leilei Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Shuzhi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jinni Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| | - Xijian Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| |
Collapse
|
29
|
Zhang F, Zhang X, Peng Q, Tang L. Electroacupuncture of the cymba concha alleviates p-chlorophenylalanine-induced insomnia in mice. Acupunct Med 2023; 41:345-353. [PMID: 37081732 DOI: 10.1177/09645284231160193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Insomnia is the most common sleep disorder and is often comorbid with mental and physical diseases. The present study was designed to investigate the hypnotic effect of electroacupuncture (EA) of the cymba concha to stimulate the auricular branch of the vagus nerve (ABVN). METHODS Mice were intraperitoneally injected with p-chlorophenylalanine (PCPA, 300 mg/kg·d) for 2 days to induce insomnia and subsequently received EA or manual acupuncture (MA) of the cymba concha for 30 min once daily for 5 consecutive days, or no treatment. The phenobarbital-induced sleep test was used to analyze the hypnotic effects and the open field test was used to analyze the locomotor activities and anxiolytic effects of EA/MA of the cymba concha. In addition, the levels of gamma-aminobutyric acid (GABA) and glutamate (Glu) in the hypothalamus and peripheral blood were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS PCPA injection significantly decreased sleep duration, increased sleep latency and induced anxiety-like behaviors in mice. In PCPA-insulted mice, EA of the cymba concha improved the sleep disturbance by significantly prolonging sleep duration, while no change in sleep latency was observed. Moreover, EA of the cymba concha improved PCPA-induced anxiety-like behaviors without decreasing locomotor activities in the open field test. EA of the cymba concha increased the level of GABA in the hypothalamus and peripheral blood, while Glu concentrations remained unchanged. CONCLUSION These findings indicate that EA of the region innervated by the ABVN upregulates GABA levels in the hypothalamus and ameliorates the symptoms of insomnia and anxiety, suggesting that EA of the cymba concha might have potential value as an intervention for insomnia.
Collapse
Affiliation(s)
- Fenyan Zhang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Zhang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Sub-Health Institute, Hubei University of Chinese Medicine, Wuhan, China
| | - Qi Peng
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Yang Y, Chen Z, Yan G, Kong L, Yang L, Sun H, Han Y, Zhang J, Wang X. Mass spectrum oriented metabolomics for evaluating the efficacy and discovering the metabolic mechanism of Naoling Pian for insomnia. J Pharm Biomed Anal 2023; 236:115756. [PMID: 37776625 DOI: 10.1016/j.jpba.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Insomnia is an accompanying symptom of many diseases and is closely associated with neurodegenerative diseases. Naoling Pian (NLP) is a patented Chinese medicine mainly used to treat insomnia. To evaluate the sedative and hypnotic effects of NLP and its modulatory effects on biological metabolites and metabolic pathways, rats with p-chlorophenylalanine (PCPA)-induced insomnia were given different doses of NLP by oral gavage for seven days. Diazepam (DZP) served as a positive control. Behavior was measured using the open field test, and neurotransmitter levels in the brain tissue related to sleep were measured using ELISA. The metabolic profiles and biomarkers of PCPA-induced insomnia in rats before and after NLP administration were analyzed using UPLC-Q/TOF-MS combined with multivariate data analysis. The results showed that the levels of 5-hydroxytryptamine, gamma-aminobutyric acid, norepinephrine, and dopamine in the brain tissue were significantly recovered in the NLP treatment groups, demonstrating similar or even superior therapeutic effects compared to the DZP group. The behavior of the PCPA-model rats partially recovered to normal levels after seven days of treatment. Metabolomics identified 30 metabolites in the urine as potential biomarkers of insomnia, and NLP significantly altered 25 of these, involving 21 metabolic pathways. NLP has a remarkable effect on insomnia, the therapeutic effects of which may be largely due to the rectification of metabolic disturbances. This is the first study of the sedative and hypnotic effects of NLP from a metabolomic perspective.
Collapse
Affiliation(s)
- Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China.
