1
|
Nan N, Yang N, Liu Y, Hao HQ. Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine. Chin J Integr Med 2025:10.1007/s11655-025-4208-z. [PMID: 39809966 DOI: 10.1007/s11655-025-4208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 01/16/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses. Therefore, the combination of CM and ADSCs may be a new promising research direction in integrative medicine of China. This review summarizes the association between CM and ADSCs to assess the potential application value of their combination against various diseases.
Collapse
Affiliation(s)
- Nan Nan
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Na Yang
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Yang Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Qin Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
2
|
Kao SW, Chang YC, Lin FH, Huang TL, Chen TS, Lin SZ, Lin KH, Kuo WW, Ho TJ, Huang CY. Jing-Si Herbal Tea Suppresses H 2O 2 -Instigated Inflammation and Apoptosis by Inhibiting Bax and Mitochondrial Cytochrome C Release in HIG-82 Synoviocytes. ENVIRONMENTAL TOXICOLOGY 2024; 39:5347-5356. [PMID: 39234996 DOI: 10.1002/tox.24406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Inflammation is an intrinsic protective mechanism against various forms of cellular injuries in humans; however, its undesired activation results in tissue damage and cell death. The onset of chronic inflammation and oxidative stress are the key characteristics of autoimmune inflammatory diseases such as rheumatoid arthritis (RA), for which an effective treatment is yet to be developed. Therefore, in this study, we investigated the protective effects and molecular mechanisms of a novel herbal preparation, Jing-Si herbal tea (JS), against H2O2-induced inflammation and cellular damage in HIG-82 synoviocytes. We found that JS did not show any significant alterations in cell viability at <188 μg/mL; however, a cytotoxic effect was observed at 188-1883 μg/mL concentrations tested. We found that expressions of inflammation associated extracellular matrix (ECM)-degrading proteases MMP-13, ADAMTS-2, -8, and -17 were abnormally enhanced under H2O2-induced pathological oxidative stress (ROS) in HIG-82 cells. Interestingly, JS treatment not only reduced the ROS levels but also significantly repressed the protein expressions of collagen degrading proteases in a dose-dependent manner. Treatment with JS showed enhanced cell viability against H2O2-induced toxic ROS levels. The expressions of cell protective aggrecan, Collagen II, and Bcl-2 were increased, whereas MMP-13, ADAMTS-2, Cytochrome C, and cleaved Caspase 3 were decreased by JS under inflammatory agents H2O2, MIA, LPS, and TNF-α treatment, respectively, in HIG-82 cells. Interestingly, the cytoprotective effect of JS treatment was attributed to a decreased mitochondrial localization of Bax and a reduction of Cytochrome C release into the cytoplasm of H2O2-treated HIG-82 cells. Collectively, our results suggest a novel protective mechanism of JS for RA treatment, which could be potentially applied as a complementary treatment or as an alternative therapeutic approach to mitigate inflammatory diseases.
Collapse
Affiliation(s)
- Shih-Wen Kao
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chun Chang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institute, Miaoli, Taiwan
| | - Tai-Lung Huang
- Department of Orthopedics, Chung-Kang Branch, Cheng Ching General Hospital, Taichung, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu chi University, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Ding X, Ma X, Meng P, Yue J, Li L, Xu L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin Interv Aging 2024; 19:681-693. [PMID: 38706635 PMCID: PMC11070163 DOI: 10.2147/cia.s447514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.
