1
|
Avagliano C, De Caro C, Cuozzo M, Roberti R, Russo E, La Rana G, Russo R. Sodium Butyrate ameliorates pain and mood disorders in a mouse model of Parkinson disease. Biomed Pharmacother 2025; 184:117903. [PMID: 39938349 DOI: 10.1016/j.biopha.2025.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Pain is one of non-motor features of Parkinson's disease (PD) that significantly impacts on patients' quality of life and increases the risk of developing psychiatric disorders. The mechanisms underlying pain in PD are poorly understood and the classic pharmacological treatments supplying to dopamine depletion have limited therapeutic effects on this symptom. It has been demonstrated that short chain fatty acids (SCFAs) play a key role in several central nervous system diseases including PD; low serum and faecal levels of SCFAs have been described in PD patients. Among SCFAs, the gut microbial metabolite butyrate has a neuroprotective and anti-inflammatory effect, influencing neurological and behavioural processes. Using a 6-hydroxydopamine (6-OHDA) induced-PD mouse model, we evaluated the effects of sodium butyrate (BuNa) treatment on pain and mood-related behaviour, exporing the role of PPARs, opioid and endocannabinoid systems. Our results demonstrated that repeated BuNa treatment (100 mg/kg po) in PD-mice reduced pain hypersensitivity as well as depressive- and anxiety-lke behaviour both on day 7 and day 14 after 6-OHDA injection. Moreover, AM281(CB1R antagonist), GW6471 (PPAR-alpha antagonist), and naloxone (opioid receptor antagonist), reduced BuNa efficacy. Finally, BuNa treatment was associated with a significant reduction of pro-inflammatory cytokines at spinal and supraspinal levels. In conclusion, our results demonstrate that increasing endogenous butyrate concentration reduces PD comorbidities such as pain and psychiatric symptoms, restoring opioidergic and endocannabinergic pathways.
Collapse
Affiliation(s)
- Carmen Avagliano
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Carmen De Caro
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Mariarosaria Cuozzo
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Anatomy and Neuroscience, APC Microbiome, University Collage of Cork, Ireland.
| | - Roberta Roberti
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| |
Collapse
|
2
|
Martínez-Martel I, Negrini-Ferrari SE, Pol O. MCC950 Reduces the Anxiodepressive-like Behaviors and Memory Deficits Related to Paclitaxel-Induced Peripheral Neuropathy in Mice. Antioxidants (Basel) 2025; 14:143. [PMID: 40002330 PMCID: PMC11851537 DOI: 10.3390/antiox14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy and the accompanying affective disorders are serious side effects, and their resolution is not guaranteed. Oxidative stress and elevated levels of Nod-like receptor protein 3 (NLRP3) have been detected in the peripheral and central nervous systems of animals with neuropathic pain provoked by several antineoplastic drugs, such as paclitaxel (PTX). Several studies have further indicated that NLRP3 inflammasome inhibition could be an approach for treating chronic pain, but its impact on the anxiodepressive-like behaviors and memory deficits related to PTX-provoked neuropathy has not yet been investigated. MCC950 is a potent and specific inhibitor of the NLRP3 pathway that acts through inhibiting NLRP3 activation and inflammasome formation. We hypothesized that the administration of MCC950 could alleviate the affective and cognitive disorders accompanying PTX-provoked neuropathy. Using male C57BL/6 mice, we assessed the effects of MCC950 on the mechanical and thermal allodynia, anxiodepressive-like behavior, and memory deficits incited by this taxane. The results indicated that the intraperitoneal administration of 10 mg/kg of MCC950 twice daily for three consecutive days fully reversed the PTX-induced mechanical and thermal allodynia. This treatment also completely attenuated the anxiolytic (p < 0.004) and depressive-like behaviors (p < 0.022) and memory deficits (novel object recognition test; p < 0.0018) incited by PTX. These actions were mainly achieved through blocking NLRP3 inflammasome activation in the sciatic nerve, amygdala, and hippocampus, and oxidative stress in the amygdala and hippocampus. MCC950 also normalized the p-ERK 1/2 overexpression in the sciatic nerve and apoptotic responses in the sciatic nerve and the amygdala. This study suggests that MCC950 might be a promising treatment for PTX-induced mental illnesses and neuropathy.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sylmara Esther Negrini-Ferrari
