1
|
Zhou X, Liu X, Yi Y, Chen S, Zhang Y, Fan W, Lv C, Qin S. Molecular Mechanism of Vine Tea Dihydromyricetin Extract on Alleviating Glucolipid Metabolism Disorder in db/db Mice: Based on Liver RNA-Seq and TLR4/MyD88/NF-κB Pathway. Int J Mol Sci 2025; 26:2169. [PMID: 40076792 PMCID: PMC11900051 DOI: 10.3390/ijms26052169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The primary active compound in vine tea is dihydromyricetin (DMY), which has a longstanding history as a dietary supplement and traditional ethnic medicine. However, the precise molecular mechanism by which vine tea dihydromyricetin extract (VDMY) regulates glucolipid metabolic disorder remains unclear. In this study, we first assessed the effect of VDMY on various physiological parameters in db/db mice, followed by RNA sequencing (RNA-seq) to identify key signaling pathways affected by VDMY in liver tissues. We also examined the impact of VDMY on the liver's TLR4/MyD88/NF-κB and FOXO1 pathways using Western blotting. Our results showed that VDMY significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, VDMY enhanced the liver's antioxidant capacity by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while lowering malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), thus alleviating liver damage. RNA-seq analysis further revealed that VDMY influenced multiple biological processes, including transcription, glycolysis, gluconeogenesis, and redox reactions, suggesting that its effects may be mediated through the TLR4/MyD88/NF-κB and FOXO1 pathways. Additionally, Western blot analysis revealed that VDMY effectively downregulated the expressions of TLR4, MyD88, NF-κB, and FOXO1 proteins in the liver of db/db mice, indicating that VDMY could target these pathways to intervene glucolipid metabolism dysfunction.
Collapse
Affiliation(s)
- Xixin Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Xin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Yuhang Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Shiyun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (W.F.)
| | - Yi Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
| | - Wei Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (W.F.)
| | - Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (X.L.); (Y.Y.); (Y.Z.)
- Xiangya School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (W.F.)
| |
Collapse
|
2
|
Xie J, Yang Q, Zeng X, Zeng Q, Xiao H. Dihydromyricetin inhibits injury caused by ischemic stroke through the lncRNA SNHG17/miR-452-3p/CXCR4 axis. PeerJ 2025; 13:e18876. [PMID: 39897488 PMCID: PMC11786715 DOI: 10.7717/peerj.18876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Ischemic stroke (IS) is an important cause of death worldwide. Dihydromyricetin (DHM) has been reported to have neuroprotective potential, but its role and mechanism in IS have not been fully elucidated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine the safe dose of DHM in BV2 microglia and its applicability in OGD/R-treated cells. The mechanism of action of DHM was explored by RT-qPCR, ELISA, luciferase reporter gene assay and western blotting. DHM dose-dependently enhanced BV2 cell viability post-OGD/R and attenuated inflammation and oxidative stress. The protective effects of DHM were found to be mediated through the downregulation of SNHG17, which in turn modulated miR-452-3p expression. miR-452-3p was identified as a negative regulator of pro-inflammatory CXCR4, a direct target whose expression was inversely affected by SNHG17. The interaction between SNHG17 and miR-452-3p was further confirmed by RNA pull-down assays. Furthermore, manipulation of the SNHG17/miR-452-3p/CXCR4 axis was shown to modulate the NF-κB signaling pathway as evidenced by changes in phosphorylation levels. In conclusion, our findings elucidate a novel DHM-mediated neuroprotective mechanism in microglial cells involving the SNHG17/miR-452-3p/CXCR4 regulatory axis. This axis attenuates OGD/R-induced inflammatory and oxidative stress, suggesting a therapeutic potential for DHM in conditions characterized by such pathological processes.
