1
|
Padhi D, Kashyap S, Mohapatra RK, Dineshkumar R, Nayak M. Microalgae-based flue gas CO 2 sequestration for cleaner environment and biofuel feedstock production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35958-8. [PMID: 39888525 DOI: 10.1007/s11356-025-35958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Anthropogenic CO2 emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO2 sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases. This review focuses on the literature concerning the microalgal application for CO2 sequestration. It highlights the primary physiochemical parameters that affect microalgal-based CO2 biofixation, including light exposure, microalgal strain, temperature, inoculum size, pH levels, mass transfer, CO2 concentration, flow rate, cultivation system, and mixing mechanisms. Moreover, the inhibition effect of different flue gas components including NOx, SOx, and Hg on growth kinetics is discussed to enhance the capacity of microalgal-based CO2 biofixation, along with deliberated challenges and prospects for future development. Overall, the review indicated microalgal-based flue gas CO2 fixation rates range from 80 mg L-1 day-1 to over 578 mg L-1 day-1, primarily influenced by physiochemical parameters and flue gas composition. This article summarizes the mechanisms and stages of microalgal-based CO2 sequestration and provides a comprehensive review based on international interest in this green technology.
Collapse
Affiliation(s)
- Diptymayee Padhi
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Shatakshi Kashyap
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ramalingam Dineshkumar
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
2
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Tarafdar A, Sowmya G, Yogeshwari K, Rattu G, Negi T, Awasthi MK, Hoang A, Sindhu R, Sirohi R. Environmental pollution mitigation through utilization of carbon dioxide by microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121623. [PMID: 37072107 DOI: 10.1016/j.envpol.2023.121623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Anthropogenic emissions of CO2 have reached a critical level and the global surface temperature is expected to rise by 1.5 °C between 2030 and 2050. To ameliorate the current global warming scenario, the research community has been struggling to find more economical and innovative solutions for carbon sequestration. Among such techniques, the use of microalgal species such as Chlorella sp., Dunaliella tertiolecta, Spirulina platensis, Desmodesmus sp., and Nannochloropsis sp., among others have shown high carbon tolerance capacity (10-100%) for establishing carbon capture, utilization and storage systems. To make microalgal-based carbon capture more economical, the microalgal biomass (∼2 g/L) can be converted biofuels, pharmaceuticals and nutraceuticals through biorefinery approach with product yield in the range of 60-99.5%. Further, CRISPR-Cas9 has enabled the knockout of specific genes in microalgal species that can be used to generate low pH tolerant strains with high lipid production. Inspite of the emerging developments in pollution control by microalgae, only limited investigations are available on its economic aspects which indicate a production cost of ∼$ 0.5-15/kg microalgal biomass. This review intends to summarize the advancements in different carbon sequestration techniques while highlighting their mechanisms and major research areas that need attention for economical microalgae-based carbon sequestration.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - G Sowmya
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, 560064, India
| | - K Yogeshwari
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, 560064, India
| | - Gurdeep Rattu
- National Horticultural Research and Development Foundation (NHRDF), Nashik-Aurangabad Road, Nashik, Maharashtra, 422003, India
| | - Taru Negi
- Department of Food Science and Technology, G.B. Pant University of Agriculture and Technology, Pantnagar 11 263 145, Uttarakhand, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, China
| | - AnhTuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
4
|
Kushwaha OS, Uthayakumar H, Kumaresan K. Modeling of carbon dioxide fixation by microalgae using hybrid artificial intelligence (AI) and fuzzy logic (FL) methods and optimization by genetic algorithm (GA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24927-24948. [PMID: 35349067 DOI: 10.1007/s11356-022-19683-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, we are reporting a novel prediction model for forecasting the carbon dioxide (CO2) fixation of microalgae which is based on the hybrid approach of adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). The CO2 fixation rate of various algal strains was collected and the cultivation conditions of the microalgae such as temperature, pH, CO2 %, and amount of nitrogen and phosphorous (mg/L) were taken as the input variables, while the CO2 fixation rate was taken as the output variable. The optimization of ANFIS parameters and the formation of the optimized fuzzy model structure were performed by genetic algorithm (GA) using MATLAB in order to achieve optimum prediction capability and industrial applicability. The best-fitting model was figured out using statistical analysis parameters such as root mean square error (RMSE), coefficient of regression (R2), and average absolute relative deviation (AARD). According to the analysis, GA-ANFIS model depicted a greater prediction capability over ANFIS model. The RMSE, R2, and AARD for GA-ANFIS were observed to be 0.000431, 0.97865, and 0.044354 in the training phase and 0.00056, 0.98457, and 0.032156 in the testing phase, respectively, for the GA-ANFIS Model. As a result, it can be concluded that the proposed GA-ANFIS model is an efficient technique having a very high potential to accurately predict the CO2 fixation rate.
