1
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Lucido MJ, Dunlop BW. Emerging Medications for Treatment-Resistant Depression: A Review with Perspective on Mechanisms and Challenges. Brain Sci 2025; 15:161. [PMID: 40002494 PMCID: PMC11853532 DOI: 10.3390/brainsci15020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Non-response to initial treatment options for major depressive disorder (MDD) is a common clinical challenge with profound deleterious impacts for affected patients. Few treatments have received regulatory approval for treatment-resistant depression (TRD). Methods: A systematic search of United States and European Union clinical trials registries was conducted to identify Phase II, III, or IV clinical trials, with a last update posted on or after 1 January 2020, that were evaluating medications for TRD. For both the US and EU registries, the condition term "treatment resistant depression" and associated lower-level terms (per registry search protocol) were used. For the US registry, a secondary search using the condition term "depressive disorders" and the modifying term "inadequate" was also performed to capture registrations not tagged as TRD. Two additional searches were also conducted in the US registry for the terms "suicide" and "anhedonia" as transdiagnostic targets of investigational medications. Trials were categorized based on the primary mechanism of action of the trial's investigational medication. Results: Fifty clinical trials for TRD, 20 for anhedonia, and 25 for suicide were identified. Glutamate system modulation was the mechanism currently with the most compounds in development, including antagonists and allosteric modulators of NMDA receptors, AMPA receptors, metabotropic type 2/3 glutamate receptors, and intracellular effector molecules downstream of glutamate signaling. Psychedelics have seen the greatest surge among mechanistic targets in the past 5 years, however, with psilocybin in particular garnering significant attention. Other mechanisms included GABA modulators, monoamine modulators, anti-inflammatory/immune-modulating agents, and an orexin type 2 receptor antagonist. Conclusions: These investigations offer substantial promise for more efficacious and potentially personalized medication approaches for TRD. Challenges for detecting efficacy in TRD include the heterogeneity within the TRD population stemming from the presumed variety of biological dysfunctions underlying the disorder, comorbid disorders, chronic psychosocial stressors, and enduring effects of prior serotonergic antidepressant medication treatments.
Collapse
Affiliation(s)
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
3
|
Sippel LM, Hamblen JL, Kelmendi B, Alpert JE, Carpenter LL, Grzenda A, Kraguljac N, McDonald WM, Rodriguez CI, Widge AS, Nemeroff CB, Schnurr PP, Holtzheimer PE. Novel Pharmacologic and Other Somatic Treatment Approaches for Posttraumatic Stress Disorder in Adults: State of the Evidence. Am J Psychiatry 2024; 181:1045-1058. [PMID: 39616450 DOI: 10.1176/appi.ajp.20230950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent psychiatric disorder that can become chronic and debilitating when left untreated. The most commonly recommended first-line treatments for PTSD among adults are individual trauma-focused psychotherapies. Other evidence-based treatments include specific antidepressant medications and non-trauma-focused psychotherapies. Despite the effectiveness of these available treatments, many patients' symptoms do not remit. This has led to the search for novel treatments for PTSD. In this review, the authors critically evaluate the data supporting several emerging pharmacological and other somatic interventions in the categories of medication-assisted psychotherapy, novel medication monotherapy strategies, and neuromodulation, selected because of the salience of their mechanisms of action to the pathophysiology of PTSD (e.g., MDMA-assisted psychotherapy, ketamine, cannabidiol, transcranial magnetic stimulation). The authors also evaluate the evidence for treatments that are the focus of increasing scientific or public interest (i.e., hyperbaric oxygen therapy, stellate ganglion block, neurofeedback). To date, the evidence supporting most novel pharmacological and somatic treatments for PTSD is preliminary and highly variable; however, the data for several specific treatments, such as transcranial magnetic stimulation, are encouraging.
Collapse
Affiliation(s)
- Lauren M Sippel
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Jessica L Hamblen
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Benjamin Kelmendi
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Jonathan E Alpert
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Linda L Carpenter
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Adrienne Grzenda
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Nina Kraguljac
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - William M McDonald
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Carolyn I Rodriguez
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Alik S Widge
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Charles B Nemeroff
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Paula P Schnurr
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| | - Paul E Holtzheimer
- National Center for PTSD, U.S. Department of Veterans Affairs, Washington, DC (Sippel, Hamblen, Kelmendi, Schnurr, Holtzheimer); Geisel School of Medicine at Dartmouth, Department of Psychiatry, Hanover, NH (Sippel, Hamblen, Schnurr, Holtzheimer); Northeast Program Evaluation Center, U.S. Department of Veterans Affairs, (Sippel); Department of Psychiatry, Yale University School of Medicine, New Haven, CT (Kelmendi); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY (Alpert); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, RI (Carpenter); Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles (Grzenda); Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Dell Medical School, University of Texas at Austin, Austin (Nemeroff)
| |
Collapse
|
4
|
Nipper MA, Helms ML, Finn DA, Ryabinin AE. Stress-enhanced ethanol drinking does not increase sensitivity to the effects of a CRF-R1 antagonist on ethanol intake in male and female mice. Alcohol 2024; 120:73-83. [PMID: 38185336 PMCID: PMC11326135 DOI: 10.1016/j.alcohol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Research confirms that stress is associated with alcohol drinking and relapse in males and females and that there are sex differences in the alcohol-related adaptations of stress pathways. The predator stress (PS) model of traumatic stress produces an increase in alcohol drinking or self-administration in a subpopulation of rodents, so it is utilized as an animal model of comorbid alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD). Previous work determined that sensitivity to PS-enhanced drinking produced sex differences in proteins related to stress-regulating systems in the medial prefrontal cortex and hippocampus. The present studies examined whether male and female C57BL/6J mice differ in sensitivity to the ability of the corticotropin releasing factor receptor 1 antagonist CP-376395 to decrease PS-enhanced drinking. In control studies, CP-376395 doses of 5, 10, and 20 mg/kg dose-dependently decreased 4-h ethanol drinking. Next, CP-376395 doses of 5 and 10 mg/kg were tested for effects on ethanol drinking in mice with differential sensitivity to PS-enhanced drinking. Subgroups of "Sensitive" and "Resilient" male and female mice were identified based on changes in ethanol intake in an unrestricted-access ethanol-drinking procedure following four exposures to PS (dirty rat bedding). During the first 2 h post-injection of CP-376395, both doses significantly decreased ethanol licks versus vehicle in the females, with no significant interaction between subgroups, whereas the 10 mg/kg dose significantly decreased ethanol licks versus vehicle in the "Resilient" males. Thus, sensitivity to the suppressive effect of CP-376395 on stress-induced ethanol intake was greater in females versus males, whereas sensitivity and resilience to PS-enhanced drinking produced differential sensitivity to the ability of CP-376395 to decrease ethanol drinking only in male mice. Our results argue against greater efficacy of CRF-R1's ability to decrease ethanol intake in subjects with traumatic stress-enhanced ethanol drinking.
Collapse
Affiliation(s)
- Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melinda L Helms
- Department of Research, VA Portland Health Care System, Portland, OR 97239, United States
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Research, VA Portland Health Care System, Portland, OR 97239, United States
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
5
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
6
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
7
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Depression clinical trials worldwide: a systematic analysis of the ICTRP and comparison with ClinicalTrials.gov. Transl Psychiatry 2024; 14:315. [PMID: 39085220 PMCID: PMC11291508 DOI: 10.1038/s41398-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Major depressive disorder (MDD), commonly known as depression, affects over 300 million people worldwide as of 2018 and presents a wide range of clinical symptoms. The international clinical trials registry platform (ICTRP) introduced by WHO includes aggregated data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform. Here we analysed data in ICTRP with the aim of providing comprehensive insights into clinical trials on depression. Applying a novel hidden duplicate identification method, 10,606 depression trials were identified in ICTRP, with ANZCTR being the largest non- ClinicalTrials.gov database at 1031 trials, followed by IRCT with 576 trials, ISRCTN with 501 trials, CHiCTR with 489 trials, and EUCTR with 351 trials. The top four most studied drugs, ketamine, sertraline, duloxetine, and fluoxetine, were consistent in both groups, but ClinicalTrials.gov had more trials for each drug compared to the non-ClinicalTrials.gov group. Out of 9229 interventional trials, 663 unique agents were identified, including approved drugs (74.5%), investigational drugs (23.2%), withdrawn drugs (1.8%), nutraceuticals (0.3%), and illicit substances (0.2%). Both ClinicalTrials.gov and non-ClinicalTrials.gov databases revealed that the largest categories were antidepressive agents (1172 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov) and nutrients, amino acids, and chemical elements (250 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov), indicating a focus on alternative treatments involving dietary supplements and nutrients. Additionally, 26 investigational antidepressive agents targeting 16 different drug targets were identified, with buprenorphine (opioid agonist), saredutant (NK2 antagonist), and seltorexant (OX2 antagonist) being the most frequently studied. This analysis addresses 40 approved drugs for depression treatment including new drug classes like GABA modulators and NMDA antagonists that are offering new prospects for treating MDD, including drug-resistant depression and postpartum depression subtypes.
Collapse
Affiliation(s)
- Eugenia D Namiot
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Helgi B Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
8
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
9
|
Norred MA, Zuschlag ZD, Hamner MB. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 2024; 84:149-164. [PMID: 38413493 DOI: 10.1007/s40265-023-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.
