1
|
Goldberg JF. Complex Combination Pharmacotherapy for Bipolar Disorder: Knowing When Less Is More or More Is Better. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:218-231. [PMID: 32047367 PMCID: PMC6999211 DOI: 10.1176/appi.focus.20190008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combination pharmacotherapy for bipolar disorder is commonplace and often reflects the severity and complexity of the illness and the comorbid conditions frequently associated with it. Across treatment settings, about one-fifth of patients with bipolar disorder appear to receive four or more psychotropic medications. Practice patterns often outpace the evidence-based literature, insofar as few systematic studies have examined the efficacy and safety of two or more medications for any given phase of illness. Most randomized trials of combination pharmacotherapy focus on the utility of pairing a mood stabilizer with a second-generation antipsychotic for prevention of either acute mania or relapse. In real-world practice, patients with bipolar disorder often take more elaborate combinations of mood stabilizers, antipsychotics, antidepressants, anxiolytics, stimulants, and other psychotropics for indefinite periods that do not necessarily arise purposefully and logically. In this article, I identify clinical factors associated with complex combination pharmacotherapy for patients with bipolar disorder; describe approaches to ensuring that each component of a treatment regimen has a defined role; discuss the elimination of unnecessary, ineffective, or redundant drugs in a regimen; and address complementary, safe, rationale-based drug combinations that target specific domains of psychopathology for which monotherapies often provide inadequate benefit.
Collapse
Affiliation(s)
- Joseph F Goldberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City
| |
Collapse
|
2
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
3
|
A Systematic Review of NMDA Receptor Antagonists for Treatment of Neuropathic Pain in Clinical Practice. Clin J Pain 2019; 34:450-467. [PMID: 28877137 DOI: 10.1097/ajp.0000000000000547] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the efficacy of N-methyl-D-aspartate receptor (NMDAR) antagonists for neuropathic pain (NeuP) and review literature to determine if specific pharmacologic agents provide adequate NeuP relief. METHODS Literature was reviewed on PubMed using a variety of key words for 8 NMDAR antagonists. These key words include: "Ketamine and Neuropathy," "Ketamine and Neuropathic Pain," "Methadone and Neuropathy," "Methadone and Neuropathic Pain," "Memantine and Neuropathic pain," "Memantine and Neuropathy," "Amantadine and Neuropathic Pain," "Amantadine and Neuropathy," "Dextromethorphan and Neuropathic Pain," "Dextromethorphan and Neuropathy," "Carbamazepine and Neuropathic Pain," "Carbamazepine and Neuropathy," "Valproic Acid and Neuropathy," "Valproic Acid and Neuropathic Pain," "Phenytoin and Neuropathy," and "Phenytoin and Neuropathic Pain." With the results, the papers were reviewed using the PRISMA (Preferred Reporting in Systematic and Meta-Analyses) guideline. RESULTS A total of 58 randomized controlled trials were reviewed among 8 pharmacologic agents, which are organized by date and alphabetical order. Of the trials for ketamine, 15 showed some benefit for analgesia. Methadone had 3 positive trials, while amantadine and memantine each only had 2 trials showing NeuP analgesic properties. Dextromethorphan and valproic acid both had 4 randomized controlled trials that showed some NeuP treatment benefit while carbamazepine had over 8 trials showing efficacy. Finally, phenytoin only had 1 trial that showed clinical response in treatment. CONCLUSIONS There are a variety of NMDAR antagonist agents that should be considered for treatment of NeuP. Nevertheless, continued and further investigation of the 8 pharmacologic agents is needed to continue to evaluate their efficacy for treatment of NeuP.
Collapse
|
4
|
The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev 2014; 47:336-58. [PMID: 25218759 DOI: 10.1016/j.neubiorev.2014.08.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/08/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Mood disorders such as major depressive disorder and bipolar disorder are chronic and recurrent illnesses that cause significant disability and affect approximately 350 million people worldwide. Currently available biogenic amine treatments provide relief for many and yet fail to ameliorate symptoms for others, highlighting the need to diversify the search for new therapeutic strategies. Here we present recent evidence implicating the role of N-methyl-D-aspartate receptor (NMDAR) signaling in the pathophysiology of mood disorders. The possible role of NMDARs in mood disorders has been supported by evidence demonstrating that: (i) both BPD and MDD are characterized by altered levels of central excitatory neurotransmitters; (ii) NMDAR expression, distribution, and function are atypical in patients with mood disorders; (iii) NMDAR modulators show positive therapeutic effects in BPD and MDD patients; and (iv) conventional antidepressants/mood stabilizers can modulate NMDAR function. Taken together, this evidence suggests the NMDAR system holds considerable promise as a therapeutic target for developing next generation drugs that may provide more rapid onset relief of symptoms. Identifying the subcircuits involved in mood and elucidating the role of NMDARs subtypes in specific brain circuits would constitute an important step toward the development of more effective therapies with fewer side effects.