Collapse
Affiliation(s)
- Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Tamil Nadu, 600036, India.
| | - Haripriyan Uthayakumar
- Department of Chemical Engineering, Anna University, Chennai, Tamil Nadu, 600025, India
- Department of Chemical Engineering and Sciences, Swinburne University of Technology, Kuching, Sarawak, 93350, Malaysia
| | | |
Collapse
|
5
|
Bhatia SK, Rajesh Banu J, Singh V, Kumar G, Yang YH. Algal biomass to biohydrogen: Pretreatment, influencing factors, and conversion strategies. BIORESOURCE TECHNOLOGY 2023; 368:128332. [PMID: 36414137 DOI: 10.1016/j.biortech.2022.128332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen has gained attention as an alternative source of energy because of its non-polluting nature as on combustion it produces only water. Biological methods are eco-friendly and have benefits in waste management and hydrogen production simultaneously. The use of algal biomass as feedstock in dark fermentation is advantageous because of its low lignin content, high growth rate, and carbon-fixation ability. The major bottlenecks in biohydrogen production are its low productivity and high production costs. To overcome these issues, many advances in the area of biomass pretreatment to increase sugar release, understanding of algal biomass composition, and development of fermentation strategies for the complete recovery of nutrients are ongoing. Recently, mixed substrate fermentation, multistep fermentation, and the use of nanocatalysts to improve hydrogen production have increased. This review article evaluates the current progress in algal biomass pretreatment, key factors, and possible solutions for increasing hydrogen production.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Priyadharsini P, Nirmala N, Dawn S, Baskaran A, SundarRajan P, Gopinath K, Arun J. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: Review on CO2 bio-fixation pathways modifications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Li S, Li X, Ho SH. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Tan FHP, Nadir N, Sudesh K. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Front Bioeng Biotechnol 2022; 10:879476. [PMID: 35646848 PMCID: PMC9133917 DOI: 10.3389/fbioe.2022.879476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
Collapse
Affiliation(s)
| | | | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
9
|
Morillas-España A, Sánchez-Zurano A, Gómez-Serrano C, Ciardi M, Acién G, Clagnan E, Adani F, Lafarga T. Potential of the cyanobacteria Anabaena sp. and Dolichospermum sp. for being produced using wastewater or pig slurry: Validation using pilot-scale raceway reactors. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. SUSTAINABILITY 2021. [DOI: 10.3390/su132313061] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rising concentration of global atmospheric carbon dioxide (CO2) has severely affected our planet’s homeostasis. Efforts are being made worldwide to curb carbon dioxide emissions, but there is still no strategy or technology available to date that is widely accepted. Two basic strategies are employed for reducing CO2 emissions, viz. (i) a decrease in fossil fuel use, and increased use of renewable energy sources; and (ii) carbon sequestration by various biological, chemical, or physical methods. This review has explored microalgae’s role in carbon sequestration, the physiological apparatus, with special emphasis on the carbon concentration mechanism (CCM). A CCM is a specialized mechanism of microalgae. In this process, a sub-cellular organelle known as pyrenoid, containing a high concentration of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), helps in the fixation of CO2. One type of carbon concentration mechanism in Chlamydomonas reinhardtii and the association of pyrenoid tubules with thylakoids membrane is represented through a typical graphical model. Various environmental factors influencing carbon sequestration in microalgae and associated techno-economic challenges are analyzed critically.
