1
|
Huang W, Li W, Chen X, Xiang C, Luo K. APOE Drives Glioma Progression by Modulating CCL5/CCR5 Signaling in the Tumor Microenvironment and Inducing M2 Macrophage Polarization. Immunobiology 2025; 230:152895. [PMID: 40203505 DOI: 10.1016/j.imbio.2025.152895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are pivotal in shaping the tumor microenvironment (TME) during cancer progression. Emerging evidence indicates that dysregulation of key signaling pathways in cancer cells drives the secretion of various cytokines, modulating TAMs function. This study aimed to explore how glioblastoma cells regulate macrophages and establish a TME conducive to tumor immune escape. METHODS In previous bioinformatics studies, we identified abnormally expressed genes in glioblastoma patients. Among them, the metabolism-related protein APOE garnered particular attention. We generated U87 and U251 cell lines with altered APOE expression to evaluate cancer cell invasion, migration, and inflammatory cytokine secretion through scratch assays, Transwell assays, and ELISA, respectively. Additionally, we established a co-culture system of cancer cells and monocytes THP-1 to assess the impact of shAPOE tumor cells on macrophage polarization using flow cytometry, Western blot, and immunofluorescence techniques. RESULT Knockdown of APOE significantly reduced the viability, invasion, and migration capabilities of U87 and U251 cells. ELISA results also showed that APOE knockdown cells secreted higher levels of IL-6, IL-12, and TNF-α, while CCL5 and TGF-β secretion was markedly reduced. In macrophage studies, we observed that APOE knockdown altered the M1/M2 polarization ratio in THP-1 monocytes, with CCR5 inhibition further decreasing M2 macrophage proportions. Immunofluorescence analysis revealed that the reduction of M2 macrophages was dependent on APOE and CCL5. CONCLUSION Our findings indicate that APOE knockdown suppresses glioblastoma cell migration, invasion, and CCL5 secretion, while enhancing the production of tumor-suppressive cytokines.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Weimin Li
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Xingyu Chen
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Chengwei Xiang
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Ke Luo
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China.
| |
Collapse
|
2
|
Shi D, Chen L, Li C, Yang M, Yang W, Cui G, Liu J, Chen Q. Exploring the mechanism of vitamin C on the co-expressed genes of papillary thyroid carcinoma and Epstein-Barr virus based on bioinformatics, network pharmacology and molecular docking analysis. Discov Oncol 2025; 16:325. [PMID: 40088359 PMCID: PMC11910472 DOI: 10.1007/s12672-025-02034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVE The study aims to evaluate the role and mechanism of action of vitamin C as an anti- Epstein-Barr virus (EBV) and papillary thyroid carcinoma (PTC) therapeutic agent. METHODS The PTC/EBV-associated genes were obtained by intersection and further screen out hub genes to construct a prognostic model. The relationship between PTC/EBV-related genes and core genes and immune infiltration was analyzed, respectively. Finally, the core targets of vitamin C against PTC/EBV were screened, and the binding sites were determined by molecular docking with vitamin C. RESULTS The diagnostic efficiency and prognostic value of this model was good. The prognostic model performed well in male, female, classical, T3-4, N0, and N1 subgroups. Core genes STAT1 and APOE were highly expressed and FGF7 was lowly expressed in PTC. The core genes STAT1, APOE and FGF7 were significantly correlated with a variety of immune cells. 263 vitamin C-related targets were screened by the database, and 11 cross genes between vitamin C and PTC/EBV were identified. 4 molecular targets with the best performance, LGALS3, MMP9, CTSB and CTSS, were identified by topological analysis, and the binding energies were all < -5.0 kcal/mol. CONCLUSIONS Our prognostic model has good diagnostic and prognostic effects and has potential value of basic research. This study for the first time revealed the related molecular functions of vitamin C and the molecular targets for the treatment of PTC/EBV.
Collapse
Affiliation(s)
- Dongliang Shi
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China.
| | - Liang Chen
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Chenhao Li
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Meng Yang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Wenhua Yang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Guozhong Cui
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Jinzhao Liu
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Qianqian Chen
- The Obstetrical Center, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| |
Collapse
|
3
|
Iga JI, Yoshino Y, Ozaki T, Tachibana A, Kumon H, Funahashi Y, Mori H, Ueno M, Ozaki Y, Yamazaki K, Ochi S, Yamashita M, Ueno SI. Blood RNA transcripts show changes in inflammation and lipid metabolism in Alzheimer's disease and mitochondrial function in mild cognitive impairment. J Alzheimers Dis Rep 2024; 8:1690-1703. [PMID: 40034360 PMCID: PMC11863738 DOI: 10.1177/25424823241307878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Abnormal immunity in the periphery has been reported in the pathogenesis of Alzheimer's disease (AD). Objective In this study, blood transcriptome analyses of patients with AD, those with mild cognitive impairment (MCI) due to AD, and heathy controls were performed to elucidate immune-related pathophysiology. Methods The sample included 63 participants from a complete enumeration study of elderly people in Nakayama town (the Nakayama Study), who were over 65 years of age, diagnosed as (1) healthy controls (N = 21, mean age: 83.8 years), (2) having MCI due to AD (N = 20, mean age: 82.6 years), or (3) having AD (N = 21, mean age: 84.2 years). Every participant underwent blood tests, magnetic resonance imaging, and questionnaires about lifestyle and cognitive function. With transcriptome analysis, differential gene expressions in the blood of the three groups were evaluated by gene ontology, pathway enrichment, and ingenuity pathway analyses, and quantitative real-time PCR was performed. Results Neutrophil extracellular trap signaling was increased, and lipid metabolism (FXR/RXR activation, triacylglycerol degradation) was decreased in AD, whereas MCI showed protective responses via decreased neutrophil extracellular trap signaling and mitochondrial functions such as upregulation of the sirtuin pathway and downregulation of oxidative stress. Conclusions Based on these findings and consistent with other published studies, immune cells appear to have important roles in the pathogenesis of AD, and the transcriptome in blood may be useful as a biomarker for diagnosis via monitoring immunity in MCI and AD.