Collapse
Affiliation(s)
- Xue Ding
- Department of Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiuxia Ma
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Pengfei Meng
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingyu Yue
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liangping Li
- Department of Graduate, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liran Xu
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
4
|
Wang CH, Yang JS, Chen CJ, Su SH, Yu HY, Juan YN, Chiu YJ, Ho TJ. Protective effects of Jing-Si-herbal-tea in inflammatory cytokines-induced cell injury on normal human lung fibroblast via multiomic platform analysis. Tzu Chi Med J 2024; 36:152-165. [PMID: 38645788 PMCID: PMC11025590 DOI: 10.4103/tcmj.tcmj_267_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 04/23/2024] Open
Abstract
Objectives The protective effects and related mechanisms of Jing-Si herbal tea (JSHT) were investigated in cellular damage mediated by pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, on normal human lung fibroblast by multiomic platform analysis. Materials and Methods The in silico high-throughput target was analyzed using pharmacophore models by BIOVIA Discovery Studio 2022 with ingenuity pathway analysis software. To assess cell viability, the study utilized the MTT assay technique. In addition, the IncuCyte S3 ZOOM System was implemented for the continuous monitoring of cell confluence of JSHT-treated cytokine-injured HEL 299 cells. Cytokine concentrations were determined using a Quantibody Human Inflammation Array. Gene expression and signaling pathways were determined using next-generation sequencing. Results In silico high-throughput target analysis of JSHT revealed ingenuity in canonical pathways and their networks. Glucocorticoid receptor signaling is a potential signaling of JSHT. The results revealed protective effects against the inflammatory cytokines on JSHT-treated HEL 299 cells. Transcriptome and network analyses revealed that induction of helper T lymphocytes, TNFSF12, NFKB1-mediated relaxin signaling, and G-protein coupled receptor signaling play important roles in immune regulatory on JSHT-treated cytokine-injured HEL 299 cells. Conclusion The findings from our research indicate that JSHT holds promise as a therapeutic agent, potentially offering advantageous outcomes in treating virus infections through various mechanisms. Furthermore, the primary bioactive components in JSHT justify extended research in antiviral drug development, especially in the context of addressing coronavirus.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - San-Hua Su
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsin-Yuan Yu
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
5
|
Ho TJ, Ahmed T, Shibu MA, Lin YJ, Shih CY, Lin PY, Ling SZ, Chiang CY, Kuo WW, Huang CY. A prospective review of the health-promoting potential of Jing Si Herbal Tea. Tzu Chi Med J 2024; 36:1-22. [PMID: 38406577 PMCID: PMC10887337 DOI: 10.4103/tcmj.tcmj_194_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 02/27/2024] Open
Abstract
Traditional Chinese medicine (TCM) has gained considerable attention over the past few years for its multicomponent, multitarget, and multi-pathway approach to treating different diseases. Studies have shown that TCMs as adjuvant therapy along with conventional treatment may benefit in safely treating various disorders. However, investigations on finding effective herbal combinations are ongoing. A novel TCM formula, "Jing Si Herbal Tea (JSHT)," has been reported recently for their health-promoting effects in improving overall body and mental health. JSHT is a combination of eight herbs recognized in Chinese herbal pharmacopoeia for their anti-viral, anti-aging, and anti-cancer properties as well as protective effects against cardiovascular, metabolic, neural, digestive, and genitourinary diseases. Thus, to better understand the beneficial effects of the ingredients of JSHT on health, this review intends to summarize the preclinical and clinical studies of the ingredients of JSHT on human health and diseases, and possible therapeutic effects with the related mode of actions and future prospects for their application in complementary therapies.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tanvir Ahmed
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Yu-Jung Lin
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Ling
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Yi Chiang
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph. D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital and China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
6
|
Yuan Hsieh DJ, Islam MN, Kuo WW, Shibu MA, Lai CH, Lin PY, Lin SZ, Chen MYC, Huang CY. A combination of isoliquiritigenin with Artemisia argyi and Ohwia caudata water extracts attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/Ho-1 signaling pathways in SD rats with doxorubicin-induced acute cardiotoxicity. ENVIRONMENTAL TOXICOLOGY 2023; 38:3026-3042. [PMID: 37661764 DOI: 10.1002/tox.23936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1β, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.
Collapse
Affiliation(s)
- Dennis Jine Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Md Nazmul Islam
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | | | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung City, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
7
|
Hsieh DJY, Tsai BCK, Barik P, Shibu MA, Kuo CH, Kuo WW, Lin PY, Shih CY, Lin SZ, Ho TJ, Huang CY. Human adipose-derived stem cells preconditioned with a novel herbal formulation Jing Shi attenuate doxorubicin-induced cardiac damage. Aging (Albany NY) 2023; 15:9167-9181. [PMID: 37708248 PMCID: PMC10522400 DOI: 10.18632/aging.205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 μg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.