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Jie Zhang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
31
|
Hou Y, Liang H, Fan C, Feng Y. 5-Hydroxytryptamine and postoperative nausea and vomiting after microvascular decompression surgery. J Clin Neurosci 2023; 116:27-31. [PMID: 37597331 DOI: 10.1016/j.jocn.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The incidence of postoperative nausea and vomiting (PONV) after microvascular decompression (MVD) surgery is high; however, its underlying mechanisms remain unknown. Serum 5-hydroxytryptamine (5-HT) levels are elevated in patients with PONV. However, the relationship between 5-HT and patients experiencing PONV after MVD surgery is still unknown. Therefore, we hypothesized that 5-HT levels are associated with PONV after MVD surgery. METHODS This prospective study included 85 patients with hemifacial spasm who received MVD surgery. Blood samples were collected preoperatively, postoperatively, and on postoperative day 1, and cerebrospinal fluid samples were collected intraoperatively. 5-HT levels were detected by enzyme-linked immunosorbent assay (ELISA). The incidence and severity of PONV were evaluated at 2, 6, and 24 h after MVD surgery. RESULTS In the multivariate regression analysis, PONV within 24 h after MVD surgery was associated with elevated cerebrospinal fluid 5-HT levels [odds ratio (OR) = 1.21, 95% confidence interval (CI): 1.01-1.45, p = 0.044], and reduction of intraocular pressure [OR = 11.54, 95% CI: 1.43-92.84, p = 0.022]. Receiver operating characteristic curve analysis revealed an area under the curve of 0.873 (95% CI: 0.77-0.98, p < 0.001). CONCLUSION Our study found that the cerebrospinal fluid 5-HT levels is an independent risk factor for PONV within 24 h after MVD surgery.
Collapse
Affiliation(s)
- Yuantao Hou
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Hansheng Liang
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Cungang Fan
- Department of Neurosurgery, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| |
Collapse
|
32
|
Zhao Y, Kang Y, Zhao Z, Yang G, Gao Y, Gao L, Wang C, Li S. Lacticaseibacillus rhamnosus TF318 prevents depressive behavior in rats by inhibiting HPA-axis hyperactivity and upregulating BDNF expression. Neurosci Lett 2023; 814:137460. [PMID: 37619699 DOI: 10.1016/j.neulet.2023.137460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Growing evidence suggests that probiotics can ameliorate depression by regulating the microbiota-gut-brain axis. However, the mechanism of action of probiotics in depressive disorders remains incompletely understood. This study aimed to investigate the effect of Lacticaseibacillus rhamnosus TF318 in a corticosterone (CORT)-induced rat model of depression. The sucrose preference test (SPT) and Morris water maze (MWM) test showed that oral administration of L. rhamnosus TF318 for 21 d significantly prevented depressive behaviors. Administration of L. rhamnosus TF318 resulted in lower hippocampal levels of adrenocorticotropic hormone and corticotropin-releasing factor and serum levels of CORT and restoration of hippocampal levels of 5-hydroxytryptamine, dopamine, and norepinephrine. A marked increase was observed in the hippocampal concentration of brain-derived neurotrophic factor (BDNF), a change that may have involved the cyclic adenosine monophosphate (cAMP)/cAMP response element-binding (CREB)/BDNF signaling pathway. Treatment with L. rhamnosus TF318 corrected CORT-induced abnormalities in the gut microbiota, significantly increasing the relative abundance of Firmicutes. In conclusion, supplementation with L. rhamnosus TF318 prevented CORT-induced depressive behaviors by upregulating BDNF expression and modulating gut microbiota, suggesting that this strain has the potential as a novel probiotic with antidepressant effects.
Collapse
Affiliation(s)
- Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - You Kang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Lei Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Chao Wang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China.
| |
Collapse
|
33
|
Lo YJ, Mishra VK, Lo HY, Dubey NK, Lo WC. Clinical Spectrum and Trajectory of Innovative Therapeutic Interventions for Insomnia: A Perspective. Aging Dis 2023; 14:1038-1069. [PMID: 37163444 PMCID: PMC10389812 DOI: 10.14336/ad.2022.1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/03/2022] [Indexed: 05/12/2023] Open
Abstract
Increasing incidences of insomnia in adults, as well as the aging population, have been reported for their negative impact on the quality of life. Insomnia episodes may be associated with neurocognitive, musculoskeletal, cardiovascular, gastrointestinal, renal, hepatic, and metabolic disorders. Epidemiological evidence also revealed the association of insomnia with oncologic and asthmatic complications, which has been indicated as bidirectional. Two therapeutic approaches including cognitive behavioral therapy (CBT) and drugs-based therapies are being practiced for a long time. However, the adverse events associated with drugs limit their wide and long-term application. Further, Traditional Chinese medicine, acupressure, and pulsed magnetic field therapy may also provide therapeutic relief. Notably, the recently introduced cryotherapy has been demonstrated as a potential candidate for insomnia which could reduce pain, by suppressing oxidative stress and inflammation. It seems that the synergistic therapeutic approach of cryotherapy and the above-mentioned approaches might offer promising prospects to further improve efficacy and safety. Considering these facts, this perspective presents a comprehensive summary of recent advances in pathological aetiologies of insomnia including COVID-19, and its therapeutic management with a greater emphasis on cryotherapy.