Collapse
Affiliation(s)
- Jun-ichi Iga
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tomoki Ozaki
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ayumi Tachibana
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Mori
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mariko Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shu-ichi Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
4
|
Liu R, Feng J, Ni Y, Chen K, Wang Y, Zhang T, Zhou M, Zhao C. Dysbiosis and diabetic foot ulcers: A metabolic perspective of Staphylococcus aureus infection. Biomed Pharmacother 2024; 180:117498. [PMID: 39353317 DOI: 10.1016/j.biopha.2024.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) infection is the most prevalent and resistant bacterial infection, posing a worldwide health risk. Compared with healthy people, diabetes patients with weak immune function and abnormal metabolism are more vulnerable to bacterial infection, which aggravates the intensity of infection and causes a series of common and dangerous complications, such as diabetes foot ulcer (DFU). Due to metabolic abnormalities of diabetic patients, S. aureus on the skin surface of DFU transitions from a commensal to an invasive infection. During this process, S. aureus resists a series of unfavorable conditions for bacterial growth by altering energy utilization and metabolic patterns, and secretes various virulence factors, causing persistent infection. With the emergence of multiple super-resistant bacteria, antibiotic treatment is no longer the only treatment option, and developing new drugs and therapies is urgent. Regulating the metabolic signaling pathway of S. aureus plays a decisive role in regulating its virulence factors and impacts adjuvant therapy for DFU. This article focuses on studying the impact of regulating metabolic signals on the virulence of S. aureus from a metabolism perspective. It provides an outlook on the future direction of the novel development of antimicrobial therapy.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Kaixin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
5
|
Xu S, Wan M, Ye C, Chen R, Li Q, Zhang X, Ruan J. Machine learning based on biological context facilitates the identification of microvascular invasion in intrahepatic cholangiocarcinoma. Carcinogenesis 2024; 45:721-734. [PMID: 39086220 DOI: 10.1093/carcin/bgae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Intrahepatic cholangiocarcinoma is a rare disease associated with a poor prognosis, primarily due to early recurrence and metastasis. An important feature of this condition is microvascular invasion (MVI). However, current predictive models based on imaging have limited efficacy in this regard. This study employed a random forest model to construct a predictive model for MVI identification and uncover its biological basis. Single-cell transcriptome sequencing, whole exome sequencing, and proteome sequencing were performed. The area under the curve of the prediction model in the validation set was 0.93. Further analysis indicated that MVI-associated tumor cells exhibited functional changes related to epithelial-mesenchymal transition and lipid metabolism due to alterations in the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways. Tumor cells were also differentially enriched for the interleukin-17 signaling pathway. There was less infiltration of SLC30A1+ CD8+ T cells expressing cytotoxic genes in MVI-associated intrahepatic cholangiocarcinoma, whereas there was more infiltration of myeloid cells with attenuated expression of the major histocompatibility complex II pathway. Additionally, MVI-associated intercellular communication was closely related to the SPP1-CD44 and ANXA1-FPR1 pathways. These findings resulted in a brilliant predictive model and fresh insights into MVI.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou 646000, Sichuan Province, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Jian Ruan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou 646000, Sichuan Province, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
6
|
Mizukoshi C, Kojima Y, Nomura S, Hayashi S, Abe K, Shimamura T. DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates. Genome Biol 2024; 25:229. [PMID: 39237934 PMCID: PMC11378460 DOI: 10.1186/s13059-024-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
Collapse
Affiliation(s)
- Chikara Mizukoshi
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Aichi, Japan.
- Nagoya University Hospital, Aichi, Japan.
| | - Yasuhiro Kojima
- Laboratory of Computational Life Science, National Cancer Center Research Institute, Tokyo, Japan.
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Satoshi Nomura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Shuto Hayashi
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ko Abe
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Aichi, Japan.
