1
|
Khazaal Kadhim Almansoori A, Reddy NS, Abdulfattah M, Ismail SS, Abdul Rahim R. Characterization of a novel subfamily 1.4 lipase from Bacillus licheniformis IBRL-CHS2: Cloning and expression optimization. PLoS One 2024; 19:e0314556. [PMID: 39689112 DOI: 10.1371/journal.pone.0314556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
This study focuses on a novel lipase from Bacillus licheniformis IBRL-CHS2. The lipase gene was cloned into the pGEM-T Easy vector, and its sequences were registered in GenBank (KU984433 and AOT80658). It was identified as a member of the bacterial lipase subfamily 1.4. The pCold I vector and E. coli BL21 (DE3) host were utilized for expression, with the best results obtained by removing the enzyme's signal peptide. Optimal conditions were found to be 15°C for 24 h, using 0.2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). The His-tagged lipase was purified 13-fold with a 68% recovery and a specific activity of 331.3 U/mg using affinity purification. The lipase demonstrated optimal activity at 35°C and pH 7. It remained stable after 24 h in 25% (v/v) organic solvents such as isooctane, n-hexane, dimethyl sulfoxide (DMSO), and methanol, which enhanced its activity. Chloroform and diethyl ether inhibited the lipase. The enzyme exhibited the highest affinity for p-nitrophenol laurate (C12:0) with a Km of 0.36 mM and a Vmax of 357 μmol min-1 mg-1. Among natural oils, it performed best with coconut oil and worst with olive oil. The lipase was stable in the presence of 1 mM and 5 mM Ca2⁺, K⁺, Na⁺, Mg2⁺, and Ba2⁺, but its activity decreased with Zn2⁺ and Al3⁺. Non-ionic surfactants like Triton X-100, Nonidet P40, Tween 20, and Tween 40 boosted activity, while Sodium Dodecyl Sulfate (SDS) inhibited it. This lipase's unique properties, particularly its stability in organic solvents, make it suitable for applications in organic synthesis and various industries.
Collapse
Affiliation(s)
- Ammar Khazaal Kadhim Almansoori
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Department of Medical Laboratory Techniques, Al-Mustaqbal University, Hillah, Babylon, Iraq
| | | | - Mustafa Abdulfattah
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia, SAINS@USM, Bayan Lepas, Penang, Malaysia
| | - Sarah Solehah Ismail
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Rashidah Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia, SAINS@USM, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
2
|
Liu W, Zhang K, Liu J, Wang Y, Zhang M, Cui H, Sun J, Zhang L. Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui. Nat Commun 2024; 15:9962. [PMID: 39551789 PMCID: PMC11570645 DOI: 10.1038/s41467-024-53946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Electrocatalytic carbon dioxide (CO2) reduction by CO2 reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO2 reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience. To achieve this purpose, a recombinant Escherichia coli TkHDCR overexpression system is established. The formate dehydrogenase is obtained via subunit truncation and rational design, which enables direct electron transfer (DET)-type bioelectrocatalysis with a near-zero overpotential. By applying a constant voltage of -500 mV (vs. SHE) to a mediated electrolytic cell, 22.8 ± 1.6 mM formate is synthesized in 16 h with an average production rate of 7.1 ± 0.5 μmol h-1cm-2, a Faradaic efficiency of 98.9% and a half-cell energy efficiency of 94.4%. This study provides an enzyme candidate for high efficient CO2 reduction and opens up a way to develop paradigm for CO2-based bio-manufacturing.