Collapse
Affiliation(s)
- Michael A Norred
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Zachary D Zuschlag
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Mark B Hamner
- Behavioral Health Service, Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC, 29401, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
10
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
11
|
Menke A. The HPA Axis as Target for Depression. Curr Neuropharmacol 2024; 22:904-915. [PMID: 37581323 PMCID: PMC10845091 DOI: 10.2174/1570159x21666230811141557] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 08/16/2023] Open
Abstract
Major depressive disorder (MDD) is a stress-related mental disorder with a lifetime prevalence of 20% and, thus, is one of the most prevalent mental health disorders worldwide. Many studies with a large number of patients support the notion that abnormalities of the hypothalamus-pituitaryadrenal (HPA) axis are crucial for the development of MDD. Therefore, a number of strategies and drugs have been investigated to target different components of the HPA axis: 1) corticotrophinreleasing hormone (CRH) 1 receptor antagonists; 2) vasopressin V1B receptor antagonists, 3) glucocorticoid receptor antagonists, and 4) FKBP5 antagonists. Until now, V1B receptor antagonists and GR antagonists have provided the most promising results. Preclinical data also support antagonists of FKBP5, which seem to be partly responsible for the effects exerted by ketamine. However, as HPA axis alterations occur only in a subset of patients, specific treatment approaches that target only single components of the HPA axis will be effective only in this subset of patients. Companion tests that measure the function of the HPA axis and identify patients with an impaired HPA axis, such as the dexamethasone-corticotrophin-releasing hormone (dex-CRH) test or the molecular dexamethasonesuppression (mDST) test, may match the patient with an effective treatment to enable patient-tailored treatments in terms of a precision medicine approach.
Collapse
Affiliation(s)
- Andreas Menke
- Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Rasthausstr, 25, 83233 Bernau am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
12
|
Kim HC, Kaplan CM, Islam S, Anderson AS, Piper ME, Bradford DE, Curtin JJ, DeYoung KA, Smith JF, Fox AS, Shackman AJ. Acute nicotine abstinence amplifies subjective withdrawal symptoms and threat-evoked fear and anxiety, but not extended amygdala reactivity. PLoS One 2023; 18:e0288544. [PMID: 37471317 PMCID: PMC10358993 DOI: 10.1371/journal.pone.0288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Tobacco smoking imposes a staggering burden on public health, underscoring the urgency of developing a deeper understanding of the processes that maintain addiction. Clinical and experience-sampling data highlight the importance of anxious withdrawal symptoms, but the underlying neurobiology has remained elusive. Mechanistic work in animals implicates the central extended amygdala (EAc)-including the central nucleus of the amygdala and the neighboring bed nucleus of the stria terminalis-but the translational relevance of these discoveries remains unexplored. Here we leveraged a randomized trial design, well-established threat-anticipation paradigm, and multidimensional battery of assessments to understand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm had the expected consequences, amplifying subjective distress and arousal, and recruiting the canonical threat-anticipation network. Abstinence increased smoking urges and withdrawal symptoms, and potentiated threat-evoked distress, but had negligible consequences for EAc threat reactivity, raising questions about the translational relevance of prominent animal and human models of addiction. These observations provide a framework for conceptualizing nicotine abstinence and withdrawal, with implications for basic, translational, and clinical science.
Collapse
Affiliation(s)
- Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Claire M. Kaplan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan E. Piper
- Center for Tobacco Research and Intervention and Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Daniel E. Bradford
- School of Psychological Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - John J. Curtin
- Department of Psychology, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
13
|
Chudoba R, Dabrowska J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023; 228:109461. [PMID: 36775096 PMCID: PMC10055972 DOI: 10.1016/j.neuropharm.2023.109461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Defensive behaviors in response to a threat are shared across the animal kingdom. Active (fleeing, sheltering) or passive (freezing, avoiding) defensive responses are adaptive and facilitate survival. Selecting appropriate defensive strategy depends on intensity, proximity, temporal threat threshold, and past experiences. Hypothalamic corticotropin-releasing factor (CRF) is a major driver of an acute stress response, whereas extrahypothalamic CRF mediates stress-related affective behaviors. In this review, we shift the focus from a monolithic role of CRF as an anxiogenic peptide to comprehensively dissecting contributions of distinct populations of CRF neurons in mediating defensive behaviors. Direct interrogation of CRF neurons of the central amygdala (CeA) or the bed nucleus of the stria terminalis (BNST) show they drive unconditioned defensive responses, such as vigilance and avoidance of open spaces. Although both populations also contribute to learned fear responses in familiar, threatening contexts, CeA-CRF neurons are particularly attuned to the ever-changing environment. Depending on threat intensities, they facilitate discrimination of salient stimuli predicting manageable threats, and prevent their generalization. Finally, hypothalamic CRF neurons mediate initial threat assessment and active defense such as escape to shelter. Overall, these three major populations of CRF neurons demonstrate divergent, yet complementary contributions to the versatile defense system: heightened vigilance, discriminating salient threats, and active escape, representing three legs of the defense tripod. Despite the 'CRF exhaustion' in the field of affective neuroscience, understanding contributions of specific CRF neurons during adaptive defensive behaviors is needed in order to understand the implications of their dysregulation in fear- and anxiety-related psychiatric disorders. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Rachel Chudoba
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
14
|
Heilig M. Stress-related neuropeptide systems as targets for treatment of alcohol addiction: A clinical perspective. J Intern Med 2023; 293:559-573. [PMID: 37052145 DOI: 10.1111/joim.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Alcohol use is a major cause of disability and death globally. These negative consequences disproportionately affect people who develop alcohol addiction, a chronic relapsing condition characterized by increased motivation to use alcohol, choice of alcohol over healthy, natural rewards, and continued use despite negative consequences. Available pharmacotherapies for alcohol addiction are few, have effect sizes in need of improvement, and remain infrequently prescribed. Research aimed at developing novel therapeutics has in large part focused on attenuating pleasurable or "rewarding" properties of alcohol, but this targets processes that primarily play a role as initiation factors. As clinical alcohol addiction develops, long-term changes in brain function result in a shift of affective homeostasis, and rewarding alcohol effects become progressively reduced. Instead, increased stress sensitivity and negative affective states emerge in the absence of alcohol and create powerful incentives for relapse and continued use through negative reinforcement, or "relief." Based on research in animal models, several neuropeptide systems have been proposed to play an important role in this shift, suggesting that these systems could be targeted by novel medications. Two mechanisms in this category, antagonism at corticotropin-releasing factor type 1, and neurokinin 1/substance P receptors, have been subject to initial evaluation in humans. A third, kappa-opioid receptor antagonism, has been evaluated in nicotine addiction and could soon be tested for alcohol. This paper discusses findings with these mechanisms to date, and their prospects as future targets for novel medications.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
15
|
Cain CK. Beyond Fear, Extinction, and Freezing: Strategies for Improving the Translational Value of Animal Conditioning Research. Curr Top Behav Neurosci 2023; 64:19-57. [PMID: 37532965 PMCID: PMC10840073 DOI: 10.1007/7854_2023_434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Translational neuroscience for anxiety has had limited success despite great progress in understanding the neurobiology of Pavlovian fear conditioning and extinction. This chapter explores the idea that conditioning paradigms have had a modest impact on translation because studies in animals and humans are misaligned in important ways. For instance, animal conditioning studies typically use imminent threats to assess short-duration fear states with single behavioral measures (e.g., freezing), whereas human studies typically assess weaker or more prolonged anxiety states with physiological (e.g., skin conductance) and self-report measures. A path forward may be more animal research on conditioned anxiety phenomena measuring dynamic behavioral and physiological responses in more complex environments. Exploring transitions between defensive brain states during extinction, looming threats, and post-threat recovery may be particularly informative. If care is taken to align paradigms, threat levels, and measures, this strategy may reveal stable patterns of non-conscious defense in animals and humans that correlate better with conscious anxiety. This shift in focus is also warranted because anxiety is a bigger problem than fear, even in disorders defined by dysfunctional fear or panic reactions.
Collapse
Affiliation(s)
- Christopher K Cain
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
16
|
Kanes SJ, Dennie L, Perera P. Targeting the Arginine Vasopressin V 1b Receptor System and Stress Response in Depression and Other Neuropsychiatric Disorders. Neuropsychiatr Dis Treat 2023; 19:811-828. [PMID: 37077711 PMCID: PMC10106826 DOI: 10.2147/ndt.s402831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
A healthy stress response is critical for good mental and overall health and promotes neuronal growth and adaptation, but the intricately balanced biological mechanisms that facilitate a stress response can also result in predisposition to disease when that equilibrium is disrupted. The hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system plays a critical role in the body's response and adaptation to stress, and vasopressinergic regulation of the HPA axis is critical to maintaining system responsiveness during chronic stress. However, exposure to repeated or excessive physical or emotional stress or trauma can shift the body's stress response equilibrium to a "new normal" underpinned by enduring changes in HPA axis function. Exposure to early life stress due to adverse childhood experiences can also lead to lasting neurobiological changes, including in HPA axis function. HPA axis impairment in patients with depression is considered among the most reliable findings in biological psychiatry, and chronic stress has been shown to play a major role in the pathogenesis and onset of depression and other neuropsychiatric disorders. Modulating HPA axis activity, for example via targeted antagonism of the vasopressin V1b receptor, is a promising approach for patients with depression and other neuropsychiatric disorders associated with HPA axis impairment. Despite favorable preclinical indications in animal models, demonstration of clinical efficacy for the treatment of depressive disorders by targeting HPA axis dysfunction has been challenging, possibly due to the heterogeneity and syndromal nature of depressive disorders. Measures of HPA axis function, such as elevated cortisol levels, may be useful biomarkers for identifying patients who may benefit from treatments that modulate HPA axis activity. Utilizing clinical biomarkers to identify subsets of patients with impaired HPA axis function who may benefit is a promising next step in fine-tuning HPA axis activity via targeted antagonism of the V1b receptor.