Collapse
Affiliation(s)
- Jiacheng Xie
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuyue Yang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xueliang Zeng
- Department of Pharmacology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qi Zeng
- Department of Ultrasound, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hai Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Du L, Lu H, Xiao Y, Guo Z, Li Y. Protective effect and pharmacokinetics of dihydromyricetin nanoparticles on oxidative damage of myocardium. PLoS One 2024; 19:e0301036. [PMID: 38625956 PMCID: PMC11020404 DOI: 10.1371/journal.pone.0301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 04/18/2024] Open
Abstract
PURPOSE This study aims to investigate the protective mechanism of dihydromyricetin PLGA nanoparticles (DMY-PLGA NPs) against myocardial ischemia-reperfusion injury (MIRI) in vitro and the improvement of oral bioavailability in vivo. METHODS DMY-PLGA NPs was prepared and characterized by emulsifying solvent volatilization, and the oxidative stress model of rat H9c2 cardiomyocyte induced by H2O2 was established. After administration, cell survival rate, lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected, and the expressions of PGC1α and PPARα were detected by western blot (WB). At the same time, the pharmacokinetics in rats were studied to explore the improvement of bioavailability. RESULTS DMY-PLGA NPs can significantly increase cell survival rate, decrease LDH and MDA content, increase SOD content and PGC1α、PPARα protein expression. Compared with DMY, the peak time of DMY-PLGA NPs was extended (P<0.1), and the bioavailability was increased by 2.04 times. CONCLUSION DMY-PLGA NPs has a significant protective effect on H9c2 cardiomyocytes, which promotes the absorption of DMY and effectively improves bioavailability.
Collapse
Affiliation(s)
- Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huiling Lu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yifei Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Qiu D, Hu J, Zhang S, Cai W, Miao J, Li P, Jiang W. Fenugreek extract improves diabetes-induced endothelial dysfunction via the arginase 1 pathway. Food Funct 2024; 15:3446-3462. [PMID: 38450419 DOI: 10.1039/d3fo04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Endothelial dysfunction (ED) is an initiating trigger and key factor in vascular complications, leading to disability and mortality in individuals with diabetes. The research concerning therapeutic interventions for ED has gained considerable interest. Fenugreek, a commonly used edible plant in dietary consumption, has attracted significant attention due to its management of diabetes and its associated complications. The research presented in this study examines the potential therapeutic benefits of fenugreek in treating ED and investigates the underlying mechanism associated with its effects. The analysis on fenugreek was performed using 70% ethanol extract, and its chemical composition was analyzed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). In total, we identified 49 compounds present in the fenugreek extract. These compounds encompass flavonoids, saponins, and phospholipids. Then, the models of ED in streptozotocin-induced diabetic mice and high glucose-induced isolated rat aortas were established for research. Through vascular function testing, it was observed that fenugreek extract effectively improved ED induced by diabetes or high glucose. By analyzing the protein expression of arginase 1 (Arg1), Arg activity, Arg1 immunohistochemistry, nitric oxide (NO) level, and the protein expression of endothelial nitric oxide synthase (eNOS), p38 mitogen-activated protein kinase (p38 MAPK), and p-p38 MAPK in aortas, this study revealed that the potential mechanism of fenugreek extract in anti-ED involves the downregulation of Arg1, leading to enhanced NO production. Furthermore, analysis of serum exosomes carrying Arg activity indicates that fenugreek may decrease the activity of Arg transported by serum exosomes, potentially preventing the increase in Arg levels triggered by the uptake of serum exosomes by vascular endothelial cells. In general, this investigation offers valuable observations regarding the curative impact of fenugreek extract on anti-ED in diabetes, revealing the involvement of the Arg1 pathway in its mechanism.
