1
|
Yang P, Fan M, Chen Y, Yang D, Zhai L, Fu B, Zhang L, Wang Y, Ma R, Sun L. A novel strategy for the protective effect of ginsenoside Rg1 against ovarian reserve decline by the PINK1 pathway. PHARMACEUTICAL BIOLOGY 2025; 63:68-81. [PMID: 39862058 PMCID: PMC11770866 DOI: 10.1080/13880209.2025.2453699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
CONTEXT The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear. OBJECTIVE To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve. MATERIALS AND METHODS Ovarian reserve function, reproductive capacity, oxidative stress levels, and mitochondrial function were compared between ginsenoside Rg1-treated and untreated naturally aged female Drosophila using behavioral, histological, and molecular biological techniques. The protective effects of ginsenoside Rg1 were analyzed in a Drosophila model of oxidative damage induced by tert-butyl hydroperoxide. Protein expression levels in the PINK1/Parkin pathway were assessed, and molecular docking and PINK1 mutant analyses were conducted to identify potential targets. RESULTS Ginsenoside Rg1 significantly mitigated ovarian reserve decline, enhancing offspring quantity and quality, increasing the levels of ecdysteroids, preventing ovarian atrophy, and elevating germline stem cell numbers in aged Drosophila. Ginsenoside Rg1 improved superoxide dismutase, catalase activity, and gene expression while reducing reactive oxygen species levels. Ginsenoside Rg1 activated the mitophagy pathway by upregulating PINK1, Parkin, and Atg8a and downregulating Ref(2)P. Knockdown of PINK1 in the ovary by RNAi attenuated the protective effects of ginsenoside Rg1. Molecular docking analysis revealed that the ginsenoside Rg1 could bind to the active site of the PINK1 kinase domain. DISCUSSION AND CONCLUSIONS Ginsenoside Rg1 targets PINK1 to regulate mitophagy, preserving ovarian reserve. These findings suggest the potential of ginsenoside Rg1 as a therapeutic strategy to prevent ovarian reserve decline.
Collapse
Affiliation(s)
- Pengdi Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Dan Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Baoyu Fu
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Zhang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Yanping Wang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Wang Q, Lu Y, Mi X, Yang C, Ma W, Xia C, Wang H. Antidepressant activity of flavones from traditional Chinese medicine: a meta-analysis. PHARMACEUTICAL BIOLOGY 2025; 63:156-169. [PMID: 39996320 PMCID: PMC11864034 DOI: 10.1080/13880209.2025.2467374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Flavones, the key active components in Traditional Chinese Medicine (TCM), have demonstrated antidepressant activity. Given the numerous animal studies conducted, a systematic analysis is essential to provide a valuable reference for future research. OBJECT This study investigated the antidepressant activity of flavones based on animal models and summarized the underlying mechanisms. METHODS We systematically searched 7 bibliographic Databases as of August 12, 2023, such as Web of Science, PubMed, China National Knowledge Infrastructure, etc. The meta-analysis was performed using either the random or fixed-effect model, supplemented by trial sequential analysis (TSA). The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach was used to assess the quality of evidence. RESULTS A total of 25 studies involving 458 mice were included, identifying five flavones (baicalin, baicalein, apigenin, luteolin, vitexin) with antidepressant activity. Compared to the control group, flavones significantly reduced immobility time in forced swimming and tail suspension tests. Flavones also decreased serum and hippocampal levels of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), reduced nuclear factor kappa B (NF-κB) levels, and increased brain-derived neurotrophic factor (BDNF) levels. Relative to the positive group, flavones raised IL-6, sucrose preference rate, and corticosterone (CORT) levels, with no significant differences in other factors. The TSA showed the efficacy of flavones for treating depression with adequate 'information size' for the primary outcome. CONCLUSIONS The results demonstrate that flavones exert protective effects against depression in mice, primarily by stimulating neurotrophic factors and modulating inflammatory pathways. These findings emphasize their potential as promising candidates for the development of novel antidepressant therapies.
Collapse
Affiliation(s)
- Qing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Department of Pharmacy, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Youyuan Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xue Mi
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Department of Pharmacy, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Caiyan Yang
- Department of Pharmacy, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Wei Ma
- Department of Pharmacy, The First People’s Hospital of Yinchuan, Yinchuan, China
| | - Changbo Xia
- Department of Pharmacy, Central’s Hospital of Xinxiang, Xinxiang, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Zhang Z, Yu W, He X, Ying J, Liu Y, Chen M, Fu D, Shen A, Liang X. In-depth characterization of quinolizidine alkaloids via highly efficient enrichment and multi-stage mass spectrometry. Talanta 2025; 293:128141. [PMID: 40249983 DOI: 10.1016/j.talanta.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
The identification of new natural products is a critical step in the discovery of lead compounds, and is a prerequisite for the development of novel pharmaceuticals. Traditional Chinese medicines (TCMs) are renowned for their diverse pharmacological activities, and represent a valuable source of novel chemicals. The quinolizidine alkaloids are abundant in plants of the Fabaceae family and exhibit significant bioactivities, including anticancer and anti-inflammatory effects. However, the structural diversity of quinolizidine alkaloids and the chemical complexity associated with TCMs pose great challenges in the discovery of novel quinolizidine alkaloids. In the present study, Sophora flavescens Ait. was used as a model to establish a comprehensive strategy for characterizing quinolizidine alkaloids. A simple and selective method was developed using an FC8HL column for the efficient enrichment of polar quinolizidine alkaloids. Through the integration of high-resolution multi-stage mass spectrometry and feature-based molecular networking, the enriched alkaloids were thoroughly characterized, including matrine-type, cystine-type, aloperine-type, anagyrine-type, lupinine-type, and dimeric species. A total of 186 quinolizidine alkaloids were identified, including 131 newly discovered compounds. A series of novel substituents was also identified for the first time. The findings of this study not only deepen our understanding of the structural diversity of quinolizidine alkaloids, but they also offer a novel research strategy for the comprehensive characterization of quinolizidine alkaloids in other plants, potentially facilitating the discovery of new drug candidates.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenyi Yu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xiao He
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jinqin Ying
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yanfang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongmei Fu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Aijin Shen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| |
Collapse
|
4
|
Lei X, Wen D, Huang Z, Li X, Liuyang Tang, Zhu Y, Guo Z. Icariin attenuates oxidative stress via SIRT1/PGC-1α pathway in SAH mice. Exp Neurol 2025; 390:115303. [PMID: 40345568 DOI: 10.1016/j.expneurol.2025.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Oxidative stress plays a pivotal role in the pathological response of subarachnoid hemorrhage (SAH). Icariin (ICA), with its potent antioxidant properties, exerts neuroprotective effects in stroke. This study investigated the beneficial effects of ICA on SAH-induced oxidative damage and its possible molecular mechanisms. The results indicated that ICA treatment improved both short-term and long-term neurobehavioral functions in mice with SAH. ICA significantly inhibited SAH-induced reactive oxygen species (ROS) generation and lipid peroxidation. Simultaneously, ICA restored the activity of the endogenous antioxidant enzyme system. Furthermore, ICA mitigated mitochondrial damage, improved mitochondrial morphology, further reduced neuronal apoptosis, and decreased brain edema following SAH. Mechanistically, ICA suppressed oxidative stress after SAH by activating Sirtuin 1 (SIRT1), subsequently upregulating the expression of PGC-1α. The SIRT1 inhibitor EX527 significantly inhibited ICA-induced SIRT1 activation and abolished the antioxidant and neuroprotective effects of ICA. In cellular experiments, ICA also inhibited ROS production and enhanced cell viability. These effects were associated with SIRT1 activation and were reversed by EX527 treatment. In conclusion, this study explored the protective effects of ICA against SAH-induced oxidative damage, suggesting that ICA could be a potential therapeutic agent for SAH.
Collapse
Affiliation(s)
- Xingwei Lei
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Daochen Wen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zichao Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoguo Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liuyang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yajun Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Yin X, Li S, Wang J, Wang M, Yang J. Research progress of active compounds from traditional Chinese medicine in the treatment of stroke. Eur J Med Chem 2025; 291:117599. [PMID: 40188582 DOI: 10.1016/j.ejmech.2025.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Stroke is a serious cerebrovascular disease that is categorized into two types: ischemic and hemorrhagic. The pathological mechanisms of ischemic stroke are complex and diverse, encompassing processes such as neuroinflammation and apoptosis. The pathological processes of hemorrhagic stroke primarily involve the disruption of the blood-brain barrier and cerebral edema. Western medical treatment methods show certain effectiveness during the acute phase of stroke, but they are limited by a narrow therapeutic window and secondary injuries. Traditional Chinese medicine (TCM) has a long history and unique advantages in treating stroke. Studies confirm that active compounds derived from TCM exert multi-pathway, multi-target effects, significantly improving therapeutic outcomes and reducing adverse reactions. However, due to the complexity of the components in TCM, research on monomeric components still faces challenges. This article reviews the relevant research progress published in domestic and international journals over the past twenty years regarding the mechanisms of action of monomeric components of TCM in the treatment of stroke, aiming to provide insights and references for the clinical application of TCM in stroke treatment and further new drug development.
Collapse
Affiliation(s)
- Xinyi Yin
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Junwei Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
6
|
Wang Y, Xie D, Ma S, Wang Y, Zhang C, Chen Z. Beta-asarone alleviated cerebral ischemia/reperfusion injury by targeting PINK1/Parkin-dependent mitophagy. Eur J Pharmacol 2025; 1002:177831. [PMID: 40490171 DOI: 10.1016/j.ejphar.2025.177831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/19/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) describes a secondary type of brain damage that happens when blood flow is restored to brain tissue; it ranks among the primary contributors of disability and mortality. The activation of PINK1/Parkin-mediated mitophagy exerts neuroprotective effects during CIRI. Beta-asarone (β-ASA), the principal active component of traditional natural drugs such as Acori tatarinowii rhizoma and Ligusticum chuanxiong Hort, possesses anti-inflammatory, antioxidant, and autophagy-enhancing properties. However, whether β-ASA can ameliorate CIRI by regulating the PINK1/Parkin-dependent mitophagy pathway remains unclear and warrants further investigation. The purpose of this study is to explore the underlying mechanism through which β-ASA influences PINK1/Parkin-mediated mitophagy in the hippocampus following ischemia-reperfusion. In the results section, the present study examined the effects of β-ASA on middle cerebral artery occlusion/reperfusion (MCAO/R)-induced neurological deficits using the Longa test and TTC staining, rats were then treated with β-ASA (20, 40, and 80 mg/kg.). The findings demonstrate that β-ASA promotes functional recovery in post-ischemic stroke, as evidenced by improved neurological function, reduced infarct volume, decreased neuronal damage, and lowered neuronal apoptosis. Furthermore, β-ASA significantly enhanced autophagy by increasing Beclin1 expression while reducing P62 and LC3-I/LC3-II expression. Additionally, β-ASA markedly activated PINK1/Parkin-mediated mitophagy. Finally, the introduction of mitophagy inhibitors was employed to clarify the relationship between autophagy and β-ASA, indicating that β-ASA promotes autophagy by activating the PINK1/Parkin signalling pathway. In conclusion, this study elucidates that β-ASA alleviates cerebral infarction, neurological impairment, and neuronal damage by targeting PINK1/Parkin-dependent mitophagy, thereby presenting a potential therapeutic strategy for CIRI.
Collapse
Affiliation(s)
- Yujiao Wang
- The First Clinical Medical College of Anhui University of Chinese Medicine, 230036, Hefei, Anhui, China.