Collapse
|
11
|
Abstract
The burning of fossil fuels is an unsustainable activity, which is leading to an increase in greenhouse gases (GHGs) emissions and related global warming. Among sustainable energy sources, microalgae represent a promising alternative to fossil fuel and contribute to the achievement of important Sustainable Development Goals (SDGs). In particular, the potential contribution of marine microalgae to sustainable development is large as, among other benefits, they represent a carbon negative energy source and may be applied in many coastal areas around the world. Despite this, significant economic and technological improvements are needed in order to make microalgae biofuels viable on a large scale. This review aims to explore how and to what extent third-generation biofuels (marine microalgae, but also the latest advances in freshwater microalgae) can benefit the realization of these SDGs. From this study we concluded that the production of large-scale marine microalgae biofuels is not yet feasible from the economic perspective at a large scale. However, the cultivation of microalgae in seawater holds great potential for increasing the small to medium viability of this biofuel source. The possibilities for improvement along with the contributions to sustainable development lay the groundwork for continuing to study and apply the potential of sustainable production of microalgae bioenergy.
Collapse
|
12
|
Advances of Carbon Capture and Storage in Coal-Based Power Generating Units in an Indian Context. ENERGIES 2020. [DOI: 10.3390/en13164124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
India is a nation with a diverse economy that requires tremendous resources to completely meet the desires of its compatriots in various sectors. In terms of energy resources and requirements, coal-based power plants can fulfill the bulk of these electricity needs. India is very reliant on coal, which is used in power plants as a primary energy source. However, the usage of coal energy at a higher level continuously pollutes the atmosphere. The Indian power market alone accounts for half of the country’s CO2 emissions, which implies that significant action is needed to contain environmental pollution. Carbon Capture and Storage (CCS) is a bridging technique and feasible alternative for the carbon fired plant processing of CO2. However, the application of CCS in coal-fired power stations is still uncommon in the nation. At the UNFCCC Paris Summit, India committed to reduce its carbon emission intensity by approximately 30–33% by 2030. In this work, several CCS systems, possible CO2 origins, and emission levels in India are discussed. Various advanced methods for CO2 capture and separation are also highlighted. Furthermore, the current work discusses CCS situations and the applications of CCS in India along with its manifold challenges.
Collapse
|
13
|
Velu C, Cirés S, Brinkman DL, Heimann K. Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater. Front Bioeng Biotechnol 2020; 8:51. [PMID: 32117931 PMCID: PMC7026013 DOI: 10.3389/fbioe.2020.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Rising CO2 levels, associated climatic instability, freshwater scarcity and diminishing arable land exacerbate the challenge to maintain food security for the fast growing human population. Although coal-fired power plants generate large amounts of CO2 emissions and wastewater, containing environmentally unsafe concentrations of metals, they ensure energy security. Nitrogen (N2)-fixation by cyanobacteria eliminate nitrogen fertilization costs, making them promising candidates for remediation of waste CO2 and metals from macronutrient-poor ash dam water and the biomass is suitable for phycocyanin and biofertilizer product development. Here, the effects of CO2 and metal mixtures on growth, bioproduct and metal removal potential were investigated for the self-flocculating, N2-fixing freshwater cyanobacterium Tolypothrix sp. Tolypothrix sp. was grown outdoors in simulated ash dam wastewater (SADW) in 500 L vertical bag suspension cultures and as biofilms in modified algal-turf scrubbers. The cultivation systems were aerated with air containing either 15% CO2 (v/v) or not. CO2-fertilization resulted in ∼1.25- and 1.45-fold higher biomass productivities and ∼40 and 27% increased phycocyanin and phycoerythrin contents for biofilm and suspension cultures, respectively. CO2 had no effect on removal of Al, As, Cu, Fe, Sr, and Zn, while Mo removal increased by 37% in both systems. In contrast, Ni removal was reduced in biofilm systems, while Se removal increased by 73% in suspension cultures. Based on biomass yields and biochemical data obtained, net present value (NPV) and sensitivities analyses used four bioproduct scenarios: (1) phycocyanin sole product, (2) biofertilizer sole product, (3) 50% phycocyanin and 50% biofertilizer, and (4) 100% phycocyanin and 100% biofertilizer (residual biomass) for power station co-located and not co-located 10 ha facilities over a 20-year period. Economic feasibility for the production of food-grade phycocyanin either as a sole product or with co-production of biofertilizer was demonstrated for CO2-enriched vertical and raceway suspension cultures raised without nitrogen-fertilization and co-location with power stations significantly increased profit margins.