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Kumar D, Bishnoi M, Kondepudi KK, Sharma SS. Gut Microbiota-Based Interventions for Parkinson's Disease: Neuroprotective Mechanisms and Current Perspective. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10433-x. [PMID: 39809955 DOI: 10.1007/s12602-024-10433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis. Neuroprotective effects of these interventions are mediated by several mechanisms, including the enhancement of neurotrophin and activation of the PI3K/AKT/mTOR signaling pathway, GLP-1-mediated gut-brain axis signaling, Nrf2/ARE pathway, and autophagy. Other pathways, such as free fatty acid receptor activation, synaptic plasticity improvement, and blood-brain and gut barrier integrity maintenance, also contribute to neuroprotection. Furthermore, the inhibition of the TLR4/NF-кB pathway, MAPK pathway, GSK-3β signaling pathway, miR-155-5p-mediated neuroinflammation, and ferroptosis could account for their protective effects. Clinical studies involving gut microbiota-based interventions have shown therapeutic benefits in PD patients, particularly in improving gastrointestinal dysfunction and some neurological symptoms. However, the effectiveness in alleviating motor symptoms remains mild. Large-scale clinical trials are still needed to confirm these findings. This review emphasizes the neuroprotective mechanisms of gut microbiota-based interventions in PD as supported by both preclinical and clinical studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
4
|
Xu F, Chen H, Gao Y, Yang X, Zhang C, Ni X. Sodium Butyrate Ameliorates Postoperative Delirium by Regulating Gut Microbiota Dysbiosis to Inhibit Astrocyte Activation in Aged Mice. Neurochem Res 2024; 49:3342-3355. [PMID: 39340594 DOI: 10.1007/s11064-024-04245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Postoperative delirium (POD) is a common complication in elderly surgical patients, with limited targeted interventions due to incomplete understanding of its pathophysiological mechanisms. Central nervous system (CNS) inflammation, involving glial cell activation, particularly astrocytes, is considered crucial in POD development. Butyrate, a four-carbon fatty acid, has shown protective effects in CNS diseases, but its potential in mitigating POD remains unclear. This study aimed to investigate the impact of sodium butyrate on POD in aged mice. Behavioral tests, including open field, Y maze, and food burying tests, demonstrated that sodium butyrate preconditioning ameliorated laparotomy-induced delirium in aged mice. Pre-treatment with sodium butyrate inhibited astrocyte activation in the hippocampus, reduced interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) expression levels, and protected hippocampal neurons. Furthermore, the study revealed a connection between gut microbiota regulation and central neuroprotective effects mediated by astrocyte activation inhibition. Sodium butyrate improved the intestinal morphological barrier by rebalancing gut microbiota, inhibiting Proteobacteria and Actinobacteria, reducing Allobaculum and Bacteroides abundance, and increasing Oscillospira abundance. This regulation decreased gut permeability, limiting the entry of toxic substances into the bloodstream, thereby reducing inflammation spread and astrocyte overactivation, leading to central anti-inflammatory effects. In conclusion, sodium butyrate may ameliorate POD by inhibiting astrocyte-mediated neuroinflammation through gut microbiota rebalancing.