Collapse
Affiliation(s)
| | | | | | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan.
- ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan.
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
34
|
Wang H, Gu Y, Khalid R, Chen X, Han T. Herbal medicines for insomnia through regulating 5-hydroxytryptamine receptors: a systematic review. Chin J Nat Med 2023; 21:483-498. [PMID: 37517817 DOI: 10.1016/s1875-5364(23)60405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 08/01/2023]
Abstract
Insomnia is a common sleep disorder without effective therapy and can affect a person's life. The mechanism of the disease is not completely understood. Hence, there is a need to understand the targets related to insomnia, in order to develop innovative therapies and new compounds. Recently, increasing interest has been focused on complementary and alternative medicines for treating or preventing insomnia. Research into their molecular components has revealed that their sedative and sleep-promoting properties rely on the interactions with various neurotransmitter systems in the brain. In this review, the role of 5-hydroxytryptamine (5-HT) in insomnia development is summarized, while a systematic analysis of studies is conducted to assess the mechanisms of herbal medicines on different 5-HT receptors subtypes, in order to provide reference for subsequent research.
Collapse
Affiliation(s)
- Haoran Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201999, China
| | - Rahman Khalid
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Ting Han
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
35
|
Xia TJ, Wang Z, Jin SW, Liu XM, Liu YG, Zhang SS, Pan RL, Jiang N, Liao YH, Yan MZ, Du LD, Chang Q. Melatonin-related dysfunction in chronic restraint stress triggers sleep disorders in mice. Front Pharmacol 2023; 14:1210393. [PMID: 37408758 PMCID: PMC10318904 DOI: 10.3389/fphar.2023.1210393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Stress may trigger sleep disorders and are also risk factors for depression. The study explored the melatonin-related mechanisms of stress-associated sleep disorders on a mouse model of chronic stress by exploring the alteration in sleep architecture, melatonin, and related small molecule levels, transcription and expression of melatonin-related genes as well as proteins. Mice undergoing chronic restraint stress modeling for 28 days showed body weight loss and reduced locomotor activity. Sleep fragmentation, circadian rhythm disorders, and insomnia exhibited in CRS-treated mice formed sleep disorders. Tryptophan and 5-hydroxytryptamine levels were increased in the hypothalamus, while melatonin level was decreased. The transcription and expression of melatonin receptors were reduced, and circadian rhythm related genes were altered. Expression of downstream effectors to melatonin receptors was also affected. These results identified sleep disorders in a mice model of chronic stress. The alteration of melatonin-related pathways was shown to trigger sleep disorders.
Collapse
Affiliation(s)
- Tian-Ji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su-Wei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Min Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yong-Guang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan-Shan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Da Du
- Institute of Molecular Medicine and Innovative Pharmaceutics, Qingdao University, Qingdao, China
- Department of Surgery, University of Toronto, Toronto, TO, Canada
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Yang Y, Liu J, Ou H, Ma X, Li J, Shao B, Jin R, Zhao J. Study on the Mechanism of Jiaotai Pill Intervention on Insomnia Animal Model Based on Gut Microbiome and Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2442505. [PMID: 37260523 PMCID: PMC10229250 DOI: 10.1155/2023/2442505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023]
Abstract
Background With the continuous advancement of clinical application and experimental research of JTP, the application prospect of JTP in nervous system diseases and metabolic diseases is becoming increasingly clear. Jiaotai Pill (JTP) is a traditional Chinese medicine formula for insomnia, consisting of Coptidis rhizoma and Cinnamomi cortex, which dates back to Han Shi Yi Tong in the Ming Dynasty of China. Objective Based on the brain-gut axis theory, this paper aims to explore the potential mechanism of JTP in the intervention of insomnia by using intestinal microbiome and metabolomics technology, taking the animal model of insomnia as the research object, so as to provide experimental basis for its further application and research. Methods The insomnia mouse model was induced by intraperitoneal injection of para-chlorophenylalanine (PCPA). The clinical equivalent dose of JTP was administered by gavage for one week. The efficacy of JTP was evaluated by behavioral