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230036, Hefei, Anhui, China.
| | - Shijia Ma
- The First Clinical Medical College of Anhui University of Chinese Medicine, 230036, Hefei, Anhui, China.
| | - Yuhe Wang
- The First Clinical Medical College of Anhui University of Chinese Medicine, 230036, Hefei, Anhui, China.
| | - Chengcheng Zhang
- The First Clinical Medical College of Anhui University of Chinese Medicine, 230036, Hefei, Anhui, China.
| | - Zhuyue Chen
- The First Clinical Medical College of Anhui University of Chinese Medicine, 230036, Hefei, Anhui, China.
| |
Collapse
|
7
|
Tepebaşı MY, Aşcı H, Koşar PA, Dinçer EN, Selçuk E, Kolay Ö, Hüseynov İ. Potential Ameliorating Effects of Fluvoxamine in a Rat Model of Endotoxin-Induced Neuroinflammation: Molecular Aspects Through SIRT-1/GPX-4 and HMGB-1 Signaling. Mol Neurobiol 2025; 62:7892-7902. [PMID: 39954165 PMCID: PMC12078383 DOI: 10.1007/s12035-025-04764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Research on the tissue-protective effects of fluvoxamine (FLV), a selective serotonin reuptake inhibitor, rapidly expands. This study explores FLV's potential to protect against lipopolysaccharide (LPS)-induced neuroinflammation, a key factor in systemic inflammation-related neuronal damage. Four equal groups of thirty-two female Wistar Albino rats were created: FLV, LPS-FLV (50 mg/kg intraperitoneal), LPS (5 mg/kg intraperitoneal), and control. Both drugs were given in one dose on the same day. Tissues from the brain cortex, cerebellum, and hippocampus were taken for histopathology, immunohistochemistry, biochemistry, and genetic analysis. In the LPS group, histological examinations revealed hyperemia, edema, mild degeneration, neuronal death, and modest gliosis. Additionally, while apelin and total antioxidant status levels were reduced, greater levels of oxidative stress index, glial fibrillary acidic protein (GFAP), mammalian target of rapamycin (mTOR), and total oxidant status were noted. FLV treatment reversed all these findings. Genetic analyses revealed that LPS decreased sirtuin-1 (SIRT-1) and glutathione peroxidase 4 (GPX-4) while increasing high mobility group box protein 1 (HMGB-1). FLV treatment reversed all these parameters, and a significant result was obtained only with GPX-4. In this study, FLV treatment was shown to have anti-inflammatory and neuroprotective effects through various mechanisms on the brain cortex, cerebellum, and hippocampus tissues in addition to its antidepressant effects.
Collapse
Affiliation(s)
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Pınar Aslan Koşar
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Emine Nur Dinçer
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Esma Selçuk
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Öznur Kolay
- Institute of Health Sciences, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - İbrahim Hüseynov
- Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Ding YQ, Zhao D, Chen X, Yuan HM, Mao LJ. Effect of Huatuo Zaizao Pill on Neurological Function and Limb Motor Recovery in Ischemic Stroke Patients During Convalescence: An Open-Labelled, Randomized Controlled Trial. Chin J Integr Med 2025; 31:483-489. [PMID: 40232598 DOI: 10.1007/s11655-025-3928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 04/16/2025]
Abstract
OBJECTIVE To evaluate the effects of Chinese patent medicine Huatuo Zaizao Pill (HTZZ) on neurological function and limb motor in ischemic stroke (IS) patients during convalescence. METHODS This is a prospective, open-labelled, randomized controlled trial. Patients with IS were recruited from the Neurology Department of Xiyuan Hospital of China Academy of Chinese Medical Sciences from May 2021 to June 2023. Eligible participants were randomly assigned to the HTZZ (40 cases) or control group (40 cases) at a ratio of 1:1. The HTZZ group was treated with oral HTZZ (8 g, thrice daily) combined with conventional treatment, while the control group received only conventional treatment. The treatment duration was 12 weeks. The primary outcome was the change in Modified Ashworth Scale (MAS) score from baseline to week 6 and 12. Secondary outcomes included changes in scores of National Institute of Health Stroke Scale (NIHSS), Fugl-Meyer Assessment (FM), and Barthel Index (BI) from baseline to week 6 and 12, as well as lipid indices after 12 weeks. All adverse events (AEs) were recorded and liver and kidney indices were evaluated. RESULTS A total of 72 patients completed the study (38 in the HTZZ group and 34 in the control group). Compared with the control group, the HTZZ group demonstrated significant improvements in MAS, NIHSS, FM, and BI scores following 6 and 12 weeks of treatment in both intent-to-treat and per-protocol analyses (all P<0.05). No significant differences were noted between groups in lipid indices, AEs, and liver and kidney dysfunction after 12 weeks (P>0.05). CONCLUSIONS HTZZ alleviated spasticity and enhanced neurological function and prognosis of IS patients during convalescence. However, further evaluation of HTZZ's effect on IS outcomes is warranted in clinical trials with larger sample sizes and extended observation periods. (Trial registration No. NCT04910256).
Collapse
Affiliation(s)
- Yan-Qiu Ding
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao Chen
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui-Min Yuan
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li-Jun Mao
- Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
9
|
Shi M, Kan H, Tang Y, Tian L, Guo X, Chen W, Geng J, Zong Y, Bi Y, He Z. Icariin Ameliorates Cyclophosphamide-Induced Renal Encephalopathy by Modulating the NF-κB and Keap1-Nrf2 Signaling Pathways. Int J Mol Sci 2025; 26:4838. [PMID: 40429978 PMCID: PMC12111934 DOI: 10.3390/ijms26104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 05/29/2025] Open
Abstract
Chemotherapy-induced renal encephalopathy (RE) is a disease characterized by cognitive impairment of the brain caused by impaired kidney function for which there is no definitive treatment. Icariin (ICA), the main active component of Epimedium, has a good nervous system protection and anti-neuroinflammation effect, but its effect on the brain injury caused by renal insufficiency as a result of chemotherapy remains unclear. In this study, we demonstrated that 100 mg/kg ICA can not only successfully interface with serotonin and regulate hormone levels but also ameliorates kidney damage and cognitive impairment in cyclophosphamide (CTX)-induced RE mouse models and inhibits inflammation, oxidation, and apoptosis by regulating NF-κB, keap1-Nrf2, and apoptosis pathways. In order to further study the protective effect of ICA on RE, we used CTX-induced HT22 and HEK293 cell injury models, and the ICA intervention showed that ICA could prevent apoptosis by regulating the expression of the apoptosis-related proteins caspase-3, Bcl-2, Bax and BDNF. Overall, our study provides a basis for further investigation of the therapeutic potential of ICA in the treatment of neurodegenerative diseases in the context of renal dysfunction, and further studies are needed at a later stage to fully elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Meiling Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Yijia Tang
- School of Life Sciences, Jilin University, Changchun 130118, China;
| | - Lanshi Tian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Xiangjuan Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| |
Collapse
|
10
|
Li J, Liu M, Fan M, Tian Q, Wang J, Du Y, Yu J, Li X, Yang L, Zhao M, Gao Y, Sun T. Nuciferine ameliorates blood-brain barrier disruption post-ischemic stroke via inhibiting the JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156829. [PMID: 40347924 DOI: 10.1016/j.phymed.2025.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Ischemic stroke frequently results in the compromise of the blood-brain barrier (BBB), a pathological occurrence strongly linked to the impairment of cerebral microvascular endothelial cells and the disintegration of tight junction (TJ) proteins. Nuciferine, a naturally occurring aporphine alkaloid extracted from the leaves of Nelumbo nucifera, exhibits favorable pharmacokinetic characteristics, including the capacity to traverse the BBB, and has demonstrated neuroprotective potential in IS models. Nevertheless, the specific mechanisms by which nuciferine modulates BBB integrity following ischemia, and the molecular pathways involved, remain inadequately understood. PURPOSE This study probed into the protective function of nuciferine against BBB disruption following IS and the molecular pathways involved in its therapeutic action. METHODS In vivo, a photothrombotic focal cerebral ischemia mouse model was established and evaluated through neurological scoring, blood flow measurement, and 2,3,5-triphenyltetrazolium chloride staining. BBB disruption was assessed utilizing Evans Blue dye and endogenous immunoglobulin G extravasation. nuciferine (10, 20, 40 mg/kg, intragastric administration, daily for 7 days) was administered post-ischemia. In vitro, oxygen-glucose deprivation (OGD, 2 h)-induced bEnd.3 cell model was employed and treated with nuciferine (10, 20, and 40 μM, 24 h) to uncover the related mechanisms. RESULTS Our findings revealed that nuciferine effectively preserved BBB integrity and prevented cerebral edema post-photothrombotic. Mechanistically, nuciferine restored the expression of ZO-1, occludin, and claudin-5, both in photothrombotic and OGD models. Meanwhile, it showed the protective effect on OGD-induced endothelial cells injury by inhibiting apoptosis and mitochondrial dysfunction. Importantly, nuciferine targeted Janus kinase 2 and suppressed p-JAK2 and p-STAT3 in IS model. CONCLUSIONS Our findings present novel evidence that nuciferine improves the BBB integrity following IS through blocking the JAK2/STAT3 pathway. Through demonstrating the targeted suppression of JAK2 activation by nuciferine, this work contributes to a more nuanced understanding of how this pathway influences endothelial barrier function in ischemic conditions. Our results offer a conceptual basis for the continued exploration of Nuciferine as a potential therapeutic agent to address BBB dysfunction in the post-stroke setting.
Collapse
Affiliation(s)
- Jiamin Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minglei Fan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Qinqin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jian Wang
- Department of Neurosurgery, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yaya Du
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
11
|
Qian M, Wang Z, Liu H, Zhang X, Xu J, Zhang Y, Chen L, Zhou Z, Yu Y, Dong W. Reactive astrocytes in spinal cord injury: An analysis of heterogeneity based on temporality and spatiality, potential therapies, and limitations. J Neuropathol Exp Neurol 2025:nlaf042. [PMID: 40314931 DOI: 10.1093/jnen/nlaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Spinal cord injury (SCI) constitutes a profound central nervous system disorder characterized by significant neurological dysfunction and sensory loss below the injury site. SCI elicits a multifaceted cellular response in which the proliferation of reactive astrocytes and the ensuing diversity in their functions and phenotypes play pivotal roles within the injury microenvironment, especially during the secondary phases of the condition. This review explores the activation and heterogeneity of astrocytes following SCI. It underscores the necessity of delineating the heterogeneity among reactive astrocyte subpopulations throughout the secondary injury phase of SCI. Developing therapeutic strategies that capitalize on the beneficial properties of certain reactive astrocyte subpopulations while mitigating the adverse effects of others could have profound implications for future clinical management of SCI.
Collapse
Affiliation(s)
- Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zheng Wang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hang Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Li HD, Zheng JY, Tan KW, Su JX, Chen W, Pang RK, Wu GL, Qiu YH, Li XX, Cai YF, Zhang SJ. Salvianolic acid B (SalB) improves high-fat diet (HFD)-caused cognitive impairment in mice by modulating the Trem2/Dap12 pathway in vivo and in vitro. Int Immunopharmacol 2025; 153:114461. [PMID: 40101423 DOI: 10.1016/j.intimp.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Salvianolic acid B (SalB), which extracted from Salvia miltiorrhiza Bunge (Labiatae), is a traditional Chinese medicine. SalB is widely used in nervous system diseases. This study evaluated the protective effect of SalB on high-fat diet (HFD)-induced cognitive impairment and its mechanisms in vivo and in vitro. The behavior tests demonstrated that SalB alleviated motor skills and learning capacity in HFD mice. Animal experiments have confirmed that SalB reduced the mRNA expression of inflammatory markers and the Trem2/Dap12 pathway in HIP. Furthermore, SalB inhibited the microglia Trem2/Dap12 pathway in HIP. In vivo, palmitic acid (PA) was used to intervene in BV2 cells to construct an inflammatory. SalB reduced the mRNA expression of inflammatory markers and inhibited the Trem2/Dap12 pathway in BV2 cells. In conclusion, SalB treatment may serve as a possible therapy for cognitive impairment induced by HFD.
Collapse
Affiliation(s)
- Hong-Dan Li
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Kai-Wen Tan
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Jin-Xun Su
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Wei Chen
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| |
Collapse
|
13
|
Wu Y, Yin L, Wang Z, Yuan S, Ma D, Wen C, Tian H, Xiao B, Ma C, Song L. Hydroxysafflor yellow A inhibits neuronal ferroptosis and ferritinophagy in ischemic stroke. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167867. [PMID: 40280202 DOI: 10.1016/j.bbadis.2025.167867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Ischemic stroke is a significant cause of disability and mortality on a global scale, with neuronal dysfunction playing a critical role in its pathogenesis. Conventional treatment approaches for ischemic stroke involve surgical interventions and thrombolytic therapy, yet these methods frequently result in ischemia/reperfusion (I/R) injury. Recent studies have underscored the implication of diverse programmed cell death mechanisms, including ferroptosis, in the progression of ischemic stroke. Ferroptosis, a newly recognized form of cell death reliant on iron, is intricately linked to various neurological conditions. Despite the existing body of research on ferritinophagy and neuronal ferroptosis in the context of cerebral ischemia-reperfusion injury, there is a lack of understanding regarding the mechanisms involved in neuronal ferroptosis. This study seeks to explore the relationship between neuronal autophagy and neuronal ferroptosis using in vivo and in vitro models of cerebral ischemia/reperfusion. The findings of our study reveal a significant upregulation of the ferritinophagy-associated protein NCOA4 following cerebral ischemia/reperfusion, concomitant with the initiation of ferroptosis in neuronal cells. This observation offers compelling support for a direct association between neuronal ferritinophagy and ferroptosis. Hydroxysafflor Yellow A (HSYA), a traditional Chinese herb, shows promise in reducing brain ischemia/reperfusion injury, but its exact protective mechanism is still unknown. Our study reveals a new way HSYA protects the brain by preventing neuronal ferroptosis after a stroke, a mechanism not previously reported.