Collapse
Affiliation(s)
- Stephen J Kanes
- EmbarkNeuro, Oakland, CA, USA
- Correspondence: Stephen J Kanes, EmbarkNeuro, Inc, 1111 Broadway, Suite 1300, Oakland, CA, 94607, USA, Tel +1 610 757 7821, Email
| | | | | |
Collapse
|
17
|
Ponomareva OY, Fenster RJ, Ressler KJ. Enhancing Fear Extinction: Pharmacological Approaches. Curr Top Behav Neurosci 2023; 64:289-305. [PMID: 37584834 DOI: 10.1007/7854_2023_443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Extinction is the process by which the memory of a learned conditioned association decreases over time and with introduction of new associations. It is a vital part of fear learning, and it is critical to recovery in multiple fear-related disorders, including Specific and Social Phobias, Panic Disorder, Obsessive Compulsive Disorder (OCD), and Posttraumatic Stress Disorder (PTSD). The process of extinction is also the underlying mechanism for recovery in gold-standard therapies for PTSD, including prolonged exposure, cognitive processing therapy, eye movement desensitization and procession, as well as other empirically-based paradigms. Pharmacological modulators of extinction are thus promising targets for treatment of fear-related disorders. We focus here on emerging psychopharmacological treatments to facilitate extinction: D-cycloserine, scopolamine, losartan, ketamine, and 3,4-methylenedioxymethamphetamine. We also provide an overview of recent advances in molecular pathways that show promise as targets for extincion and inhibitory learning, including pathways related to cannabinoid, brain-derived neurotrophic factor, hypothalamic-pituitary-adrenal signaling, and promising work in neurosteroid compounds.
Collapse
|
18
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
19
|
Cao-Lei L, Saumier D, Fortin J, Brunet A. A narrative review of the epigenetics of post-traumatic stress disorder and post-traumatic stress disorder treatment. Front Psychiatry 2022; 13:857087. [PMID: 36419982 PMCID: PMC9676221 DOI: 10.3389/fpsyt.2022.857087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic research in post-traumatic stress disorder (PTSD) is essential, given that environmental stressors and fear play such a crucial role in its development. As such, it may provide a framework for understanding individual differences in the prevalence of the disorder and in treatment response. This paper reviews the epigenetic markers associated with PTSD and its treatment, including candidate genes and epigenome-wide studies. Because the etiopathogenesis of PTSD rests heavily on learning and memory, we also draw upon animal neuroepigenetic research on the acquisition, update and erasure of fear memory, focusing on the mechanisms associated with memory reconsolidation. Reconsolidation blockade (or impairment) treatment in PTSD has been studied in clinical trials and, from a neurological perspective, may hold promise for identifying epigenetic markers of successful therapy. We conclude this paper by discussing several key considerations and challenges in epigenetic research on PTSD in humans.
Collapse
Affiliation(s)
- Lei Cao-Lei
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
| | - Daniel Saumier
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
| | - Justine Fortin
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Alain Brunet
- Research Center of the Douglas Mental Health University Institute (CIUSSS-ODIM), Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Boero G, Tyler RE, O’Buckley TK, Balan I, Besheer J, Morrow AL. (3α,5α)3-Hydroxypregnan-20-one (3α,5α-THP) Regulation of the HPA Axis in the Context of Different Stressors and Sex. Biomolecules 2022; 12:1134. [PMID: 36009028 PMCID: PMC9406198 DOI: 10.3390/biom12081134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Corticotropin-releasing factor (CRF) regulates the stress response in the hypothalamus and modulates neurotransmission across the brain through CRF receptors. Acute stress increases hypothalamic CRF and the GABAergic neurosteroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP). We previously showed that 3α,5α-THP regulation of CRF is sex and brain region dependent. In this study, we investigated 3α,5α-THP regulation of stress-induced hypothalamic CRF, CRF receptor type 1 (CRFR1), CRF binding protein (CRFBP), pro-opiomelanocortin (POMC), and glucocorticoid receptor (GR) by western blot and circulating corticosterone (CORT) by enzyme-linked immunosorbent assay (ELISA) in male and female Sprague Dawley rats. Tissue was collected after rats were injected with 3α,5α-THP (15 mg/kg, IP) or vehicle 15 min prior to 30 min of restraint stress (RS), or 10 min of forced swim stress (FSS) and 20 min recovery. The initial exposure to a stress stimulus increased circulating CORT levels in both males and females, but 3α,5α-THP attenuated the CORT response only in females after RS. 3α,5α-THP reduced GR levels in male and females, but differently between stressors. 3α,5α-THP decreased the CRF stress response after FSS in males and females, but after RS, only in female rats. 3α,5α-THP reduced the CRFR1, CRFBP, and POMC increases after RS and FSS in males, but in females only after FSS. Our results showed different stress responses following different types of stressors: 3α,5α-THP regulated the HPA axis at different levels, depending on sex.
Collapse
Affiliation(s)
- Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan E. Tyler
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Gonda X, Dome P, Erdelyi-Hamza B, Krause S, Elek LP, Sharma SR, Tarazi FI. Invisible wounds: Suturing the gap between the neurobiology, conventional and emerging therapies for posttraumatic stress disorder. Eur Neuropsychopharmacol 2022; 61:17-29. [PMID: 35716404 DOI: 10.1016/j.euroneuro.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
A sharp increase in the prevalence of neuropsychiatric disorders, including major depression, anxiety, substance use disorders and posttraumatic stress disorder (PTSD) has occurred due to the traumatic nature of the persisting COVID-19 global pandemic. PTSD is estimated to occur in up to 25% of individuals following exposure to acute or chronic trauma, and the pandemic has inflicted both forms of trauma on much of the population through both direct physiological attack as well as an inherent upheaval to our sense of safety. However, despite significant advances in our ability to define and apprehend the effects of traumatic events, the neurobiology and neuroanatomical circuitry of PTSD, one of the most severe consequences of traumatic exposure, remains poorly understood. Furthermore, the current psychotherapies or pharmacological options for treatment have limited efficacy, durability, and low adherence rates. Consequently, there is a great need to better understand the neurobiology and neuroanatomy of PTSD and develop novel therapies that extend beyond the current limited treatments. This review summarizes the neurobiological and neuroanatomical underpinnings of PTSD and discusses the conventional and emerging psychotherapies, pharmacological and combined psychopharmacological therapies, including the use of psychedelic-assisted psychotherapies and neuromodulatory interventions, for the improved treatment of PTSD and the potential for their wider applications in other neuropsychiatric disorders resulting from traumatic exposure.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Hungary; International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, Russia.
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; National Institute of Mental Health, Neurology and Neurosurgery - Nyiro Gyula Hospital, Hungary
| | - Berta Erdelyi-Hamza
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Hungary
| | - Sandor Krause
- National Institute of Mental Health, Neurology and Neurosurgery - Nyiro Gyula Hospital, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Hungary; Department of Pharmacodynamics, Semmelweis University, Hungary
| | - Livia Priyanka Elek
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; Department of Clinical Psychology, Semmelweis University, Hungary
| | - Samata R Sharma
- Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
22
|
Spanagel R. Ten Points to Improve Reproducibility and Translation of Animal Research. Front Behav Neurosci 2022; 16:869511. [PMID: 35530730 PMCID: PMC9070052 DOI: 10.3389/fnbeh.2022.869511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Findings from animal experiments are often difficult to transfer to humans. In this perspective article I discuss two questions. First, why are the results of animal experiments often so difficult to transfer to humans? And second, what can be done to improve translation from animal experiments to humans? Translation failures are often the result of poor methodology. It is not merely the fact that low statistical power of basic and preclinical studies undermine a "real effect," but the accuracy with which data from animal studies are collected and described, and the resulting robustness of the data is generally very low and often does not allow translation to a much more heterogeneous human condition. Equally important is the fact that the vast majority of publications in the biomedical field in the last few decades have reported positive findings and have thus generated a knowledge bias. Further contributions to reproducibility and translation failures are discussed in this paper, and 10 points of recommendation to improve reproducibility and translation are outlined. These recommendations are: (i) prior to planning an actual study, a systematic review or potential preclinical meta-analysis should be considered. (ii) An a priori power calculation should be carried out. (iii) The experimental study protocol should be pre-registered. (iv) The execution of the study should be in accordance with the most recent ARRIVE guidelines. (v) When planning the study, the generalizability of the data to be collected should also be considered (e.g., sex or age differences). (vi) "Method-hopping" should be avoided, meaning that it is not necessary to use the most advanced technology but rather to have the applied methodology under control. (vii) National or international networks should be considered to carry out multicenter preclinical studies or to obtain convergent evidence. (viii) Animal models that capture DSM-5 or ICD-11 criteria should be considered in the context of research on psychiatric disorders. (ix) Raw data of publication should be made publicly available and should be in accordance with the FAIR Guiding Principles for scientific data management. (x) Finally, negative findings should be published to counteract publication bias. The application of these 10 points of recommendation, especially for preclinical confirmatory studies but also to some degree for exploratory studies, will ultimately improve the reproducibility and translation of animal research.
Collapse
Affiliation(s)
- Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon WA. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18:273-288. [PMID: 35352034 PMCID: PMC9682920 DOI: 10.1038/s41582-022-00635-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.