Collapse
Affiliation(s)
- Fanning Xu
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Chen
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Yubo Gao
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoxia Yang
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinli Ni
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
8
|
Liu W, Pi Z, Wang X, Shang C, Song C, Wang R, He Z, Zhang X, Wan Y, Mao W. Microbiome and lung cancer: carcinogenic mechanisms, early cancer diagnosis, and promising microbial therapies. Crit Rev Oncol Hematol 2024; 196:104322. [PMID: 38460928 DOI: 10.1016/j.critrevonc.2024.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Microbiomes in the lung, gut, and oral cavity are correlated with lung cancer initiation and progression. While correlations have been preliminarily established in earlier studies, delving into microbe-mediated carcinogenic mechanisms will extend our understanding from correlation to causation. Building upon the causative relationships between microbiome and lung cancer, a novel concept of microbial biomarkers has emerged, mainly encompassing cancer-specific bacteria and circulating microbiome DNA. They might function as noninvasive liquid biopsy techniques for lung cancer early detection. Furthermore, potential microbial therapies have displayed initial efficacy in lung cancer treatment, providing multiple avenues for therapeutic intervention. Herein, we will discuss the molecular mechanisms and signaling pathways through which microbes influence lung cancer initiation and development. Additionally, we will summarize recent findings on microbial biomarkers as a member of tumor liquid biopsy techniques and provide an overview of the latest advances in various microbe-assisted/mediated therapeutic approaches for lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xiaokun Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenwei Shang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Yuan Wan
- The Pq Laboratory of Biome Dx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| |
Collapse
|
9
|
Cheng J, Hu H, Ju Y, Liu J, Wang M, Liu B, Zhang Y. Gut microbiota-derived short-chain fatty acids and depression: deep insight into biological mechanisms and potential applications. Gen Psychiatr 2024; 37:e101374. [PMID: 38390241 PMCID: PMC10882305 DOI: 10.1136/gpsych-2023-101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem known as the 'second brain'. Composing the microbiota-gut-brain axis, the gut microbiota and its metabolites regulate the central nervous system through neural, endocrine and immune pathways to ensure the normal functioning of the organism, tuning individuals' health and disease status. Short-chain fatty acids (SCFAs), the main bioactive metabolites of the gut microbiota, are involved in several neuropsychiatric disorders, including depression. SCFAs have essential effects on each component of the microbiota-gut-brain axis in depression. In the present review, the roles of major SCFAs (acetate, propionate and butyrate) in the pathophysiology of depression are summarised with respect to chronic cerebral hypoperfusion, neuroinflammation, host epigenome and neuroendocrine alterations. Concluding remarks on the biological mechanisms related to gut microbiota will hopefully address the clinical value of microbiota-related treatments for depression.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongkun Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Mi Wang
- Department of Mental Health Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| |
Collapse
|
10
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
11
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
12
|
Nohesara S, Abdolmaleky HM, Zhou JR, Thiagalingam S. Microbiota-Induced Epigenetic Alterations in Depressive Disorders Are Targets for Nutritional and Probiotic Therapies. Genes (Basel) 2023; 14:2217. [PMID: 38137038 PMCID: PMC10742434 DOI: 10.3390/genes14122217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Kaźmierczak-Siedlecka K, Bulman N, Ulasiński P, Sobocki BK, Połom K, Marano L, Kalinowski L, Skonieczna-Żydecka K. Pharmacomicrobiomics of cell-cycle specific anti-cancer drugs - is it a new perspective for personalized treatment of cancer patients? Gut Microbes 2023; 15:2281017. [PMID: 37985748 PMCID: PMC10730203 DOI: 10.1080/19490976.2023.2281017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Intestinal bacteria are equipped with an enzyme apparatus that is involved in the active biotransformation of xenobiotics, including drugs. Pharmacomicrobiomics, a new area of pharmacology, analyses interactions between bacteria and xenobiotics. However, there is another side to the coin. Pharmacotherapeutic agents can significantly modify the microbiota, which consequently affects their efficacy. In this review, we comprehensively gathered scientific evidence on the interplay between anticancer therapies and gut microbes. We also underlined how such interactions might impact the host response to a given therapy. We discuss the possibility of modulating the gut microbiota to increase the effectiveness/decrease the incidence of adverse events during tumor therapy. The anticipation of the future brings new evidence that gut microbiota is a target of interest to increase the efficacy of therapy.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Nikola Bulman
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Paweł Ulasiński
- Unit of Surgery with Unit of Oncological Surgery in Koscierzyna, Kościerzyna, Poland
| | - Bartosz Kamil Sobocki
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland
| | - Karol Połom
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Luigi Marano
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
14
|