tests, serum biochemical detection, and brain histomorphological observation. The contents of cecum were analyzed by microbiomics and metabolomics. Results The results show that insomnia caused by PCPA led to daytime dysfunction, higher HPA axis hormone levels, and morphologically impaired hippocampus. JTP reversed these anomalies. Omics research indicates that JTP significantly reduced gut α diversity; at the phylum level, JTP reduced the relative abundance of Firmicutes, Deferribacterota, Cyanobacteria, and Actinobacteriota and increased the relative abundance of Verrucomicrobiota, Proteobacteria, and Desulfobacterota. At the genus level, JTP reduced the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, Alistipes, Colidextribacter, Muribaculum, and Mucispirillum and increased the relative abundance of Bacteroides and Akkermansia. JTP also reversed the activation of the linoleic acid metabolism pathway induced by insomnia. The combined analysis of omics suggests that JTP may play a role by regulating the inflammatory state of the body. Further gene expression analysis of brain tissue confirmed this. Conclusions We hypothesize that JTP may achieve insomnia relief by eliminating inflammation-causing bacteria in the gut and reducing inflammation levels through the brain-gut axis, pointing to potential targets and pathways for future research on JTP.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Jiao Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Haosong Ou
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Xin Ma
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Jia Li
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Binghao Shao
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Ruyi Jin
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| | - Junyun Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11 East Road, North 3rd Ring Road, Beijing 100029, China
| |
Collapse
|
37
|
Guo YX, Xia CY, Yan Y, Han Y, Shi R, He J, Wang YM, Wang ZX, Zhang WK, Xu JK. Loganin improves chronic unpredictable mild stress-induced depressive-like behaviors and neurochemical dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116288. [PMID: 36809822 DOI: 10.1016/j.jep.2023.116288] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.
Collapse
Affiliation(s)
- Yu-Xuan Guo
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
38
|
Yan Y, Li J, Zhang Y, Wang H, Qin X, Zhai K, Du C. Screening the effective components of Suanzaoren decoction on the treatment of chronic restraint stress induced anxiety-like mice by integrated chinmedomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154853. [PMID: 37156059 DOI: 10.1016/j.phymed.2023.154853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Suanzaoren decoction (SZRD) is a classical traditional Chinese prescription. It is widely used to treat mental disorders, including insomnia, anxiety, and depression, in China and other Asian countries. However, the effective components and mechanisms underlying SZRD remained unclear. PURPOSE We aimed to develop a new strategy to discover the effects and potential mechanisms of SZRD against anxiety and to further reveal the effective components of SZRD in treating anxiety. STUDY DESIGN AND METHODS First, the chronic restraint stress (CRS)-induced mouse model of anxiety was orally administered SZRD, and behavioral indicators and biochemical parameters were applied to assess efficacy. A chinmedomics strategy based on UHPLC-Q-TOF-MS technology and network pharmacology were then used to screen and explore potentially effective components and therapeutic mechanisms. Finally, molecular docking was applied to further confirm the effective components of SZRD, and a multivariate network for anxiolytic effects was constructed. RESULTS SZRD exerted anxiolytic effects by increasing the percentage of entries into open arms and the time spent in open arms; improving hippocampal 5-HT, GABA, and NE levels; and increasing serum corticosterone (CORT) and corticotropin-releasing hormone (CRH) levels caused by CRS challenge. Beside, SZRD exerted a sedative effect by decreasing sleep time and prolonging sleep latency with no muscle relaxation effect in CRS mice. A total of 110 components were identified in SZRD, 20 of which were absorbed in the blood. Twenty-one serum biomarkers involved in arachidonic acid, tryptophan, sphingolipid, and linoleic acid metabolism were identified after SZRD intervention. Finally, a multivariate network including prescription-effective components-targets-pathway of SZRD treating anxiety, including 11 effective components, 4 targets and 2 pathway was constructed. CONCLUSION The current study demonstrated that integrating chinmedomics and network pharmacology was a powerful approach to investigating the effective components and therapeutic mechanisms of SZRD and provided a solid basis for the quality marker (Q-marker) of SZRD.