Collapse
Affiliation(s)
- Kerry J Ressler
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sabina Berretta
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Y Bolshakov
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward G Meloni
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a prevalent and disabling disorder. Evidence that PTSD is characterised by specific psychobiological dysfunctions has contributed to a growing interest in the use of medication in its treatment. OBJECTIVES To assess the effects of medication for reducing PTSD symptoms in adults with PTSD. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 11, November 2020); MEDLINE (1946-), Embase (1974-), PsycINFO (1967-) and PTSDPubs (all available years) either directly or via the Cochrane Common Mental Disorders Controlled Trials Register (CCMDCTR). We also searched international trial registers. The date of the latest search was 13 November 2020. SELECTION CRITERIA All randomised controlled trials (RCTs) of pharmacotherapy for adults with PTSD. DATA COLLECTION AND ANALYSIS Three review authors (TW, JI, and NP) independently assessed RCTs for inclusion in the review, collated trial data, and assessed trial quality. We contacted investigators to obtain missing data. We stratified summary statistics by medication class, and by medication agent for all medications. We calculated dichotomous and continuous measures using a random-effects model, and assessed heterogeneity. MAIN RESULTS We include 66 RCTs in the review (range: 13 days to 28 weeks; 7442 participants; age range 18 to 85 years) and 54 in the meta-analysis. For the primary outcome of treatment response, we found evidence of beneficial effect for selective serotonin reuptake inhibitors (SSRIs) compared with placebo (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.59 to 0.74; 8 studies, 1078 participants), which improved PTSD symptoms in 58% of SSRI participants compared with 35% of placebo participants, based on moderate-certainty evidence. For this outcome we also found evidence of beneficial effect for the noradrenergic and specific serotonergic antidepressant (NaSSA) mirtazapine: (RR 0.45, 95% CI 0.22 to 0.94; 1 study, 26 participants) in 65% of people on mirtazapine compared with 22% of placebo participants, and for the tricyclic antidepressant (TCA) amitriptyline (RR 0.60, 95% CI 0.38 to 0.96; 1 study, 40 participants) in 50% of amitriptyline participants compared with 17% of placebo participants, which improved PTSD symptoms. These outcomes are based on low-certainty evidence. There was however no evidence of beneficial effect for the number of participants who improved with the antipsychotics (RR 0.51, 95% CI 0.16 to 1.67; 2 studies, 43 participants) compared to placebo, based on very low-certainty evidence. For the outcome of treatment withdrawal, we found evidence of a harm for the individual SSRI agents compared with placebo (RR 1.41, 95% CI 1.07 to 1.87; 14 studies, 2399 participants). Withdrawals were also higher for the separate SSRI paroxetine group compared to the placebo group (RR 1.55, 95% CI 1.05 to 2.29; 5 studies, 1101 participants). Nonetheless, the absolute proportion of individuals dropping out from treatment due to adverse events in the SSRI groups was low (9%), based on moderate-certainty evidence. For the rest of the medications compared to placebo, we did not find evidence of harm for individuals dropping out from treatment due to adverse events. AUTHORS' CONCLUSIONS The findings of this review support the conclusion that SSRIs improve PTSD symptoms; they are first-line agents for the pharmacotherapy of PTSD, based on moderate-certainty evidence. The NaSSA mirtazapine and the TCA amitriptyline may also improve PTSD symptoms, but this is based on low-certainty evidence. In addition, we found no evidence of benefit for the number of participants who improved following treatment with the antipsychotic group compared to placebo, based on very low-certainty evidence. There remain important gaps in the evidence base, and a continued need for more effective agents in the management of PTSD.
Collapse
Affiliation(s)
- Taryn Williams
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicole J Phillips
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan C Ipser
- The Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Ritchie JL, Walters JL, Galliou JMC, Christian RJ, Qi S, Savenkova MI, Ibarra CK, Grogan SR, Fuchs RA. Basolateral amygdala corticotropin-releasing factor receptor type 1 regulates context-cocaine memory strength during reconsolidation in a sex-dependent manner. Neuropharmacology 2021; 200:108819. [PMID: 34610289 PMCID: PMC8550898 DOI: 10.1016/j.neuropharm.2021.108819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
The basolateral amygdala (BLA) is a critical brain region for cocaine-memory reconsolidation. Corticotropin-releasing factor receptor type 1 (CRFR1) is densely expressed in the BLA, and CRFR1 stimulation can activate intra-cellular signaling cascades that mediate memory reconsolidation. Hence, we tested the hypothesis that BLA CRFR1 stimulation is necessary and sufficient for cocaine-memory reconsolidation. Using an instrumental model of drug relapse, male and female Sprague-Dawley rats received cocaine self-administration training in a distinct environmental context over 10 days followed by extinction training in a different context over 7 days. Next, rats were re-exposed to the cocaine-paired context for 15 min to initiate cocaine-memory retrieval and destabilization. Immediately or 6 h after this session, the rats received bilateral vehicle, antalarmin (CRFR1 antagonist; 500 ng/hemisphere), or corticotropin-releasing factor (CRF; 0.2, 30 or 500 ng/hemisphere) infusions into the BLA. Resulting changes in drug context-induced cocaine seeking (index of context-cocaine memory strength) were assessed three days later. Female rats self-administered more cocaine infusions and exhibited more extinction responding than males. Intra-BLA antalarmin treatment immediately after memory retrieval (i.e., when cocaine memories were labile), but not 6 h later (i.e., after memory reconsolidation), attenuated drug context-induced cocaine seeking at test independent of sex, relative to vehicle. Conversely, intra-BLA CRF treatment increased this behavior selectively in females, in a U-shaped dose-dependent fashion. In control experiments, a high (behaviorally ineffective) dose of CRF treatment did not reduce BLA CRFR1 cell-surface expression in females. Thus, BLA CRFR1 signaling is necessary and sufficient, in a sex-dependent manner, for regulating cocaine-memory strength.
Collapse
Affiliation(s)
- Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Jennifer L Walters
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Justine M C Galliou
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shayna R Grogan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA; Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
26
|
Stein MB, Jain S, Simon NM, West JC, Marvar PJ, Bui E, He F, Benedek DM, Cassano P, Griffith JL, Howlett J, Malgaroli M, Melaragno A, Seligowski AV, Shu IW, Song S, Szuhany K, Taylor CT, Ressler KJ. Randomized, Placebo-Controlled Trial of the Angiotensin Receptor Antagonist Losartan for Posttraumatic Stress Disorder. Biol Psychiatry 2021; 90:473-481. [PMID: 34275593 DOI: 10.1016/j.biopsych.2021.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Evidence-based pharmacological treatments for posttraumatic stress disorder (PTSD) are few and of limited efficacy. Previous work suggests that angiotensin type 1 receptor inhibition facilitates fear inhibition and extinction, important for recovery from PTSD. This study tests the efficacy of the angiotensin type 1 receptor antagonist losartan, an antihypertensive drug, repurposed for the treatment of PTSD. METHODS A randomized controlled trial was conducted for 10 weeks in 149 men and women meeting DSM-5 PTSD criteria. Losartan (vs. placebo) was flexibly titrated from 25 to 100 mg/day by week 6 and held at highest tolerated dose until week 10. Primary outcome was the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) change score at 10 weeks from baseline. A key secondary outcome was change in CAPS-5 associated with a single nucleotide polymorphism of the ACE gene. Additional secondary outcomes included changes in the PTSD Checklist for DSM-5 and the Patient Health Questionnaire-9, and proportion of responders with a Clinical Global Impressions-Improvement scale of "much improved" or "very much improved." RESULTS Both groups had robust improvement in PTSD symptoms, but there was no significant difference on the primary end point, CAPS-5 measured as week 10 change from baseline, between losartan and placebo (mean change difference, 0.9, 95% confidence interval, -3.2 to 5.0). There was no significant difference in the proportion of Clinical Global Impressions-Improvement scale responders for losartan (58.6%) versus placebo (57.9%), no significant differences in changes in PTSD Checklist for DSM-5 or Patient Health Questionnaire-9, and no association between ACE genotype and CAPS-5 improvement on losartan. CONCLUSIONS At these doses and durations, there was no significant benefit of losartan compared with placebo for the treatment of PTSD. We discuss implications for failure to determine the benefit of a repurposed drug with strong a priori expectations of success based on preclinical and epidemiological data.
Collapse
Affiliation(s)
- Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California.
| | - Sonia Jain
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - Naomi M Simon
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - James C West
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Feng He
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
| | - David M Benedek
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jonathan Howlett
- Department of Psychiatry, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Matteo Malgaroli
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - Andrew Melaragno
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts
| | - I-Wei Shu
- Department of Psychiatry, University of California San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| | - Suzan Song
- George Washington University, Washington, DC
| | - Kristin Szuhany
- NYU Grossman School of Medicine and NYU Langone Health, New York, New York
| | - Charles T Taylor
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
27
|
Ressler KJ. Translating Across Circuits and Genetics Toward Progress in Fear- and Anxiety-Related Disorders. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:247-255. [PMID: 34690590 PMCID: PMC8475910 DOI: 10.1176/appi.focus.19205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 06/13/2023]
Abstract
(Reprinted with permission from Am J Psychiatry 2020; 177:214-222).
Collapse
|
28
|
Uba AI, Scorese N, Dean E, Liu H, Wu C. Activation Mechanism of Corticotrophin Releasing Factor Receptor Type 1 Elucidated Using Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:1674-1687. [PMID: 33860667 DOI: 10.1021/acschemneuro.1c00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The corticotropin-releasing factor receptor type 1 (CRF1R), a member of class B G-protein-coupled receptors (GPCRs), is a good drug target for treating depression, anxiety, and other stress-related neurodisorders. However, there is no approved drug targeting the CRF1R to date, partly due to inadequate structural information and its elusive activation mechanism. Here, by use of the crystal structures of its transmembrane domain (TMD) and the N-terminal extracellular domain (ECD) as a template, a full-length homology model of CRF1R was built and its complexes with peptide agonist urocortin 1 or small molecule antagonist CP-376395 were subjected to all-atom molecular dynamics simulations. We observed well preserved helical contents in the TMD through simulations, while the transmembrane (TM) helices showed clear rearrangements. The TM rearrangement is especially pronounced for the TM6 in the agonist-bound CRF1R system. The observed conformational changes are likely due to breakage of interhelical/inter-regional hydrogen bonds in the TMD. Dynamical network analysis identifies communities with high connections to TM6. Simulations reveal three key residues, Y3566.53, Q3847.49, and L3957.60, which corroborate experimental mutagenesis data, implying the important roles in the receptor activation. The observed large-scale conformational changes are related to CRF1R activation by agonist binding, providing guidance for ligand design.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Nicolas Scorese
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Emily Dean
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
29
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
Young CE, Tong Q. Corticotropin Releasing Hormone Signaling in the Bed Nuclei of the Stria Terminalis as a Link to Maladaptive Behaviors. Front Neurosci 2021; 15:642379. [PMID: 33867924 PMCID: PMC8044981 DOI: 10.3389/fnins.2021.642379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
The bed nuclei of the stria terminalis (BST) is a limbic region in the extended amygdala that is heavily implicated in anxiety processing and hypothalamic-adrenal-pituitary (HPA) axis activation. The BST is complex, with many nuclei expressing different neurotransmitters and receptors involved in a variety of signaling pathways. One neurotransmitter that helps link its functions is corticotropin releasing hormone (CRH). BST CRH neuron activation may cause both anxiogenic and anxiolytic effects in rodents, and CRH neurons interact with other neuron types to influence anxiety-like responses as well as alcohol and drug–seeking behavior. This review covers the link between BST CRH neurons and thirteen other neurotransmitters and receptors and analyzes their effect on rodent behavior. Additionally, it covers the translational potential of targeting CRH signaling pathways for the treatment of human mental health disorders. Given the massive impact of anxiety, mood, and substance use disorders on our society, further research into BST CRH signaling is critical to alleviate the social and economic burdens of those disorders.