Jessup D, Woods K, Thakker S, Damaj MI, Akbarali HI. Short-chain fatty acid, butyrate prevents morphine-and paclitaxel-induced nociceptive hypersensitivity. Sci Rep 2023; 13:17805. [PMID: 37853033 PMCID: PMC10584825 DOI: 10.1038/s41598-023-44857-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Nociceptive hypersensitivity is a significant side effect with the chronic administration of opioids as well as chemotherapeutics. Both opioid-induced hypersensitivity (OIH) and chemotherapy-induced hypersensitivity (CIH) are characterized by an increased sensitivity to painful stimuli which can significantly reduce the quality of life for individuals on either drug(s). Here we demonstrate the nociceptive hypersensitivity associated with repeated administration of morphine (opioid) and paclitaxel (chemotherapeutic) treatment can be reversed by oral supplementation with the short-chain fatty acid (SCFA) sodium butyrate (NaBut). In two separate mouse behavioral models for nociceptive hypersensitivity, we found that thermal hyperalgesia (for OIH) and cold allodynia (for CIH) were prevented by treatment with oral butyrate (p.o, b.i.d). Electrophysiological recordings of small diameter dorsal root ganglia (DRG) neurons from morphine and paclitaxel treated mice showed an increase in neuronal hyperexcitability in both drug models which was likewise prevented by oral butyrate treatment. Using colonic conditioned media obtained from excised colon segments we found that gut mediators of morphine treated mice can induce hyperexcitability in naïve DRG neurons, but such enhanced excitability is not present when animals are co-treated with NaBut suggesting gut derived mediators modulate neuronal hyperexcitability. In-vitro NaBut treatment did not prevent morphine-induced excitability, suggesting an indirect role of butyrate in modulating neuronal hypersensitivity. These data taken together suggest that gut derived mediators affect opioid and chemotherapeutic-induced neuronal hypersensitivity that is prevented by the SCFA butyrate.
Collapse
Affiliation(s)
- Dawn Jessup
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, USA
| | - Kareem Woods
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, USA
| | - Sach Thakker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, USA
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298, USA.
| |
Collapse
|
15
|
Cazzaniga M, Zonzini GB, Di Pierro F, Palazzi CM, Cardinali M, Bertuccioli A. Influence of the microbiota on the effectiveness and toxicity of oncological therapies, with a focus on chemotherapy. Pathol Oncol Res 2023; 29:1611300. [PMID: 37593337 PMCID: PMC10427764 DOI: 10.3389/pore.2023.1611300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Recent studies have highlighted a possible correlation between microbiota composition and the pathogenesis of various oncological diseases. Also, many bacterial groups are now directly or indirectly associated with the capability of stimulating or inhibiting carcinogenic pathways. However, little is known about the importance and impact of microbiota patterns related to the efficacy and toxicity of cancer treatments. We have recently begun to understand how oncological therapies and the microbiota are closely interconnected and could influence each other. Chemotherapy effectiveness, for example, appears to be strongly influenced by the presence of some microorganisms capable of modulating the pharmacokinetics and pharmacodynamics of the compounds used, thus varying the real response and therefore the efficacy of the oncological treatment. Similarly, chemotherapeutic agents can modulate the microbiota with variations that could facilitate or avoid the onset of important side effects. This finding has or could have considerable relevance as it is possible that our ability to modulate and modify the microbial structure before, during, and after treatment could influence all the clinical parameters related to pharmacological treatments and, eventually, the prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, Varese, Italy
| | | | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, Azienda Unità Sanitaria Locale Romagna, Rimini, Italy
| | | |
Collapse
|
16
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
17
|
Jessup D, Woods K, Thakker S, Damaj MI, Akbarali HI. Short-chain fatty acid, Butyrate prevents Morphine and Paclitaxel induced peripheral hypersensitivity. RESEARCH SQUARE 2023:rs.3.rs-2883270. [PMID: 37214851 PMCID: PMC10197749 DOI: 10.21203/rs.3.rs-2883270/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peripheral hypersensitivity is a significant side effect with the chronic administration of opioids as well as chemotherapeutics. Both opioid-induced hypersensitivity (OIH) and chemotherapy induced hypersensitivity (CIH) are characterized by an increased sensitivity to painful stimuli which can significantly reduce the quality of life for individuals on either drug(s). Here we demonstrate the peripheral hypersensitivity associated with chronic morphine (opioid) and paclitaxel (chemotherapeutic) treatment can be reversed by oral supplementation with the short-chain fatty acid (SCFA) sodium butyrate. In two separate mouse behavioral models for peripheral hypersensitivity, we found that thermal hyperalgesia (for OIH) and cold allodynia (for CIH) were prevented by co-treatment with oral butyrate. Electrophysiological recordings of small diameter dorsal root ganglia (DRG) neurons from morphine and paclitaxel treated mice showed an increase in neuronal hyperexcitability in both drug models which was likewise prevented by oral butyrate treatment. Using colonic conditioned media obtained from excised colon segments we found that gut mediators of morphine treated mice can induce hyperexcitability in naïve DRG neurons, but such enhanced excitability is not present when animals are co-treated with butyrate suggesting gut derived mediators modulate neuronal hyperexcitability. In-vitro butyrate treatment did not prevent morphine induced excitability, suggesting an indirect role of sodium butyrate in modulating neuronal hypersensitivity. These data taken together suggest that gut derived mediators affect opioid and chemotherapeutic induced neuronal hypersensitivity that is prevented by the SCFA butyrate.