Collapse
|
5
|
Rapoport SI. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade. ACS Chem Neurosci 2014; 5:459-67. [PMID: 24786695 DOI: 10.1021/cn500058v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This Review evaluates the arachidonic acid (AA, 20:4n-6) cascade hypothesis for the actions of lithium and other FDA-approved mood stabilizers in bipolar disorder (BD). The hypothesis is based on evidence in unanesthetized rats that chronically administered lithium, carbamazepine, valproate, or lamotrigine each downregulated brain AA metabolism, and it is consistent with reported upregulated AA cascade markers in post-mortem BD brain. In the rats, each mood stabilizer reduced AA turnover in brain phospholipids, cyclooxygenase-2 expression, and prostaglandin E2 concentration. Lithium and carbamazepine also reduced expression of cytosolic phospholipase A2 (cPLA2) IVA, which releases AA from membrane phospholipids, whereas valproate uncompetitively inhibited in vitro acyl-CoA synthetase-4, which recycles AA into phospholipid. Topiramate and gabapentin, proven ineffective in BD, changed rat brain AA metabolism minimally. On the other hand, the atypical antipsychotics olanzapine and clozapine, which show efficacy in BD, decreased rat brain AA metabolism by reducing plasma AA availability. Each of the four approved mood stabilizers also dampened brain AA signaling during glutamatergic NMDA and dopaminergic D2 receptor activation, while lithium enhanced the signal during cholinergic muscarinic receptor activation. In BD patients, such signaling effects might normalize the neurotransmission imbalance proposed to cause disease symptoms. Additionally, the antidepressants fluoxetine and imipramine, which tend to switch BD depression to mania, each increased AA turnover and cPLA2 IVA expression in rat brain, suggesting that brain AA metabolism is higher in BD mania than depression. The AA hypothesis for mood stabilizer action is consistent with reports that low-dose aspirin reduced morbidity in patients taking lithium, and that high n-3 and/or low n-6 polyunsaturated fatty acid diets, which in rats reduce brain AA metabolism, were effective in BD and migraine patients.
Collapse
Affiliation(s)
- Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Parise M, Kubo TTA, Doring TM, Tukamoto G, Vincent M, Gasparetto EL. Cuneus and fusiform cortices thickness is reduced in trigeminal neuralgia. J Headache Pain 2014; 15:17. [PMID: 24661349 PMCID: PMC3997919 DOI: 10.1186/1129-2377-15-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/12/2014] [Indexed: 01/18/2023] Open
Abstract
Background Chronic pain disorders are presumed to induce changes in brain grey and white matters. Few studies have focused CNS alterations in trigeminal neuralgia (TN). Methods The aim of this study was to explore changes in white matter microstructure in TN subjects using diffusion tensor images (DTI) with tract-based spatial statistics (TBSS); and cortical thickness changes with surface based morphometry. Twenty-four patients with classical TN (37-67 y-o) and 24 healthy controls, matched for age and sex, were included in the study. Results Comparing patients with controls, no diffusivity abnormalities of brain white matter were detected. However, a significant reduction in cortical thickness was observed at the left cuneus and left fusiform cortex in the patients group. The thickness of the fusiform cortex correlated negatively with the carbamazepine dose (p = 0.023). Conclusions Since the cuneus and the fusiform gyrus have been related to the multisensory integration area and cognitive processing, as well as the retrieval of shock perception conveyed by Aδ fibers, our results support the role of these areas in TN pathogenesis. Whether such changes occurs as an epiphenomenon secondary to daily stimulation or represent a structural predisposition to TN in the light of peripheral vascular compression is a matter of future studies.
Collapse
Affiliation(s)
- Maud Parise
- Department of Radiology, Clementino Fraga Filho University Hospital, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, CEP:21941-913, Brazil.
| | | | | | | | | | | |
Collapse
|
7
|
Keleshian VL, Modi HR, Rapoport SI, Rao JS. Aging is associated with altered inflammatory, arachidonic acid cascade, and synaptic markers, influenced by epigenetic modifications, in the human frontal cortex. J Neurochem 2013; 125:63-73. [PMID: 23336521 PMCID: PMC3606672 DOI: 10.1111/jnc.12153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/12/2023]
Abstract
Aging is a risk factor for Alzheimer's disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, as DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro- and anti-apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle-aged [41 ± 1 (SEM) years] and 10 aged subjects (70 ± 3 years). The aged compared with middle-aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti-apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of brain derived neurotrophic factor (BDNF), cyclic AMP responsive element binding protein (CREB), and synaptophysin and hypomethylation of BCL-2 associated X protein (BAX). These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated.