Collapse
Affiliation(s)
- Claire Emily Young
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Neurobiology and Anatomy of McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center & UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
31
|
Stein MB, Levey DF, Cheng Z, Wendt FR, Harrington K, Pathak GA, Cho K, Quaden R, Radhakrishnan K, Girgenti MJ, Ho YLA, Posner D, Aslan M, Duman RS, Zhao H, Polimanti R, Concato J, Gelernter J. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat Genet 2021; 53:174-184. [PMID: 33510476 PMCID: PMC7972521 DOI: 10.1038/s41588-020-00767-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
We conducted genome-wide association analyses of over 250,000 participants of European (EUR) and African (AFR) ancestry from the Million Veteran Program using electronic health record-validated post-traumatic stress disorder (PTSD) diagnosis and quantitative symptom phenotypes. Applying genome-wide multiple testing correction, we identified three significant loci in European case-control analyses and 15 loci in quantitative symptom analyses. Genomic structural equation modeling indicated tight coherence of a PTSD symptom factor that shares genetic variance with a distinct internalizing (mood-anxiety-neuroticism) factor. Partitioned heritability indicated enrichment in several cortical and subcortical regions, and imputed genetically regulated gene expression in these regions was used to identify potential drug repositioning candidates. These results validate the biological coherence of the PTSD syndrome, inform its relationship to comorbid anxiety and depressive disorders and provide new considerations for treatment.
Collapse
Affiliation(s)
- Murray B Stein
- VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
| | - Daniel F Levey
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongshan Cheng
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Frank R Wendt
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Harrington
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Gita A Pathak
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Cho
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rachel Quaden
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
| | - Krishnan Radhakrishnan
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
- College of Medicine, University of Kentucky, Lexington, KY, USA
- Office of the Director, Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, Rockville, MD, USA
| | - Matthew J Girgenti
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yuk-Lam Anne Ho
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
| | - Daniel Posner
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
| | - Mihaela Aslan
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald S Duman
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyu Zhao
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Renato Polimanti
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John Concato
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Joel Gelernter
- VA Connecticut Healthcare System, Psychiatry Service, West Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
32
|
Czamara D, Tissink E, Tuhkanen J, Martins J, Awaloff Y, Drake AJ, Khulan B, Palotie A, Winter SM, Nemeroff CB, Craighead WE, Dunlop BW, Mayberg HS, Kinkead B, Mathew SJ, Iosifescu DV, Neylan TC, Heim CM, Lahti J, Eriksson JG, Räikkönen K, Ressler KJ, Provençal N, Binder EB. Combined effects of genotype and childhood adversity shape variability of DNA methylation across age. Transl Psychiatry 2021; 11:88. [PMID: 33526782 PMCID: PMC7851167 DOI: 10.1038/s41398-020-01147-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Lasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.
Collapse
Affiliation(s)
- Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.
| | - Elleke Tissink
- grid.12380.380000 0004 1754 9227Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johanna Tuhkanen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Jade Martins
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | | | - Amanda J. Drake
- grid.4305.20000 0004 1936 7988University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Batbayar Khulan
- grid.4305.20000 0004 1936 7988University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Aarno Palotie
- grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Sibylle M. Winter
- grid.6363.00000 0001 2218 4662Department of Child and Adolescent Psychiatry, Charité—Universitätsmedizin Berlin, Campus Virchow, 13353 Berlin, Germany
| | - Charles B. Nemeroff
- grid.89336.370000 0004 1936 9924Department of Psychiatry, Dell Medical School, University of Texas at Austin, 1601 Trinity St, Austin, TX 78712 USA
| | - W. Edward Craighead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Boadie W. Dunlop
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Helen S. Mayberg
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029 USA
| | - Becky Kinkead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| | - Sanjay J. Mathew
- grid.413890.70000 0004 0420 5521Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine Mental Health Care Line, Michael E. Debakey VA Medical Center, Houston, TX USA
| | - Dan V. Iosifescu
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy PI, New York, NY 10029 USA ,grid.137628.90000 0004 1936 8753NYU School of Medicine and Nathan Kline Institute, New York, NY USA
| | - Thomas C. Neylan
- grid.266102.10000 0001 2297 6811Departments of Psychiatry and Neurology, University of California, San Francisco, CA USA
| | - Christine M. Heim
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Luisenstraße 57, 10117 Berlin, Germany
| | - Jari Lahti
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland ,grid.1374.10000 0001 2097 1371Turku Institute for Advanced Studies, University of Turku, 20500 Turku, Finland
| | - Johan G. Eriksson
- grid.7737.40000 0004 0410 2071Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland ,grid.428673.c0000 0004 0409 6302Folkhälsan Research Center, 00250 Helsinki, Finland ,grid.4280.e0000 0001 2180 6431Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Katri Räikkönen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Kerry J. Ressler
- Mailman Research Center, 115 Mill St., Mailstop 339, Belmont, MA 02478 USA
| | - Nadine Provençal
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC Canada ,grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute, Vancouver, BC Canada
| | - Elisabeth B. Binder
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr, Atlanta, GA 30329 USA
| |
Collapse
|
33
|
Hoskins MD, Bridges J, Sinnerton R, Nakamura A, Underwood JFG, Slater A, Lee MRD, Clarke L, Lewis C, Roberts NP, Bisson JI. Pharmacological therapy for post-traumatic stress disorder: a systematic review and meta-analysis of monotherapy, augmentation and head-to-head approaches. Eur J Psychotraumatol 2021; 12:1802920. [PMID: 34992738 PMCID: PMC8725683 DOI: 10.1080/20008198.2020.1802920] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Pharmacological approaches are widely used for post-traumatic stress disorder (PTSD) despite uncertainty over efficacy. Objectives: To determine the efficacy of all pharmacological approaches, including monotherapy, augmentation and head-to-head approaches (drug versus drug, drug versus psychotherapy), in reducing PTSD symptom severity. Method: A systematic review and meta-analysis of randomised controlled trials were undertaken; 115 studies were included. Results: Selective serotonin reuptake inhibitors (SSRIs) were found to be statistically superior to placebo in reduction of PTSD symptoms but the effect size was small (standardised mean difference -0.28, 95% CI -0.39 to -0.17). For individual monotherapy agents compared to placebo in two or more studies, we found small statistically significant evidence for the antidepressants fluoxetine, paroxetine, sertraline, venlafaxine and the antipsychotic quetiapine. For pharmacological augmentation, we found small statistically significant evidence for prazosin and risperidone. Conclusions: Some medications have a small positive effect on reducing PTSD symptom severity and can be considered as potential monotherapy treatments; these include fluoxetine, paroxetine, sertraline, venlafaxine and quetiapine. Two medications, prazosin and risperidone, also have a small positive effect when used to augment pharmacological monotherapy. There was no evidence of superiority for one intervention over another in the small number of head-to-head comparison studies.
Collapse
Affiliation(s)
- Mathew D. Hoskins
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Jack Bridges
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Robert Sinnerton
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Anna Nakamura
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Jack F. G. Underwood
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Alan Slater
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Matthew R. D. Lee
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Liam Clarke
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Catrin Lewis
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Neil P. Roberts
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Jonathan I. Bisson
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Abstract
Stress system dysfunction is a typical characteristic of acute depression and other mood disorders. The exact pattern of factors predisposing for stress-related mental disorders is yet to be unraveled. However, corticosteroid receptor function plays an important role for appropriate or dysfunctional neuroendocrine responses to stress exposure and hence in resilience or risk for the development and course of both, depression and anxiety disorders. Solid neuroscience data strongly support that both neuropeptides, corticotropin-releasing hormone (CRH) and vasopressin (AVP), are central in coordinating humoral and behavioral adaptation to stress. Other neuropeptides, including oxytocin, neuropeptide S, neuropeptide Y, and orexin, are also considered important contributors. Attempts to turn neuropeptide biology into treatments for stress-related disorders need to consider that neuropeptide receptors are specific drug targets for certain patient populations rather than universal targets for all patients, like biogenic amine systems. That is why most negative clinical trials testing neuropeptide receptor antagonists have been in fact failed trials by design, because no companion tests were used to identify which patients with depression are most likely to benefit from a specific neuropeptide receptor-targeting drug treatment. Therefore, the most important future research task is discovery and development of appropriate companion tests that will allow the successful transfer of the precious treasure of neuropeptide system-targeting drugs into clinics.