Collapse
Affiliation(s)
- Dingbang Qiu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
- College of Pharmacy, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Jinxin Hu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
- College of Pharmacy, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shaoying Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Wanjun Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Jingwei Miao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Pengdong Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Wenyue Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
- College of Pharmacy, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
5
|
Matouk AI, Awad EM, Mousa AAK, Abdelhafez SMN, Fahmy UA, El-Moselhy MA, Abdel-Naim AB, Anter A. Dihydromyricetin protects against gentamicin-induced nephrotoxicity via upregulation of renal SIRT3 and PAX2. Life Sci 2024; 336:122318. [PMID: 38035992 DOI: 10.1016/j.lfs.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
AIM Gentamicin-induced nephrotoxicity limits its widespread use as an effective antibacterial agent. Oxidative stress, inflammatory cytokines and apoptotic cell death are major participants in gentamicin-induced nephrotoxicity. We therefore, investigated whether dihydromyricetin (DHM), the antioxidant and anti-inflammatory flavonoid, could protect against the nephrotoxic effects of gentamicin. METHODS Male Wistar rats administrated gentamicin (100 mg/kg/day, i.p.) for 8 days. DHM (400 mg/kg, p.o.) was concurrently given with gentamicin for 8 days. Control group received the vehicle of DHM and gentamicin. Histopathological examinations, biochemical measurements and immunohistochemical analyses were done at the end of the study. KEY FINDINGS Treatment with DHM improved the gentamicin induced deterioration of renal functions; serum levels of urea, creatinine and cystatin-C as well as urinary levels of Kim-1 and NGAL, the sensitive indicators for early renal damage, were declined. Additionally, DHM abrogated gentamicin-induced changes in kidney morphology. These nephroprotective effects were possibly mediated via decreasing renal gentamicin buildup, activating the antioxidant enzymes GSH, SOD and CAT and decreasing lipid peroxidation and nitric oxide levels. Further, DHM suppressed renal inflammation and apoptotic cell death by decreasing the expression of nuclear factor-kappa B (NF-κB), TNF-alpha and caspase-3. These effects were correlated to the upregulation of renal SIRT3 expression. Also, DHM activated the regeneration and replacement of injured tubular cells with new ones via enhancing PAX2 expression. SIGNIFICANCE DHM is a promising therapeutic target that could prevent acute renal injury induced by gentamicin and help renal tubular cells to recover through its antioxidant, anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amr A K Mousa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Sara M N Abdelhafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Usama A Fahmy
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt; Clinical Pharmacy and Pharmacology Department, Ibn Sina National College for Medical Studies, Jeddah 21589, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Ao X, Li Y, Jiang T, Li C, Lian Z, Wang L, Zhang Z, Huang M. Angiopoietin-2 Promotes Mechanical Stress-induced Extracellular Matrix Degradation in Annulus Fibrosus Via the HIF-1α/NF-κB Signaling Pathway. Orthop Surg 2023; 15:2410-2422. [PMID: 37475697 PMCID: PMC10475680 DOI: 10.1111/os.13797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE Mechanical stress is an important risk factor for intervertebral disc degeneration (IVDD). Angiopoietin-2 (ANG-2) is regulated by mechanical stress and is widely involved in the regulation of extracellular matrix metabolism. In addition, the signaling cascade between HIF-1α and NF-κB is critical in matrix degradation. This study aims to investigate the role and molecular mechanism of ANG-2 in regulating the degeneration of annulus fibrosus (AF) through the HIF-1α/NF-κB signaling pathway. METHODS The bipedal standing mice IVDD model was constructed, and histological experiments were used to evaluate the degree of IVDD and the expression of ANG-2 in the AF. Mouse primary AF cells were extracted in vitro and subjected to mechanical stretching experiments. Western blot assay was used to detect the effect of mechanical stress on ANG-2, and the role of the ANG-2-mediated HIF-1α/NF-κB pathway in matrix degradation. In addition, the effect of inhibiting ANG-2 expression by siRNA or monoclonal antibody on delaying IVDD was investigated at in vitro and in vivo levels. One-way ANOVA with the least significant difference method was used for pairwise comparison of the groups with homogeneous variance, and Dunnett's method was used to compare the groups with heterogeneous variance. RESULTS In IVDD, the expressions of catabolic biomarkers (mmp-13, ADAMTS-4) and ANG-2 were significantly increased in AF. In addition, p65 expression was increased while HIF-1α expression was significantly decreased. The results of western blot assay showed mechanical stress significantly up-regulated the expression of ANG-2 in AF cells, and promoted matrix degradation by regulating the activity of HIF-1α/NF-κB pathway. Exogenous addition of Bay117082 and CoCl2 inhibited matrix degradation caused by mechanical stress. Moreover, injection of neutralizing antibody or treatment with siRNA to inhibit the expression of ANG-2 improved the matrix metabolism of AF and inhibited IVDD progression by regulating the HIF-1α/NF-κB signaling pathway. CONCLUSION In IVDD, mechanical stress could regulate the HIF-1α/NF-κB signaling pathway and matrix degradation by mediating ANG-2 expression in AF degeneration.