Collapse
Affiliation(s)
- Vasken L. Keleshian
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Hiren R. Modi
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Ramadan E, Basselin M, Rao JS, Chang L, Chen M, Ma K, Rapoport SI. Lamotrigine blocks NMDA receptor-initiated arachidonic acid signalling in rat brain: implications for its efficacy in bipolar disorder. Int J Neuropsychopharmacol 2012; 15:931-43. [PMID: 21733229 PMCID: PMC3204186 DOI: 10.1017/s1461145711001003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An up-regulated brain arachidonic acid (AA) cascade and a hyperglutamatergic state characterize bipolar disorder (BD). Lamotrigine (LTG), a mood stabilizer approved for treating BD, is reported to interfere with glutamatergic neurotransmission involving N-methyl-d-aspartate receptors (NMDARs). NMDARs allow extracellular calcium into the cell, thereby stimulating calcium-dependent cytosolic phospholipase A2 (cPLA2) to release AA from membrane phospholipid. We hypothesized that LTG, like other approved mood stabilizers, would reduce NMDAR-mediated AA signalling in rat brain. An acute subconvulsant dose of NMDA (25 mg/kg) or saline was administered intraperitoneally to unanaesthetized rats that had been treated p.o. daily for 42 d with vehicle or a therapeutically relevant dose of LTG (10 mg/kg.d). Regional brain AA incorporation coefficients k* and rates J in, and AA signals, were measured using quantitative autoradiography after intravenous [1-14C]AA infusion, as were other AA cascade markers. In chronic vehicle-treated rats, acute NMDA compared to saline increased k* and J in in widespread regions of the brain, as well as prostaglandin (PG)E2 and thromboxane B2 concentrations. Chronic LTG treatment compared to vehicle reduced brain cyclooxygenase (COX) activity, PGE2 concentration, and DNA-binding activity of the COX-2 transcription factor, NF-κB. Pretreatment with chronic LTG blocked the acute NMDA effects on AA cascade markers. In summary, chronic LTG like other mood stabilizers blocks NMDA-mediated signalling involving the AA metabolic cascade. Since markers of the AA cascade and of NMDAR signalling are up-regulated in the post-mortem BD brain, mood stabilizers generally may be effective in BD by dampening NMDAR signalling and the AA cascade.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kim HW, Cheon Y, Modi HR, Rapoport SI, Rao JS. Effects of chronic clozapine administration on markers of arachidonic acid cascade and synaptic integrity in rat brain. Psychopharmacology (Berl) 2012; 222:663-74. [PMID: 22414961 PMCID: PMC3478065 DOI: 10.1007/s00213-012-2671-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/13/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The mode of action of clozapine, an atypical antipsychotic approved for treating schizophrenia (SZ) and used for bipolar disorder (BD) mania, remains unclear. We tested for overlap with the actions of the mood stabilizers, lithium, carbamazepine and valproate, which downregulate arachidonic acid (AA) cascade markers in rat brain and upregulate BDNF. AA cascade markers are upregulated in BD and SZ postmortem BD brain in association with neuroinflammation and synaptic loss, while BDNF is decreased. METHODS Rats were injected intraperitoneally with a therapeutically relevant dose of clozapine (10 mg/kg/day) or with saline for 30 days, and AA cascade and synaptic markers and BDNF were measured in the brain. RESULTS Compared with saline-injected rats, chronic clozapine increased brain activity, mRNA and protein levels of docosahexaenoic acid (DHA)-selective calcium-independent phospholipase A₂ type VIA (iPLA₂), mRNA and protein levels of BDNF and of the postsynaptic marker, drebrin, while decreasing cyclooxygenase (COX) activity and concentration of prostaglandin E₂ (PGE₂), a proinflammatory AA metabolite. Activity and expression of AA-selective calcium-dependent cytosolic cPLA₂ type IVA and of secretory sPLA₂ Type II were unchanged. CONCLUSIONS These results show overlap with effects of mood stabilizers with regard to downregulation of COX activity and PGE₂ and to increased BDNF and suggest a common action against the reported neuropathology of BD and SZ. The increased iPLA₂ expression following clozapine suggests increased production of anti-inflammatory DHA metabolites, and, with increased BDNF and drebrin, clear neuroprotective action.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
10
|
Vytla D, Combs-Bachmann RE, Hussey AM, McCarron ST, McCarthy DS, Chambers JJ. Prodrug approaches to reduce hyperexcitation in the CNS. Adv Drug Deliv Rev 2012; 64:666-85. [PMID: 22138074 DOI: 10.1016/j.addr.2011.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 01/11/2023]
Abstract
Hyperexcitation in the central nervous system is the root cause of a number of disorders of the brain ranging from acute injury to chronic and progressive diseases. The major limitation to treatment of these ailments is the miniscule, yet formidable blood-brain barrier. To deliver therapeutic agents to the site of desired action, a number of biomedical engineering strategies have been developed including prodrug formulations that allow for either passive diffusion or active transport across this barrier. In the case of prodrugs, once in the brain compartment, the active therapeutic agent is released. In this review, we discuss in some detail a number of factors related to treatment of central nervous system hyperexcitation including molecular targets, disorders, prodrug strategies, and focused case studies of a number of therapeutics that are at a variety of stages of clinical development.