Collapse
Affiliation(s)
- Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kuncheng Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiang Liu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanming Wang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meng Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, 9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Junsong Sun
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
3
|
Nagel OG, Gasparotti ML, Machado SI, Althaus RL. Similarities of Geobacillus bacteria based on their profiles of antimicrobial susceptibility in milk samples. Rev Argent Microbiol 2024; 56:102-111. [PMID: 37704517 DOI: 10.1016/j.ram.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 09/15/2023] Open
Abstract
The genus Geobacillus is composed of thermophilic bacteria that exhibit diverse biotechnological potentialities. Specifically, Geobacillus stearothermophilus is included as a test bacterium in commercial microbiological inhibition methods, although it exhibits limited sensitivity to aminoglycosides, macrolides, and quinolones. Therefore, this article evaluates the antibiotic susceptibility profiles of five test bacteria (G. stearothermophilus subsp. calidolactis C953, Geobacillus thermocatenulatus LMG 19007, Geobacillus thermoleovorans LMG 9823, Geobacillus kaustophilus DSM 7263 and Geobacillus vulcani 13174). For that purpose, the minimum inhibitory concentrations (MICs) of 21 antibiotics were determined in milk samples for five test bacteria using the radial diffusion microbiological inhibition method. Subsequently, the similarities between bacteria and antibiotics were analyzed using cluster analysis. The dendrogram of this multivariate analysis shows an association between a group formed by G. thermocatenulatus and G. stearothermophilus and another by G. thermoleovorans, G. kaustophilus and G. vulcani. Finally, future microbiological methods could be developed in microtiter plates using G. thermocatenulatus as test bacterium, as it exhibits similar sensitivities to G. stearothermophilus. Conversely, G. vulcani, G. thermoleovorans and G. kaustophilus show higher MICs than G. thermocatenulatus.
Collapse
Affiliation(s)
- Orlando G Nagel
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P.L. Kreder 2805, 3080 Esperanza, Argentina
| | - Maria L Gasparotti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P.L. Kreder 2805, 3080 Esperanza, Argentina
| | - Selva I Machado
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P.L. Kreder 2805, 3080 Esperanza, Argentina
| | - Rafael L Althaus
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P.L. Kreder 2805, 3080 Esperanza, Argentina.
| |
Collapse
|
4
|
Fahmy NM, El-Deeb B. Optimization, partial purification, and characterization of a novel high molecular weight alkaline protease produced by Halobacillus sp. HAL1 using fish wastes as a substrate. J Genet Eng Biotechnol 2023; 21:48. [PMID: 37121925 PMCID: PMC10149429 DOI: 10.1186/s43141-023-00509-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Hydrolytic enzymes from halophilic microorganisms have a wide range of industrial applications. Herein, we report the isolation of Halobacillus sp. HAL1, a moderately halophilic bacterium that produces a novel high molecular weight extracellular alkaline protease when grown in fish processing wastes as a substrate. RESULTS Results showed that the isolated strain belonged to the genus Halobacillus, and it was designated as Halobacillus sp. HAL1 with the GenBank accession number OK001470. The strain secreted an extracellular alkaline protease, and the highest yield was obtained when it was grown in a medium with fish wastes substrate as the sole nutritional source (10 g/L) and incubated at 25 °C under shaking conditions. The enzyme was partially purified by Sephadex G-100 column chromatography. Zymographic analysis showed two casein degrading bands of about 190 and 250 KDa. The optimum enzyme activity was at a temperature of 50 °C at pH 8. The proteolytic activity was enhanced in the presence of metal ions (Ca2+, Mg2+, and Mn2+), surfactants (Tween 80, SDS, and Triton-X100), H2O2, and EDTA. CONCLUSION Our study indicates that Haobacillus sp. HAL1 is a moderately halophilic strain and secrets a novel high molecular wight alkaline protease that is suitable for detergent formulation.
Collapse
Affiliation(s)
- Nayer M Fahmy
- Marine Microbiology Laboratory, National Institute of Oceanography & Fisheries, Cairo, Egypt.