Collapse
Affiliation(s)
- Yige Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Lijun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Zeqian Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Shuwen Yuan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Dong Ma
- Dept. of Neurosurgery/The Key Laboratory of prevention and treatment of neurological disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Chunli Wen
- Shanxi provincial people's Hospital, Taiyuan 030001, China
| | - Hao Tian
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China.
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
14
|
An H, Shao C, He Y, Zhou H, Wang T, Xu G, Yang J, Wan H. Calycosin Inhibit PANoptosis and Alleviate Brain Damage: A Bioinformatics and Experimental Verification Approach. ACS Chem Neurosci 2025; 16:1550-1564. [PMID: 40156525 DOI: 10.1021/acschemneuro.5c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
PANoptosis is a newly identified form of cell death that encompasses pyroptosis, apoptosis, and necroptosis. Numerous studies have highlighted the significance of PANoptosis in brain ischemia-reperfusion (I/R) injury. Calycosin, a natural product with diverse biological activities, has demonstrated a significant reduction in neuronal death caused by ischemic brain injury by modulating multiple cell death pathways. In order to investigate the potential mechanisms underlying the neuroprotective role of calycosin in alleviating PANoptosis-induced damage in ischemic stroke therapy, we used mouse hippocampal neuronal cell line HT22 to stimulate ischemia in vitro through Oxygen and Glucose Deprivation/Reperfusion (OGD/R) and established molecular docking to assess the binding affinity of Calycosin with key targets and molecular dynamics simulations (MDS) to study the stability of the ligand-protein complex. The results demonstrate that Calycosin could improve the cell growth of HT22, leading to enhanced cell viability, reduced lactate dehydrogenase leakage, and decreased cell apoptosis after OGD/R. It also regulated the expression of PANoptosis-related genes such as NLRP3, GSDMD, MLKL, and RIPK1 and increased the Bcl-2/Bax ratio, effectively reducing cellular damage and providing protection. Molecular docking and MDS simulations demonstrated strong binding activity and stability between Calycosin and PANoptosis-related targets. Furthermore, Calycosin successfully passed the drug similarity (DS) evaluation and exhibited favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and biological activity. In conclusion, Calycosin could alleviate ischemic stroke by inhibiting PANoptosis, reducing neuronal inflammation and apoptosis, and improving damage caused by the OGD/R. Thus, it could serve as a potential therapy for ischemic stroke.
Collapse
Affiliation(s)
- Huiyan An
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Chongyu Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Huifen Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Ting Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Guanfeng Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
- School of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| |
Collapse
|
15
|
Sanches FS, Ramos FDS, Costa CCDOS, do Nascimento RP, Souza BSDF, Costa MDFD, Costa SL, Ribeiro PR, Ferreira RS, da Silva VDA. Dichloromethane Extract from Amburana cearensis (Allemão) A.C. Sm. Seeds and Its Coumarin Reduce ROS Production and Protect PC12 Cells Against Glutamate Excitotoxicity and Oxygen-Glucose Deprivation. Antioxidants (Basel) 2025; 14:440. [PMID: 40298820 PMCID: PMC12024252 DOI: 10.3390/antiox14040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Amburana cearensis is a plant native to Brazil used in folk medicine for the treatment of several pathological conditions including stroke. Previous research indicates that a dichloromethane extract of A. cearensis seeds (EDAC), rich in coumarins, protects neural cells against oxygen and glucose deprivation (OGD) and glutamate-induced stress. However, further studies are needed to elucidate the role of coumarin, in the protective effect of EDAC. Glutamatergic excitotoxicity is an important cause of neuronal loss involved in the pathogenesis of Alzheimer's disease, Huntington's disease, Parkinson's disease, and ischemic stroke. Therefore, this study aimed to investigate the protective effects of coumarin isolated from EDAC against glutamate excitotoxicity in regulating MAPK pathway proteins and reactive oxygen species (ROS) production on PC12 cells. Furthermore, we aimed to investigate the protective effects of coumarin against cell death induced by OGD. We characterized the isolated compound from EDAC as coumarin by 1H and 13C-NMR. Thus, PC12 cells were exposed to OGD or glutamate (20 mM) and/or treated with EDAC or coumarin (500 μg/mL) for 24 h. Subsequently, cell viability was assessed by propidium iodide staining or by MTT test. Furthermore, the expression of MAPK pathway proteins was investigated by Western blot analysis and the expression of cleaved caspase-3 by immunofluorescence. Furthermore, reactive oxygen species (ROS) production was assessed by 2',7'-dichlorofluorescein diacetate and CellROX. We observed that EDAC and coumarin were able to protect PC12 cells against OGD conditions. Moreover, EDAC totally inhibited the glutamate toxicity in PC12 cells. Meanwhile, coumarin mitigated the glutamate toxicity. Both were able to downregulate the expression of ERK1/2 and phosphorylated ERK and inhibit caspase-3 activation. EDAC and coumarin also prevented the increase of ROS induced by treatment with H2O2 or glutamate. Our results evidenced that coumarin from A. cearensis is antioxidative and is an important cytoprotective compound in EDAC against glutamate excitotoxicity or OGD injury.
Collapse
Affiliation(s)
- Flávia Santos Sanches
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Florisvaldo da Silva Ramos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Cinthia Cristina de O. S. Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Paulo R. Ribeiro
- Metabolomics Research Group, Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil;
| | - Rafael Short Ferreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40110-902, Bahia, Brazil; (F.S.S.); (F.d.S.R.); (M.d.F.D.C.); (S.L.C.)
| |
Collapse
|
16
|
Zhang L, Zhang C, Chen R, Zhang J, Liu Y, Du Y, Gao X, Shang W, Xu R, Zhang X. Dl-3-n-Butylphthalide Promotes Neurogenesis in Ischemic Stroke Mice Through Wnt/β-Catenin Signaling Activation and Neurotrophic Factor Production. Mol Neurobiol 2025:10.1007/s12035-025-04884-8. [PMID: 40172819 DOI: 10.1007/s12035-025-04884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Synchronized neurogenesis and angiogenesis after stroke have been well documented, and inducing neurovascular remodeling may provide a promising strategy to promote tissue repair and functional recovery. Dl-3-n-Butylphthalide (NBP) was reported to exert a potent angiogenic activity in rodent models of stroke. However, little is currently known regarding the effects and mechanisms of NBP on neurogenesis in ischemic stroke. This study aimed to determine whether and how NBP promotes neurogenesis in cerebral ischemic injury. Adult C57BL/6 mice, subjected to distal middle cerebral artery occlusion (dMCAO), were treated with NBP. The efficacy of NBP was assessed using neurologic deficits and infarct volume. Immunofluorescent staining was applied to evaluate neurogenesis. The regulation of the Wnt/β-catenin signaling pathway and the expression of neurotrophic factors were detected by western blotting and qRT-PCR. Administration of NBP reduced infarct volume and ameliorated neurological deficits after stroke. NBP promoted the proliferation of NSCs in the SVZ, migration of neuroblasts along the corpus callosum, and differentiation of neuroblasts toward neurons in the peri-infarct zone, resulting in restored neural function. Moreover, we revealed that NBP-induced neurogenesis was associated with the activation of the Wnt/β-catenin pathway, which was reversed by DKK1. In addition, NBP increased the production of VEGF and BDNF. Our data have unveiled the potentials of NBP to promote neurogenesis and neural functional recovery after stroke, depending on Wnt/β-catenin signaling activation and neurotrophic factor production. Thus, NBP may be a promising candidate for delayed treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
| | - Ying Liu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xuan Gao
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Renhao Xu
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China.
| |
Collapse
|
17
|
Natrus L, Klys Y, Osadchuk Y, Anft M, Westhoff T, Babel N. Combined Administration of Metformin and Propionate Reduces the Degree of Oxidative/Nitrosative Damage of Hypothalamic Neurons in Rat Model of Type 2 Diabetes Mellitus. Mol Neurobiol 2025; 62:4338-4354. [PMID: 39443349 PMCID: PMC11880168 DOI: 10.1007/s12035-024-04529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Many complications associated with type 2 diabetes mellitus (T2DM) are closely linked with the generation of reactive species or free radicals leading to oxidative/nitrosative stress. The aim of this study was to investigate the effect of combined administration of metformin with propionate on the degree of oxidative/nitrosative damage in the brain of rats with an experimental model of T2DM. Male Wistar rats were divided into control (healthy rats); rats with T2DM and no further therapy; rats with T2DM that received: metformin, propionate, propionate + metformin. Ventromedial hypothalamus samples were analyzed by transmission electron microscopy, gas-liquid chromatography, Western blotting, RT-PCR and electron paramagnetic resonance. Combined treatment resulted in normalization of the neuronal NOS levels and reduction of mRNA level of induced nitric oxide synthase (NOS) and superoxide radicals compared to untreated T2DM rats. A decrease was also observed in the level of 8-oxyguanine with normalization of fatty acids distribution. The combined treatment partially mitigated ultrastructural alterations resulting from oxidative/nitrosative damage in neurons' mitochondria in T2DM. Thus, we demonstrated a positive effect of the combined use of metformin and propionate on all indicators of oxidative/nitrosative stress in T2DM.
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Medical Diagnostic and Treatment Technology, Bogomolets National Medical University, Kiev, 03057, Ukraine.
| | - Yuliia Klys
- Department of Modern Medical Diagnostic and Treatment Technology, Bogomolets National Medical University, Kiev, 03057, Ukraine
| | - Yuliia Osadchuk
- Department of Modern Medical Diagnostic and Treatment Technology, Bogomolets National Medical University, Kiev, 03057, Ukraine
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Timm Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
18
|
Shi ZQ, Wen X, Wu XR, Peng HZ, Qian YL, Zhao YL, Luo XD. 6'-O-caffeoylarbutin of Vaccinium dunalianum alleviated ischemic stroke through the PI3K/AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156505. [PMID: 39978278 DOI: 10.1016/j.phymed.2025.156505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Vaccinium dunalianum ("Que Zui Tea") has been traditionally consumed as a tea substitute in Yunnan, China, for its health benefits, i.e., improving vascular health. 6'-O-caffeoylarbutin (CA) is its major bioactive compound (∼20 %). However, the potential of CA against ischemic stroke remains unknown. PURPOSE This study explores the protective properties of CA in ischemic stroke, providing empirical support for the folk use of the plant and further drug development. METHODS An oxygen-glucose deprivation/reoxygenation (OGD/R)-induced BV2 cells were utilized to identify potential bioactive compounds. Moreover, the pathway and targets were predicted and further verified in OGD/R-induced microglia, nerve cells and in mice of middle cerebral artery occlusion. RESULTS CA effectively reduced nitric oxide (NO) release and transcript-level expression of inflammatory factors in OGD/R-stimulated BV2 cells. NF-κB1, IL-6, AKT1, CASP3, and MMP9 were identified as key CA targets for ischemic stroke treatment. In silico predictions suggested that phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT), mitogen-activated protein kinase (MAPK), and tumor necrosis factor (TNF) were the relevant pathways. These predictions were supported in vitro by an observed decrease in NO, reactive oxygen species, lactate dehydrogenase, and inflammatory cytokines (IL-6, IL-1β, and TNF-α) levels following CA treatment. Western blotting confirmed the regulation of p-IκBα, P65, AKT, and apoptosis-related proteins (further confirmed by PI3K inhibitor LY294002 treatment). These findings were further supported in vivo, with CA ameliorating neurological functions and deficits in ischemic mice. This amelioration correlated with increased cerebral blood flow, and alleviated neuron wrinkling, necrosis, and cell shrinkage. CA also increased brain superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION CA exerts neuroprotective effects in ischemic stroke by inhibiting inflammation and oxidative stress through the PI3K/AKT/NF-κB pathway, suggesting its therapeutic potential for cerebral ischemia and supporting the traditional use of V. dunalianum.