Collapse
Affiliation(s)
- Xiang Ao
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yuan Li
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Tao Jiang
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Chenglong Li
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhengnan Lian
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Liang Wang
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Minjun Huang
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| |
Collapse
|
7
|
V. H. P, Kuruburu MG, M. K. J, N. AS, Taha Babakr A, Sreenivasan R, Ramu R, Madhunapantula SV. Bioactive profiling and evaluation of anti-proliferative and anti-cancerous properties of Shivagutika, an Indian polyherbal formulation synchronizing in vitro and in silico approaches. Front Chem 2023; 11:1195209. [PMID: 37265589 PMCID: PMC10230648 DOI: 10.3389/fchem.2023.1195209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Shivagutika is a polyherbal formulation mentioned in Ayurveda, the oldest system of medicine. The aim of this study was to investigate the anti-breast cancer potential of DCM extract of Shivagutika using MCF-7, MDA-MB-231, and MDA-MB-468. Primarily, various extracts of Shivagutika were prepared and subjected to primary in vitro analysis-total protein, phenolic acid content, and flavonoid content. DCM extract among all the extracts showed the promising results hence, it was subjected to LC-MS/MS analysis to identify the phytochemicals. The same extract was subjected to anti-proliferation assay and anti-cancer assay. It inhibited all the 3 cell lines and increased the activity of Caspase 3, pro-apoptotic protein. Further, to find the potent molecule(s) in silico analysis (molecular docking and molecular dynamics simulation studies) was performed. Sciadopitysin was identified as a potent molecule among all phytochemicals as it interacted with Caspase 3 with a binding energy of -7.2 kcal/mol. MD simulation studies also revealed that Sciadopitysin was stable inside the binding pocket of Caspase 3 by interacting with the amino acids in the catalytic site thereby activating the Caspase 3 levels. By all the above results, Shivagutika could be used as a potent anti-breast cancer agent (specifically DCM extract of Shivagutika) which could decrease the cases of breast cancer in future.
Collapse
Affiliation(s)
- Pushpa V. H.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mahadevaswamy G. Kuruburu
- Center of Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Akshaya Simha N.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
8
|
Yao Y, Li X, Yang X, Mou H, Wei L. Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mouse model. Tissue Cell 2023; 82:102108. [PMID: 37229936 DOI: 10.1016/j.tice.2023.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is an intestinally produced hormone released by the L-cells to stimulate glucose-dependent insulin release. Vine tea, a traditional Chinese medicine made from the delicate stem and leaves of Ampelopsis grossedentata, has been reported to exert antidiabetic effects; however, the role and mechanism of dihydromyricetin, the main active ingredient of vine tea, remain unclear. METHODS AND RESULTS MTT assay was applied to detect cell viability. GLP-1 levels in the culture medium using a mouse GLP-1 ELISA kit. The level of GLP-1 in cells was examined using IF staining. NBDG assay was performed to evaluate the glucose uptake by STC-1 cells. The in vivo roles of dihydromyricetin in the diabetes mellitus mouse model were investigated. In this study, 25 μM dihydromyricetin, was found to cause no significant suppression of STC-1 cell viability. Dihydromyricetin markedly elevated GLP-1 secretion and glucose uptake by STC-1 cells. Although metformin increased GLP-1 release and glucose uptake by STC-1 cells more, dihydromyricetin further enhanced the effects of metformin. Moreover, dihydromyricetin or metformin alone significantly promoted the phosphorylation of AMPK, increased GLUT4 levels, inhibited ERK1/2 and IRS-1 phosphorylation, and decreased NF-κB levels, and dihydromyricetin also enhanced the effects of metformin on these factors. The in vivo results further confirmed the antidiabetic function of dihydromyricetin. CONCLUSION Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mice, which might ameliorate diabetes through improving L cell functions. The Erk1/2 and AMPK signaling pathways might be involved.