| | - Bahig El-Deeb
- Faculty of Science, Botany and Microbiology Department, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Nimkande VD, Sivanesan S, Bafana A. Screening, identification, and characterization of lipase-producing halotolerant Bacillus altitudinis Ant19 from Antarctic soil. Arch Microbiol 2023; 205:113. [PMID: 36905427 DOI: 10.1007/s00203-023-03453-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Potent lipase-producing and halotolerant Bacillus altitudinis Ant19 strain was screened and isolated from Antarctic soil. The isolate showed broad-range lipase activity against different lipid substrates. Presence of lipase activity was confirmed by PCR amplification and sequencing of the lipase gene from Ant19. The study attempted to establish the use of crude extracellular lipase extract as cheap alternative to purified enzyme by characterizing the crude lipase activity and testing it in certain practical applications. Crude lipase extract from Ant19 showed high stability at 5-28 ℃ (> 97%), while lipase activity was noted in a wide temperature range of 20-60 ℃ (> 69%), with optimum activity at 40 ℃ (117.6%). The optimum lipolytic activity was noted at pH 8 with good activity and stability in alkaline conditions (pH 7-10). Moreover, the lipase activity was substantially stable in various solvents, commercial detergents, and surfactants. It retained 97.4% activity in 1% solution of commercial Nirma detergent. Besides, it was non-regiospecific, and active against substrates having different fatty acid chain lengths with preference for shorter chain length. Further, the crude lipase enhanced the oil stain removal efficiency of commercial detergent from 52 to 77.9%, while 66% oil stain was removed using crude lipase alone. Immobilization process improved the storage stability of crude lipase for 90 days. In our knowledge, it is the first study on characterization of lipase activity from B. altitudinis, which has promising applications in various fields.
Collapse
Affiliation(s)
- Vijay D Nimkande
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saravanadevi Sivanesan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Amit Bafana
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Tang X, Liu CL, Chen YY, Wei Y, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Zhang YH, Xiao AF. Combination of simultaneous extraction–hydrolysis and intermittent feeding of tara pod for efficient production of gallic acid. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Mazhar H, Ullah I, Ali U, Abbas N, Hussain Z, Ali SS, Zhu H. Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
A jacalin-related lectin domain-containing lipase from chestnut (Castanea crenata): Purification, characterization, and protein identification. Curr Res Food Sci 2022; 5:2081-2093. [DOI: 10.1016/j.crfs.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
9
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
10
|
Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int J Biol Macromol 2021; 187:127-142. [PMID: 34298046 DOI: 10.1016/j.ijbiomac.2021.07.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
The development of new biocatalytic systems to replace the chemical catalysts, with suitable characteristics in terms of efficiency, stability under high temperature reactions and in the presence of organic solvents, reusability, and eco-friendliness is considered a very important step to move towards the green processes. From this basis, the use of lipase as a catalyst is highly desired for many industrial applications because it offers the reactions in which could be used, stability in harsh conditions, reusability and a greener process. Therefore, the introduction of temperature-resistant and solvent-tolerant lipases have become essential and ideal for industrial applications. Temperature-resistant and solvent-tolerant lipases have been involved in many large-scale applications including biodiesel, detergent, food, pharmaceutical, organic synthesis, biosensing, pulp and paper, textile, animal feed, cosmetics, and leather industry. So, the present review provides a comprehensive overview of the industrial use of lipase. Moreover, special interest in biotechnological and biochemical techniques for enhancing temperature-resistance and solvent-tolerance of lipases to be suitable for the industrial uses.
Collapse
|
11
|
Amin M, Bhatti HN, Nawaz S, Bilal M. Penicillium fellutanum lipase as a green and ecofriendly biocatalyst for depolymerization of poly (ɛ-caprolactone): Biochemical, kinetic, and thermodynamic investigations. Biotechnol Appl Biochem 2021; 69:410-419. [PMID: 33559904 DOI: 10.1002/bab.2118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
Microbial lipases hold a prominent position in biocatalysis by their capability to mediate reactions in aqueous and nonaqueous media. Herein, a lipase from Penicillium fellutanum was biochemically characterized and investigated its potential to degrade poly (ɛ-caprolactone) (PCL). The lipase exhibited stability over a broad pH spectrum and performed best at pH 8.5 and 45 °C. The activation energy was determined to be 66.37 kJ/mol by Arrhenius plot, whereas Km and Vmax for pNPP hydrolysis were 0.75 mM and 83.33 μmol/mL/Min, respectively. A rise in temperature reduced the Gibbs free energy, whereas the enthalpy of thermal unfolding (∆H*) remains the same up to 54 °C following a modest decline at 61 °C. The entropy (∆S*) of the enzyme demonstrated an increasing trend up to 54 °C and dropped at 61 °C. Lipase retained stability by incubation with various industrially relevant organic solvents (benzene, hexanol, ether, and acetone). However, exposure to urea and guanidine hydrochloride influenced its catalytic activity to different extents. Under optimal operating conditions, lipase catalyzed the excellent degradation of PCL film degradation leading to 66% weight loss, increased surface erosion, and crystallinity. Fourier-transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy studies monitored the weight loss after enzymatic hydrolysis. The findings indicate that P. fellutanum lipase would be a prospective biocatalytic system for polyesters depolymerization and environmental remediation.