Collapse
Affiliation(s)
- Zhuo-Qi Shi
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xi Wen
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; Key Laboratory of Natural Drug Pharmacology, School of Pharmacy, Kunming Medical University, Kunming, 650500, PR China
| | - Xian-Run Wu
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Hui-Zhen Peng
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yan-Ling Qian
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
19
|
Ma J, Zhong X, Li Z, Jiang Y, Jiang Y, Liu X, Hu Y, Yang Z, Zhai G. Di-Dang-Tang suppresses ferroptosis in the hippocampal CA1 region by targeting PGK1/NRF2/GPX4 signaling pathway to exert neuroprotection in vascular dementia. Int Immunopharmacol 2025; 150:114233. [PMID: 39946772 DOI: 10.1016/j.intimp.2025.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Increasing evidence has emphasized the crucial role of ferroptosis in the pathogenesis of Vascular dementia (VaD). Di-Dang-Tang (DDT) has the effects of removing blood stasis according to the theory of Traditional Chinese medicine (TCM), while its effects on ferroptosis and mechanisms remain unclear. To elucidate whether the neuroprotective effect of DDT treatment is associated with ferroptosis mediated by the Phosphoglycerate kinase 1 (PGK1)/ Nuclear Factor Erythroid 2-related factor (NRF2)/ Glutathione Peroxidase 4 (GPX4) signaling pathway in the hippocampal CA1 region of rats with the 2-vessel occlusion (2VO) model, we conducted a series of experiments. Nissl staining, HE staining and FJB staining were used to assess the effects of DDT on the degeneration and apoptosis of neurons in the CA1 region of the hippocampus. DDT's suppression on ferroptosis and its protective effects were also evaluated by ELISA and DHE fluorescence. Immunofluorescence assay, immunohistochemistry examination, and western blot analysis further validated DDT's regulatory effects on ferroptosis via PGK1/NRF2/GPX4 pathway. Additionally, we explored the key mediating role of PGK1 in the DDT treatment of VaD by overexpressing PGK1 using AAV-OE-PGK1 plasmid injection. DDT significantly attenuated neuronal apoptosis and degeneration in CA1 region and ameliorated cognitive dysfunctions in VaD rats. DDT inhibited ferroptosis in this brain region, as evidenced by an up-regulation of GPX4 and SLC7A11, and a decline in ferroptosis-related indices. Further, DDT activated protein expression of the PGK1/NRF2/GPX4 pathway, alleviating the lipid peroxidation. Notably, the inhibition of ferroptosis by DDT was achieved by suppression of the PGK1 axis signaling pathway.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- NF-E2-Related Factor 2/metabolism
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/pathology
- Signal Transduction/drug effects
- Male
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Phosphoglycerate Kinase/metabolism
- Phosphoglycerate Kinase/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Rats
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Rats, Sprague-Dawley
- Disease Models, Animal
Collapse
Affiliation(s)
- Junjie Ma
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Xinxin Zhong
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Zhiyuan Li
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Yongxia Jiang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Yongqu Jiang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Xiaoli Liu
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Yue Hu
- School of Intergrative Medicine, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210000, China
| | - Zhou Yang
- Lianyungang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 160, Chaoyang Middle Road, Haizhou District, Lianyungang City, Jiangsu 222004, China
| | - Guojie Zhai
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, No. 2666, Ludang Road, Wujiang District, Suzhou City, Jiangsu 215200, China.
| |
Collapse
|
20
|
Irisa K, Shichita T. Neural repair mechanisms after ischemic stroke. Inflamm Regen 2025; 45:7. [PMID: 40098163 PMCID: PMC11912631 DOI: 10.1186/s41232-025-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Ischemic stroke triggers inflammation that promotes neuronal injury, leading to disruption of neural circuits and exacerbated neurological deficits in patients. Immune cells contribute to not only the acute inflammatory responses but also the chronic neural repair. During the post-stroke recovery, reparative immune cells support the neural circuit reorganization that occurs around the infarct region to connect broad brain areas. This review highlights the time-dependent changes of neuro-immune interactions and reorganization of neural circuits after ischemic brain injury. Understanding the molecular mechanisms involving immune cells in acute inflammation, subsequent neural repair, and neuronal circuit reorganization that compensate for the lost brain function is indispensable to establish treatment strategies for stroke patients.
Collapse
Affiliation(s)
- Koshi Irisa
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Takashi Shichita
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
21
|
Ji W, Zhang Z, Jin T, Meng D, Zhou X, Hu J, Wang Y. Salidroside attenuates cognitive deficits induced by chronic cerebral hypoperfusion via modulating microglial phenotypic transformation in mice. J Neuroimmunol 2025; 400:578544. [PMID: 39908941 DOI: 10.1016/j.jneuroim.2025.578544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a significant contributor to vascular cognitive impairment (VCI), often linked to cortical and hippocampal damage. This study investigates the therapeutic potential of salidroside (SLDS) in mitigating CCH-induced brain injury by modulating microglial activation and inflammatory responses. METHODS We established a CCH model in mice using the 0.16/0.18 mm bilateral common carotid artery stenosis (BCAS) procedure. We assessed cerebral blood flow (CBF) via laser speckle contrast imaging, while neuropathology was evaluated through Nissl staining and immunofluorescence (IF) experiments. Cognitive deficits were measured using the Morris water maze test. Neuronal apoptosis and neuroinflammation were examined through IF, ELISA, and qRT-PCR. RESULTS BCAS-induced hypoperfusion resulted in a marked reduction in CBF, increased neuronal apoptosis, and significant cognitive deficits. SLDS treatment effectively countered these effects by shifting microglial polarization from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, reducing pro-inflammatory cytokine levels, and enhancing neuronal survival. CONCLUSION SLDS demonstrates strong neuroprotective potential against CCH-induced brain injury by reducing inflammation and preventing neuronal apoptosis. These findings highlight the promise of SLDS as a therapeutic agent for chronic cerebrovascular disorders, warranting further investigation into its molecular mechanisms and clinical applicability.
Collapse
Affiliation(s)
- Weiwei Ji
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 314000, China
| | - Zengyu Zhang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Tingyu Jin
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 314000, China
| | - Danyang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 314000, China
| | - Xuyou Zhou
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 314000, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 314000, China.
| | - Yong Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
22
|
Wang X, Rong C, Leng W, Niu P, He Z, Wang G, Qi X, Zhao D, Li J. Effect and mechanism of Dichloroacetate in the treatment of stroke and the resolution strategy for side effect. Eur J Med Res 2025; 30:148. [PMID: 40025562 PMCID: PMC11874805 DOI: 10.1186/s40001-025-02399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Stroke is a serious disease that leads to high morbidity and mortality, and ischemic stroke accounts for more than 80% of strokes. At present, the only effective drug recombinant tissue plasminogen activator is limited by its indications, and its clinical application rate is not high. Therefore, it is urgent to develop effective new drugs according to the pathological mechanism. In the hypoxic state after ischemic stroke, anaerobic glycolysis has become the main way to provide energy to the brain. This process is essential for the maintenance of important brain functions and has important implications for recovery after stroke. However, acidosis caused by anaerobic glycolysis and lactic acid accumulation is an important pathological process after ischemic stroke. Dichloroacetate (DCA) is an orphan drug that has been used for decades to treat children with genetic mitochondrial diseases. Some studies have confirmed the role of DCA in stroke, but the conclusions are conflicting because some believe that DCA is not effective for ischemic stroke and may aggravate hemorrhagic stroke. This study reviews these studies and finds that DCA has a good effect on ischemic stroke. DCA can protect ischemic stroke by improving oxidative stress, reducing neuroinflammation, inhibiting apoptosis, protecting blood-brain barrier, and regulating metabolism. We also describe the differences in the outcomes of DCA in the treatment of ischemic stroke and the reasons why DCA aggravate hemorrhagic stroke. In addition, DCA, as a water disinfection byproduct, has been concerned about its toxicity. We describe the causes and solutions of peripheral neuropathy caused by DCA. In summary, this study analyzes the neuroprotective mechanism of DCA in ischemic stroke and the contradiction of the different research results, and discusses the causes and solutions of its adverse effects.
Collapse
Affiliation(s)
- Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunshu Rong
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Wei Leng
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Ping Niu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xin Qi
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
23
|
Kocsis AE, Kucsápszky N, Santa-Maria AR, Hunyadi A, Deli MA, Walter FR. Much More than Nutrients: The Protective Effects of Nutraceuticals on the Blood-Brain Barrier in Diseases. Nutrients 2025; 17:766. [PMID: 40077636 PMCID: PMC11901837 DOI: 10.3390/nu17050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The dysfunction of the blood-brain barrier (BBB) is well described in several diseases, and is considered a pathological factor in many neurological disorders. This review summarizes the most important groups of natural compounds, including alkaloids, flavonoids, anthocyanidines, carotenoids, lipids, and vitamins that were investigated for their potential protective effects on brain endothelium. The brain penetration of these compounds and their interaction with BBB efflux transporters and solute carriers are discussed. The cerebrovascular endothelium is considered a therapeutic target for natural compounds in diseases. In preclinical studies modeling systemic and central nervous system diseases, nutraceuticals exerted beneficial effects on the BBB. In vivo, they decreased BBB permeability, brain edema, astrocyte swelling, and morphological changes in the vessel structure and basal lamina. At the level of brain endothelial cells, nutraceuticals increased cell survival and decreased apoptosis. From the general endothelial functions, decreased angiogenesis and increased levels of vasodilating agents were demonstrated. From the BBB functions, elevated barrier integrity by tightened intercellular junctions, and increased expression and activity of BBB transporters, such as efflux pumps, solute carriers, and metabolic enzymes, were shown. Nutraceuticals enhanced the antioxidative defense and exerted anti-inflammatory effects at the BBB. The most important signaling changes mediating the increased cell survival and BBB stability were the activation of the WNT, PI3K-AKT, and NRF2 pathways, and inhibition of the MAPK, JNK, ERK, and NF-κB pathways. Nutraceuticals represent a valuable source of new potentially therapeutic molecules to treat brain diseases by protecting the BBB.