Collapse
Affiliation(s)
- Devaiah Vytla
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | | | | | | | | | | |
Collapse
|
11
|
Basselin M, Ramadan E, Rapoport SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012; 87:154-71. [PMID: 22178644 PMCID: PMC3274571 DOI: 10.1016/j.brainresbull.2011.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 02/05/2023]
Abstract
The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW. RETRACTED: Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J Affect Disord 2012; 136:63-71. [PMID: 21925739 PMCID: PMC3254216 DOI: 10.1016/j.jad.2011.08.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/16/2011] [Indexed: 12/27/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of The National Institutes of Health has found that the first author, Dr. Jagadeesh S. Rao engaged in research misconduct by falsifying data in “Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients”. Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW. J. Affect Disord. 136(1–2):63–71. 2012. Data in Figures 2A, 2B, 3A, 3B and 4A were falsified.
Collapse
Affiliation(s)
- Jagadeesh Sridhara Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States.
| | - Matthew Kellom
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Edmund Arthur Reese
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Stanley Isaac Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Ramadan E, Basselin M, Taha AY, Cheon Y, Chang L, Chen M, Rapoport SI. Chronic valproate treatment blocks D2-like receptor-mediated brain signaling via arachidonic acid in rats. Neuropharmacology 2011; 61:1256-64. [PMID: 21839100 PMCID: PMC3190603 DOI: 10.1016/j.neuropharm.2011.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/12/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D(2)-like (D(2), D(3), and D(4)) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce D(2)-like-mediated signaling via AA. METHODS An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, J(in), markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-(14)C]AA infusion. Whole brain concentrations of prostaglandin (PG)E(2) and thromboxane (TX)B(2) also were measured. RESULTS Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE(2) in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE(2) and TXB(2), and blocked the quinpirole-induced increments in k* and PGE(2). CONCLUSION These results further provide evidence that mood stabilizers downregulate brain dopaminergic D(2)-like receptor signaling involving AA.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
15
|
Abstract
Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations, plus evidence for neuroinflammation and excitotoxicity in BD, suggest that arachidonic acid (AA) cascade markers are upregulated in the BD brain. To test this hypothesis, these markers were measured in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. Mean protein and mRNA levels of AA-selective cytosolic phospholipase A(2) (cPLA(2)) IVA, secretory sPLA(2) IIA, cyclooxygenase (COX)-2 and membrane prostaglandin E synthase (mPGES) were significantly elevated in the BD cortex. Levels of COX-1 and cytosolic PGES (cPGES) were significantly reduced relative to controls, whereas Ca(2+)-independent iPLA(2)VIA, 5-, 12-, and 15-lipoxygenase, thromboxane synthase and cytochrome p450 epoxygenase protein and mRNA levels were not significantly different. These results confirm that the brain AA cascade is disturbed in BD, and that certain enzymes associated with AA release from membrane phospholipid and with its downstream metabolism are upregulated. As mood stabilizers downregulate many of these brain enzymes in animal models, their clinical efficacy may depend on suppressing a pathologically upregulated cascade in BD. An upregulated cascade should be considered as a target for drug development and for neuroimaging in BD.
Collapse
|
16
|
Gawryluk JW, Young LT. Signal transduction pathways in the pathophysiology of bipolar disorder. Curr Top Behav Neurosci 2011; 5:139-165. [PMID: 25236554 DOI: 10.1007/7854_2010_71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Signal transduction pathways and genes associated with cellular life and death have received much attention in bipolar disorder (BPD) and provide scientists with molecular targets for understanding the biological basis of BPD. In this chapter, we describe the signal transduction pathways involved in the molecular biology of BPD and the indications for the mechanisms of disease and treatment. We discuss the BPD literature with respect to the disease itself and the effects of mood stabilizer treatment on cellular receptors, including G-protein-coupled receptors, glutamate receptors, and tyrosine receptor kinase. We also discuss the intracellular alterations observed in BPD to second messenger systems, such as cyclic adenosine monophosphate (cAMP), protein kinase A, phosphoinositide pathways, glycogen synthase kinase-3, protein kinase B, Wnt, and arachidonic acid. We describe how receptor activation and modulation of second messengers occurs, and how transcription factors are activated and altered in this disease (e.g., the transcription factors ?-catenin, cAMP response element binding protein, heat shock transcription factor-1, and activator protein-1). Abnormalities in intracellular signal transduction pathways could generate a functional discrepancy in numerous neurotransmitter systems, which may explain the varied clinical symptoms observed in BPD. The influence of mood stabilizers on transcription factors may be important in connecting the regulation of gene expression to neuroplasticity and cellular resilience.