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
7
|
Yang DN, Yan C, Yan L, Niu Y, Wen JX, Hai L, Gao WH, Wang YJ, Wang YF, Zhou Q, Zheng WQ, Hu ZD. Apolipoprotein E in patients with undiagnosed pleural effusion: a prospective diagnostic test accuracy study. Expert Rev Respir Med 2024; 18:735-741. [PMID: 39136379 DOI: 10.1080/17476348.2024.2391943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Pleural effusion is common in clinical practice, and its differential diagnosis remains challenging for clinicians. This study investigates the diagnostic value of apolipoprotein E (apoE) in patients with undetermined pleural effusion. METHODS This prospective, double-blind study enrolled 152 patients with undiagnosed pleural effusion. Their pleural fluid apoE levels were measured, and a receiver operating characteristics (ROC) curve was used to evaluate the diagnostic accuracy of apoE. Decision curve analysis (DCA) was used to assess apoE's net benefit. Subgroup analyses were performed to investigate the effect of age on the diagnostic accuracy of apoE. RESULTS Among the included participants, 23 had heart failure (HF). HF patients had the lowest apoE level among pleural effusion patients. The area under the curve (AUC) of apoE for HF was 0.79 (95% CI: 0.69-0.89). At the threshold of 40 mg/L, the sensitivity and specificity of apoE were 0.96 (95% CI: 0.87-1.00) and 0.33 (95% CI: 0.25-0.42), respectively. The decision curve for apoE was above reference lines. The AUC of apoE decreased in older patients. CONCLUSION Pleural fluid apoE has moderate diagnostic value for HF and has net benefits in patients with undiagnosed pleural effusion. The diagnostic accuracy of apoE decreases with age.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Cheng Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan Niu
- Medical Experiment Center, the College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Medical Experiment Center, the College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ling Hai
- Department of Pathology, the College of Basic Medical, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Hui Gao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Ying-Jun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Qianghua Zhou
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Wang Q, Liu Y, Xu S, Liu F, Huang L, Xu F, Liu Y. Development and validation of the eMCI-CHD tool: A multivariable prediction model for the risk of mild cognitive impairment in patients with coronary heart disease. J Evid Based Med 2024; 17:535-549. [PMID: 39107928 DOI: 10.1111/jebm.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/23/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE This study aimed to develop and validate an eMCI-CHD tool based on clinical data to predict mild cognitive impairment (MCI) risk in patients with coronary heart disease (CHD). METHODS This cross-sectional study prospectively collected data from 400 patients with coronary heart disease (aged 55-90 years, 62% men) from July 2022 to September 2023 and randomized (7:3 ratio) them into training and validation sets. After determining the modeling variables through least absolute shrinkage and selection operator regression analysis, four ML classifiers were developed: logistic regression, extreme gradient boosting (XGBoost), support vector machine, and random forest. The performance of the models was evaluated using area under the ROC curve, accuracy, sensitivity, specificity, and F1 score. Decision curve analysis was used to assess the clinical performance of the established models. The SHapley Additive exPlanations (SHAP) method was applied to determine the significance of the features, the predictive model was visualized with a nomogram, and an online web-based calculator for predicting CHD-MCI risk scores was developed. RESULTS Of 400 CHD patients (average age 70.86 ± 8.74 years), 220 (55%) had MCI. The XGBoost model demonstrated superior performance (AUC: 0.86, accuracy: 78.57%, sensitivity: 0.74, specificity: 0.84, F1: 0.79) and underwent validation. An online tool (https://mr.cscps.com.cn/mci/index.html) with seven predictive variables (APOE gene typing, age, education, TyG index, NT-proBNP, C-reactive protein, and occupation) assessed MCI risk in CHD patients. CONCLUSION This study highlights the potential for predicting MCI risk among CHD patients using an ML model-driven nomogram and risk scoring tool based on clinical data.
Collapse
Affiliation(s)
- Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fenglan Liu
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Luqi Huang
- China Evidence-Based Medicine Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Wan S, He QY, Yang Y, Liu F, Zhang X, Guo X, Niu H, Wang Y, Liu YX, Ye WL, Li XM, ZhuanSun XM, Sun P, He XS, Hu G, Breuhahn K, Zhao H, Wu GQ, Wu H. SPARC Stabilizes ApoE to Induce Cholesterol-Dependent Invasion and Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res 2024; 84:1872-1888. [PMID: 38471084 DOI: 10.1158/0008-5472.can-23-2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Dysregulation of cholesterol homeostasis is implicated in the development and progression of hepatocellular carcinoma (HCC) that is characterized by intrahepatic and early extrahepatic metastases. A better understanding of the underlying mechanisms regulating cholesterol metabolism in HCC could help identify strategies to circumvent the aggressive phenotype. Here, we found that high expression of intracellular SPARC (secreted protein acidic and rich in cysteine) was significantly associated with elevated cholesterol levels and an enhanced invasive phenotype in HCC. SPARC potentiated cholesterol accumulation in HCC cells during tumor progression by stabilizing the ApoE protein. Mechanistically, SPARC competitively bound to ApoE, impairing its interaction with the E3 ligase tripartite motif containing 21 (TRIM21) and preventing its ubiquitylation and subsequent degradation. ApoE accumulation led to cholesterol enrichment in HCC cells, stimulating PI3K-AKT signaling and inducing epithelial-mesenchymal transition (EMT). Importantly, sorafenib-resistant HCC cells were characterized by increased expression of intracellular SPARC, elevated cholesterol levels, and enhanced invasive capacity. Inhibiting SPARC expression or reducing cholesterol levels enhanced the sensitivity of HCC cells to sorafenib treatment. Together, these findings unveil interplay between SPARC and cholesterol homeostasis. Targeting SPARC-triggered cholesterol-dependent oncogenic signaling is a potential therapeutic strategy for advanced HCC. SIGNIFICANCE Intracellular SPARC boosts cholesterol availability to fuel invasion and drug resistance in hepatocellular carcinoma, providing a rational approach to improve the treatment of advanced liver cancer.