Collapse
Affiliation(s)
- Anna E. Kocsis
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Nóra Kucsápszky
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Ana Raquel Santa-Maria
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Eötvös u. 6, H-6720 Szeged, Hungary
- Graduate Institute of Natural Products, Kaohsiung Medical University, Shih-Chuan 1st Rd. 100, Kaohsiung 807, Taiwan
| | - Mária A. Deli
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| | - Fruzsina R. Walter
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (A.E.K.); (N.K.)
| |
Collapse
|
24
|
de Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, Barbalho SM. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025; 15:124. [PMID: 39997749 PMCID: PMC11857241 DOI: 10.3390/metabo15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Neurodegenerative diseases comprise a group of chronic, usually age-related, disorders characterized by progressive neuronal loss, deformation of neuronal structure, or loss of neuronal function, leading to a substantially reduced quality of life. They remain a significant focus of scientific and clinical interest due to their increasing medical and social importance. Most neurodegenerative diseases present intracellular protein aggregation or their extracellular deposition (plaques), such as α-synuclein in Parkinson's disease and amyloid beta (Aβ)/tau aggregates in Alzheimer's. Conventional treatments for neurodegenerative conditions incur high costs and are related to the development of several adverse effects. In addition, many patients are irresponsive to them. For these reasons, there is a growing tendency to find new therapeutic approaches to help patients. This review intends to investigate some phytocompounds' effects on neurodegenerative diseases. These conditions are generally related to increased oxidative stress and inflammation, so phytocompounds can help prevent or treat neurodegenerative diseases. To achieve our aim to provide a critical assessment of the current literature about phytochemicals targeting neurodegeneration, we reviewed reputable databases, including PubMed, EMBASE, and COCHRANE, seeking clinical trials that utilized phytochemicals against neurodegenerative conditions. A few clinical trials investigated the effects of phytocompounds in humans, and after screening, 13 clinical trials were ultimately included following PRISMA guidelines. These compounds include polyphenols (flavonoids such as luteolin and quercetin, phenolic acids such as rosmarinic acid, ferulic acid, and caffeic acid, and other polyphenols like resveratrol), alkaloids (such as berberine, huperzine A, and caffeine), and terpenoids (such as ginkgolides and limonene). The gathered evidence underscores that quercetin, caffeine, ginkgolides, and other phytochemicals are primarily anti-inflammatory, antioxidant, and neuroprotective, counteracting neuroinflammation, neuronal oxidation, and synaptic dysfunctions, which are crucial aspects of neurodegenerative disease intervention in various included conditions, such as Alzheimer's and other dementias, depression, and neuropsychiatric disorders. In summary, they show that the use of these compounds is related to significant improvements in cognition, memory, disinhibition, irritability/lability, aberrant behavior, hallucinations, and mood disorders.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana Maria Ragassi Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
25
|
Zhang S, Li R, Song M, Han J, Fan X. Exploration of M2 macrophage membrane as a biotherapeutic agent and strong synergistic therapeutic effects in ischemic stroke. J Control Release 2025; 378:476-489. [PMID: 39561947 DOI: 10.1016/j.jconrel.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
The macrophage-derived membrane is widely applied in the targeting nanocarrier for its inflammatory tendency and long circulation ability due to the preservation of membrane protein. Few studies reported the application of macrophage membranes as biotherapeutic agents. To verify the ability of macrophage membrane as a biotherapeutic agent, ischemic stroke was selected as the model disease. Inspired by the features of macrophages infiltrating the ischemic core and the talent of M2 macrophages in modulating the inflammatory microenvironment, an M2 macrophage membrane (M2M)-disguised poly lactic-co-glycolic acid nanoparticles loaded with baicalin (BA) (M2M@BANPs) is developed. The results in vivo and in vitro indicate that M2M@BANPs could efficiently and actively target ischemic brain tissue and accumulate in microglia and neurons due to the coating of M2M. Furthermore, M2M and M2M@BANPs exhibit significant therapeutic effects in salvaging brain tissue damage and neurological functional recovery by reprogramming microglia from M1 to M2, reducing neutrophil infiltration and inhibiting neuronal apoptosis. Together, our fabrication provides a new insight and an applicative perspective for M2M in the therapy of ischemic stroke.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
26
|
Yao M, Liu Y, Meng D, Zhou X, Chang D, Li L, Wang N, Huang Q. Hydroxysafflor yellow A attenuates the inflammatory response in cerebral ischemia-reperfusion injured mice by regulating microglia polarization per SIRT1-mediated HMGB1/NF-κB signaling pathway. Int Immunopharmacol 2025; 147:114040. [PMID: 39798476 DOI: 10.1016/j.intimp.2025.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Hydroxysafflor yellow A (HSYA), an active component isolated from Carthamus tinctorius L., has demonstrated potent protective effects against cerebral ischaemia/reperfusion (I/R) injury. Microglial polarisation plays a crucial role in I/R. However, the mechanism by which HSYA regulates microglial polarisation remains unclear. OBJECTIVE To explore the mechanism of action of HSYA on the phenotypic polarisation of microglia stimulated by lipopolysaccharide (LPS) in a mouse model of I/R injury. METHODS BV2 cells injured by LPS and a modified middle cerebral artery occlusion/reperfusion (MCAO/R) model were used to mimic I/R in vitro and in vivo, respectively. BV2 cell morphology was assessed by optical microscopy, and cell viability was evaluated using the CCK-8 assay. The effect of HSYA on MCAO/R mice was assessed using the Longa assay, brain index, triphenyl tetrazolium chloride, and haematoxylin and eosin staining. LDH, NO, IL-6, TNF-α, and IL-10 levels were measured using corresponding ELISA kits following the manufacturers' protocols. M1 and M2 type microglia markers, including CD86, CD16/32, iNOS, YM1/2, TGF-β, and Arg, were detected by western blotting. M1 and M2 cell surface markers (CD86 and CD206) were detected using immunofluorescence. Molecular docking, DARTS, and CETSA were applied to investigate the interactions between HSYA and SIRT1. The role of HSYA in regulating the binding of HMGB1 to SIRT1 was tested using co-immunoprecipitation. Proteins related to the HMGB1/NF-κB pathway were also analysed by western blotting. RESULTS HSYA promoted microglial polarisation from M1 to M2 type in LPS-induced BV2 cells and MCAO/R mice. HSYA significantly reduced M1 polarisation markers, including IL-6, TNF-α, CD86, CD16/32, while increasing the expression of IL-10, Arg, YM1/2, TGF-β. Furthermore, compared to the MCAO/R group, HSYA significantly improved neurological scores, brain index, and infarct volume and normalised nucleolar arrangement. Molecular docking assessment showed that HSYA exhibited strong binding SIRT1 and significantly improved the interactions between SIRT1 and HMGB1. HSYA also decreased the expression of cytoplasm-HMGB1 and reduced the P-P65/P65 ratio. CONCLUSIONS HSYA attenuates LPS-induced and MCAO/R-induced inflammatory responses by modulating microglia polarisation. This effect is associated with the SIRT1-mediated HMGB1/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Min Yao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongdong Meng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xian Zhou
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei,China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China.
| | - Qi Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236000, China.
| |
Collapse
|
27
|
S G, S M F, G K R. Zerumbone-mediated post-ischemic neuroprotection: Reduction of ferroptosis through TFR1 downregulation in vitro. Mol Biol Rep 2025; 52:201. [PMID: 39904939 DOI: 10.1007/s11033-025-10301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Emerging studies have identified ferroptosis as a promising therapeutic target, the inhibition of which is hypothesized to mitigate brain injury and subsequent neuronal death following stroke. Zerumbone, a phytochemical sesquiterpene isolated from Zingiber zerumbet Smith, exhibit diverse therapeutic properties across a range of neurological disorders. This study aimed to elucidate the postischemic neuroprotective effects and regulatory impact of zerumbone on ferroptosis-mediated cell death following oxygen‒glucose deprivation/reperfusion (OGD/R) injury. We employed an in vitro OGD/R SH-SY5Y cell model of stroke to evaluate the postischemic neuroprotective effects of zerumbone, a lead molecule identified through literature studies. Moreover, assays were performed to assess how zerumbone affects lipid peroxide levels, intracellular reactive oxygen species (ROS), and mitochondrial membrane integrity. Furthermore, molecular docking simulations were carried out to determine the targets, and western blotting was performed to examine TFR1 protein expression. Zerumbone (0.5 µM) treatment at 1-hour postischemia increased cell viability (72.11 ± 0.98) and mitigated OGD/R-induced ischemic injury. Zerumbone significantly decreased intracellular ROS levels and lipid peroxide production while increasing mitochondrial membrane integrity, suggesting that zerumbone ameliorated OGD/R-induced ischemic injury by inhibiting ferroptosis in vitro. This finding was corroborated by our western blot analysis, which revealed that the antiferroptotic role of zerumbone was distinctly mediated through the downregulation of transferrin receptor 1 (TFR1) protein expression. This communication, for the first time, highlights the feasibility of zerumbone as a promising adjunctive neuroprotective agent against ferroptosis cell death in the context of cerebral stroke. This study lays the groundwork for subsequent in-depth investigations to fully elucidate its therapeutic potential in ischemic stroke treatment.
Collapse
Affiliation(s)
- Gokul S
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, India
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Rajanikant G K
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, India.
| |
Collapse
|
28
|
Lu Y, Shi M, Huang W, Li F, Liang H, Liu W, Huang T, Xu Z. Diosmin alleviates NLRP3 inflammasome-dependent cellular pyroptosis after stroke through RSK2/CREB pathway. Brain Res 2025; 1848:149336. [PMID: 39547499 DOI: 10.1016/j.brainres.2024.149336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
In the context of our previous analyses on the main active ingredients of Jieyudan, a classic formula targeting aphasia in stroke, we further delve into the function and mechanisms of its active ingredient, Diosmin (DM), which may exert neuroprotective effects, in ischemic stroke. Herein, bioinformatics analysis revealed targets of DM and their intersection with differentially expressed genes in ischemic stroke. Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) cells were used to construct in vivo and in vitro models of ischemic stroke. The effects of DM on MCAO rats were assessed by Zea-Longa score, Morris water maze, TTC staining, Nissl staining, immunohistochemistry, and Western blot. At the cellular level, cell counting kit-8 assay and Western blot were carried out to verify the mechanism of DM in ischemic stroke. In vivo, DM decreased neurological deficit score, cerebral infarct volume and neuronal damage, and improved cognitive function in MCAO rats. In vitro, DM increased the viability of OGD-treated cells. In addition, DM down-regulated the expressions of NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-associated proteins, while up-regulating ribosomal protein S6 kinase A3 (RSK2) level and activating cyclic-AMP response element-binding protein (CREB) signaling. Conversely, RSK2 inhibitor LJH685 reduced the viability and promoted pyroptosis-associated protein levels, which also partially reversed the effects of DM in vitro. Collectively, DM plays a therapeutic role in ischemic stroke by inhibiting NLRP3 inflammasome-mediated cellular pyroptosis via the RSK2/CREB pathway.
Collapse
Affiliation(s)
- Yanfei Lu
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Min Shi
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Wei Huang
- Department of Pharmacy, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincal Hospital of Traditional Chinese Medicine), China
| | - Fenfen Li
- College of Pharmacy, Zhejiang Chinese Medical University, China
| | - Haowei Liang
- Graduate School of Zhejiang Chinese Medical University, China
| | - Wenbing Liu
- Department of Cardiopulmonary Rehabilitation, the Third Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Tianyi Huang
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Zhen Xu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China.
| |
Collapse
|
29
|
Meng W, Chao W, Kaiwei Z, Sijia M, Jiajia S, Shijie X. Bioactive compounds from Chinese herbal plants for neurological health: mechanisms, pathways, and functional food applications. Front Nutr 2025; 12:1537363. [PMID: 39957765 PMCID: PMC11825344 DOI: 10.3389/fnut.2025.1537363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Neurological disorders pose significant global public health challenges, with a rising prevalence and complex pathophysiological mechanisms that impose substantial social and economic burdens. Traditional Chinese Medicine (TCM), with its holistic approach and multi-target effects, has gained increasing attention in the treatment of neurological diseases. This review explores bioactive compounds derived from Chinese herbal plants, focusing on their mechanisms of action, underlying pathways, and potential applications in functional food development. The review highlights the neuroprotective properties of flavonoids, alkaloids, polysaccharides, and polyphenols found in key TCM herbs such as Scutellaria baicalensis, Salvia miltiorrhiza, Ligusticum chuanxiong, and Gastrodia elata. These compounds have demonstrated significant anti-inflammatory, antioxidant, and neurogenic effects, making them promising candidates for the prevention and treatment of neurological conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. Furthermore, the synergistic effects of TCM formulations targeting multiple signaling pathways offer advantages over single-target therapies, especially in combating neurodegenerative diseases. The review also discusses the challenges and future directions for integrating these bioactive compounds into functional foods and dietary supplements, aiming to improve neurological health and enhance clinical outcomes. Ultimately, this work aims to provide valuable insights into the potential of TCM-based interventions for promoting neurological well-being and addressing the global burden of neurological disorders.