Collapse
Affiliation(s)
- Jeremy W Gawryluk
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1,
| | | |
Collapse
|
17
|
Ramadan E, Rosa AO, Chang L, Chen M, Rapoport SI, Basselin M. Extracellular-derived calcium does not initiate in vivo neurotransmission involving docosahexaenoic acid. J Lipid Res 2010; 51:2334-40. [PMID: 20388940 PMCID: PMC2903827 DOI: 10.1194/jlr.m006262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/13/2010] [Indexed: 11/20/2022] Open
Abstract
In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca(2+)-independent phospholipase A(2) (iPLA(2)), Ca(2+)-independent plasmalogen PLA(2) or secretory PLA(2 (sPLA2)), but not by Ca(2+)-dependent cytosolic PLA(2) (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca(2+) into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca(2+)-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.p. to unanesthetized rats. Radiolabeled DHA or AA was infused intravenously and their brain incorporation coefficients k*, measures of signaling, were imaged with quantitative autoradiography. NMDA or MK-801 compared with saline did not alter k* for DHA in any of 81 brain regions examined, whereas NMDA produced widespread and significant increments in k* for AA. In conclusion, in vivo brain DHA but not AA signaling via NMDA receptors is independent of extracellular Ca(2+) and of cPLA(2). DHA signaling may be mediated by iPLA(2), plasmalogen PLA(2), or other enzymes insensitive to low concentrations of Ca(2+). Greater AA than DHA release during glutamate-induced excitotoxicity could cause brain cell damage.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Mariotti V, Melissari E, Amar S, Conte A, Belmaker RH, Agam G, Pellegrini S. Effect of prolonged phenytoin administration on rat brain gene expression assessed by DNA microarrays. Exp Biol Med (Maywood) 2010; 235:300-10. [PMID: 20404047 DOI: 10.1258/ebm.2009.009225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Preliminary clinical trials have recently shown that phenytoin, an antiepileptic drug, may also be beneficial for treatment of bipolar disorder. To examine molecular mechanisms of action of phenytoin as a potential mood stabilizer, DNA microarrays were used to study the effect of phenytoin on gene expression in the hippocampus and frontal cortex of Sprague-Dawley rats. While our particular interest is in bipolar disorder, this is the first DNA microarray study on the effect of phenytoin in brain tissue, in general. As compared with control rats, treated rats had 508 differentially expressed genes in the hippocampus and 62 in the frontal cortex. Phenytoin modulated the expression of genes which may affect neurotransmission, e.g. glutamate decarboxylase 1 (Gad1) and gamma-aminobutyric acid A receptor, alpha 5 (Gabra5). Phenytoin also exerted an effect on neuroprotection-related genes, namely the survival-promoting and antioxidant genes v-akt murine thymoma viral oncogene homolog 1 (Akt1), FK506 binding protein 12-rapamycin associated protein 1 (Frap1), glutathione reductase (Gsr) and glutamate cysteine ligase catalytic subunit (Gclc). The expression of genes potentially associated with mechanisms of mood regulation such as adenylate cyclase-associated protein 1 (Cap1), Glial Fibrillary Acidic Protein (Gfap) and prodynorphin (Pdyn) was also altered. Some of the above genes are regarded as targets of classical mood stabilizers and their modulation supports the clinical observation that phenytoin may have mood-stabilizing effects. The results may provide new insights regarding the mechanism of action of phenytoin and genes found differentially expressed following phenytoin administration may play a role in the pathophysiology of either bipolar disorder or epilepsy.