Collapse
Affiliation(s)
- Shan Wan
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Quan-Yao He
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yun Yang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Feng Liu
- YongDing Clinical Institute of Soochow University, Hygeia Suzhou YongDing Hospital, Suzhou, China
| | - Xue Zhang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xin Guo
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Hui Niu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yi Wang
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Yi-Xuan Liu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Wen-Long Ye
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Xue-Mei ZhuanSun
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Pu Sun
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hua Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Guo-Qiang Wu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| | - Hua Wu
- Suzhou Medical College of Soochow University & Clinical Medicine Research Institute of Soochow University and Suzhou BenQ Medical Center, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chen X, Zhang A, Xu Z, Yin Z, Wang C, Zhang J, Bian L. Analysis of correlative factors of female coronary slow-flow phenomenon: A retrospective study. Medicine (Baltimore) 2024; 103:e38262. [PMID: 38787982 PMCID: PMC11124687 DOI: 10.1097/md.0000000000038262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The coronary slow-flow phenomenon (CSFP) is a manifestation of coronary artery disease wherein coronary angiography reveals no apparent stenosis; however, there is a delay in blood flow perfusion. Given its increased occurrence in male patients, with the majority of subjects in previous studies being male, this study aimed to explore whether distinct risk factors are present in female patients with CSFP. This single-center retrospective study focused on female patients diagnosed with CSFP by using coronary angiography. Eligible patients meeting the predefined inclusion and exclusion criteria were divided into the study group (presenting with CSFP) and control group (displaying normal epicardial coronary arteries). Comparative analyses of clinical and diagnostic data were performed. Ninety-two patients with CSFP and an equal number of controls were enrolled in this study. Patients with CSFP exhibited a higher prevalence of smokers (P = .017) and a heightened incidence of diabetes mellitus (DM) (P = .007). Significantly elevated levels of total cholesterol (TC) (P = .034) and free fatty acids (FFA) (P = .016) were observed in the CSFP group compared to those in the control group. Additionally, patients with CSFP displayed lower levels of apolipoprotein E (ApoE) (P = .092), free thyroxine (FT4) (P = .001), and total thyroxine (TT4) (P = .025). Logistic regression analysis indicated that smoking (P = .019), FFA (P < .001), ApoE (P = .015), and FT4 (P < .001) were independent risk factors for CSFP, accounting for confounding factors. Additionally, the area under the ROC curve (AUC) of the combined effect of smoking, ApoE, FT4, and FFA on CSFP was 0.793 (95% CI: 0.729-0.857, P < .01). In addition to the established risk factors for smoking, diabetes, and hyperlipidemia, female patients with CSFP exhibited significant differences in apoE, FFA, FT4, and TT4 levels compared to the control group. Smoking, FFA, and FT4 levels emerged as independent risk factors for CSFP.
Collapse
Affiliation(s)
- Xin Chen
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zuojun Xu
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhaofang Yin
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ling Bian
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Krishnamurthy HK, Rajavelu I, Reddy S, Pereira M, Jayaraman V, Krishna K, Song Q, Wang T, Bei K, Rajasekaran JJ. Association of Apolipoprotein E (APOE) Polymorphisms With Serological Lipid and Inflammatory Markers. Cureus 2024; 16:e60721. [PMID: 38903305 PMCID: PMC11187349 DOI: 10.7759/cureus.60721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background The study aims to assess the association of apolipoprotein E (APOE) gene polymorphisms with serological lipid and inflammatory markers to determine their potential role in predicting the risk of cardiovascular diseases (CVDs) and Alzheimer's disease (AD). Methodology A total of 915 individuals underwent testing for lipid and inflammatory biomarkers at Vibrant America Clinical Laboratory. Clinical data, blood lipid and inflammatory profiles, and APOE genotyping were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results Compared to the E3/E3 genotype, individuals with E2/E3 genotypes showed higher levels of high-density lipoprotein (HDL), triglycerides, apolipoprotein A (APOA), high-sensitivity C-reactive protein (hs-CRP), and myeloperoxidase (MPO). E2/E4 genotype carriers had higher levels of HDL, triglycerides, Lp(a), and N-terminal pro b-type natriuretic peptide (BNPNT). E3/E4 genotypes were associated with elevated levels of total cholesterol, LDL, Lp(a), hs-CRP, small-density low-density lipoprotein (SDLDL), oxidized LDL (OXLDL), MPO, LDL-CAL, PLAC, and APOB. The E4/E4 group displayed higher concentrations of total cholesterol, LDL, APOB, Lp(a), hs-CRP, SDLDL, OXLDL, MPO, LDLCAL, and PLAC compared to E3/E3 carriers. These findings highlight the potential atherogenic effect of the ε4 allele and the protective effect of the ε2 allele based on lipid and inflammatory marker profiles. Conclusions This study provides strong evidence linking APOE gene polymorphism to abnormal serum lipid and inflammatory profiles. Individuals carrying the ε4 alleles exhibited dysregulated lipid metabolism and abnormal inflammatory markers, increasing their risk of CVD and AD. Early detection and prompt diagnosis are crucial for implementing therapeutic, dietary, and lifestyle interventions to mitigate risks and prevent or delay lipid and inflammation-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Karthik Krishna