Collapse
Affiliation(s)
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
35
|
Harvey PD, Miller ML, Moore RC, Depp CA, Parrish EM, Pinkham AE. Capturing Clinical Symptoms with Ecological Momentary Assessment: Convergence of Momentary Reports of Psychotic and Mood Symptoms with Diagnoses and Standard Clinical Assessments. INNOVATIONS IN CLINICAL NEUROSCIENCE 2021; 18:24-30. [PMID: 34150360 PMCID: PMC8195558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Objective: The development and deployment of technology-based assessments of clinical symptoms are increasing. This study used ecological momentary assessment (EMA) to examine clinical symptoms and relates these sampling results to structured clinical ratings. Methods: Three times a day for 30 days, participants with bipolar disorder (n=71; BPI) or schizophrenia (n=102; SCZ) completed surveys assessing five psychosis-related and five mood symptoms, in addition to reporting their location and who they were with at the time of survey completion. Participants also completed Positive and Negative Syndrome Scale (PANSS) interviews with trained raters. Mixed-model repeated-measures (MMRM) analyses examined diagnostic effects and the convergence between clinical ratings and EMA sampling. Results: In total, 12,406 EMA samples were collected, with 80-percent adherence to prompts. EMA-reported psychotic symptoms manifested substantial convergence with equivalent endpoint PANSS items. Patients with SCZ had more severe PANSS and EMA psychotic symptoms. There were no changes in symptom severity scores as a function of the number of previous assessments. Conclusions: EMA surveyed clinical symptoms converged substantially with commonly used clinical rating scales in a large sample, with high adherence. This suggested that remote assessment of clinical symptoms is valid and practical and was not associated with alterations in symptoms as a function of reassessment, with additional benefits of "in the moment" sampling, such as eliminating recall bias and the need for informant reports.
Collapse
Affiliation(s)
- Philip D Harvey
- Dr. Harvey is with the University of Miami Miller School of Medicine in Miami, Florida, and Research Service at Bruce W. Carter VA Medical Center in Miami, Florida
- Ms. Miller is with the University of Miami Miller School of Medicine in Miami, Florida
- Dr. Moore is with the Department of Psychiatry at the University of California in La Jolla, California
- Dr. Depp is with the Department of Psychiatry at the University of California in La Jolla, California, and Veterans Affairs San Diego Healthcare System in La Jolla, California
- Ms. Parrish is with the Joint Doctoral Program in Clinical Psychology at San Diego State University /University of California, San Diego
- Dr. Pinkham is with the University of Texas at Dallas in Richardson, Texas, and the UT Southwestern Medical Center in Dallas, Texas
| | - Michelle L Miller
- Dr. Harvey is with the University of Miami Miller School of Medicine in Miami, Florida, and Research Service at Bruce W. Carter VA Medical Center in Miami, Florida
- Ms. Miller is with the University of Miami Miller School of Medicine in Miami, Florida
- Dr. Moore is with the Department of Psychiatry at the University of California in La Jolla, California
- Dr. Depp is with the Department of Psychiatry at the University of California in La Jolla, California, and Veterans Affairs San Diego Healthcare System in La Jolla, California
- Ms. Parrish is with the Joint Doctoral Program in Clinical Psychology at San Diego State University /University of California, San Diego
- Dr. Pinkham is with the University of Texas at Dallas in Richardson, Texas, and the UT Southwestern Medical Center in Dallas, Texas
| | - Raeanne C Moore
- Dr. Harvey is with the University of Miami Miller School of Medicine in Miami, Florida, and Research Service at Bruce W. Carter VA Medical Center in Miami, Florida
- Ms. Miller is with the University of Miami Miller School of Medicine in Miami, Florida
- Dr. Moore is with the Department of Psychiatry at the University of California in La Jolla, California
- Dr. Depp is with the Department of Psychiatry at the University of California in La Jolla, California, and Veterans Affairs San Diego Healthcare System in La Jolla, California
- Ms. Parrish is with the Joint Doctoral Program in Clinical Psychology at San Diego State University /University of California, San Diego
- Dr. Pinkham is with the University of Texas at Dallas in Richardson, Texas, and the UT Southwestern Medical Center in Dallas, Texas
| | - Colin A Depp
- Dr. Harvey is with the University of Miami Miller School of Medicine in Miami, Florida, and Research Service at Bruce W. Carter VA Medical Center in Miami, Florida
- Ms. Miller is with the University of Miami Miller School of Medicine in Miami, Florida
- Dr. Moore is with the Department of Psychiatry at the University of California in La Jolla, California
- Dr. Depp is with the Department of Psychiatry at the University of California in La Jolla, California, and Veterans Affairs San Diego Healthcare System in La Jolla, California
- Ms. Parrish is with the Joint Doctoral Program in Clinical Psychology at San Diego State University /University of California, San Diego
- Dr. Pinkham is with the University of Texas at Dallas in Richardson, Texas, and the UT Southwestern Medical Center in Dallas, Texas
| | - Emma M Parrish
- Dr. Harvey is with the University of Miami Miller School of Medicine in Miami, Florida, and Research Service at Bruce W. Carter VA Medical Center in Miami, Florida
- Ms. Miller is with the University of Miami Miller School of Medicine in Miami, Florida
- Dr. Moore is with the Department of Psychiatry at the University of California in La Jolla, California
- Dr. Depp is with the Department of Psychiatry at the University of California in La Jolla, California, and Veterans Affairs San Diego Healthcare System in La Jolla, California
- Ms. Parrish is with the Joint Doctoral Program in Clinical Psychology at San Diego State University /University of California, San Diego
- Dr. Pinkham is with the University of Texas at Dallas in Richardson, Texas, and the UT Southwestern Medical Center in Dallas, Texas
| | - Amy E Pinkham
- Dr. Harvey is with the University of Miami Miller School of Medicine in Miami, Florida, and Research Service at Bruce W. Carter VA Medical Center in Miami, Florida
- Ms. Miller is with the University of Miami Miller School of Medicine in Miami, Florida
- Dr. Moore is with the Department of Psychiatry at the University of California in La Jolla, California
- Dr. Depp is with the Department of Psychiatry at the University of California in La Jolla, California, and Veterans Affairs San Diego Healthcare System in La Jolla, California
- Ms. Parrish is with the Joint Doctoral Program in Clinical Psychology at San Diego State University /University of California, San Diego
- Dr. Pinkham is with the University of Texas at Dallas in Richardson, Texas, and the UT Southwestern Medical Center in Dallas, Texas
| |
Collapse
|
36
|
Koob GF. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol Rev 2021; 73:163-201. [PMID: 33318153 PMCID: PMC7770492 DOI: 10.1124/pharmrev.120.000083] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Compulsive drug seeking that is associated with addiction is hypothesized to follow a heuristic framework that involves three stages (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) and three domains of dysfunction (incentive salience/pathologic habits, negative emotional states, and executive function, respectively) via changes in the basal ganglia, extended amygdala/habenula, and frontal cortex, respectively. This review focuses on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the addiction cycle. Hyperkatifeia provides an additional source of motivation for compulsive drug seeking via negative reinforcement. Negative reinforcement reflects an increase in the probability of a response to remove an aversive stimulus or drug seeking to remove hyperkatifeia that is augmented by genetic/epigenetic vulnerability, environmental trauma, and psychiatric comorbidity. Neurobiological targets for hyperkatifeia in addiction involve neurocircuitry of the extended amygdala and its connections via within-system neuroadaptations in dopamine, enkephalin/endorphin opioid peptide, and γ-aminobutyric acid/glutamate systems and between-system neuroadaptations in prostress corticotropin-releasing factor, norepinephrine, glucocorticoid, dynorphin, hypocretin, and neuroimmune systems and antistress neuropeptide Y, nociceptin, endocannabinoid, and oxytocin systems. Such neurochemical/neurocircuitry dysregulations are hypothesized to mediate a negative hedonic set point that gradually gains allostatic load and shifts from a homeostatic hedonic state to an allostatic hedonic state. Based on preclinical studies and translational studies to date, medications and behavioral therapies that reset brain stress, antistress, and emotional pain systems and return them to homeostasis would be promising new targets for medication development. SIGNIFICANCE STATEMENT: The focus of this review is on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the drug addiction cycle and a driving force for negative reinforcement in addiction. Medications and behavioral therapies that reverse hyperkatifeia by resetting brain stress, antistress, and emotional pain systems and returning them to homeostasis would be promising new targets for medication development.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Grillon C, Ernst M. A way forward for anxiolytic drug development: Testing candidate anxiolytics with anxiety-potentiated startle in healthy humans. Neurosci Biobehav Rev 2020; 119:348-354. [PMID: 33038346 DOI: 10.1016/j.neubiorev.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
This review introduces a research strategy that may radically transform the pursuit of new anxiolytics, via the use of human models of anxiety in healthy individuals. Despite enormous investments in developing novel pharmacological treatments for anxiety disorders, pharmacotherapy for these conditions remains suboptimal. Most candidate anxiolytics from animal studies fail in clinical trials. We propose an additional screening step to help select candidate anxiolytics before launching clinical trials. This intermediate step moves the evidence for the potential anxiolytic property of candidate drugs from animals to humans, using experimental models of anxiety in healthy individuals. Anxiety-potentiated startle is a robust translational model of anxiety. The review of its face, construct, and predictive validity as well as its psychometric properties in humans establishes it as a promising tool for anxiolytic drug development. In conclusion, human models of anxiety may stir a faster, more efficient path for the development of clinically effective anxiolytics.
Collapse
Affiliation(s)
- Christian Grillon
- National Institute of Mental Health, Section on the Neurobiology of Fear and Anxiety, Building 15K, Room 203, Bethesda, MD 20814 USA.
| | - Monique Ernst
- National Institute of Mental Health, Section on the Neurobiology of Fear and Anxiety, Building 15K, Room 203, Bethesda, MD 20814 USA.
| |
Collapse
|
38
|
Castro-Vale I, Carvalho D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare (Basel) 2020; 8:healthcare8040376. [PMID: 33019527 PMCID: PMC7712185 DOI: 10.3390/healthcare8040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) only develops after exposure to a traumatic event in some individuals. PTSD can be chronic and debilitating, and is associated with co-morbidities such as depression, substance use, and cardiometabolic disorders. One of the most important pathophysiological mechanisms underlying the development of PTSD and its subsequent maintenance is a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin-releasing hormone, cortisol, glucocorticoid receptor (GR), and their respective genes are some of the mediators of PTSD's pathophysiology. Several treatments are available, including medication and psychotherapies, although their success rate is limited. Some pharmacological therapies based on the HPA axis are currently being tested in clinical trials and changes in HPA axis biomarkers have been found to occur in response not only to pharmacological treatments, but also to psychotherapy-including the epigenetic modification of the GR gene. Psychotherapies are considered to be the first line treatments for PTSD in some guidelines, even though they are effective for some, but not for all patients with PTSD. This review aims to address how knowledge of the HPA axis-related genetic makeup can inform and predict the outcomes of psychotherapeutic treatments.