Collapse
Affiliation(s)
- Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Parthasarathi Barik
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, USA
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | | | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
8
|
Abdolmaleky HM, Zhou JR. Underlying Mechanisms of Brain Aging and Neurodegenerative Diseases as Potential Targets for Preventive or Therapeutic Strategies Using Phytochemicals. Nutrients 2023; 15:3456. [PMID: 37571393 PMCID: PMC10473240 DOI: 10.3390/nu15153456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
9
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Li PC, Wang HS, Shibu MA, Wang J, Huang SH, Wang JH, Wang JH, Huang CY, Chiang CY, Lin YJ, Ho TJ, Lin SZ, Chung HC, Yu HY, Su SH, Chou YF, Tai CH, Ding DC, Shih CY. Clinical course of patients with severe SARS-CoV-2 infection co-treatment with Jin Si Herbal Tea in Eastern Taiwan: A retrospective cohort study. J Herb Med 2022; 36:100610. [PMID: 36341465 PMCID: PMC9616512 DOI: 10.1016/j.hermed.2022.100610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/18/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Introduction Coronavirus disease-2019 (COVID-19) has affected more than 608 million people and has killed 6.5 million people in the world. A few studies showed traditional Chinese medicine can be beneficial for COVID-19 treatment. An herbal preparation Jin Si Herbal Tea (JS) was formulated with herbal extracts known for their potential to decrease spike protein and ACE2 interaction, 3CL, and TRPMSS2 protease activity, and thus aimed to evaluate the clinical course of JS co-treatment along with the usual treatment schedule given for severe COVID-19 patients. Methods This retrospective cohort study included patients with severe COVID-19 admitted to Hualien Tzu Chi Hospital between June and July 2021. All the patients were co-treated with JS and the primary outcome was death. The secondary outcomes included laboratory exam, Ct value, clinical course, and hospital stays. There were 10 patients recruited in this study and divided into < 70 years and ≧ 70 years groups (n = 5 in each group). Results Older patients (≧70 years) had a higher Charlson Comorbidity Index, VACO index, and lower hemoglobin levels than < 70 years patients. The trend of lymphocyte count, LDH, D-dimer, and Ct value of non-survivors was not consistent with previous studies. The death rate was 20% and the recovery rate to mild illness in 14 days was 40%. Conclusion In conclusion, this is the first clinical study of JS co-treatment in severe COVID-19 patients. JS co-treatment might reduce death rate and recovery time. Further large-scale clinical trials would be expected.
Collapse
Affiliation(s)
- Pei-Chen Li
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Hui-Sheng Wang
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | | | - Jhen Wang
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Shiau-Huei Huang
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Jeng-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Ji-Hung Wang
- Cardiovascular Research Centre, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Graduate Institute of Biomedical sciences, China Medical University, Taichung 404, Taiwan
- Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chien-Yi Chiang
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Yu-Jung Lin
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Chung
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
- Department of Nursing, Tzu Chi University, Hualien 970, Taiwan
| | - Hsin-Yuan Yu
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - San-Hua Su
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ying-Fang Chou
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Chia-Hui Tai
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | |
Collapse
|
11
|
Karupaiah T, Lu KC. Editorial: Nutraceuticals for the recovery of COVID-19 patients. Front Nutr 2022; 9:1054632. [PMID: 36451742 PMCID: PMC9703639 DOI: 10.3389/fnut.2022.1054632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Affiliation(s)
- Tilakavati Karupaiah
- Faculty of Health and Medical Sciences, School of BioSciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, School of Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Chiang CY, Kuo WW, Lin YJ, Kuo CH, Shih CY, Lin PY, Lin SZ, Ho TJ, Huang CY, Shibu MA. Combined effect of traditional Chinese herbal-based formulations Jing Si herbal tea and Jing Si nasal drop inhibits adhesion and transmission of SARS-CoV2 in diabetic SKH-1 mice. Front Pharmacol 2022; 13:953438. [PMID: 36425575 PMCID: PMC9681529 DOI: 10.3389/fphar.2022.953438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 09/05/2023] Open