- Research & Development, Vibrant Sciences LLC, San Carlos, USA
| | - Qi Song
- Data Acquisition and Analysis, Vibrant America LLC, San Carlos, USA
| | - Tianhao Wang
- Data Acquisition and Analysis, Vibrant Sciences LLC, San Carlos, USA
| | - Kang Bei
- Data Acquisition and Analysis, Vibrant Sciences LLC, San Carlos, USA
| | | |
Collapse
|
12
|
Wang H, Shi L, Luo S, Luo Y, Xu C, Qiu G, Guo Q, Chen C, Lu T, Liu K, Zhu F. Associations of apolipoprotein E ε4 allele, regional cerebral blood flow, and serum liver function markers in patients with cognitive impairment. Front Neurol 2024; 15:1345705. [PMID: 38628697 PMCID: PMC11018914 DOI: 10.3389/fneur.2024.1345705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction The ε4 allele of the apolipoprotein E gene (APOE4) is expressed abundantly in both the brain and peripheral circulation as a genetic risk factor for Alzheimer's disease (AD). Cerebral blood flow (CBF) dysfunction is an essential feature of AD, and the liver plays an important role in the pathogenesis of dementia. However, the associations of APOE4 with CBF and liver function markers in patients with cognitive impairment remains unclear. We aimed to evaluate the associations of APOE4 with CBF measured by arterial spin labeling (ASL) magnetic resonance imaging (MRI) and serum liver function markers in participants who were diagnosed with cognitive impairment. Methods Fourteen participants with AD and sixteen with amnestic mild cognitive impairment (MCI) were recruited. In addition to providing comprehensive clinical information, all patients underwent laboratory tests and MRI. All participants were divided into carriers and noncarriers of the ε4 allele, and T-tests and Mann-Whitney U tests were used to observe the differences between APOE4 carriers and noncarriers in CBF and liver function markers. Results Regarding regional cerebral blood flow (rCBF), APOE4 carriers showed hyperperfusion in the bilateral occipital cortex, bilateral thalamus, and left precuneus and hypoperfusion in the right lateral temporal cortex when compared with noncarriers. Regarding serum liver function markers, bilirubin levels (including total, direct, and indirect) were lower in APOE4 carriers than in noncarriers. Conclusion APOE4 exerts a strong effect on CBF dysfunction by inheritance, representing a risk factor for AD. APOE4 may be related to bilirubin metabolism, potentially providing specific neural targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Shi
- BrainNow Research Institute, Guangdong, China
| | - Shimei Luo
- Department of Nuclear Magnetic Resonance, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Yishan Luo
- BrainNow Research Institute, Guangdong, China
| | - Chunyan Xu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Guozhen Qiu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Qiwen Guo
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Chunchun Chen
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Taikun Lu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kangding Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| |
Collapse
|
13
|
Ding L, Wang Y, Tang Z, Ni C, Zhang Q, Zhai Q, Liang C, Li J. Exploration of vitamin D metabolic activity-related biological effects and corresponding therapeutic targets in prostate cancer. Nutr Metab (Lond) 2024; 21:17. [PMID: 38566155 PMCID: PMC10988890 DOI: 10.1186/s12986-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Previous studies have unequivocally demonstrated that the vitamin D (VD) metabolism pathway significantly influences prognosis and sensitivity to hormone therapy in prostate cancer (PCa). However, the precise underlying mechanism remains unclear. METHODS We performed molecular profiling of 1045 PCa patients, leveraging genes linked to VD synthesis and VD receptors. We then identified highly variable gene modules with substantial associations with patient stratification. Subsequently, we intersected these modules with differentially expressed genes between PCa and adjacent paracancerous tissues. Following a meticulous process involving single-factor regression and LASSO regression to eliminate extraneous variables and construct a prognostic model. Within the high-risk subgroup defined by the calculated risk score, we analyzed their differences in cell infiltration, immune status, mutation landscape, and drug sensitivity. Finally, we selected Apolipoprotein E (APOE), which featured prominently in this model for further experimental exploration to evaluate its potential as a therapeutic target. RESULTS The prognostic model established in this study had commendable predictive efficacy. We observed diminished infiltration of various T-cell subtypes and reduced expression of co-stimulatory signals from antigen-presenting cells. Mutation analysis revealed that the high-risk cohort harbored a higher frequency of mutations in the TP53 and FOXA genes. Notably, drug sensitivity analysis suggested the heightened responsiveness of high-risk patients to molecular inhibitors targeting the Bcl-2 and MAPK pathways. Finally, our investigation also confirmed that APOE upregulates the proliferative and invasive capacity of PCa cells and concurrently enhances resistance to androgen receptor antagonist therapy. CONCLUSION This comprehensive study elucidated the potential mechanisms through which this metabolic pathway orchestrates the biological behavior of PCa and findings hold promise in advancing the development of combination therapies in PCa.