Collapse
Affiliation(s)
- Wang Meng
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wang Chao
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Kaiwei
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ma Sijia
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sang Jiajia
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xu Shijie
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Shi Y, Chen W, Yang R, Lei M, Xie S, Ahmed T, Zhou D, Chen B, Tu H. Unravelling pharmacological mechanisms and effects of Tianma Siwu Decoction-derived compounds on ischemic stroke by multidimensional network pharmacological analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118979. [PMID: 39442827 DOI: 10.1016/j.jep.2024.118979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) a complex pathological event emerging as one of the most serious threats with huge economic impact in the 21st century. Following IS, multiple cascades and pathways are stimulated, culminating in long term consequences. One of Chinese Traditional Medicine, Tianma Siwu Decoction (TSD), is known to have sedative-hypnotic, anticonvulsant and anti-inflammatory effects, which is usually used to treat migraine and ischemic stroke, but its potential pharmacological mechanism remains unclear. AIM OF THE STUDY This study is aimed to identify the active principles from TSD that has strong pharmacological effect on the treatment of IS. MATERIALS AND METHODS Based on liquid chromatography-triple quadrupole mass spectrometry (LC-Q-MS/MS) technology, a new three-step-based approach integrating concentration parameters and Quality marker (Q-marker) with network pharmacology and bioactivity evaluation to explore the therapeutic effects and mechanisms of TSD on ischemic stroke. Ultimately, as the main herb of the TSD, high-concentration compounds from Gastrodia elata Blume (GEB) were identified and collected by LC-Q-MS/MS, and an optimized analytical model in multidimensional network pharmacology was introduced to more accurately explore the potential mechanisms by which TSD affects IS. RESULTS The results showed that 280 overlapping targets of TSD were obtained after the introduction of compound concentration parameters into the multidimensional network pharmacology analysis. Additionally, TSD might regulate IS through the AGE-RAGE and Rap1 signaling pathways. Through an in vitro hypoxia-reoxygenation injury cell model, it was discovered that as the Q-markers of GEB, gastrodin and parishin could effectively reduce neuronal hypoxic injury by modulating the expression levels of p-JNK and p-p38 proteins. According to the results of molecular docking, gastrodin and baicalin exhibits strong binding affinity to GAPDH and MAPK3, respectively (≦-7 kcal/mol). CONCLUSION We discovered that compound concentration is a key factor that influence the activity of substances, affects the accuracy and reliability of predictive outcomes. Consequently, the study enhances the network pharmacology model by incorporating concentration factors, aiming for a more accurate understanding of the potential mechanisms behind TSD anti-ischemic stroke actions.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Wei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Rong Yang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry & Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ming Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shuting Xie
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry & Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Touqeer Ahmed
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Desheng Zhou
- Department of Neurology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry & Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
31
|
Guo Y, Wang Y, Xu B, Li Y. The prospective therapeutic benefits of sesamol: neuroprotection in neurological diseases. Nutr Neurosci 2025:1-14. [PMID: 39881218 DOI: 10.1080/1028415x.2025.2457051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxidative stress is recognized as a critical contributor to the advancement of neurological diseases, thereby rendering the alleviation of oxidative stress a pivotal strategy in the therapeutic management of such conditions. Sesamol, the principal constituent of sesame oil, has been the subject of extensive research due to its significant antioxidant properties, especially its ability to effectively counteract oxidative stress within the central nervous system and confer neuroprotection. While sesamol demonstrates potential in the treatment and prevention of neurological diseases, its modulation of oxidative stress is complex and not yet fully understood. This review delves into the neuroprotective effects arising from sesamol's antioxidant properties, analyzing how its antioxidative capabilities impact neurological diseases. It provides a theoretical foundation and unveils potential novel therapeutic applications of sesamol in the treatment of neurological disorders through the modulation of oxidative stress.
Collapse
Affiliation(s)
- Yuchao Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yaqing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Boyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
32
|
Jian C, Hong Y, Liu H, Yang Q, Zhao S. ROS-responsive quercetin-based polydopamine nanoparticles for targeting ischemic stroke by attenuating oxidative stress and neuroinflammation. Int J Pharm 2025; 669:125087. [PMID: 39675536 DOI: 10.1016/j.ijpharm.2024.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Ischemic stroke (IS), a prevalent cerebrovascular disorder, is characterized by high morbidity rates and significant disability. However, relevant drug therapy for IS still suffers from limitations such as limited blood-brain barrier (BBB) penetration efficiency, single therapeutic target, short half-life, and strong side effects. The development of multi-target neuroprotective agents using natural drug molecules with low toxicity and combining them with nanotechnology to improve BBB permeability and drug utilization is an important direction in the development of IS therapeutic strategies. Based on the anti-inflammatory and antioxidant properties of quercetin (Que), as well as the ROS-responsive degradation properties of polydopamine (PDA), an IS therapeutic strategy (Que@DAR NPs) was developed in this study. Que@DAR NPs were formed by dopamine wrapping Que by oxidative self-assembly and wrapping the rabies virus glycoprotein (RVG29) on the surface. The results showed that Que@DAR NPs greatly improved the dispersion stability of Que and exhibited ROS-responsive degradation properties. Cellular internalization assay in human neuroblastoma cells (SH-SY5Y) showed that RVG29 peptide substantially augmented the cellular uptake of Que@DAR NPs. Moreover, Que@DAR NPs can effectively reduce the oxidative damage of SH-SY5Y cells and induce the polarization of microglia to anti-inflammatory (M2) phenotype. In vivo studies further demonstrated that Que@DAR NPs inhibited neuroinflammation, reduced neuronal apoptosis, and significantly ameliorated neurological dysfunction in a rat model of middle cerebral artery occlusion (MCAO). In conclusion, Que@DAR NPs provide a safe and effective new strategy for the precision treatment of IS.
Collapse
Affiliation(s)
- Chuyao Jian
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yigen Hong
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongsheng Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong, China
| | - Qinglu Yang
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Shaofeng Zhao
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
33
|
Tan W, Fu S, Wang Y, Hu B, Ding G, Zhang L, Zhang W, Du G, Song J. Metabolomic and transcriptomic analyses revealed potential mechanisms of Anchusa italica Retz. in alleviating cerebral ischemia-reperfusion injury via Wnt/β-catenin pathway modulation. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:11. [PMID: 39777624 PMCID: PMC11711721 DOI: 10.1007/s13659-024-00495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Anchusa italica Retz. (AIR), a traditional herbal remedy, is commonly applied in managing heart and brain disorders. However, its specific function and mechanism in acute cerebral ischemia-reperfusion injury (CIRI) are not fully understood. This research focused on the interventional effects and potential mechanisms of AIR extract (AIRE) in a rat model of CIRI. The model was established using the filament occlusion method, which involved blocking the middle cerebral artery for 1.5 h and then removing the filament to restore blood flow. Transcriptomic and metabolomic analyses were conducted to explore the molecular pathways and metabolites affected by AIRE. ATP level was measured using an ATP assay kit. Additionally, RT-qPCR and western blot tests were conducted to evaluate the influence of AIRE on the Wnt signaling pathway and mitochondrial function. Transcriptomic and metabolomic analyses indicated that AIRE regulated the Wnt signaling pathway in CIRI and modulated metabolites associated with mitochondrial energy metabolism, such as citrate and succinate. ATP assay result demonstrated that AIRE enhanced ATP production in CIRI. Further, RT-qPCR and western blot analyses revealed that AIRE activated the Wnt/β-catenin signaling pathway and corrected mitochondrial dysfunction. These results proposed that AIRE mitigated mitochondrial energy metabolism deficits in CIRI via the Wnt/β-catenin pathway. By restoring the balance of mitochondrial function and energy metabolism, AIRE might offer a potentially therapeutic strategy for addressing CIRI.
Collapse
Affiliation(s)
- Wenta Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuo Fu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yufei Wang
- Qingdao Center for Disease Control and Prevention, Qingdao, 266000, China
| | - Bojun Hu
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Guiquan Ding
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, China
| | - Wen Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, 830004, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
34
|
Nayaka NMDMW, Adnyana IK, Anggadiredja K, Wibowo I. Drug screening for ischemic stroke using larvae and adult zebrafish model: a review. Lab Anim Res 2025; 41:1. [PMID: 39743611 DOI: 10.1186/s42826-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) is the most recorded case of stroke that is caused by decreased blood flow to the brain. Nowadays, therapeutical agents for IS are limited and they have not shown maximum clinical results. Therefore, the exploration of new candidates for IS treatment continues to be done. Zebrafish as one of the animal models has its advantages and currently is being developed to be incorporated into the drug discovery pipeline of IS. This review explores the latest applications of the zebrafish model in screening potential therapeutic agents for IS. Key factors related to the experimental design such as developmental stage and strain, routes of drug administration, induction methods, and experimental parameters are also elaborated. Finally, this review offers future recommendations for the use of zebrafish in the pre-clinical study of IS. This review is beneficial as a reference for establishing drug screening protocols using the zebrafish IS model.
Collapse
Affiliation(s)
- Ni Made Dwi Mara Widyani Nayaka
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
- Department of Natural Medicine, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Jl. Kamboja 11A, 80236, Bali, Indonesia
| | - I Ketut Adnyana
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
| | - Kusnandar Anggadiredja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
| | - Indra Wibowo
- Physiology, Animal Development, and Biomedical Science Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia.
| |
Collapse
|
35
|
Yang W, Wen W, Chen H, Zhang H, Lu Y, Wang P, Xu S. Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Chin J Nat Med 2025; 23:77-89. [PMID: 39855833 DOI: 10.1016/s1875-5364(25)60808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 01/27/2025]
Abstract
The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear. This study employed an oxygen-glucose deprivation (OGD) cell model using SH-SY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation (2VO). The effects of ZFXN on learning and memory, neuroprotective activity, mitochondrial function, oxidative stress, and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro. Results indicated that ZFXN significantly increased the B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax) ratio, reduced terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL)+ cells, and markedly improved cognition, synaptic plasticity, and neuronal function in the hippocampus and cortex. Furthermore, ZFXN exhibited potent antioxidant activity, evidenced by decreased ROS and malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels. ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential (MMP), Tom20 fluorescence intensity, adenosine triphosphate (ATP) and energy charge (EC) levels, and mitochondrial complex I and III activity, thereby inhibiting mitochondrial damage. Additionally, ZFXN significantly increased SIRT1 activity and elevated SIRT1, nuclear Nrf2, and HO-1 levels. Notably, these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro. In conclusion, ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.
Collapse
Affiliation(s)
- Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Lu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
36
|
Shen H, Fu J, Liu J, Zou T, Wang K, Zhang X, Wan J. Ginsenoside Rk2 alleviates hepatic ischemia/reperfusion injury by enhancing AKT membrane translocation and activation. MedComm (Beijing) 2025; 6:e70047. [PMID: 39811799 PMCID: PMC11731106 DOI: 10.1002/mco2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/20/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening. The pharmacological effects and molecular mechanisms of Rk2 on hepatic IRI were further evaluated and elucidated in vitro and in vivo. Rk2 significantly reduced inflammation and apoptosis caused by oxygen-glucose deprivation and reperfusion in hepatocytes and dose dependently protected against hepatic I/R-induced liver injury in mice. Integrated approaches, including network pharmacology, molecular docking, transcriptome analysis, and isothermal titration calorimetry, along with experimental validation, indicated that Rk2 protects against hepatic IRI by targeting and activating the AKT (RAC serine/threonine protein kinase) signaling pathway. Pharmacological inhibition of AKT pathway or knockdown of AKT1 effectively diminished protective effects of Rk2. Rk2 directly binds to AKT1, facilitating its translocation from the cytoplasm to plasma membrane. This process markedly enhanced AKT interaction with PDPK1, promoting the activation of AKT1 and its downstream signaling. Our findings demonstrate that Rk2 protects against hepatic IRI by activating AKT signaling through direct binding to AKT1 and facilitating its membrane translocation.
Collapse
Affiliation(s)
- Hong Shen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Jiajun Fu
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Toujun Zou
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kun Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Xiao‐Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
- Basic Medical SchoolWuhan UniversityWuhanChina
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
37
|
Yu L, Jin W, Deng D, Wang Y, Chen Q, Zhang Y, Wan H, Chen Y, Chen Y, He Y, Zhang L. Investigation of Anti-Apoptotic Effects and Mechanisms of Astragaloside IV in a Rat Model of Cerebral Ischemia-Reperfusion Injury. CNS Neurosci Ther 2025; 31:e70209. [PMID: 39764606 PMCID: PMC11705586 DOI: 10.1111/cns.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI). METHODS Network pharmacology was employed to identify key targets and pathways of AS-IV in CIRI therapy, combined with molecular docking to predict binding affinity. Male Sprague-Dawley rats were randomly assigned to sham, MCAO/R, AS-IV, SP600125 (JNK inhibitor), AS-IV + SP600125, and 3-n-Butylphthalide (NBP) groups. Neurobehavioral deficits were assessed, and brain tissue damage was visualized through 2,3,5-triphenyltetrazolium chloride, H&E, and TUNEL staining. Immunohistochemistry was employed to detect CytC- and caspase-3-positive cells, while Western blotting, qPCR, and ELISAs were used to analyze apoptosis-related markers. RESULTS A total of 48 key targets of AS-IV predicted to be involved in the treatment of CIRI were identified, enriched in 136 pathways. AS-IV was effectively bound to the top five targets from 48 targets, and those associated with the c-Jun N-terminal kinase (JNK)/Bid pathway, with binding energy values below -5.0 kJ·mol-1. JNK inhibition reduced infarcted brain areas, improved neurological function, reduced pathological brain tissue damage, and inhibited apoptosis, with AS-IV achieving similar neuroprotective effects. Both AS-IV and SP600125 reduced p-JNK, Bid, CytC, Apaf-1, caspase-3, and cleaved caspase-3 levels in rats while decreasing CytC, caspase-3, and caspase-9 levels in serum. CONCLUSION AS-IV may suppress apoptosis partly through the modulation of JNK/Bid signaling, exerting neuroprotective effects. These findings support the potential development of AS-IV-based therapies for stroke treatment.