Collapse
Affiliation(s)
- Chinnathambi Velu
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Samuel Cirés
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diane L. Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, QLD, Australia
| | - Kirsten Heimann
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Marine Bioproducts Development (CMBD), College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
14
|
Cheng J, Zhu Y, Zhang Z, Yang W. Modification and improvement of microalgae strains for strengthening CO 2 fixation from coal-fired flue gas in power plants. BIORESOURCE TECHNOLOGY 2019; 291:121850. [PMID: 31358426 DOI: 10.1016/j.biortech.2019.121850] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/20/2023]
Abstract
Biological CO2 capture using microalgae is a promising new method for reducing CO2 emission of coal-fired flue gas. The strain of microalgae used in this process plays a vital role in determining the rate of CO2 fixation and characteristics of biomass production. High requirements are put forward for algae strains due to high CO2 concentration and diverse pollutants in flue gas. CO2 can directly diffuse into the cytoplasm of cells by extra- and intracellular CO2 osmotic pressure under high CO2 concentrations. The flue gas pollutants, such as SOx, NOx and fly ashes, have negative effects on the growth of microalgae. This work reviewed the state-of-the-art advances on microalgae strains used for CO2 fixation, focusing on the modification and improvement of strains that are used for coal-fired flue gas. Methods such as genetic engineering, random mutagenesis, and adaptive evolution have the potential to facilitate photosynthesis, improve growth rate and reduce CO2 emission.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yanxia Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Noreña-Caro D, Benton MG. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Zheng Q, Xu X, Martin GJ, Kentish SE. Critical review of strategies for CO2 delivery to large-scale microalgae cultures. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Cordara A, Re A, Pagliano C, Van Alphen P, Pirone R, Saracco G, Branco Dos Santos F, Hellingwerf K, Vasile N. Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. PeerJ 2018; 6:e5256. [PMID: 30065870 PMCID: PMC6065478 DOI: 10.7717/peerj.5256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 12/05/2022] Open
Abstract
Synechocystis gathered momentum in modelling studies and biotechnological applications owing to multiple factors like fast growth, ability to fix carbon dioxide into valuable products, and the relative ease of genetic manipulation. Synechocystis physiology and metabolism, and consequently, the productivity of Synechocystis-based photobioreactors (PBRs), are heavily light modulated. Here, we set up a turbidostat-controlled lab-scale cultivation system in order to study the influence of varying orange–red light intensities on Synechocystis growth characteristics and photosynthetic activity. Synechocystis growth and photosynthetic activity were found to raise as supplied light intensity increased up to 500 μmol photons m−2 s−1 and to enter the photoinhibition state only at 800 μmol photons m−2 s−1. Interestingly, reverting the light to a non-photo-inhibiting intensity unveiled Synechocystis to be able to promptly recover. Furthermore, our characterization displayed a clear correlation between variations in growth rate and cell size, extending a phenomenon previously observed in other cyanobacteria. Further, we applied a modelling approach to simulate the effects produced by varying the incident light intensity on its local distribution within the PBR vessel. Our model simulations suggested that the photosynthetic activity of Synechocystis could be enhanced by finely regulating the intensity of the light incident on the PBR in order to prevent cells from experiencing light-induced stress and induce their exploitation of areas of different local light intensity formed in the vessel. In the latter case, the heterogeneous distribution of the local light intensity would allow Synechocystis for an optimized usage of light.