Collapse
|
18
|
Wang X, Hou L, Cui M, Liu J, Wang M, Xie J. The traditional Chinese medicine and non-small cell lung cancer: from a gut microbiome perspective. Front Cell Infect Microbiol 2023; 13:1151557. [PMID: 37180438 PMCID: PMC10167031 DOI: 10.3389/fcimb.2023.1151557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most serious diseases affecting human health today, and current research is focusing on gut flora. There is a correlation between intestinal flora imbalance and lung cancer, but the specific mechanism is not clear. Based on the "lung and large intestine being interior-exteriorly related" and the "lung-intestinal axis" theory. Here, based on the theoretical comparisons of Chinese and western medicine, we summarized the regulation of intestinal flora in NSCLC by active ingredients of traditional Chinese medicine and Chinese herbal compounds and their intervention effects, which is conducive to providing new strategies and ideas for clinical prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- Xuelin Wang
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi an, China
| | - Meng Cui
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Junnan Liu
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Mengzhou Wang
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| | - Jianwu Xie
- School of Food Science and Engineering (School of Biological and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi an, China
| |
Collapse
|
19
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023; 90:104527. [PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
20
|
Cavaliere G, Catapano A, Trinchese G, Cimmino F, Penna E, Pizzella A, Cristiano C, Lama A, Crispino M, Mollica MP. Butyrate Improves Neuroinflammation and Mitochondrial Impairment in Cerebral Cortex and Synaptic Fraction in an Animal Model of Diet-Induced Obesity. Antioxidants (Basel) 2022; 12:antiox12010004. [PMID: 36670866 PMCID: PMC9854835 DOI: 10.3390/antiox12010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by cognitive impairment and behavioural abnormalities. The incidence of NDDs in recent years has increased globally and the pathological mechanism is not fully understood. To date, plentiful evidence has showed that metabolic alterations associated with obesity and related issues such as neuroinflammation, oxidative stress and mitochondrial dysfunction may represent an important risk factor, linking obesity and NDDs. Numerous studies have indicated a correlation between diet and brain activities. In this context, a key role is played by mitochondria located in the synaptic fraction; indeed, it has been shown that high-fat diets cause their dysfunction, affecting synaptic plasticity. In this scenario, the use of natural molecules that improve brain mitochondrial function represents an important therapeutic approach to treat NDDs. Recently, it was demonstrated that butyrate, a short-chain fatty acid is capable of counteracting obesity in an animal model, modulating mitochondrial function. The aim of this study has been to evaluate the effects of butyrate on neuroinflammatory state, oxidative stress and mitochondrial dysfunction in the brain cortex and in the synaptic fraction of a mouse model of diet-induced obesity. Our data have shown that butyrate partially reverts neuroinflammation and oxidative stress in the brain cortex and synaptic area, improving mitochondrial function and efficiency.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-081-679-990
| |
Collapse
|
21
|
Maternal treatment with sodium butyrate reduces the development of autism-like traits in mice offspring. Biomed Pharmacother 2022; 156:113870. [DOI: 10.1016/j.biopha.2022.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
22
|
Martínez-Martel I, Bai X, Batallé G, Pol O. New Treatment for the Cognitive and Emotional Deficits Linked with Paclitaxel-Induced Peripheral Neuropathy in Mice. Antioxidants (Basel) 2022; 11:antiox11122387. [PMID: 36552595 PMCID: PMC9774817 DOI: 10.3390/antiox11122387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