Collapse
Affiliation(s)
- Li Yu
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Weifeng Jin
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Defang Deng
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yiru Wang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
- Faculty of Chinese MedicineMacau University of Science and TechnologyMacaoChina
| | - Qianqian Chen
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yangyang Zhang
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Haitong Wan
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxiang Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Ying Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yu He
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lijiang Zhang
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
38
|
Sun A, Huang W, Jin K, Zhong M, Yu B, Li X, Wang Y, Liu H. A multiple targeting rapamycin and SS31 conjugate enhances ischemic stroke therapy. Expert Opin Drug Deliv 2025; 22:109-120. [PMID: 39663652 DOI: 10.1080/17425247.2024.2440094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The identification of drugs targeting multiple pathways is essential for comprehensive protection against cerebral ischemia-reperfusion injury. RESEARCH DESIGN AND METHODS This study aimed to develop RS31, a multi-target cytoprotectant composed of SS31 (an oxidative stress mitigator) and rapamycin (Rapa), contributes anti-inflammatory and blood-brain barrier protection. RS31 was synthesized using click chemistry, and its ability to scavenge reactive oxygen species (ROS) and reduce inflammation was tested in H2O2-injured PC12 cells and LPS-stimulated BV2 cells. A C57BL/6 mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) was established to assess the effect of RS31 on inflammatory factors in ischemic brain tissue. Finally, the potential of combining RS31 with PLGA microparticles (MPs) to further reduce brain edema was investigated. RESULTS RS31 effectively scavenged ROS and reduced inflammation. It showed a ~ 4-fold higher concentration in cerebral ischemic regions, significant reducing infarction and improving neurological function. RS31 also effectively reduced inflammatory factors, lowered malondialdehyde (MDA) levels, and increased superoxide dismutase (SOD) activity, showing strong efficacy in treating ischemic stroke. CONCLUSIONS In vivo delivery of RS31 is an effective therapeutic strategy for I/R injury, providing a general framework for developing multi-targeted drugs against inflammatory diseases and excessive ROS production.
Collapse
Affiliation(s)
- Andi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Weijia Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyuan Zhong
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Bohong Yu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
39
|
Gong C, Fu X, Ma Q, He M, Zhu X, Liu L, Zhou D, Yan S. Gastrodin: Modulating the xCT/GPX4 and ACSL4/LPCAT3 pathways to inhibit ferroptosis after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156331. [PMID: 39731833 DOI: 10.1016/j.phymed.2024.156331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Ischemic stroke ranks as the second leading cause of global mortality and disability. Although reperfusion is crucial for salvaging brain tissue, it carries the risk of secondary injuries, such as ferroptosis. Gastrodin, a neuroprotective compound found in Chinese herbal medicine, may regulate this process. However, its impact on stroke-induced ferroptosis remains unclear. OBJECTIVE This research endeavors to probe Gastrodin's influence on post-ischemic ferroptosis, deciphering its mechanisms and assessing its therapeutic promise. METHODS We developed rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) and created oxygen-glucose deprivation/reoxygenation (OGD/R)-damaged PC12 cell models. Gastrodin was administered to assess ferroptosis using Prussian blue staining and fluorescence probes. To investigate the effects of gastrodin on the xCT/GPX4 and ACSL4/LPCAT3 pathways, we employed molecular docking, immunofluorescence, Western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we used transmission electron microscopy and JC-1 fluorescence probes to examine mitochondrial integrity and function. RESULTS Our study demonstrated that gastrodin significantly reduced iron accumulation and lipid peroxidation in the brains of MCAO/R rats and OGD/R-injured PC12 cells. It suppressed reactive oxygen species (ROS) and ameliorated mitochondrial membrane potential. It potentiates the xCT/GPX4 axis while repressing the ACSL4/LPCAT3 pathway, leading to improved mitochondrial architecture and function, notably characterized by decreased mitochondrial membrane potential, reduced ROS levels, and increased formation of mitochondrial cristae. By modulating the xCT/GPX4 and ACSL4/LPCAT3 pathways, gastrodin mitigated ferroptosis in ischemic stroke, thereby preserving mitochondrial structural and functional integrity. This study provides novel mechanistic insights into gastrodin's therapeutic potential for treating ischemic stroke, highlighting the importance of traditional Chinese medicine in modern medical therapy.
Collapse
Affiliation(s)
- Cuilan Gong
- The First Hospital of Traditional Chinese Medicine in Changde, The Changde Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, 415000 China; School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Xinying Fu
- School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Qiang Ma
- School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China; The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China
| | - Menghao He
- School of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China; The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China
| | - Xinhua Zhu
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China
| | - Lijuan Liu
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China.
| | - Desheng Zhou
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China.
| | - Siyang Yan
- The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China.
| |
Collapse
|
40
|
Wang J, Su P, Wan C, Xu Y, Huang J, Niu J, Jin Z. Role of salvianolic acid B in the treatment of acute ischemic stroke: a systematic review and meta-analysis of animal models. Front Pharmacol 2024; 15:1479765. [PMID: 39776581 PMCID: PMC11705389 DOI: 10.3389/fphar.2024.1479765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity. Objective We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury. Materials and methods CNKI, VIP, WanFang, SinoMed, PubMed and Web of Science were searched for all the literature related to Sal B in the treatment of acute ischemic stroke before August 2024. The methodological quality was assessed using an inspection scale combining the CAMARADES checklist and the new STAIR criteria. Data were analyzed using RevMan5.4 software. Results A total of 14 articles were included. Sal B could effectively reduce infarct size, neurological deficit score, brain edema index, and brain water content in cerebral ischemic animals. Sal B could not only increase the content of superoxide dismutase (SOD) and decrease the content of malondialdehyde (MDA) to achieve anti-oxidative stress, but also reduce the level of interleukin-1β (IL-1β) protein to achieve anti-inflammatory response, and reduce the number of TUNEL cells to reflect its anti-apoptosis effect. In addition, Sal B can improve energy metabolism by increasing the content of energy charge (EC) and phosphocreatine (PCr), and maintaining ion balance via Na+/K+ ATPase activity, resulting in the neuroprotective effects against acute ischemic stroke injury. Conclusion This study showed that Sal B could significantly protect against acute ischemic stroke injury, mainly through anti-oxidative stress, anti-inflammatory response, anti-apoptosis, improving energy metabolism, and stabilizing ion balance.
Collapse
Affiliation(s)
- Jiashan Wang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pingping Su
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyu Wan
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yingqi Xu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyue Huang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Florida, United States
| | - Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
41
|
Zhu M, Yu J. Salidroside alleviates ferroptosis in FAC-induced Age-related macular degeneration models by activating Nrf2/SLC7A11/GPX4 axis. Int Immunopharmacol 2024; 142:113041. [PMID: 39260309 DOI: 10.1016/j.intimp.2024.113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is a significant contributor to irreversible impairment in visual capability, particularly in its non-neovascular (dry) form. Ferroptosis, an emerging form of programmed necrosis, involves generating lipid peroxidation (LOS) through free iron and reactive oxygen species (ROS). Salidroside, a glycoside from Rhodiola rosea, known for anti-inflammatory and antioxidant properties. The research aim was exploring whether ferroptosis exists in dry AMD pathogenesis and elucidate salidroside's protective mechanisms against ferroptosis in AMD murine models and ARPE-19 cells. METHODS ARPE-19 cells were treated with varying concentrations of ferrous ammonium citrate (FAC) and salidroside. In an in vivo model, C57BL/6 mice were administered intraperitoneal injections of salidroside for 7 consecutive days, followed by an intravitreal injection (IVT) of FAC. After 7 days, the eyeballs were harvested for subsequent analyses. Ferroptosis markers were assessed using western blotting, immunofluorescence staining, and flow cytometry. To further elucidate the modulatory role of Nrf2 in ferroptosis, ARPE-19 cells were transfected with si-Nrf2. RESULTS In vitro, FAC-treated ARPE-19 cells exhibited reduced viability, decreased mitochondrial membrane potential (MMP), and accumulation of iron and lipid peroxidation (LOS) products. In vivo, FAC administration by IVT led to outer nuclear layer thinning and compromised tight junctions in RPE cells. The GPX4, Nrf2, and SLC7A11 expressions were downregulated both in vitro and in vivo. Salidroside upregulated Nrf2 and ameliorated these outcomes, but its effects were attenuated in ARPE-19 cells transfected with si-Nrf2. CONCLUSION Our study establishes that FAC induces RPE cell ferroptosis within dry AMD, and salidroside exerts therapeutic effects by triggering Nrf2/SLC7A11/GPX4 signaling axis.
Collapse
Affiliation(s)
- Meijiang Zhu
- Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China.
| | - Jing Yu
- Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China.
| |
Collapse
|
42
|
Li Y, Lu F, Zhang C, Xu H, Yang S. Dynamic susceptibility contrast-enhanced MRI with USPIO in evaluating angiogenesis of the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion rat model. Acta Radiol 2024; 65:1529-1539. [PMID: 39449316 DOI: 10.1177/02841851241290646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) can reflect the angiogenesis of ischemic stroke. PURPOSE To investigate the value of DSC-MRI with ultrasmall superparamagnetic particles of iron oxides (USPIO) in evaluating angiogenesis in the peri-infarction zones in subacute ischemic stroke in a permanent middle cerebral artery occlusion (pMCAO) rat model. MATERIAL AND METHODS A total of 21 Sprague-Dawley rats were randomly divided into the pMCAO and sham operation groups. Every rat in each group underwent DSC-MRI with USPIO at 3, 5, and 7 days. DSC-MRI parameters of the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), relative mean transit time (rMTT), and relative time to peak (rTTP) were measured, calculated, and compared among the different times. Sequential correlations were analyzed among the histopathological indexes with the microvascular density (MVD) and percentage of vascular area (%VA), the serum factors with vascular endothelial growth factor (VEGF), vascular cell adhesion molecule 1 (VCAM-1), and perfusion parameters, respectively. RESULTS The rCBV and rCBF in the peri-infarction area of pMCAO rats were significantly higher on day 7 than on day 3, whereas no significant changes in rMTT and rTTP were observed at 3, 5, and 7 days. Significantly positive correlations were found between rCBV and MVD, %VA, VEGF, VCAM-1, between rCBF and MVD, %VA, VEGF, and VCAM-1 at 3, 5, and 7 days in the pMCAO group. CONCLUSION The rCBV and rCBF deriving from USPIO-DSC may be potentially useful for evaluating the angiogenesis of the peri-infarction zones in the subacute phase of ischemic stroke.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Cheng Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Xu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
43
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
44
|
Yang Q, Li R, Hong Y, Liu H, Jian C, Zhao S. Curcumin-Loaded Gelatin Nanoparticles Cross the Blood-Brain Barrier to Treat Ischemic Stroke by Attenuating Oxidative Stress and Neuroinflammation. Int J Nanomedicine 2024; 19:11633-11649. [PMID: 39553455 PMCID: PMC11568047 DOI: 10.2147/ijn.s487628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Background Ischemic stroke is a medical emergency for which effective treatment remains inadequate. Curcumin (Cur) is a natural polyphenolic compound that is regarded as a potent neuroprotective agent. Compared to synthetic pharmaceuticals, Cur possesses minimal side effects and exhibits multiple mechanisms of action, offering significant advantages in the treatment of ischemic stroke. However, drawbacks such as poor water solubility and transmembrane permeability limit the efficacy of Cur. In recent years, nano-delivery systems have attracted great interest in the field of stroke therapy as an effective method to improve drug solubility and cross the blood-brain barrier (BBB). Methods In this study, a novel nanomedicine (Cur@GAR NPs) for ischemic stroke treatment was developed based on Cur-loaded gelatin nanoparticles (Cur@Gel NPs) that were then functionalized and modified with rabies virus glycoprotein (RVG29) to target brain tissue. The stability, antimicrobial properties, antioxidant properties, neuroprotective effects, neuronal cell uptake, and biocompatibility of Cur@GAR NPs were investigated in vitro. The in vivo therapeutic effect of Cur@GAR NPs on ischemic stroke was investigated in a middle cerebral artery occlusion (MCAO) rat model using the Morris water maze test and the open field test, and the potential mechanism of action was further investigated by histological analysis. Results The resulting Cur@GAR NPs improved the solubility of Cur and exhibited good dispersion. In vitro studies have shown that Cur@GAR NPs exhibit great antimicrobial properties, antioxidant properties and intracellular reactive oxygen species (ROS) protection. Notably, RVG29 significantly enhanced the uptake of Cur@GAR NPs by SH-SY5Y cells. Furthermore, in vivo studies verified the role of Cur@GAR NPs in reducing nerve damage and supporting neurological recovery. In the MCAO rat model, Cur@GAR NPs significantly attenuated neuroinflammation, reduced neuronal apoptosis and restored behavioral functions to a great extent. Conclusion Together these findings implied that Cur@GAR NPs could provide a novel and promising approach for effective ischemic stroke treatment.