Collapse
Affiliation(s)
- Misbah Amin
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, People's Republic of China
| |
Collapse
|
12
|
Arslanoğlu A, Çi L Ç. Gene Cloning, Heterologous Expression and Biochemical Characterization of A Novel Extracellular Lipase from Rhizopus Oryzae KU45. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 18:e2343. [PMID: 33542939 PMCID: PMC7856406 DOI: 10.30498/ijb.2020.141895.2343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Lipases secreted from various Rhizopus oryzae strains were previously expressed in Escherichia coli, Pichia pastoris, and Saccharomyces cerevisiae and was shown to have distinct activities in response to different temperatures, metal ions, organic solvents, and specific substrates. However, until now, no other research biochemically characterized the functions of extracellular pro-lipase in a novel Rhizopus oryzae KU45. Objectives Characterization of a novel extracellular lipase from fungus R. oryzae KU45 after heterologous expression in E. coli BL21 (DE3) strain. Materials and Methods An extracellular lipase producing fungus was isolated from a soil sample and identified as a strain of R. oryzae by partial 18S rRNA gene sequencing. It was named as R. oryzae KU45. The lipase gene of KU45 was cloned into pET-28a expression vector and expressed in E. coli as inclusion bodies. The recombinant lipase was purified, refolded and characterized. Results The lipase exhibited maximum activity at 45ºC, at slightly alkaline pH. It showed a broad substrate specificity acting on p-nitrophenyl esters with C8-C16 acyl groups as substrates and, many of the organic solvents and metal ions tested did not have any adverse effects on the enzyme activity. Conclusions High stability, broad substrate specificity and activity at mesophilic temperatures in the presence of organic solvents, and metal ions make the extracellular lipase of KU45 a candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Alper Arslanoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Çağlar Çi L
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
13
|
Helal SE, Abdelhady HM, Abou-Taleb KA, Hassan MG, Amer MM. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. J Genet Eng Biotechnol 2021; 19:1. [PMID: 33400043 PMCID: PMC7785608 DOI: 10.1186/s43141-020-00094-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
Abstract
Background Rhizopus species is among the most well-known lipase producers, and its enzyme is suitable for use in many industrial applications. Our research focuses on the production of lipase utilizing waste besides evaluating its applications. Results An extracellular lipase was partially purified from the culture broth of Rhizopus oryzae R1 isolate to apparent homogeneity using ammonium sulfate precipitation followed by desalting via dialysis. The partially purified enzyme was non-specific lipase and the utmost activity was recorded at pH 6, 40 °C with high stability for 30 min. The constants Km and Vmax, calculated from the Lineweaver-Burk plot, are 0.3 mg/mL and 208.3 U/mL, respectively. Monovalent metal ions such as Na+ (1 and 5 mM) and K+ (5 mM) were promoters of the lipase to enhance its activity with 110, 105.5, and 106.5%, respectively. Chitosan was used as a perfect support for immobilization via both adsorption and cross-linking in which the latter method attained immobilization efficiency of 99.1% and reusability of 12 cycles. The partially purified enzyme proved its ability in forming methyl oleate (biodiesel) through the esterification of oleic acid and transesterification of olive oil. Conclusion The partially purified and immobilized lipase from Rhizopus oryzae R1 approved excellent efficiency, reusability, and a remarkable role in detergents and biodiesel production.