Collapse
Affiliation(s)
- Alessandro Cordara
- Applied Science and Technology Department-Biosolar Lab, Politecnico di Torino, Turin, Italy.,Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-Biosolar Lab, Politecnico di Torino, Turin, Italy
| | - Pascal Van Alphen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Raffaele Pirone
- Applied Science and Technology Department, Politecnico di Torino, Turin, Italy
| | - Guido Saracco
- Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy
| | | | - Klaas Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolò Vasile
- Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy
| |
Collapse
|
18
|
Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. CHEMSUSCHEM 2018; 11:334-355. [PMID: 29165921 DOI: 10.1002/cssc.201701611] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/23/2017] [Indexed: 06/07/2023]
Abstract
To shift the world to a more sustainable future, it is necessary to phase out the use of fossil fuels and focus on the development of low-carbon alternatives. However, this transition has been slow, so there is still a large dependence on fossil-derived power, and therefore, carbon dioxide is released continuously. Owing to the potential for assimilating and utilizing carbon dioxide to generate carbon-neutral products, such as biodiesel, the application of microalgae technology to capture CO2 from flue gases has gained significant attention over the past decade. Microalgae offer a more sustainable source of biomass, which can be converted into energy, over conventional fuel crops because they grow more quickly and do not adversely affect the food supply. This review focuses on the technical feasibility of combined carbon fixation and microalgae cultivation for carbon reuse. A range of different carbon metabolisms and the impact of flue gas compounds on microalgae are appraised. Fixation of flue gas carbon dioxide is dependent on the selected microalgae strain and on flue gas compounds/concentrations. Additionally, current pilot-scale demonstrations of microalgae technology for carbon dioxide capture are assessed and its future prospects are discussed. Practical implementation of this technology at an industrial scale still requires significant research, which necessitates multidisciplinary research and development to demonstrate its viability for carbon dioxide capture from flue gases at the commercial level.
Collapse
Affiliation(s)
| | - Joseph G Yao
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nicholas Florin
- Institute for Sustainable Futures, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Anthe George
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Xiaoxiong Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Leen Labeeuw
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Yuelu Jiang
- Institute of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Ali Abbas
- School of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- Current address: Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Solid Waste Management and Environmental Safety, Ministry of Education, Beijing, 100084, PR China
| |
Collapse
|
19
|
Sadeghizadeh A, Farhad Dad F, Moghaddasi L, Rahimi R. CO 2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. BIORESOURCE TECHNOLOGY 2017; 243:441-447. [PMID: 28688327 DOI: 10.1016/j.biortech.2017.06.147] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In this work, hydrodynamics and CO2 biofixation study was conducted in an airlift bioreactor at the temperature of 30±2°C. The main objective of this work was to investigate the effect of high gas superficial velocity on CO2 biofixation using Chlorella vulgaris microalgae and its growth. The study showed that Chlorella vulgaris in high input gas superficial velocity also had the ability to grow and remove the CO2 by less than 80% efficiency.
Collapse
Affiliation(s)
- Aziz Sadeghizadeh
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P.O.Box.98164-161, Iran
| | - Farid Farhad Dad
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P.O.Box.98164-161, Iran
| | - Leila Moghaddasi
- Natural Resources Department, Islamic Azad University, Bandar Abbas, P.O. Box.79158-93144, Iran
| | - Rahbar Rahimi
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P.O.Box.98164-161, Iran.