Collapse
Affiliation(s)
- Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Yong Wang
- Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, 214023, Suqian, China
| | - Zhentao Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chenbo Ni
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qidi Zhai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| |
Collapse
|
14
|
Kralova K, Vrtelka O, Fouskova M, Smirnova TA, Michalkova L, Hribek P, Urbanek P, Kuckova S, Setnicka V. Comprehensive spectroscopic, metabolomic, and proteomic liquid biopsy in the diagnostics of hepatocellular carcinoma. Talanta 2024; 270:125527. [PMID: 38134814 DOI: 10.1016/j.talanta.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Liquid biopsy is a very topical issue in clinical diagnostics research nowadays. In this study, we explored and compared various analytical approaches to blood plasma analysis. Finally, we proposed a comprehensive procedure, which, thanks to the utilization of multiple analytical techniques, allowed the targeting of various biomolecules in blood plasma reflecting diverse biological processes underlying disease development. The potential of such an approach, combining proteomics, metabolomics, and vibrational spectroscopy along with preceding blood plasma fractionation, was demonstrated on blood plasma samples of patients suffering from hepatocellular carcinoma in cirrhotic terrain (n = 20) and control subjects with liver cirrhosis (n = 20) as well as healthy subjects (n = 20). Most of the applied methods allowed the classification of the samples with an accuracy exceeding 80.0 % and therefore have the potential to be used as a stand-alone method in clinical diagnostics. Moreover, a final panel of 48 variables obtained by a combination of the utilized analytical methods enabled the discrimination of the hepatocellular carcinoma samples from cirrhosis with 94.3 % cross-validated accuracy. Thus, this study, although limited by the cohort size, clearly demonstrated the benefit of the multimethod approach in clinical diagnosis.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Marketa Fouskova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Tatiana Anatolievna Smirnova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lenka Michalkova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic; Department of Analytical Chemistry, Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02, Prague 6, Czech Republic
| | - Petr Hribek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic; Department of Internal Medicine, Faculty of Military Health Sciences in Hradec Kralove, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Petr Urbanek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic
| | - Stepanka Kuckova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
15
|
Leng X, Liu J, Jin A, Zheng H, Wu J, Zhong L, Li Q, Li D. Multi-omics Analyses Reveal Function of Apolipoprotein E in Alternative Splicing and Tumor Immune Microenvironment in Kidney Renal Clear Cell Carcinoma via Pan-cancer Analysis. Cell Biochem Biophys 2024; 82:1-13. [PMID: 38182861 DOI: 10.1007/s12013-023-01211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Apolipoprotein E (APOE) regulates lipid metabolism, associated with the development of various cancers. However, its precise prognostic significance and functions in alternative splicing and the tumor immune microenvironment remain unclear. In this study, we extracted APOE expression in pan-cancer from TCGA and analyzed mRNA transcriptome, cell lines, and protein levels. Furthermore, we analyzed the alternative splicing expression of the APOE gene transcript with prognostic profiles using the OncoSplicing database. We obtained 73 common APOE genes to perform functional enrichment analysis, assess the correlation between genes and immune cells using TIMER, EPIC, and ssGSEA methods, and examine the prognostic significance using the UALCAN database. Finally, single-cell data was employed to assess the correlation between APOE genes and cell functions. Our findings revealed that APOE expression varies across different tumor types and cancer cell lines. The alternative splicing analysis demonstrated that APOE transcript expression levels have prognostic value in cancers such as LGG, KIRC, and KIRP. Functional enrichment analysis indicated significant associations between APOE and various immune cells, such as macrophages, CD8 T cells, and NK cells, with significant implications for prognosis. Moreover, single-cell data indicated that APOE was primarily expressed in renal epithelial cells among stromal cells and in macrophages among immune cells, significantly negatively correlated with five functional states. Our study represents the first comprehensive exploration of APOE's function in pan-cancers and identifies APOE as a potential biomarker in cancer pathogenesis, prognosis, and immune therapeutic target.
Collapse
Affiliation(s)
- Xin Leng
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Jianhu Liu
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Anqi Jin
- The BioBank, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Hongfang Zheng
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Jiulong Wu
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Longfei Zhong
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Qiaoxin Li
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China
| | - Dongfeng Li
- Department of Urology, The Third People's Hospital of Kunshan, Suzhou, 215300, China.
| |
Collapse
|
16
|
Bose A, Datta S, Mandal R, Ray U, Dhar R. Increased heterogeneity in expression of genes associated with cancer progression and drug resistance. Transl Oncol 2024; 41:101879. [PMID: 38262110 PMCID: PMC10832509 DOI: 10.1016/j.tranon.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
Fluctuations in the number of regulatory molecules and differences in timings of molecular events can generate variation in gene expression among genetically identical cells in the same environmental condition. This variation, termed as expression noise, can create differences in metabolic state and cellular functions, leading to phenotypic heterogeneity. Expression noise and phenotypic heterogeneity have been recognized as important contributors to intra-tumor heterogeneity, and have been associated with cancer growth, progression, and therapy resistance. However, how expression noise changes with cancer progression in actual cancer patients has remained poorly explored. Such an analysis, through identification of genes with increasing expression noise, can provide valuable insights into generation of intra-tumor heterogeneity, and could have important implications for understanding immune-suppression, drug tolerance and therapy resistance. In this work, we performed a genome-wide identification of changes in gene expression noise with cancer progression using single-cell RNA-seq data of lung adenocarcinoma patients at different stages of cancer. We identified 37 genes in epithelial cells that showed an increasing noise trend with cancer progression, many of which were also associated with cancer growth, EMT and therapy resistance. We found that expression of several of these genes was positively associated with expression of mitochondrial genes, suggesting an important role of mitochondria in generation of heterogeneity. In addition, we uncovered substantial differences in sample-specific noise profiles which could have implications for personalized prognosis and treatment.