Collapse
Affiliation(s)
- Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jiahan Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Hui Wang
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, Shanxi 030619, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, 49, Bianhe Road, Suzhou, Anhui 234000, China.
| | - Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, Shanxi 030619, China.
| |
Collapse
|
39
|
Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, Sarkaki A, Farbood Y. Administration of growth hormone ameliorates adverse effects of total sleep deprivation. Metab Brain Dis 2023; 38:1671-1681. [PMID: 36862276 DOI: 10.1007/s11011-023-01192-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Total sleep deprivation (TSD) causes several harmful changes including anxiety, inflammation, and increased expression of extracellular signal-regulated kinase (ERK) and tropomyosin receptor kinase B (TrkB) genes in the hippocampus. The current study was conducted to explain the possible effects of exogenous GH against the above parameters caused by TSD and the possible mechanisms involved. Male Wistar rats were divided into 1) control, 2) TSD and 3) TSD + GH groups. To induce TSD, the rats received a mild repetitive electric shock (2 mA, 3 s) to their paws every 10 min for 21 days. Rats in the third group received GH (1 ml/kg, sc) for 21 days as treatment for TSD. The motor coordination, locomotion, the level of IL-6, and expression of ERK and TrkB genes in hippocampal tissue were measured after TSD. The motor coordination (p < 0.001) and locomotion indices (p < 0.001) were impaired significantly by TSD. The concentrations of serum corticotropin-releasing hormone (CRH) (p < 0.001) and hippocampal interleukin-6 (IL-6) (p < 0.001) increased. However, there was a significant decrease in the interleukin-4 (IL-4) concentration and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus of rats with TSD. Treatment of TSD rats with GH improved motor balance (p < 0.001) and locomotion (p < 0.001), decreased serum CRH (p < 0.001), IL-6 (p < 0.01) but increased the IL-4 and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus. Results show that GH plays a key role in modulating the stress hormone, inflammation, and the expression of ERK and TrkB genes in the hippocampus following stress during TSD.
Collapse
Affiliation(s)
- Parisa Arvin
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoub Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
40
|
Xiang T, Liao J, Cai Y, Fan M, Li C, Zhang X, Li H, Chen Y, Pan J. Impairment of GABA inhibition in insomnia disorders: Evidence from the peripheral blood system. Front Psychiatry 2023; 14:1134434. [PMID: 36846238 PMCID: PMC9947704 DOI: 10.3389/fpsyt.2023.1134434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
AIM To explore the change characteristics and related factors of various indexes of GABAergic system in peripheral blood of patients with insomnia disorder. METHODS In this study, a total of 30 patients who met the DSM-5 diagnostic criteria for insomnia disorder and 30 normal controls were included. All subjects had a structured clinical interview with the Brief International Neuropsychiatric Disorder Interview, and PSQI was used to evaluate the sleep status of the subjects. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum γ-aminobutyric acid (GABA), and RT-PCR was used to detect GABAA receptor α1 and α2 subunit mRNA. All data were statistically analyzed using SPSS 23.0. RESULTS Compared with the normal control group, the mRNA levels of GABAA receptor α1 and α2 subunits in the insomnia disorder group were significantly lower, but there was no significant difference in the serum GABA levels between the two groups. And in the insomnia disorder group, there was no significant correlation between the GABA levels and the mRNA expression levels of α1 and α2 subunits of GABAA receptors. Although no significant correlation was found between PSQI and serum levels of these two subunit mRNAs, its component factors sleep quality and sleep time were negatively correlated with GABAA receptor α1 subunit mRNA levels, and daytime function was inversely correlated with GABAA receptor α2 subunit mRNA levels. CONCLUSION The inhibitory function of serum GABA in patients with insomnia may be impaired, and the decreased expression levels of GABAA receptor α1 and α2 subunit mRNA may become a reliable indicator of insomnia disorder.