| |
Collapse
|
20
|
Nithiya E, Tamilmani J, Vasumathi K, Premalatha M. Improved CO 2 fixation with Oscillatoria sp. in response to various supply frequencies of CO 2 supply. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Najib MZM, Ujang Z, Salim MR, Ibrahim Z, Muda K. Reduction and biofixation of carbon dioxide in palm oil mill effluent using developed microbial granules containing photosynthetic pigments. BIORESOURCE TECHNOLOGY 2016; 221:157-164. [PMID: 27639234 DOI: 10.1016/j.biortech.2016.08.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
The developed microbial granules containing photosynthetic pigments had successfully achieved approximately 18-21% of carbon dioxide (CO2) removal in POME for one complete SBR cycle. Also, the granules had reached CO2 removal at 15-29% within 24h and removal of 25% after 5 days. Both results were inconsistent possibly due to the slow mass transfer rate of CO2 from gas to liquid as well as the simultaneous effect of CO2 production and respiration among the microbes. Furthermore, results showed the removal of CO2 from air increases proportionally with the CO2 removed in liquid. The CO2 biofixation of granules attained was approximately 0.23g/L/day for a week. Using the regression model, the removal of CO2 between liquid and gas, CO2 biofixation rate were highly correlated with the treatment time. A statistically significant relationship was obtained between CO2 concentration in liquid, biomass productivity and treatment time for the CO2 biofixation rate of the granules.
Collapse
Affiliation(s)
- M Z Mohamed Najib
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Z Ujang
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - M R Salim
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia; Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Z Ibrahim
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - K Muda
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| |
Collapse
|
22
|
The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants. ENVIRONMENTS 2016. [DOI: 10.3390/environments3030024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. BIORESOURCE TECHNOLOGY 2016; 215:346-356. [PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/04/2023]
Abstract
Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
Collapse
Affiliation(s)
- Wai Yan Cheah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Laboratory of Advanced Catalysis and Environmental Technology, Monash University Sunway Campus, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Manufacturing and Industrial Processes Division, Faculty of Engineering, Centre for Food and Bioproduct Processing, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
24
|
Hou Y, Liu Z, Zhao Y, Chen S, Zheng Y, Chen F. CAH1 and CAH2 as key enzymes required for high bicarbonate tolerance of a novel microalga Dunaliella salina HTBS. Enzyme Microb Technol 2016; 87-88:17-23. [DOI: 10.1016/j.enzmictec.2016.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/01/2022]
|
25
|
Judd S, van den Broeke LJP, Shurair M, Kuti Y, Znad H. Algal remediation of CO₂ and nutrient discharges: A review. WATER RESEARCH 2015; 87:356-366. [PMID: 26451978 DOI: 10.1016/j.watres.2015.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/04/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically, principally microalgal strain, C:N:P load and balance, CO2 and liquid residence time, light intensity and quality, temperature, and reactor configuration. This imposes a significant challenge to the overall process control which has yet to be fully addressed.
Collapse
Affiliation(s)
- Simon Judd
- Department of Chemical Engineering, Qatar University, Qatar; Cranfield Water Science Institute, Cranfield University, UK.
| | | | | | - Yussuf Kuti
- Department of Chemical Engineering, Qatar University, Qatar
| | - Hussein Znad
- Department of Chemical Engineering, Curtin University, Australia
| |
Collapse
|
26
|
Naderi G, Tade MO, Znad H. Modified Photobioreactor for Biofixation of Carbon Dioxide byChlorella vulgarisat Different Light Intensities. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201400790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Factors affecting biological reduction of CO2 into CH4 using a hydrogenotrophic methanogen in a fixed bed reactor. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0023-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Cheah WY, Show PL, Chang JS, Ling TC, Juan JC. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. BIORESOURCE TECHNOLOGY 2015; 184:190-201. [PMID: 25497054 DOI: 10.1016/j.biortech.2014.11.026] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 05/21/2023]
Abstract
The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.
Collapse
Affiliation(s)
- Wai Yan Cheah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Manufacturing and Industrial Processes Division, Faculty of Engineering, Centre for Food and Bioproduct Processing, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia; Laboratory of Advanced Catalysis and Environmental Technology, School of Science, Malaysia.
| |
Collapse
|
29
|
Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors. J Biotechnol 2014; 187:51-5. [PMID: 25068618 DOI: 10.1016/j.jbiotec.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
Abstract
The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures.