Collapse
Affiliation(s)
- Veronica Mariotti
- Department of Experimental Pathology, Medical Biotechnology, Infectious Diseases and Epidemiology, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 2010; 15:384-92. [PMID: 19488045 PMCID: PMC2844920 DOI: 10.1038/mp.2009.47] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reports of cognitive decline, symptom worsening and brain atrophy in bipolar disorder (BD) suggest that the disease progresses over time. The worsening neuropathology may involve excitotoxicity and neuroinflammation. We determined protein and mRNA levels of excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. The brain tissue was matched for age, postmortem interval and pH. The results indicated statistically significant lower protein and mRNA levels of the N-methyl-D-aspartate receptors, NR-1 and NR-3A, but significantly higher protein and mRNA levels of interleukin (IL)-1beta, the IL-1 receptor (IL-1R), myeloid differentiation factor 88, nuclear factor-kappa B subunits, and astroglial and microglial markers (glial fibrillary acidic protein, inducible nitric oxide synthase, c-fos and CD11b) in postmortem frontal cortex from BD compared with control subjects. There was no significant difference in mRNA levels of tumor necrosis factor alpha or neuronal nitric oxide synthase in the same region. These data show the presence of excitotoxicity and neuroinflammation in BD frontal cortex, with particular activation of the IL-R cascade. The changes may account for reported evidence of disease progression in BD and be a target for future therapy.
Collapse
|
20
|
Abstract
Anticonvulsant drugs are widely used in psychiatric indications. This includes alcohol and benzodiazepine withdrawal symptoms, panic and anxiety disorders, dementia, schizophrenia, and to some extent personality disorders. Besides pain syndromes, their main domain outside epilepsy, however, is bipolar disorder. Carbamazepine, valproate, and lamotrigine are meanwhile recognized mood stabilizers, but several other antiepileptic drugs have also been tried out with diverging or inconclusive results. Understanding the mechanisms of action and identifying similarities between anticonvulsants effective in bipolar disorder may also enhance our understanding of the underlying pathophysiology of the disorder.
Collapse
Affiliation(s)
- Heinz C R Grunze
- School of Neurology, Neurobiology and Psychiatry, University of Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
Duncan RE, Bazinet RP. Brain arachidonic acid uptake and turnover: implications for signaling and bipolar disorder. Curr Opin Clin Nutr Metab Care 2010; 13:130-8. [PMID: 20145439 DOI: 10.1097/mco.0b013e328336b615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Arachidonic acid was first detected in the brain in 1922. Although earlier work examined the role of arachidonic acid in growth and development, more recent advancements have elucidated roles for arachidonic acid in brain health and disease. RECENT FINDINGS In this review, we summarize evidence demonstrating that unesterified arachidonic acid in the plasma pool, which is supplied in part from adipose, is readily taken up and incorporated into brain phospholipids. By labeling plasma unesterified arachidonic acid, it is possible to trace the subsequent release of arachidonic acid from brain phospholipids upon neuroreceptor-mediated release by phospholipase A2 in response to drugs and neuroinflammation in rodents. With the synthesis of 11C labeled fatty acids, brain arachidonic acid signaling can now be measured in humans with position emission tomography. Arachidonic acid signals are known to regulate important biological functions, including neuroinflammation and excitotoxicity, and we focus on how the brain arachidonic acid cascade is a common target of drugs used to treat bipolar disorder (e.g. lithium, carbamazepine and valproate). SUMMARY A better understanding of the regulation of arachidonic acid uptake into the brain and the brain arachidonic acid cascade could lead to new imaging techniques and the identification of novel therapeutic targets in excitotoxicity, neuroinflammation and bipolar disorder.
Collapse
Affiliation(s)
- Robin E Duncan
- Department of Nutritional Science & Toxicology, University of California, Berkeley, California, USA
| | | |
Collapse
|
22
|
Kim HW, Chang YC, Chen M, Rapoport SI, Rao JS. Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death. BMC Neurosci 2009; 10:123. [PMID: 19785755 PMCID: PMC2762981 DOI: 10.1186/1471-2202-10-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic N-Methyl-d-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control. RESULTS Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3zeta was increased, as well as Fluoro-Jade B (FJB) staining, a marker of neuronal loss. CONCLUSION This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
23
|
Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. ACTA ACUST UNITED AC 2009; 61:185-209. [PMID: 19555719 DOI: 10.1016/j.brainresrev.2009.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a neurotransmission imbalance and disease progression. Patients often take multiple agents concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is common. Of the hypotheses regarding the action of mood stabilizers in BD, the "arachidonic acid (AA) cascade" hypothesis is presented in detail in this review. It is based on evidence that chronic administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated AA turnover in brain phospholipids, formation of prostaglandin E(2), and/or expression of AA cascade enzymes, including cytosolic phospholipase A(2), cyclooxygenase-2 and/or acyl-CoA synthetase. The changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade. Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA neurotransmission via dopaminergic D(2)-like and glutamatergic NMDA receptors. Unlike the mood stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade and excess AA signaling via D(2)-like and NMDA receptors. This review presents ways to test these suggestions.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