Collapse
Affiliation(s)
- Ting Xiang
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jiwu Liao
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yixian Cai
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Mei Fan
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Congrui Li
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaotao Zhang
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Hongyao Li
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yushan Chen
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jiyang Pan
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
41
|
Xiao F, Shao S, Zhang H, Li G, Piao S, Zhao D, Li G, Yan M. Neuroprotective effect of Ziziphi Spinosae Semen on rats with p-chlorophenylalanine-induced insomnia via activation of GABA A receptor. Front Pharmacol 2022; 13:965308. [PMID: 36483742 PMCID: PMC9722729 DOI: 10.3389/fphar.2022.965308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 09/24/2023] Open
Abstract
Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F.Chow [Rhamnaceae; Ziziphi Spinosae Semen (ZSS)] has attracted extensive attention as the first choice of traditional Chinese medicine in the treatment of insomnia. However, recent studies on the sleep-improving mechanism of ZSS have mainly focused on the role of single components. Thus, to further reveal the potential mechanism of ZSS, an assessment of its multiple constituents is necessary. In this study, ZSS extract (ZSSE) was obtained from ZSS via detailed modern extraction, separation, and purification technologies. The chemical constituents of ZSSE were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). For in vivo experiments, a rat model of insomnia induced by p-chlorophenylalanine (PCPA) was established to investigate the potential effect and corresponding mechanism of ZSSE on improving sleep. Hematoxylin-eosin staining (HE) results revealed that the drug group showed prominent advantages over the model group in improving sleep. Moreover, the brain levels of γ-aminobutyric acid (GABA), glutamic acid (Glu), 5-hydroxytryptamine (5-HT), and dopamine (DA) were monitored via enzyme-linked immunosorbent assay (ELISA) to further study the sleep-improving mechanism of ZSSE. We found that sleep was effectively improved via upregulation of GABA and 5-HT and downregulation of Glu and DA. In addition, molecular mechanisms of ZSSE in improving sleep were studied by immunohistochemical analysis. The results showed that sleep was improved by regulating the expression levels of GABA receptor subunit alpha-1 (GABAARα1) and GABA acid receptor subunit gamma-2 (GABAARγ2) receptors in the hypothalamus and hippocampus tissue sections. Therefore, this work not only identified the active ingredients of ZSSE but also revealed the potential pharmacological mechanism of ZSSE for improving sleep, which may greatly stimulate the prospective development and application of ZSSE.
Collapse
Affiliation(s)
- Fengqin Xiao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shuai Shao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guangfu Li
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Songlan Piao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Traditional Chinese Medicine, Changchun, China
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
42
|
Wang W, Wang Y, Guo Q, Li H, Wang Z, Li J, Li T, Tang T, Wang Y, Jia Y, Wang Y, Zou J, Shi Y, Guo D, Yang M, Zhang X, Sun J. Valerian essential oil for treating insomnia via the serotonergic synapse pathway. Front Nutr 2022; 9:927434. [PMID: 35990355 PMCID: PMC9387164 DOI: 10.3389/fnut.2022.927434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Valerian volatile oil can be used in the treatment of insomnia; however, the active components and mechanisms of action are currently unclear. Therefore, we used transcriptome sequencing and weight coefficient network pharmacology to predict the effective components and mechanism of action of valerian volatile oil in an insomnia model induced by intraperitoneal injection of para-Chlorophenylalanine (PCPA) in SD rats. Valerian essential oil was given orally for treatment and the contents of 5-hydroxytryptamine receptor 1 A (5-HT1AR), γ-aminobutyric acid (GABA), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) in the hippocampus of rats in each group were detected by enzyme-linked immunosorbent assay (ELISA), western blot, Polymerase Chain Reaction (PCR), and immunohistochemistry. The results showed that after treatment with valerian essential oil, insomnia rats showed significantly prolonged sleep duration and alleviated insomnia-induced tension and anxiety. Regarding the mechanism of action, we believe that caryophyllene in valerian essential oil upregulates the 5-HT1AR receptor to improve the activity or affinity of the central transmitter 5-HT, increase the release of 5-HT, couple 5-HT with a G protein coupled receptor, convert adenosine triphosphate (ATP) into cAMP (catalyzed by ADCY5), and then directly regulate the downstream pathway. Following pathway activation, we propose that the core gene protein kinase PKA activates the serotonergic synapse signal pathway to increase the expression of 5-HT and GABA, thus improving insomnia symptoms and alleviating anxiety. This study provides a theoretical basis for the application of valerian volatile oil in health food.