Abstract
Multiple studies show increased severity of SARS-CoV2-infection in patients with comorbidities such as hypertension and diabetes. In this study, we have prepared two herbal-based formulations, a pleiotropic herbal drink (Jin Si Herbal Tea, JHT) and a nasal drop (Jin Si nasal drop, JND), to provide preventive care against SARS-CoV2 infection. The effect of JHT and JND was determined in SARS-CoV2-S-pseudotyped lentivirus-infected bronchial and colorectal cell lines and in SKH-1 mouse models. For preliminary studies, ACE2 receptor abundant bronchial (Calu-3) and colorectal cells (Caco-2) were used to determine the effect of JHT and JND on the host entry of various variants of SARS-CoV2-S-pseudotyped lentivirus. A series of experiments were performed to understand the infection rate in SKH-1 mice (6 weeks old, n = 9), find the effective dosage of JHT and JND, and determine the combination effect of JHT and JND on the entry and adhesion of various variant SARS-CoV2-S-pseudotyped lentiviruses, which included highly transmissible delta and gamma mutants. Furthermore, the effect of combined JHT and JND was determined on diabetes-induced SKH-1 mice against the comorbidity-associated intense viral entry and accumulation. In addition, the effect of combined JHT and JND administration on viral transmission from infected SKH-1 mice to uninfected cage mate mice was determined. The results showed that both JHT and JND were effective in alleviating the viral entry and accumulation in the thorax and the abdominal area. While JHT showed a dose-dependent decrease in the viral load, JND showed early inhibition of viral entry from day 1 of the infection. Combined administration of 48.66 mg of JHT and 20 µL of JND showed rapid reduction in the viral entry and reduced the viral load (97-99%) in the infected mice within 3 days of treatment. Moreover, 16.22 mg of JHT and 20 µL JND reduced the viral infection in STZ-induced diabetic SKH-1 mice. Interestingly, combined JHT and JND also inhibited viral transmission among cage mates. The results, therefore, showed that combined administration of JHT and JND is a novel and an efficient strategy to potentially prevent SARS-CoV2 infection.
Collapse
Affiliation(s)
- Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Cheng-Yen Shih
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Buddhist Tzu Chi Charity Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Buddhist Tzu Chi Charity Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Buddhist Tzu Chi Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Jing Si Herbal Research and Application Center, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
13
|
Su YC, Huang GJ, Lin JG. Chinese herbal prescriptions for COVID-19 management: Special reference to Taiwan Chingguan Yihau (NRICM101). Front Pharmacol 2022; 13:928106. [PMID: 36278162 PMCID: PMC9581083 DOI: 10.3389/fphar.2022.928106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. As at June 2022, increasing numbers of newly diagnosed COVID-19-associated pneumonia cases worldwide have attracted close attention from the international community. The present review analyzes and summarizes the treatment of COVID-19 with traditional Chinese medicine (TCM). A systematic analysis of the efficacies and benefits of TCM for the treatment of COVID-19 was performed, and the mechanisms underlying such treatment are summarized. This analysis of the literature highlights the potential of TCM to prevent and treat COVID-19 via antiviral, anti-inflammatory and immunomodulatory activities, with evidence showing that many TCM components act upon multiple targets and pathways. Famous TCM formulas include Qing-Fei-Pai-Du-Tang (QFPDT), Lianhuaqingwen Capsule (LHC), Taiwan Chingguan Yihau (NRICM101), and Jing Si herbal drink (JSHD). In particular, the botanical preparation NRICM101 was developed in 2020 for use in viral respiratory tract infections and is recommended for treating non-severe and mild COVID-19 infections. NRICM101 has been adopted for use in Taiwan for the clinical treatment of COVID-19. The common components and active ingredients of 10 TCM preparations have been analyzed for the most promising substances. This review aims to provide reliable evidence demonstrating the therapeutic efficacy of TCM substances in support of their further development against novel coronavirus infectious diseases in Taiwan.