Chemotherapy-provoked peripheral neuropathy and its linked comorbidities severely reduce the quality of a patient's life. Its therapy is not completely resolved and has become an important clinical challenge. The protective actions of molecular hydrogen (H2) in many neurological disorders have been described, but its effects on memory and the emotional deficits accompanying neuropathic pain induced by chemotherapy remain unknown. In this study, using male mice injected with paclitaxel (PTX), we examined the effects of systemic treatment with hydrogen-rich water (HRW) in: (i) the mechanical and thermal allodynia provoked by PTX and the pathways involved; (ii) the memory deficits, anxiety- and depressive-like behaviors associated with PTX-induced peripheral neuropathy (PIPN); and (iii) the plasticity (p-extracellular signal-regulated protein kinase; p-ERK ½), nociceptive (p-protein kinase B, p-Akt), inflammatory (p-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; p-IKBα), and oxidative (4-hydroxynonenal: 4-HNE) alterations provoked by PIPN in the prefrontal cortex (PFC). The results revealed: (1) the antiallodynic actions of HRW administered at one or two times per day during 7 and 3 consecutive days; (2) the participation of Kv7 potassium channels and the Nrf2-heme oxygenase 1-NAD(P)H: quinone oxidoreductase 1 pathway in the painkiller effects of HRW; (3) the inhibition of memory deficits and the anxiodepressive-like behaviors related with PIPN induced by HRW; and (4) the normalization of p-ERK ½, p-Akt and 4-HNE up-regulation and the activation of antioxidant enzymes produced by this treatment in PFC. This study proposes HRW as a possible effective and safe therapy for PIPN and its associated cognitive and emotional deficits.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
23
|
Xu RC, Miao WT, Xu JY, Xu WX, Liu MR, Ding ST, Jian YX, Lei YH, Yan N, Liu HD. Neuroprotective Effects of Sodium Butyrate and Monomethyl Fumarate Treatment through GPR109A Modulation and Intestinal Barrier Restoration on PD Mice. Nutrients 2022; 14:nu14194163. [PMID: 36235813 PMCID: PMC9571500 DOI: 10.3390/nu14194163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Research has connected Parkinson's disease (PD) with impaired intestinal barrier. The activation of G-protein-coupled receptor 109A (GPR109A) protects the intestinal barrier by inhibiting the NF-κB signaling pathway. Sodium butyrate (NaB), which is a GPR109A ligand, may have anti-PD effects. The current study's objective is to demonstrate that NaB or monomethyl fumarate (MMF, an agonist of the GPR109A) can treat PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via repairing the intestinal barrier. Male C57BL/6J mice were divided into four groups randomly: control, MPTP + vehicle, MPTP + NaB, and MPTP + MMF. Modeling mice received MPTP (20 mg/kg/day, i.p.) for a week, while control mice received sterile PBS. Then, four groups each received two weeks of sterile PBS (10 mL/kg/day, i.g.), sterile PBS (10 mL/kg/day, i.g.), NaB (600 mg/kg/day, i.g.), or MMF (100 mg/kg/day, i.g.). We assessed the expression of tight junction (TJ) proteins (occludin and claudin-1), GPR109A, and p65 in the colon, performed microscopic examination via HE staining, quantified markers of intestinal permeability and proinflammatory cytokines in serum, and evaluated motor symptoms and pathological changes in the substantia nigra (SN) or striatum. According to our results, MPTP-induced defected motor function, decreased dopamine and 5-hydroxytryptamine levels in the striatum, decreased tyrosine hydroxylase-positive neurons and increased activated microglia in the SN, and systemic inflammation were ameliorated by NaB or MMF treatment. Additionally, the ruined intestinal barrier was also rebuilt and NF-κB was suppressed after the treatment, with higher levels of TJ proteins, GPR109A, and decreased intestinal permeability. These results show that NaB or MMF can remedy motor symptoms and pathological alterations in PD mice by restoring the intestinal barrier with activated GPR109A. We demonstrate the potential for repairing the compromised intestinal barrier and activating GPR109A as promising treatments for PD.
Collapse
Affiliation(s)
- Rui-Chen Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Teng Miao
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of Pediatrics, Chongqing Medical University, Chongqing 400016, China
| | - Jing-Yi Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Xin Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Ran Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Song-Tao Ding
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Xin Jian
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Yi-Han Lei
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Ning Yan
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Han-Deng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-65712090
| |
Collapse
|