Collapse
Affiliation(s)
- Shimaa E Helal
- Department of Botany, Faculty of Science, Benha University, Benha, 13518, Egypt. .,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hemmat M Abdelhady
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Khadiga A Abou-Taleb
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mervat G Hassan
- Department of Botany, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mahmoud M Amer
- Department of Botany, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
14
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
15
|
Bollinger A, Molitor R, Thies S, Koch R, Coscolín C, Ferrer M, Jaeger KE. Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis. Appl Environ Microbiol 2020; 86:e00106-20. [PMID: 32111588 PMCID: PMC7170478 DOI: 10.1128/aem.00106-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Biocatalysis has emerged as an important tool in synthetic organic chemistry enabling the chemical industry to execute reactions with high regio- or enantioselectivity and under usually mild reaction conditions while avoiding toxic waste. Target substrates and products of reactions catalyzed by carboxylic ester hydrolases are often poorly water soluble and require organic solvents, whereas enzymes are evolved by nature to be active in cells, i.e., in aqueous rather than organic solvents. Therefore, biocatalysts that withstand organic solvents are urgently needed. Current strategies to identify such enzymes rely on laborious tests carried out by incubation in different organic solvents and determination of residual activity. Here, we describe a simple assay useful for screening large libraries of carboxylic ester hydrolases for resistance and activity in water-miscible organic solvents. We have screened a set of 26 enzymes, most of them identified in this study, with four different water-miscible organic solvents. The triglyceride tributyrin was used as a substrate, and fatty acids released by enzymatic hydrolysis were detected by a pH shift indicated by the indicator dye nitrazine yellow. With this strategy, we succeeded in identifying a novel highly organic-solvent-tolerant esterase from Pseudomonas aestusnigri In addition, the newly identified enzymes were tested with sterically demanding substrates, which are common in pharmaceutical intermediates, and two enzymes from Alcanivorax borkumensis were identified which outcompeted the gold standard ester hydrolase CalB from Candida antarcticaIMPORTANCE Major challenges hampering biotechnological applications of esterases include the requirement to accept nonnatural and chemically demanding substrates and the tolerance of the enzymes toward organic solvents which are often required to solubilize such substrates. We describe here a high-throughput screening strategy to identify novel organic-solvent-tolerant carboxylic ester hydrolases (CEs). Among these enzymes, CEs active against water-insoluble bulky substrates were identified. Our results thus contribute to fostering the identification and biotechnological application of CEs.
Collapse
Affiliation(s)
- Alexander Bollinger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Institute for Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
16
|
Purification and immobilization of α-amylase in one step by gram-positive enhancer matrix (GEM) particles from the soluble protein and the inclusion body. Appl Microbiol Biotechnol 2019; 104:643-652. [PMID: 31788710 DOI: 10.1007/s00253-019-10252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Immobilization of the enzyme benefits the catalytic industry a lot. The gram-positive enhancer matrix (GEM) particles could purify and immobilize the recombinant α-amylase in one step without changing the enzymatic character. The enzyme immobilized by GEM particles exhibited good reusability and storage stability. The denaturants dissolved some of the GEM particles and a part of the GEM particles could bear the denaturants. The GEM particles had strong binding ability to the recombination protein with the AcmA tag even when the denaturants existed. The inclusion body was dissolved by urea and then bound by the GEM particles. The GEM particles binding the recombination protein were separated by centrifugation and resuspended in the renaturation solution. GEM particles were recycled by repeating the boiling procedure used in preparing them. The recombination α-amylase without any tag was obtained by digestion and separated via centrifugation. Altogether, our findings suggest that GEM particles have the potential to function as both immobilization and purification materials to bind the soluble recombinant protein with the AcmA tag and the inclusion body dissolved in the denaturants.
Collapse
|
17
|
Li Y, Liu TJ, Zhao MJ, Zhang H, Feng FQ. Screening, purification, and characterization of an extracellular lipase from Aureobasidium pullulans isolated from stuffed buns steamers. J Zhejiang Univ Sci B 2019; 20:332-342. [PMID: 30932378 DOI: 10.1631/jzus.b1800213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An extracellular lipase from Aureobasidium pullulans was obtained and purified with a specific activity of 17.7 U/mg of protein using ultrafiltration and a DEAE-Sepharose Fast Flow column. Characterization of the lipase indicated that it is a novel finding from the species A. pullulans. The molecular weight of the lipase was 39.5 kDa, determined by sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited its optimum activity at 40 °C and pH of 7. It also showed a remarkable stability in some organic solutions (30%, v/v) including n-propanol, isopropanol, dimethyl sulfoxide (DMSO), and hexane. The catalytic activity of the lipase was enhanced by Ca2+ and was slightly inhibited by Mn2+ and Zn2+ at a concentration of 10 mmol/L. The lipase was activated by the anionic surfactant SDS and the non-ionic surfactants Tween 20, Tween 80, and Triton X-100, but it was drastically inhibited by the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). Furthermore, the lipase was able to hydrolyze a wide variety of edible oils, such as peanut oil, corn oil, sunflower seed oil, sesame oil, and olive oil. Our study indicated that the lipase we obtained is a potential biocatalyst for industrial use.