24
|
Basselin M, Fox MA, Chang L, Bell JM, Greenstein D, Chen M, Murphy DL, Rapoport SI. Imaging elevated brain arachidonic acid signaling in unanesthetized serotonin transporter (5-HTT)-deficient mice. Neuropsychopharmacology 2009; 34:1695-709. [PMID: 19145225 PMCID: PMC2700347 DOI: 10.1038/npp.2008.227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Certain polymorphisms reduce serotonin (5-HT) reuptake transporter (5-HTT) function and increase susceptibility to psychiatric disorders. Heterozygous (5-HTT(+/-))-deficient mice, models for humans with these polymorphisms, have elevated brain 5-HT concentrations and behavioral abnormalities. As postsynaptic 5-HT(2A/2C) receptors are coupled to cytosolic phospholipase A(2) (cPLA(2)), which releases arachidonic acid (AA) from membrane phospholipid, 5-HTT-deficient mice may have altered brain AA signaling and metabolism. To test this hypothesis, signaling was imaged as an AA incorporation coefficient k(*) in unanesthetized homozygous knockout (5-HTT(-/-)), 5-HTT(+/-) and wild-type (5-HTT(+/+)), mice following saline (baseline) or 1.5 mg/kg s.c. DOI, a partial 5-HT(2A/2C) receptor agonist. Enzyme activities, metabolite concentrations, and head-twitch responses to DOI were also measured. Baseline k(*) was widely elevated by 20-70% in brains of 5-HTT(+/-) and 5-HTT(-/-) compared to 5-HTT(+/+) mice. DOI increased k(*) in 5-HTT(+/+) mice, but decreased k(*) in 5-HTT-deficient mice. Brain cPLA(2) activity was elevated in 5-HTT-deficient mice; cyclooxygenase activity and prostaglandin E(2) and F(2alpha) and thromboxane B(2) concentrations were reduced. Head-twitch responses to DOI, although robust in 5-HTT(+/+) and 5-HTT(+/-) mice, were markedly fewer in 5-HTT(-/-) mice. Pretreatment with para-chlorophenylalanine, a 5-HT synthesis inhibitor, restored head twitches in 5-HTT(-/-) mice to levels in 5-HTT(+/+) mice. We propose that increased baseline values of k(*) in 5-HTT-deficient mice reflect tonic cPLA(2) stimulation through 5-HT(2A/2C) receptors occupied by excess 5-HT, and that reduced k(*) and head-twitch responses to DOI reflected displacement of receptor-bound 5-HT by DOI with a lower affinity. Increased baseline AA signaling in humans having polymorphisms with reduced 5-HTT function might be identified using positron emission tomography.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Meredith A. Fox
- Laboratory of Clinical Science, National Institute of Mental Health. National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jane M. Bell
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dede Greenstein
- Child Psychiatry Branch, National Institute of Mental Health. National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dennis L. Murphy
- Laboratory of Clinical Science, National Institute of Mental Health. National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
25
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:697-705. [PMID: 19327408 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
26
|
Basselin M, Chang L, Chen M, Bell JM, Rapoport SI. Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats. Neurochem Res 2008; 33:2229-40. [PMID: 18461450 PMCID: PMC2564799 DOI: 10.1007/s11064-008-9700-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/03/2008] [Indexed: 01/12/2023]
Abstract
Evidence that brain glutamatergic activity is pathologically elevated in bipolar disorder suggests that mood stabilizers are therapeutic in the disease in part by downregulating glutamatergic activity. Such activity can involve the second messenger, arachidonic acid (AA, 20:4n - 6). We tested this hypothesis with regard to valproic acid (VPA), when stimulating glutamatergic N-methyl-D: -aspartate (NMDA) receptors in rat brain and measuring AA and related responses. An acute subconvulsant dose of NMDA (25 mg/kg i.p.) or saline was administered to unanesthetized rats that had been treated i.p. daily with VPA (200 mg/kg) or vehicle for 30 days. Quantitative autoradiography following intravenous [1-(14)C]AA infusion was used to image regional brain AA incorporation coefficients k*, markers of AA signaling. In chronic vehicle-pretreated rats, NMDA compared with saline significantly increased k* in 41 of 82 examined brain regions, many of which have high NMDA receptor densities, and also increased brain concentrations of the AA metabolites, prostaglandin E(2) (PGE(2)) and thromboxane B(2) (TXB(2)). VPA pretreatment reduced baseline concentrations of PGE(2) and TXB(2), and blocked the NMDA induced increases in k* and in eicosanoid concentrations. These results, taken with evidence that carbamazepine and lithium also block k* responses to NMDA in rat brain, suggest that mood stabilizers act in bipolar disorder in part by downregulating glutamatergic signaling involving AA.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg 9, Room 1S126, MSC 0947, 9 Memorial Drive, Bethesda, MD, 20892, USA.