Collapse
Affiliation(s)
- Wenfei Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yichun Wang
- School of Pharmaceutical Sciences, College of Pharmacy, Kyushu University, Fukuoka, Japan
| | - Qiuting Guo
- Xianyang Vocational Technical College, College of Pharmacy, Xianyang, China
| | - Huiting Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhaoqiang Wang
- Shaanxi Haitian Pharmaceutical Co., Ltd., Xianyang, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanzhuo Jia
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ming Yang
- Xianyang Vocational Technical College, College of Pharmacy, Xianyang, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
43
|
Feng X, Bi Y, Wang J, Li T, Yu G, Zhang T, Xu H, Zhang C, Sun Y. Discovery of the Potential Novel Pharmacodynamic Substances From Zhi-Zi-Hou-Po Decoction Based on the Concept of Co-Decoction Reaction and Analysis Strategy. Front Pharmacol 2022; 12:830558. [PMID: 35095537 PMCID: PMC8793358 DOI: 10.3389/fphar.2021.830558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Zhi-Zi-Hou-Po Decoction (ZZHPD), a classic traditional Chinese medicine (TCM) formula, is clinically used to treat insomnia and depression. The analysis strategy based on the concept of co-decoction of TCM is helpful to analyse the effective substances of TCM formula in depth. Aim of the study: This manuscript intends to take ZZHPD as a model sample to explore the phenomenon of co-decoction of complex formula in the combination of liquid chromatography-mass spectrometry (LC-MS) technology, data analysis, and molecular docking. Materials and methods: In the current research, an innovative LC-MS method has been established to study the active ingredients in ZZHPD, and to identify the ingredients absorbed into the blood and brain tissues of mice. And molecular docking was used to study the binding pattern and affinities of known compounds of the brain tissue toward insomnia related proteins. Results: Based on new processing methods and analysis strategies, 106 chemical components were identified in ZZHPD, including 28 blood components and 18 brain components. Then, by comparing the different compounds in the co-decoction and single decoction, it was surprisingly found that 125 new ingredients were produced during the co-decoction, 2 of which were absorbed into the blood and 1 of which was absorbed into brain tissue. Ultimately, molecular docking studies showed that 18 brain components of ZZHPD had favourable binding conformation and affinity with GABA, serotonin and melatonin receptors. The docking results of GABRA1 with naringenin and hesperidin, HCRTR1 with naringenin-7-O-glucoside, poncirenin and genipin 1-gentiobioside, and luteolin with SLC6A4, GLO1, MAOB and MTNR1A may clarify the mechanism of action of ZZHPD in treating insomnia and depression. Conclusion: Our study may provide new ideas for further exploring the effective substances in ZZHPD.
Collapse
Affiliation(s)
- Xin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gengyuan Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Pharmacy, Zigong First People's Hospital, Zigong, China
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Su Q, Zou D, Gai N, Li H, Kuang Z, Ni X. Traditional Chinese Medicine for Post-stroke Sleep Disorders: The Evidence Mapping of Clinical Studies. Front Psychiatry 2022; 13:865630. [PMID: 35782438 PMCID: PMC9240765 DOI: 10.3389/fpsyt.2022.865630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, there are a number of clinical studies on traditional Chinese medicine (TCM) for post-stroke sleep disorders (PSSDs). This study aimed to map the current clinical studies and identify gaps to inform future study agendas. METHODS PubMed, Embase, Cochrane Library, and Chinese databases, including SinoMed, CNKI, and Wanfang, were searched for clinical studies on PSSDs treated with TCM from their inception to September 2021. Evidence sources, number of studies, types of PSSDs, intervention categories, effectiveness, and quality assessment were graphically displayed. RESULTS The evidence map involved 810 clinical studies, of which the earliest report was dated back to 1993, and an advanced growth of the whole evidence was observed in 2012. Randomized controlled trials (RCTs) were the most common type of study design (78.15%), and post-stroke insomnia was the most common type of sleep disorders (65.80%). The benefits of Chinese herbal medicine (CHM) and acupuncture therapies for post-stroke insomnia have been widely reported in RCTs (81.60% and 75.38%, respectively). However, the benefits of CHM interventions were assessed using a global approach rather than being based on a specific formula, and the highest level of evidence supporting the effectiveness of acupuncture therapies was of low methodological quality. In addition, evidence from primary studies was insufficient in the areas of TCM for post-stroke sleep-related breathing disorders (SBDs) and Chinese mind-body exercises for post-stroke insomnia. CONCLUSIONS PSSDs treated with TCM have been widely assessed in clinical studies. For better evidence translation, clinical trials on specific CHM interventions and high-quality systematic reviews on acupuncture for post-stroke insomnia should be conducted. For a better solution to clinical questions, TCM on SBDs after stroke and the benefits of Chinese mind-body exercises for post-stroke insomnia should be explored in future clinical studies.
Collapse
Affiliation(s)
- Qing Su
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danmei Zou
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nuo Gai
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huishan Li
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuoran Kuang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaojia Ni
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|