Collapse
Affiliation(s)
- Yuanzhi Yao
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China
| | - Xiaoying Li
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China
| | - Xiaoqin Yang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Mou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lin Wei
- College of Biology and Food Engineering, Huaihua University. Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua, China; College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
9
|
Matouk AI, Awad EM, El-Tahawy NFG, El-Sheikh AAK, Anter A. Dihydromyricetin Modulates Nrf2 and NF-κB Crosstalk to Alleviate Methotrexate-Induced Lung Toxicity. Pharmaceuticals (Basel) 2023; 16:ph16040481. [PMID: 37111238 PMCID: PMC10145727 DOI: 10.3390/ph16040481] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Methotrexate (MTX) is an effective anticancer, anti-inflammatory, and immunomodulatory agent. However, it induces a serious pneumonitis that leads to irreversible fibrotic lung damage. This study addresses the protective role of the natural flavonoid dihydromyricetin (DHM) against MTX-induced pneumonitis via modulation of Nrf2/NF-κB signaling crosstalk. METHODS Male Wistar rats were divided into 4 groups: control, which received the vehicle; MTX, which received a single MTX (40 mg/kg, i.p) at day 9 of the experiment; (MTX + DHM), which received oral DHM (300 mg/kg) for 14 days and methotrexate (40 mg/kg, i.p) on the 9th day; and DHM, which received DHM (300 mg/kg, p.o) for 14 days. RESULTS Lung histopathological examination and scoring showed a decline in MTX-induced alveolar epithelial damage and decreased inflammatory cell infiltration by DHM treatment. Further, DHM significantly alleviated the oxidative stress by decreasing MDA while increasing GSH and SOD antioxidant levels. Additionally, DHM suppressed the pulmonary inflammation and fibrosis through decreasing levels of NF-κB, IL-1β, and TGF-β1 while promoting the expression of Nrf2, a positive regulator of antioxidant genes, and its downstream modulator, HO-1. CONCLUSION This study identified DHM as a promising therapeutic target against MTX-induced pneumonitis via activation of Nrf2 antioxidant signaling while suppressing the NF-κB mediated inflammatory pathways.
Collapse
Affiliation(s)
- Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Nashwa F G El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
10
|
Patil SM, Phanindra B, Shirahatti PS, Martiz RM, Sajal H, Babakr AT, Ramu R. Computational approaches to define poncirin from Magnolia champaka leaves as a novel multi-target inhibitor of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:13078-13097. [PMID: 36695109 DOI: 10.1080/07391102.2023.2171137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Phytochemical-based drug discovery against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been the focus of the current scenario. In this context, we aimed to perform the phytochemical profiling of Magnolia champaka, an evergreen tree from the Magnoliaceae family, in order to perform a virtual screening of its phytoconstituents against different biological targets of SARS-CoV-2. The phytochemicals identified from the ethanol extract of M. champaka leaves using liquid chromatography-mass spectroscopy (LC-MS) technique were screened against SARS-CoV-2 spike glycoprotein (PDB ID: 6M0J), main protease/Mpro (PDB ID: 6LU7), and papain-like protease/PLpro (PDB ID: 7CMD) through computational tools. The experimentation design included molecular docking simulation, molecular dynamics simulation, and binding free energy calculations. Through molecular docking simulation, we identified poncirin as a common potential inhibitor of all the above-mentioned target proteins. In addition, molecular dynamics simulations, binding free energy calculations, and PCA analysis also supported the outcomes of the virtual screening. By the virtue of all the in silico results obtained, poncirin could be taken for in vitro and in vivo studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Bhaskar Phanindra
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | | | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Harshit Sajal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry - College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
11
|
Maradesha T, Martiz RM, Patil SM, Prasad A, Babakr AT, Silina E, Stupin V, Achar RR, Ramu R. Integrated network pharmacology and molecular modeling approach for the discovery of novel potential MAPK3 inhibitors from whole green jackfruit flour targeting obesity-linked diabetes mellitus. PLoS One 2023; 18:e0280847. [PMID: 36716329 PMCID: PMC9886246 DOI: 10.1371/journal.pone.0280847] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
The current study investigates the effectiveness of phytocompounds from the whole green jackfruit flour methanol extract (JME) against obesity-linked diabetes mellitus using integrated network pharmacology and molecular modeling approach. Through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses, it aims to look into the mechanism of the JME phytocompounds in the amelioration of obesity-linked diabetes mellitus. There are 15 predicted genes corresponding to the 11 oral bioactive compounds of JME. The most important of these 15 genes was MAPK3. According to the network analysis, the insulin signaling pathway has been predicted to have the strongest affinity to MAPK3 protein, which was chosen as the target. With regard to the molecular docking simulation, the greatest notable binding affinity for MAPK3 was discovered to be caffeic acid (-8.0 kJ/mol), deoxysappanone B 7,3'-dimethyl ether acetate (DBDEA) (-8.2 kJ/mol), and syringic acid (-8.5 kJ/mol). All the compounds were found to be stable inside the inhibitor binding pocket of the enzyme during molecular dynamics simulation. During binding free energy calculation, all the compounds chiefly used Van der Waal's free energy to bind with the target protein (caffeic acid: 102.296 kJ/mol, DBDEA: -104.268 kJ/mol, syringic acid: -100.171 kJ/mol). Based on these findings, it may be inferred that the reported JME phytocompounds could be used for in vitro and in vivo research, with the goal of targeting MAPK3 inhibition for the treatment of obesity-linked diabetes mellitus.