Collapse
|
30
|
Bernal OI, Mooney CB, Flickinger MC. Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite “leaves”. Biotechnol Bioeng 2014; 111:1993-2008. [DOI: 10.1002/bit.25280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Oscar I. Bernal
- Department of Chemical and Biomolecular Engineering; North Carolina State University; 911 Partners Way Raleigh North Carolina 27695
| | - Charles B. Mooney
- Analytical Instrumentation Facility; North Carolina State University; Raleigh North Carolina
| | - Michael C. Flickinger
- Department of Chemical and Biomolecular Engineering; North Carolina State University; 911 Partners Way Raleigh North Carolina 27695
- Golden-LEAF Biomanufacturing Training and Education Center; North Carolina State University; Raleigh North Carolina
| |
Collapse
|
31
|
Basu S, Roy AS, Mohanty K, Ghoshal AK. CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. BIORESOURCE TECHNOLOGY 2014; 164:323-330. [PMID: 24865325 DOI: 10.1016/j.biortech.2014.05.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
The present study deals with the large scale open system cultivation of the novel microalga: Scenedesmus obliquus SA1 (KC733762) previously isolated in our laboratory. SA1 strain was cultivated in open system at varying CO2 levels ranging from 0.03% to 35% (v/v) and subsequently the carbonic anhydrase activity (CA) and the biochemical properties were monitored. Maximum biomass concentration (1.39 ± 0.023 g L(-1)), CO2 fixation rate (97.65 ± 1.03 mg L(-1)d(-1)) and total CA activity (166.86 ± 3.30 E.U./mg chla) were obtained at 35% CO2. CA inhibitors: acetazolamide and ethoxyzolamide inhibited the external and internal enzyme activity in SA1. High CO2 levels were favorable for the accumulation of lipids and chlorophyll. The present results suggested that SA1 possessed high CO2 tolerance and high carbohydrate, lipid and chlorophyll content when cultivated in open system thus being suitable for CO2 mitigation in outdoor ponds and subsequent generation of value added products.
Collapse
Affiliation(s)
- Samarpita Basu
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Abhijit Sarma Roy
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aloke K Ghoshal
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
32
|
|
33
|
Fernández JFS, González-López CV, Fernández FGA, Sevilla JMF, Grima EM. Utilization of Anabaena sp. in CO2 removal processes. Appl Microbiol Biotechnol 2012; 94:613-24. [DOI: 10.1007/s00253-011-3683-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/11/2011] [Accepted: 10/27/2011] [Indexed: 10/28/2022]
|
34
|
González-López CV, Acién Fernández FG, Fernández-Sevilla JM, Sánchez Fernández JF, Molina Grima E. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 2012; 109:1637-50. [PMID: 22252403 DOI: 10.1002/bit.24446] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/27/2011] [Accepted: 01/10/2012] [Indexed: 11/07/2022]
Abstract
A new methodology to use efficiently flue gases as CO(2) source in the production of photosynthetic microorganisms is proposed. The CO(2) is absorbed in an aqueous phase that is then regenerated by microalgae. Carbonated solutions could absorb up to 80% of the CO(2) from diluted gas reaching total inorganic carbon (TIC) concentrations up to 2.0 g/L. The pH of the solution was maintained at 8.0-10.0 by the bicarbonate/carbonate buffer, so it is compatible with biological regeneration. The absorption process was modeled and the kinetic parameters were determined. Anabaena sp. demonstrated to tolerate pH (8.0-10.0) and TIC (up to 2.0 g/L) conditions imposed by the absorption step. Experiments of regeneration of the liquid phase demonstrated the feasibility of the overall process, converting CO(2) into organic matter. The developed process avoids heating to regenerate the liquid whereas maximizing the efficiency of CO(2) use, which is relevant to achieve the commercial production of biofuels from microalgae.
Collapse
Affiliation(s)
- C V González-López
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, E04120, Almería, Spain
| | | | | | | | | |
Collapse
|