Collapse
Affiliation(s)
- Qinglu Yang
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Ruitong Li
- Department of Psychology and Human Development, IOE, UCL’s Faculty of Education and Society, University College London, London, WC1H 0AL, UK
| | - Yigen Hong
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Hongsheng Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong, People’s Republic of China
| | - Chuyao Jian
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Shaofeng Zhao
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
45
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
46
|
He X, Wu M, Chen L, Liu M, Hu X, Meng Y, Yue H, Yang X, Zheng P, Dai Y. APMCG-1 attenuates ischemic stroke injury by reducing oxidative stress and apoptosis and promoting angiogenesis via activating PI3K/AKT pathway. Biomed Pharmacother 2024; 180:117506. [PMID: 39368213 DOI: 10.1016/j.biopha.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS. Moreover, despite their millennial legacy of IS remediation, natural remedies such as ginseng incur high production costs. The novel glycopeptide APMCG-1, extracted from mountain-cultivated ginseng dregs in our previous study, is a potent therapeutic candidate for IS. This study investigated APMCG-1's remedial mechanisms against IS injury using an H2O2-induced oxidative stress paradigm in human umbilical vein endothelial cells (HUVECs) emulating ischemic endothelial cells, in a ponatinib-induced zebrafish IS model, and in rat middle cerebral artery occlusion (MCAO) prototypes. Cellular assays confirmed the proficiency of APMCG-1 in preventing oxidative stress and cell death, fostering regeneration, and facilitating neovascularization within the H2O2-stressed HUVECs framework. Moreover, APMCG-1 augmented hemodynamic velocity, oxidative stress mitigation, apoptosis reduction, and motor enhancement in a zebrafish model of IS. In MCAO rats, APMCG-1 ameliorated neurological deficits and cerebral injury, as evidenced by increased neurological scores and diminished infarct dimensions. In cells and animal models, APMCG-1 activated the PI3K/AKT signaling pathway, modulating factors such as Nrf2, Bcl-2, Caspase 3, eNOS, and VEGFA, thereby ameliorating cellular oxidative distress and catalyzing angiogenesis. Collectively, these results demonstrate the potential protective effects of APMCG-1 in IS pharmacotherapy and its prospective utility as an herbal-derived IS treatment modality.
Collapse
Affiliation(s)
- Xingyue He
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingdian Wu
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Likun Chen
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun Liu
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Xuan Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoshan Yang
- Guangzhou Baiyun Meiwan Testing Co., Ltd, Guangzhou 510403, China
| | - Peng Zheng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
47
|
Wang Z, Luo Z, Tan Y, He G, Li P, Liu X, Shen T, Liu Y, Yang X, Luo X. Astragaloside IV alleviates heatstroke brain injury and neuroinflammation in male mice by regulating microglial polarization via the PI3K/Akt signaling pathway. Biomed Pharmacother 2024; 180:117545. [PMID: 39405902 DOI: 10.1016/j.biopha.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Heatstroke is a condition caused by overheating of the body that leads to severe central nervous system dysfunction. Although there have been numerous studies on the pathological process of heatstroke, effective treatment methods are lacking. Astragaloside IV can protect the brain from inflammation and brain damage in various inflammation-related diseases, but it has not yet been used clinically for the treatment of heatstroke. Therefore, the aim of this study was to explore the neuroprotective effect of Astragaloside IV on heatstroke-induced central nervous system damage and its mechanism. Brain injury model under heatstroke was established using artificial climate simulation cabin. By scoring neurological deficits, performing histological and immunofluorescence staining of microglia, and detecting cytokine levels, we determined that Astragaloside IV alleviated brain injury and neuroinflammation. To further explore the potential molecular mechanism, RNA sequencing was performed to investigate the differences in the brain. The results revealed that the PI3K/AKT pathway is involved. In vitro experiments further confirmed that Astragaloside IV can abrogate the phenotypic changes in microglia induced by heatstroke. Moreover, Astragaloside IV promotes the polarization of M2 microglia by activating the PI3K/AKT pathway. In summary, these results indicate that Astragaloside IV alleviates neuroinflammation and brain injury induced by heatstroke through the PI3K/AKT pathway. Astragaloside IV is a commonly used therapeutic agent in the clinic, but its use in the treatment of heatstroke-induced brain injury has not been explored. This study reveals that Astragaloside IV may be a new therapeutic agent for the treatment of heatstroke-induced brain injury.
Collapse
Affiliation(s)
- Zeze Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Yulong Tan
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Genlin He
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xiaoqian Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Tingting Shen
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Yishan Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China.
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China.
| |
Collapse
|
48
|
Shi Y, Yang Y, Liu J, Zheng J. Avicularin Treatment Ameliorates Ischemic Stroke Damage by Regulating Microglia Polarization and its Exosomes via the NLRP3 Pathway. J Integr Neurosci 2024; 23:196. [PMID: 39613475 DOI: 10.31083/j.jin2311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Avicularin (AL), an ingredient of Banxia, has anti-inflammatory properties in cerebral disease and regulates polarization of macrophages, but its effects on ischemic stroke (IS) damage have not been studied. METHODS In vivo, AL was administered by oral gavage to middle cerebral artery occlusion/reperfusion (MCAO/R) C57BL/6J mice in doses of 1.25, 2.5, and 5 mg/kg/day for seven days, and, in vitro, AL was added to treat oxygen-glucose deprivation (OGD)-BV2 cells. Modified neurological severity score, Triphenyltetrazolium chloride (TTC) staining, brain-water-content detection, TdT-mediated dUTP nick-end labeling (TUNEL) assay, flow cytometry, immunofluorescence assay, Enzyme linked immunosorbent assay (ELISA), and Western-blot analysis were used to investigate the functions and mechanism of the effect of AL treatment on IS. The exosomes of AL-treated microglia were studied by transmission electron microscope (TEM), nanoparticle tracking analyzer (NTA), and Western-blot analysis. RESULTS AL treatment reduced the neurological severity score, infarct volume, brain-water content, neuronal apoptosis, and the release of inflammatory factors, that were induced by MCAO/R. Notably, M2 microglia polarization was promoted but M1 microglia polarization was inhibited by AL in the ischemic penumbra of MCAO/R mice. Subsequently, anti-inflammatory and polarization-regulating effects of AL were verified in vitro. Suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation was found in the ischemic penumbra of animal and Oxygen-Glucose Deprivation/Reoxygenation (OGD/R) cells treated with AL, as evidenced by decreasing NLRP3-inflammasome-related protein and downstream factors. After AL treatment, the anti-apoptosis effect of microglial exosomes on OGD/R primary cortical neurons was increased. CONCLUSION AL reduce inflammatory responses and neuron death of IS-associated models by regulating microglia polarization by the NLRP3 pathway and by affecting microglial exosomes.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, 110032 Shenyang, Liaoning, China
| | - Yufeng Yang
- Department of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, 110032 Shenyang, Liaoning, China
| | - Juntong Liu
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, 110032 Shenyang, Liaoning, China
| | - Jinling Zheng
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
49
|
Li S, Yang C, Wang W, Li J, Xu S, Zhao M, Xu C, Wang J, Wang Y. First-in-human study to assess the safety, tolerability, and pharmacokinetics of intravenous SHPL-49 following single- and multiple-ascending-dose administration in healthy adults. J Pharm Biomed Anal 2024; 249:116314. [PMID: 39033613 DOI: 10.1016/j.jpba.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024]
Abstract
SHPL-49 is an innovative glycoside derivative that is synthesized by structural modifications of salidroside,demonstrating therapeutic effects on animal models of ischemia in pre-clinical experiments. A phase I, single-center, randomized, double-blind, placebo-controlled, single and multiple dose administration study of SHPL-49 was conducted in healthy Chinese volunteers. In single-ascending-dose (SAD) study, 32 subjects randomized 6:2 to receive SHPL-49 (30 mg, 75 mg, 150 mg, 300 mg) or placebo with 30 minutes infusion. In multiple-ascending-dose (MAD) study, subjects were randomized 6:2 to receive SHPL-49 (75 mg, 150 mg, 300 mg) or placebo with 30 minutes infusion every 8 h for 7 days. Safety evaluations were conducted throughout the studies. Plasma and urine concentrations of SHPL-49 were detected and its metabolites were identified. Pharmacokinetic parameters were calculated using noncompartmental methods. SHPL-49 was generally safe and well-tolerated at single ascending doses (30-300 mg) and multiple ascending doses (75-300 mg). All adverse events were mild and resolved without any intervention. No serious adverse events were reported. In the SAD study, SHPL-49 exhibited dose-proportional plasma pharmacokinetics, with peak plasma concentration (Cmax) ranging from 673.83 to 6275.00 ng/mL, area under the plasma concentration-time curve (AUC0-t) ranging from 338.57 to 3732.67 h·ng/mL, and elimination half-life (t1/2) ranging from 0.49 to 0.67 h. In the MAD, the exposure was also dose-proportional and there was no significant accumulation following multiple dosing. Four metabolites were identified in urine and plasma. SHPL-49 shows a favorable pharmacokinetic, safety, and tolerability profile in healthy Chinese volunteers following a single- and multiple-ascending- dose administration in this study. For future therapeutic investigations, it is recommended to administer SHPL-49 intravenously at 8-hour intervals with a dosage range of 150-300 mg.
Collapse
Affiliation(s)
- Shuya Li
- Department of Clinical Trial Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Cuicui Yang
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Weicong Wang
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jian Li
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shuhong Xu
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Min Zhao
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Chunmin Xu
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jiaqing Wang
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yongjun Wang
- Department of Clinical Trial Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
50
|
Wang Z, Wang M, Zhao H. Acupuncture and its role in the treatment of ischemic stroke: A review. Medicine (Baltimore) 2024; 103:e39820. [PMID: 39465714 PMCID: PMC11460937 DOI: 10.1097/md.0000000000039820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/29/2024] Open
Abstract
Acupuncture is a traditional Chinese medicine therapy that is treatment by placing a needle or pressure in a specific position on the patient's skin. Although used in the treatment of various diseases, acupuncture is effective in the treatment of ischemic stroke (IS), and has made some progress in the mechanism of action of the treatment of this disease. IS is difficult to treat, and there is a high rate of disability. Drug therapy is usually the first line of treatment, but adjuvant therapy has outstanding efficacy in promoting the rehabilitation of the disease and preventing sequelae. Among them, acupuncture is getting more and more attention as a more popular treatment method. Therefore, this study excavates the high-quality randomized controlled trials and meta-analysis of acupuncture for IS in recent years to further summarize the efficacy of acupuncture for IS. In this review, we provide an overview of the current understanding of acupuncture and IS, and the current studies investigating the effectiveness of acupuncture in the treatment of IS.
Collapse
Affiliation(s)
- Zuoshan Wang
- Helen Hospital of Traditional Chinese Medicine, Suihua City, Heilongjiang Province, China
| | - Manya Wang
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| | - Haishen Zhao
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| |
Collapse
|