Collapse
Affiliation(s)
- Tejaswini Maradesha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini Prasad
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- * E-mail:
| |
Collapse
|
12
|
Sonmez MI, Shahzadi A, Kose C, Sonmez H, Ozyazgan S, Akkan AG. Effect of sulfasalazine on endothelium-dependent vascular response by the activation of Nrf2 signalling pathway. Front Pharmacol 2022; 13:979300. [PMID: 36353481 PMCID: PMC9639785 DOI: 10.3389/fphar.2022.979300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Diabetes mellitus leads to endothelial dysfunction and accumulation of oxygen radicals. Sulfasalazine-induced Nrf2 activation reduces oxidative stress in vessels. Thus, in the present study, we investigated the effects of sulfasalazine on endothelial dysfunction induced by high glucose. We also ascribed the underlying mechanism involved in glucose-induced endothelial dysfunction. Methods: For this experiment we used 80 Wistar Albino rats thoracic aorta to calculate the dose response curve of noradrenaline and acetylcholine. Vessels were incubated in normal and high glucose for 2 h. To investigate glucose and sulfasalazine effects the vessels of the high glucose group were pre-treated with sulfasalazine (300 mM), JNK inhibitor (SP600125), and ERK inhibitor (U0126) for 30 min. The dose response curve was calculated through organ bath. The eNOS, TAS, TOS, and HO-1 levels were estimated by commercially available ELISA kits. Results: In the high glucose group, the Emax for contraction was significantly higher (p < 0.001), and Emax for relaxation was lower than that of control. These functional changes were parallel with the low levels of eNOS (p < 0.05). High glucose vessel treated with sulfasalazine showed low Emax value for contraction (p < 0.001) however, the Emax for relaxation was significantly high (p < 0.001) when compared to high glucose group. In the JNK group, Emax for contraction and relaxation was inhibited (p < 0.001) compared to sulfasalazine treated vessels. HO—1 enzyme levels were significantly low (p < 0.01) with sulfasalazine but higher with ERK inhibitor (p < 0.05). Conclusion: High glucose induced endothelial dysfunction and sulfasalazine reduced damage in high glucose vessels by activating eNOS, antioxidant effect through HO-1 enzymes and particularly inducing Nrf2 via the ERK and JNK pathways.
Collapse
Affiliation(s)
- Muhammed Ikbal Sonmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- *Correspondence: Muhammed Ikbal Sonmez,
| | - Andleeb Shahzadi
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cagla Kose
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Pharmacology, Medical Faculty, Halic University, Istanbul, Turkey
| | - Haktan Sonmez
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sibel Ozyazgan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Gokhan Akkan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Pharmacology, Medical Faculty, Bezmialem Vakif University Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Mitochondrial Regulation of the Hypoxia-Inducible Factor in the Development of Pulmonary Hypertension. J Clin Med 2022; 11:jcm11175219. [PMID: 36079149 PMCID: PMC9457092 DOI: 10.3390/jcm11175219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is a severe progressive lung disorder characterized by pulmonary vasoconstriction and vascular remodeling, culminating in right-sided heart failure and increased mortality. Data from animal models and human subjects demonstrated that hypoxia-inducible factor (HIF)-related signaling is essential in the progression of PH. This review summarizes the regulatory pathways and mechanisms of HIF-mediated signaling, emphasizing the role of mitochondria in HIF regulation and PH pathogenesis. We also try to determine the potential to therapeutically target the components of the HIF system for the management of PH.
Collapse
|