Collapse
Affiliation(s)
- Anwesha Bose
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Subhasis Datta
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Rakesh Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Upasana Ray
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India.
| |
Collapse
|
17
|
Ruan H, Zhang J, Wang Y, Huang Y, Wu J, He C, Ke T, Luo J, Yang M. 27-Hydroxycholesterol/liver X receptor/apolipoprotein E mediates zearalenone-induced intestinal immunosuppression: A key target potentially linking zearalenone and cancer. J Pharm Anal 2024; 14:371-388. [PMID: 38618245 PMCID: PMC11010457 DOI: 10.1016/j.jpha.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 04/16/2024] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that extensively contaminates food and feed, posing a significant threat to public health. However, the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear. In this study, Sprague-Dawley (SD) rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w. for a duration of 14 days. The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine. Furthermore, ZEN exposure caused a significant reduction in the levels of apolipoprotein E (ApoE) and liver X receptor (LXR) (P < 0.05). Conversely, it upregulated the levels of myeloid-derived suppressor cells (MDSCs) markers (P < 0.05) and decreased the presence of 27-hydroxycholesterol (27-HC) in the intestine (P < 0.05). It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN. Additionally, a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal, breast, and lung cancers. These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine. Notably, ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunjiao He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
18
|
Kang Z, Zhao YX, Qiu RSQ, Chen DN, Zheng QS, Xue XY, Xu N, Wei Y. Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning. Cancer Immunol Immunother 2024; 73:41. [PMID: 38349474 PMCID: PMC10864475 DOI: 10.1007/s00262-024-03633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) encompasses a variety of cells that influence immune responses and tumor growth, with tumor-associated macrophages (TAM) being a crucial component of the TME. TAM can guide prostate cancer in different directions in response to various external stimuli. METHODS First, we downloaded prostate cancer single-cell sequencing data and second-generation sequencing data from multiple public databases. From these data, we identified characteristic genes associated with TAM clusters. We then employed machine learning techniques to select the most accurate TAM gene set and developed a TAM-related risk label for prostate cancer. We analyzed the tumor-relatedness of the TAM-related risk label and different risk groups within the population. Finally, we validated the accuracy of the prognostic label using single-cell sequencing data, qPCR, and WB assays, among other methods. RESULTS In this study, the TAM_2 cell cluster has been identified as promoting the progression of prostate cancer, possibly representing M2 macrophages. The 9 TAM feature genes selected through ten machine learning methods and demonstrated their effectiveness in predicting the progression of prostate cancer patients. Additionally, we have linked these TAM feature genes to clinical pathological characteristics, allowing us to construct a nomogram. This nomogram provides clinical practitioners with a quantitative tool for assessing the prognosis of prostate cancer patients. CONCLUSION This study has analyzed the potential relationship between TAM and PCa and established a TAM-related prognostic model. It holds promise as a valuable tool for the management and treatment of PCa patients.
Collapse
Affiliation(s)
- Zhen Kang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yu-Xuan Zhao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ren Shun Qian Qiu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
19
|
Yang W, Lv Y, Ma T, Wang N, Chen P, Liu Q, Yan H. Exploring the association between inflammatory biomarkers and gastric cancer development: A two-sample mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e36458. [PMID: 38306562 PMCID: PMC10843383 DOI: 10.1097/md.0000000000036458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
This study aimed to elucidate the potential causative links between inflammatory biomarkers and gastric cancer risk via a two-sample Mendelian randomization approach. Leveraging genome-wide association study (GWAS) data, we conducted a two-sample Mendelian randomization analysis. Instrumental variable selection for inflammatory markers - namely, tissue factor, monocyte chemotactic protein-1, E-selectin, interleukin 6 receptor, and fatty acid-binding protein 4 - was informed by SNP data from the IEU database. Strongly associated SNPs served as instrumental variables. We applied a suite of statistical methods, including Inverse Variance Weighted (IVW), Weighted Median Estimator (WME), MR-Egger, and mode-based estimates, to compute the odds ratios (ORs) that articulate the impact of these markers on gastric cancer susceptibility. The IVW method revealed that the interleukin 6 receptor was inversely correlated with gastric cancer progression (OR = 0.86, 95% CI = 0.74-0.99, P = .03), whereas fatty acid-binding protein 4 was found to elevate the risk (OR = 1.21, 95% CI = 1.05-1.39, P = .03). Instrumental variables comprised 5, 4, 7, 2, and 3 SNPs respectively. Convergent findings from WME, MR-Egger, and mode-based analyses corroborated these associations. Sensitivity checks, including heterogeneity, horizontal pleiotropy assessments, and leave-one-out diagnostics, affirmed the robustness and reliability of our instruments across diverse gastric malignancy tissues without substantial bias. Our research suggests that the interleukin 6 receptor potentially mitigates, while fatty acid-binding protein 4 may contribute to the pathogenesis of gastric cancer (GC). Unraveling the intricate biological interplay between inflammation and oncogenesis offers valuable insights for preemptive strategies and therapeutic interventions in gastric malignancy management.