Collapse
Affiliation(s)
- Ivone Castro-Vale
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence:
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, São João Hospital University Centre, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| |
Collapse
|
39
|
Pomrenze MB, Giovanetti SM, Maiya R, Gordon AG, Kreeger LJ, Messing RO. Dissecting the Roles of GABA and Neuropeptides from Rat Central Amygdala CRF Neurons in Anxiety and Fear Learning. Cell Rep 2020; 29:13-21.e4. [PMID: 31577943 PMCID: PMC6879108 DOI: 10.1016/j.celrep.2019.08.083] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
Central amygdala (CeA) neurons that produce corticotropin-releasing factor (CRF) regulate anxiety and fear learning. These CeACRF neurons release GABA and several neuropeptides predicted to play important yet opposing roles in these behaviors. We dissected the relative roles of GABA, CRF, dynorphin, and neurotensin in CeACRF neurons in anxiety and fear learning by disrupting their expression using RNAi in male rats. GABA, but not CRF, dynorphin, or neurotensin, regulates baseline anxiety-like behavior. In contrast, chemogenetic stimulation of CeACRF neurons evokes anxiety-like behavior dependent on CRF and dynorphin, but not neurotensin. Finally, knockdown of CRF and dynorphin impairs fear learning, whereas knockdown of neurotensin enhances it. Our results demonstrate distinct behavioral roles for GABA, CRF, dynorphin, and neurotensin in a subpopulation of CeA neurons. These results highlight the importance of considering the repertoire of signaling molecules released from a given neuronal population when studying the circuit basis of behavior. Pomrenze et al. demonstrate that CRF neurons of the central amygdala differentially regulate fear and anxiety through the release of GABA and different neuropeptides.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| | - Simone M Giovanetti
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Rajani Maiya
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Adam G Gordon
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren J Kreeger
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Dwyer JB, Aftab A, Radhakrishnan R, Widge A, Rodriguez CI, Carpenter LL, Nemeroff CB, McDonald WM, Kalin NH. Hormonal Treatments for Major Depressive Disorder: State of the Art. Am J Psychiatry 2020; 177:686-705. [PMID: 32456504 PMCID: PMC7841732 DOI: 10.1176/appi.ajp.2020.19080848] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is a common psychiatric disorder associated with marked suffering, morbidity, mortality, and cost. The World Health Organization projects that by 2030, major depression will be the leading cause of disease burden worldwide. While numerous treatments for major depression exist, many patients do not respond adequately to traditional antidepressants. Thus, more effective treatments for major depression are needed, and targeting certain hormonal systems is a conceptually based approach that has shown promise in the treatment of this disorder. A number of hormones and hormone-manipulating compounds have been evaluated as monotherapies or adjunctive treatments for major depression, with therapeutic actions attributable not only to the modulation of endocrine systems in the periphery but also to the CNS effects of hormones on non-endocrine brain circuitry. The authors describe the physiology of the hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary thyroid (HPT), and hypothalamic-pituitary-gonadal (HPG) axes and review the evidence for selected hormone-based interventions for the treatment of depression in order to provide an update on the state of this field for clinicians and researchers. The review focuses on the HPA axis-based interventions of corticotropin-releasing factor antagonists and the glucocorticoid receptor antagonist mifepristone, the HPT axis-based treatments of thyroid hormones (T3 and T4), and the HPG axis-based treatments of estrogen replacement therapy, the progesterone derivative allopregnanolone, and testosterone. While some treatments have largely failed to translate from preclinical studies, others have shown promising initial results and represent active fields of study in the search for novel effective treatments for major depression.
Collapse
Affiliation(s)
| | | | | | - Alik Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and VA Palo Alto Health Care System, Palo Alto, Calif
| | - Linda L. Carpenter
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I
| | | | - William M. McDonald
- Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta
| | - Ned H. Kalin
- Department of Psychiatry, University of Wisconsin–Madison
| | -
- Child Study Center and Department of Radiology and Biomedical Imaging, Yale University, New Haven, Conn. (Dwyer); Department of Psychiatry, Case Western Reserve University, Cleveland, and Northcoast Behavioral Healthcare Hospital, Northfield, Ohio (Aftab); Yale School of Medicine, New Haven, Conn. (Radhakrishnan); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and VA Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (McDonald); and Department of Psychiatry, University of Wisconsin-Madison (Kalin)
| |
Collapse
|
41
|
The role of glucocorticoid receptors in the induction and prevention of hippocampal abnormalities in an animal model of posttraumatic stress disorder. Psychopharmacology (Berl) 2020; 237:2125-2137. [PMID: 32333135 DOI: 10.1007/s00213-020-05523-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Numerous clinical studies have led to the hypothesis that elevated glucocorticoid levels in response to extreme stress might trigger a pathophysiological cascade which consequently leads to functional and morphological changes in the hippocampus. OBJECTIVES To elucidate the pathophysiology of PTSD, we examined the alteration of hippocampal gene expression through the glucocorticoid receptor (GR) in the single prolonged stress (SPS) paradigm, a rat model of PTSD. METHODS We measured nuclear GRs by western blot, and the binding of GR to the promoter of Bcl-2 and Bax genes by chromatin immunoprecipitation-qPCR as well as the expression of these 2 genes by RT-PCR in the hippocampus of SPS rats. In addition, we examined the preventive effects of a GR antagonist on SPS-induced molecular, morphological, and behavioral alterations (hippocampal gene expression of Bcl-2 and Bax, hippocampal apoptosis using TUNEL staining, impaired fear memory extinction (FME) using the contextual fear conditioning paradigm). RESULTS Exposure to SPS increased nuclear GR expression and GR binding to Bcl-2 gene, and decreased Bcl-2 mRNA expression. Administration of GR antagonist immediately after SPS prevented activation of the glucocorticoid cascade, hippocampal apoptosis, and impairment FME in SPS rats. CONCLUSION The activation of GRs in response to severe stress may trigger the pathophysiological cascade leading to impaired FME and hippocampal apoptosis. In contrast, administration of GR antagonist could be useful for preventing the development of PTSD.
Collapse
|
42
|
Steinberg LJ, Mann JJ. Abnormal stress responsiveness and suicidal behavior: A risk phenotype. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Huang ZD, Zhao YF, Li S, Gu HY, Lin LL, Yang ZY, Niu YM, Zhang C, Luo J. Comparative Efficacy and Acceptability of Pharmaceutical Management for Adults With Post-Traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:559. [PMID: 32457605 PMCID: PMC7225303 DOI: 10.3389/fphar.2020.00559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
The current clinical guidelines on post-traumatic stress disorder (PTSD) recommend selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) of drugs. However, there is uncertainty about the efficacy of other drugs and selecting which treatments work best for which patients. This meta-analysis evaluated efficacy and acceptability of pharmaceutical management for adults with PTSD. Randomized-controlled trials, which reported active comparators and placebo-controlled trials of pharmaceutical management for adults with PTSD, from the Ovid Medline, EMBase, CENTRAL, PsycINFO, Ovid Health and Psychosocial Instruments, and ISIWeb of Science, were searched until June 21, 2019. In terms of efficacy, all active drugs demonstrated superior effect than placebo (SMD = -0.33; 95% CI, -0.43 to -0.23). The medications were superior to placebo in reducing the symptom of re-experiencing, avoidance, hyperarousal, depression, and anxiety. For acceptability, medicine interventions for PTSD showed no increase in all-cause discontinuation compared with placebo. Nevertheless, in terms of safety, medicine interventions indicated a higher risk of adverse effect compared with placebo (RR = 1.47, 95% CI: 1.24 to 1.75). Compared with placebo, the SSRIs and atypical antipsychotics drugs had significant efficacy whether in patients with severe or extremely severe PTSD status. However, only atypical antipsychotics (SMD = -0.29, 95% CI: -0.48 to -0.10) showed superior efficacy than placebo in veterans. Medication management could be effective in intervention of PTSD, which demonstrated a sufficient improvement in the core symptoms. This meta-analysis supports the status of SSRIs and SNRIs as recommended pharmacotherapy. However, patients with different clinical characteristics of PTSD should consider individualized drug management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-Ming Niu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
44
|
Fronk GE, Sant'Ana SJ, Kaye JT, Curtin JJ. Stress Allostasis in Substance Use Disorders: Promise, Progress, and Emerging Priorities in Clinical Research. Annu Rev Clin Psychol 2020; 16:401-430. [PMID: 32040338 PMCID: PMC7259491 DOI: 10.1146/annurev-clinpsy-102419-125016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinicians and researchers alike have long believed that stressors play a pivotal etiologic role in risk, maintenance, and/or relapse of alcohol and other substance use disorders (SUDs). Numerous seminal and contemporary theories on SUD etiology posit that stressors may motivate drug use and that individuals who use drugs chronically may display altered responses to stressors. We use foundational basic stress biology research as a lens through which to evaluate critically the available evidence to support these key stress-SUD theses in humans. Additionally, we examine the field's success to date in targeting stressors and stress allostasis in treatments for SUDs. We conclude with our recommendations for how best to advance our understanding of the relationship between stressors and drug use, and we discuss clinical implications for treatment development.