| | | | | | | | | |
Collapse
|
27
|
Basselin M, Chang L, Chen M, Bell JM, Rapoport SI. Chronic carbamazepine administration attenuates dopamine D2-like receptor-initiated signaling via arachidonic acid in rat brain. Neurochem Res 2008; 33:1373-83. [PMID: 18302021 PMCID: PMC5240792 DOI: 10.1007/s11064-008-9595-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/10/2008] [Indexed: 12/25/2022]
Abstract
Observations that dopaminergic antagonists are beneficial in bipolar disorder and that dopaminergic agonists can produce mania suggest that bipolar disorder involves excessive dopaminergic transmission. Thus, mood stabilizers used to treat the disease might act in part by downregulating dopaminergic transmission. In agreement, we reported that dopamine D2-like receptor mediated signaling involving arachidonic acid (AA, 20:4n-6) was downregulated in rats chronically treated with lithium. To see whether chronic carbamazepine, another mood stabilizer, did this as well, we injected i.p. saline or the D2-like receptor agonist, quinpirole (1 mg/kg), into unanesthetized rats that had been pretreated for 30 days with i.p. carbamazepine (25 mg/kg/day) or vehicle, and used quantitative autoradiography to measure regional brain incorporation coefficients (k*) for AA, markers of signaling. We also measured brain prostaglandin E2 (PGE2), an AA metabolite. In vehicle-treated rats, quinpirole compared with saline significantly increased k* for AA in 35 of 82 brain regions examined, as well as brain PGE2 concentration. Affected regions belong to dopaminergic circuits and have high D2-like receptor densities. Chronic carbamazepine pretreatment prevented the quinpirole-induced increments in k* and in PGE2. These findings are consistent with the hypothesis that effective mood stabilizers generally downregulate brain AA signaling via D2-like receptors, and that this signaling is upregulated in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Bipolar disorder is a major medical, social and economic burden worldwide. However, the mechanisms of action of effective antibipolar disorder drugs remain elusive. In this paper, we review studies using a neuropharmacological approach in unanesthetized rats, combined with kinetic, biochemical and molecular biology techniques, showing that chronic administration of three Food and Drug Administration-approved mood stabilizers (lithium, valproate and carbamazepine) at therapeutically relevant doses, selectively target the brain arachidonic acid (AA) cascade. Whereas chronic lithium and carbamazepine decrease the binding activity of activator protein-2 and in turn the transcription, translation and activity of its AA-selective calcium-dependent phospholipase A(2) gene product, valproate appears to be a non-competitive inhibitor of long-chain acyl-CoA synthetase. The net overlapping effects of the three drugs are decreased turnover of AA but not of docosahexaenoic acid in rat brain phospholipids, and decreased brain cyclooxygenase-2 and prostaglandin E(2). Although these observations support the hypothesis proposed by Rapoport and colleagues that the AA cascade is a common target of mood stabilizers, this hypothesis is not necessarily exclusive of other targets. Targeting the AA cascade with drugs or diet may be a useful therapeutic approach in bipolar disorder, and examining the AA cascade in patients might help in better understanding the disease.
Collapse
|
29
|
Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: cross-talk between excitotoxicity and neuroinflammation. Neurochem Res 2008; 33:2318-23. [PMID: 18500552 DOI: 10.1007/s11064-008-9731-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
Chronic N-Methyl-D: -aspartate (NMDA) administration, a model of excitotoxicity, and chronic intracerebroventricular lipopolysaccharide infusion, a model of neuroinflammation, are reported to upregulate arachidonic acid incorporation and turnover in rat brain phospholipids as well as enzymes involved in arachidonic acid metabolism. This suggests cross-talk between signaling pathways of excitotoxicity and of neuroinflammation, involving arachidonic acid. To test whether chronic NMDA administrations to rats can upregulate brain markers of neuroinflammation, NMDA (25 mg/kg i.p.) or vehicle (1 ml saline/kg i.p.) was administered daily to adult male rats for 21 days. Protein and mRNA levels of cytokines and other inflammatory markers were measured in the frontal cortex using immunoblot and real-time PCR. Compared with chronic vehicle, chronic NMDA significantly increased protein and mRNA levels of interleukin-1beta, tumor necrosis factor alpha, glial fibrillary acidic protein and inducible nitric oxide synthase. Chronic NMDA receptor overactivation results in increased levels of neuroinflammatory markers in the rat frontal cortex, consistent with cross-talk between excitotoxicity and neuroinflammation. As both processes have been reported in a number of human brain diseases, NMDA receptor inhibitors might be of use in treating neuroinflammation in these diseases.
Collapse
|