Collapse
Affiliation(s)
- Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Guan-Jhong Huang, ; Jaung-Geng Lin,
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Guan-Jhong Huang, ; Jaung-Geng Lin,
| |
Collapse
|
14
|
Chen H, Zheng M, Zhang W, Long Y, Xu Y, Yuan M. Research Status of Mouse Models for Non-Small-Cell Lung Cancer (NSCLC) and Antitumor Therapy of Traditional Chinese Medicine (TCM) in Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6404853. [PMID: 36185084 PMCID: PMC9519343 DOI: 10.1155/2022/6404853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is known as one of the most lethal cancers, causing more than 1 million deaths annually worldwide. Therefore, the development of novel therapeutic drugs for NSCLC has become an urgent need. Herein, various mouse models provide great convenience not only for researchers but also for the development of antitumor drug. Meanwhile, TCM, as a valuable and largely untapped resource pool for modern medicine, provides research resources for the treatment of various diseases. Until now, cell-derived xenograft (CDX) model, patient-derived xenograft (PDX) model, syngeneic model, orthotopic model, humanized mouse model (HIS), and genetically engineered mouse models (GEMMs) have been reported in TCM evaluation. This review shows the role and current status of kinds of mouse models in antitumor research and summarizes the application progress of TCM including extracts, formulas, and isolated single molecules for NSCLC therapy in various mouse models; more importantly, it provides a theoretical exploration of what kind of mouse models is ideal for TCM efficacy evaluation in future. However, there are still huge challenges and limitations in the development of mouse models specifically for the TCM research, and none of the available models are perfectly matching the characteristics of TCM, which suppress the tumor growth through various mechanisms, especially by regulating immune function. Nevertheless, with fully functional immune system existing in syngeneic model and humanized mouse model (HIS), it is still suggested that these two models are more suitable for development of TCM especially for TCM extracts or formulas. Moreover, continued efforts are needed to generate more reliable mouse models to test TCM formulas in future research.
Collapse
Affiliation(s)
- Hongkui Chen
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yuan Long
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
15
|
Ho TJ, Goswami D, Kuo WW, Kuo CH, Yen SC, Lin PY, Lin SZ, Hsieh DJY, Shibu MA, Huang CY. Artemisia argyi exhibits anti-aging effects through decreasing the senescence in aging stem cells. Aging (Albany NY) 2022; 14:6187-6201. [PMID: 35951373 PMCID: PMC9417221 DOI: 10.18632/aging.204210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Aging is accompanied by functional loss of many cellular pathways, creating an increased risk of many age-related complications (ARC). Aging causes stem cell exhaustion with a concomitant increase in cellular dysfunction. Recently, interest in senotherapeutics has been growing rapidly to promote healthy aging and as an intervention for ARCs. This research focused on screening the senomorphic properties of Artemisia argyi, as an emerging strategy for longevity, and prevention or treatment of ARCs. In this study, we aimed to find the clinical efficacy of daily consumption of Artemisia argyi water extract (AAW) on aging. In vitro 0.1μM Doxorubicin induced senescent human adipose derived mesenchymal stem cells was treated with different concentrations of AAW to show its anti-aging effect. 15 months old SHR rats (n=6) were treated with 7.9 mg/ml AAW for 4 weeks and anti-aging effect was evaluated. In vitro study showed the protective effect of AAW in telomere shortening and helps in maintaining a balance in the expression of anti-aging protein Klotho and TERT. AAW effectively reduced mitochondrial superoxide and also provided a protective shield against senescence markers like over-expression of p21 and formation of double strand breaks, which is known to cause premature aging. Moreover, animal studies indicated that AAW promoted the expression of Klotho in naturally aging rats. In addition, AAW successfully restored the decline cardiac function and improved the grip strength and memory of aging rat. These findings showed that therapeutic targeting of senescent stem cells by AAW restored stem cell homeostasis and improves overall health.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Debakshee Goswami
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei 111, Taiwan
| | - Shih Cheng Yen
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|