Collapse
Affiliation(s)
- Wenjing Yang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ye Lv
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningju Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Chen
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Quanxia Liu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Yan
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
20
|
Fetcko-Fayad K, Batich K, Reitman ZJ, Walsh KM, Chamberlin G, Smith V, Jones K, Cummings T, Peters KB. Coexisting Biopsy-Diagnosed Dementia and Glioblastoma. Brain Sci 2024; 14:143. [PMID: 38391718 PMCID: PMC10886654 DOI: 10.3390/brainsci14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Both glioblastoma (GBM) and dementia are devastating diseases with limited treatments that are usually not curative. Having clinically diagnosed dementia with an associated biopsy-proven etiology and a coexisting GBM diagnosis is a rare occurrence. The relationship between the development of neurodegenerative dementia and GBM is unclear, as there are conflicting reports in the literature. We present two cases of simultaneous biopsy-proven dementia, one with Alzheimer's disease (AD) and GBM, and one with cerebral amyloid angiopathy (CAA) and GBM. We discuss how these diseases may be associated. Whether one pathologic process begins first or develops concurrently is unknown, but certain molecular pathways of dementia and GBM appear directly related while others inversely related. Further investigations of these close molecular relationships between dementia and GBM could lead to development of improved diagnostic tools and therapeutic interventions for both diseases.
Collapse
Affiliation(s)
- Kaleigh Fetcko-Fayad
- Department of Neurosurgery, Neuro-Oncology, Duke University Medical Center, Durham, NC 27710, USA; (K.B.); (K.B.P.)
| | - Kristen Batich
- Department of Neurosurgery, Neuro-Oncology, Duke University Medical Center, Durham, NC 27710, USA; (K.B.); (K.B.P.)
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Kyle M. Walsh
- Department of Neurosurgery, Neuro-Epidemiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Gregory Chamberlin
- Department of Pathology, Clinical Pathology Services, Duke University Medical Center, Durham, NC 27710, USA; (G.C.); (V.S.); (K.J.); (T.C.)
| | - Vanessa Smith
- Department of Pathology, Clinical Pathology Services, Duke University Medical Center, Durham, NC 27710, USA; (G.C.); (V.S.); (K.J.); (T.C.)
| | - Karra Jones
- Department of Pathology, Clinical Pathology Services, Duke University Medical Center, Durham, NC 27710, USA; (G.C.); (V.S.); (K.J.); (T.C.)
| | - Thomas Cummings
- Department of Pathology, Clinical Pathology Services, Duke University Medical Center, Durham, NC 27710, USA; (G.C.); (V.S.); (K.J.); (T.C.)
| | - Katherine B. Peters
- Department of Neurosurgery, Neuro-Oncology, Duke University Medical Center, Durham, NC 27710, USA; (K.B.); (K.B.P.)
| |
Collapse
|
21
|
Keawvilai P, Kueanjinda P, Klomsing J, Palaga T. Coculturing liver cancer cells and monocytes in spheroids conditions monocytes to adopt tumor-associated macrophage phenotypes that favor tumor growth via cholesterol metabolism. J Leukoc Biol 2024; 115:344-357. [PMID: 37742062 DOI: 10.1093/jleuko/qiad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Tumor-infiltrating immune cells and their crosstalk with cancer cells in the tumor microenvironment (TME) play a crucial role in shaping tumor progression and response to therapy. We utilized 3-dimensional liver cancer spheroids incorporating human primary monocytes to investigate the crosstalk between tumor-associated macrophages (TAMs) and Hepatocellular carcinoma (HCC) cells, HepG2 and PLC/PRF/5. Using multiplexed gene expression panels, the critical pathways involved in shaping primary human monocytes to adopt TAMs phenotypes were identified. The specific inhibitor for an identified pathway was used to explore its involvement in polarization of TAMs. In the cocultured spheroids comprising the human HCC cell lines, the infiltrating monocytes resembled protumor M2-like macrophage phenotypes. Gene expression panels of the infiltrating monocytes demonstrated that the upregulated genes were enriched in the cholesterol metabolism pathway. Cholesterol metabolism-related genes were upregulated together with the nuclear receptors, PPARG and LXR. When lysosomal acid lipase (LAL), the key enzyme necessary for the hydrolysis of lipoprotein, was inhibited, infiltrating monocytes in 3-dimensional spheroid coculture showed significantly decreased M2 marker and lipid uptake receptor expression as well as increased cellular lipid content, which indicated that cholesterol metabolism was important for conditioning the TAMs. Moreover, LAL inhibition reduced the spheroid growth and invasiveness of HCC cell lines. Small interfering RNA-mediated LAL silencing in monocytes yielded similar results upon spheroid coculture. These data indicated that liver cancer cells and infiltrating monocytes participate in crosstalk via cholesterol metabolism to condition monocytes toward TAMs, which favors tumor growth and survival, thereby promoting liver cancer progression.
Collapse
Affiliation(s)
- Pornlapat Keawvilai
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jeerameth Klomsing
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Lu M, He R, Li C, Liu Z, Chen Y, Yang B, Zhang X, Yu B. Apolipoprotein E deficiency potentiates macrophage against Staphylococcus aureus in mice with osteomyelitis via regulating cholesterol metabolism. Front Cell Infect Microbiol 2023; 13:1187543. [PMID: 37529351 PMCID: PMC10387542 DOI: 10.3389/fcimb.2023.1187543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies. Methods In this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis. Results The data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability. Conclusion We identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction.
Collapse
Affiliation(s)
- Mincheng Lu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruiyi He
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixian Liu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingsheng Yang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|