Collapse
Affiliation(s)
- Gaylen E Fronk
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| | - Sarah J Sant'Ana
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| | - Jesse T Kaye
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA;
- Center for Tobacco Research and Intervention, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53711, USA
| | - John J Curtin
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
45
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
46
|
Scherf-Clavel M, Wurst C, Nitschke F, Stonawski S, Burschka C, Friess L, Unterecker S, Hommers L, Deckert J, Domschke K, Menke A. Extent of cortisol suppression at baseline predicts improvement in HPA axis function during antidepressant treatment. Psychoneuroendocrinology 2020; 114:104590. [PMID: 32006918 DOI: 10.1016/j.psyneuen.2020.104590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND A dysregulation in the hypothalamic-pituitary-adrenal (HPA)-axis function has been repeatedly observed in major depressive disorders (MDD). Normalization of this dysregulation, i.e. of cortisol suppression after glucocorticoid receptor (GR)-stimulation, may be mandatory for clinical remission in some patient subgroups. However, there are no biological measures applied in the clinical setting to identify patient subgroups with HPA axis alterations. OBJECTIVE We aimed to define a suppression index of cortisol concentrations before and after GR stimulation with dexamethasone to predict the variability in improvement of HPA axis activity during antidepressant treatment. METHODS A modified dexamethasone suppression test (mDST) was performed with blood withdrawal for cortisol and ACTH measurement before and 3 h after 1.5 mg dexamethasone intake at 18:00 in two cohorts of depressed patients treated in a naturalistic setting. The discovery sample consisted of 106 patients, the replication sample of 117 patients. The suppression index was defined as cCORTpreDEXcCORTpostDEX. RESULTS The baseline suppression index explained 27.4 % of the variance in changes of HPA axis activity before and after treatment with antidepressants. Age, cCORTpreDEXcACTHpreDEX at baseline and sex explained further variance up to 56.2 % (stepwise linear regression, p = 7.8e-8). A threshold of the suppression index at baseline was determined by ROC analysis and revealed, that only patients with a maximum index of 2.32 achieved a normalization of the HPA axis activity after antidepressant treatment. In the replication sample, the threshold was 2.86. However, the estimated suppression index was not associated with treatment response. CONCLUSION For the first time, by establishing a short-term suppression index of cortisol before and after GR-stimulation a threshold could be identified to predict improvement of HPA axis activity during antidepressant therapy. After replication in further studies this index may help to identify patients who benefit from a specific treatment that targets components of the HPA axis in the future.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| | - Catherina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| | - Felix Nitschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| | - Carolin Burschka
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Lisa Friess
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| |
Collapse
|
47
|
Abstract
Anxiety and fear-related disorders are common and disabling, and they significantly increase risk for suicide and other causes of morbidity and mortality. However, there is tremendous potential for translational neuroscience to advance our understanding of these disorders, leading to novel and powerful interventions and even to preventing their initial development. This overview examines the general circuits and processes thought to underlie fear and anxiety, along with the promise of translational research. It then examines some of the data-driven "next-generation" approaches that are needed for discovery and understanding but that do not always fit neatly into established models. From one perspective, these disorders offer among the most tractable problems in psychiatry, with a great deal of accumulated understanding, across species, of neurocircuit, behavioral, and, increasingly, genetic mechanisms, of how dysregulation of fear and threat processes contributes to anxiety-related disorders. One example is the progressively sophisticated understanding of how extinction underlies the exposure therapy component of cognitive-behavioral therapy approaches, which are ubiquitously used across anxiety and fear-related disorders. However, it is also critical to examine gaps in our understanding between reasonably well-replicated examples of successful translation, areas of significant deficits in knowledge, and the role of large-scale data-driven approaches in future progress and discovery. Although a tremendous amount of progress is still needed, translational approaches to understanding, treating, and even preventing anxiety and fear-related disorders offer great opportunities for successfully bridging neuroscience discovery to clinical practice.
Collapse
|
48
|
Jovanovic T, Duncan EJ, Kaye J, Garza K, Norrholm SD, Inslicht SS, Neylan TC, Mathew SJ, Iosifescu D, Rothbaum BO, Mayberg HS, Dunlop BW. Psychophysiological treatment outcomes: Corticotropin-releasing factor type 1 receptor antagonist increases inhibition of fear-potentiated startle in PTSD patients. Psychophysiology 2020; 57:e13356. [PMID: 30807663 PMCID: PMC6710166 DOI: 10.1111/psyp.13356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/24/2022]
Abstract
After exposure to a traumatic event, a subset of people develop post-traumatic stress disorder (PTSD). One of the key deficits in PTSD is regulation of fear, and impaired inhibition of fear-potentiated startle (FPS) has been identified as a potential physiological biomarker specific to PTSD. As part of a larger clinical trial, this study investigated the effects of a CRF receptor 1 antagonist, GSK561679, on inhibition of fear-potentiated startle during a conditional discrimination fear-conditioning paradigm, termed AX+/BX-. Prior research using this paradigm has demonstrated deficits in inhibition of conditioned fear in several PTSD populations. The randomized, double-blind, placebo-controlled clinical trial compared fear inhibition between female PTSD participants taking 350 mg/day GSK561679 (n = 47 pre- and 29 post-treatment) and patients taking a placebo pill (n = 52 pre- and 30 post-treatment) daily for 6 weeks. There was no significant difference between the two groups in their acquisition of fear or discrimination between threat and safety cues, and no pre-post-treatment effect on these measures. However, there was a significant effect of treatment on inhibition of FPS during the AB trials in the AX+/BX- transfer test (p < 0.05). While all PTSD participants showed typical impairments in fear inhibition prior to treatment, GSK561679 enhanced fear inhibition post-treatment, independent of clinical effects. The current study suggests that CRF receptor 1 antagonism may have specific effects within neural circuitry mediating fear inhibition responses, but not overall symptom presentation, in PTSD.
Collapse
Affiliation(s)
- Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Erica J. Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
- Atlanta Veterans Affairs Medical Center
| | | | - Kristie Garza
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Seth D. Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
- Atlanta Veterans Affairs Medical Center
| | - Sabra S. Inslicht
- Department of Psychiatry, University of California San Francisco and San Francisco Veterans Affairs Medical Center
| | - Thomas C. Neylan
- Department of Psychiatry, University of California San Francisco and San Francisco Veterans Affairs Medical Center
| | - Sanjay J. Mathew
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. Debakey Veterans Affairs Medical Center
| | - Dan Iosifescu
- Department of Psychiatry, NYU Langone School of Medicine
| | - Barbara O. Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Helen S. Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
- Icahn School of Medicine at Mount Sinai
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| |
Collapse
|
49
|
Koob GF. Neurobiology of Opioid Addiction: Opponent Process, Hyperkatifeia, and Negative Reinforcement. Biol Psychiatry 2020; 87:44-53. [PMID: 31400808 DOI: 10.1016/j.biopsych.2019.05.023] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/29/2023]
Abstract
Opioids are powerful drugs that usurp and overpower the reward function of endogenous opioids and engage dramatic tolerance and withdrawal via molecular and neurocircuitry neuroadaptations within the same reward system. However, they also engage the brain systems for stress and pain (somatic and emotional) while producing hyperalgesia and hyperkatifeia, which drive pronounced drug-seeking behavior via processes of negative reinforcement. Hyperkatifeia (derived from the Greek "katifeia" for dejection or negative emotional state) is defined as an increase in intensity of the constellation of negative emotional or motivational signs and symptoms of withdrawal from drugs of abuse. In animal models, repeated extended access to drugs or opioids results in negative emotion-like states, reflected by the elevation of reward thresholds, lower pain thresholds, anxiety-like behavior, and dysphoric-like responses. Such negative emotional states that drive negative reinforcement are hypothesized to derive from the within-system dysregulation of key neurochemical circuits that mediate incentive-salience and/or reward systems (dopamine, opioid peptides) in the ventral striatum and from the between-system recruitment of brain stress systems (corticotropin-releasing factor, dynorphin, norepinephrine, hypocretin, vasopressin, glucocorticoids, and neuroimmune factors) in the extended amygdala. Hyperkatifeia can extend into protracted abstinence and interact with learning processes in the form of conditioned withdrawal to facilitate relapse to compulsive-like drug seeking. Compelling evidence indicates that plasticity in the brain pain emotional systems is triggered by acute excessive drug intake and becomes sensitized during the development of compulsive drug taking with repeated withdrawal. It then persists into protracted abstinence and contributes to the development and persistence of compulsive opioid-seeking behavior.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
50
|
Richards A, Kanady JC, Neylan TC. Sleep disturbance in PTSD and other anxiety-related disorders: an updated review of clinical features, physiological characteristics, and psychological and neurobiological mechanisms. Neuropsychopharmacology 2020; 45:55-73. [PMID: 31443103 PMCID: PMC6879567 DOI: 10.1038/s41386-019-0486-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
The current report provides an updated review of sleep disturbance in posttraumatic stress disorder and anxiety-related disorders. First, this review provides a summary description of the unique and overlapping clinical characteristics and physiological features of sleep disturbance in specific DSM anxiety-related disorders. Second, this review presents evidence of a bidirectional relationship between sleep disturbance and anxiety-related disorders, and provides a model to explain this relationship by integrating research on psychological and neurocognitive processes with a current understanding of neurobiological pathways. A heuristic neurobiological framework for understanding the bidirectional relationship between abnormalities in sleep and anxiety-related brain pathways is presented. Directions for future research are suggested.
Collapse
Affiliation(s)
- Anne Richards
- The San Francisco VA Health Care System, San Francisco, CA, USA.
- The University of California, San Francisco, San Francisco, CA, USA.
| | - Jennifer C Kanady
- The San Francisco VA Health Care System, San Francisco, CA, USA
- The University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- The San Francisco VA Health Care System, San Francisco, CA, USA
- The University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|