Collapse
Affiliation(s)
- Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Tong-Jie Liu
- School of Management and E-business, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Min-Jie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Feng-Qin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Mohtar NS, Abdul Rahman MB, Mustafa S, Mohamad Ali MS, Raja Abd. Rahman RNZ. Spray-dried immobilized lipase from Geobacillus sp. strain ARM in sago. PeerJ 2019; 7:e6880. [PMID: 31183251 PMCID: PMC6546084 DOI: 10.7717/peerj.6880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/20/2022] Open
Abstract
Sago starch is traditionally used as food especially in Southeast Asia. Generally, sago is safe for consumption, biodegradable, easily available and inexpensive. Therefore, this research was done to expand the potential of sago by using it as a support for enzyme immobilization. In this study, ARM lipase, which was isolated from Geobacillus sp. strain ARM, was overexpressed in Escherichia coli system and then purified using affinity chromatography. The specific activity of the pure enzyme was 650 U/mg, increased 7 folds from the cell lysate. The purified enzyme was immobilized in gelatinized sago and spray-dried by entrapment technique in order to enhance the enzyme operational stability for handling at high temperature and also for storage. The morphology of the gelatinized sago and immobilized enzyme was studied by scanning electron microscopy. The results showed that the spray-dried gelatinized sago was shrunken and became irregular in structure as compared to untreated sago powder. The surface areas and porosities of spray-dried gelatinized sago with and without the enzyme were analyzed using BET and BJH method and have shown an increase in surface area and decrease in pore size. The immobilized ARM lipase showed good performance at 60-80 °C, with a half-life of 4 h and in a pH range 6-9. The immobilized enzyme could be stored at 10 °C with the half-life for 9 months. Collectively, the spray-dried immobilized lipase shows promising capability for industrial uses, especially in food processing.
Collapse
Affiliation(s)
- Nur Syazwani Mohtar
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme & Microbial Technology Research Centre (EMTech), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme & Microbial Technology Research Centre (EMTech), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme & Microbial Technology Research Centre (EMTech), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Zhao F, Song Q, Wang B, Du R, Han Y, Zhou Z. Secretion of the recombination α-amylase in Escherichia coli and purification by the gram-positive enhancer matrix (GEM) particles. Int J Biol Macromol 2019; 123:91-96. [PMID: 30423395 DOI: 10.1016/j.ijbiomac.2018.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
α-Amylases are important enzymes in industry. A recombinant α-amylase with a secretion signal peptide and an AcmA tag was expressed in Escherichia coli to improve the yield. The induction concentrations were optimized, and the temperature had a significant influence on soluble expression and secretion. A visible band could be obtained when the induction was conducted at 16 °C. The gram-positive enhancer matrix (GEM) particles could separate and purify the recombinant α-amylase with the AcmA tag, and no visible band could be seen in the culture even after the culture was concentrated ten times. The solution and concentration of the recombinant α-amylase could be adjusted by GEM particles. The recombinant untagged α-amylase was obtained after digestion. The α-amylase was characterized. The recombinant α-amylase was a thermophilic enzyme with a broad pH tolerance. In addition, the enzyme activity of the recombinant α-amylase was independent of Ca2+. The recombinant α-amylase contained the OmpA signal peptide and the AcmA tag and was expressed and purified quickly and easily.
Collapse
Affiliation(s)
- Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
20
|
Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review. Molecules 2019; 24:molecules24030616. [PMID: 30744203 PMCID: PMC6384989 DOI: 10.3390/molecules24030616] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Lipases are enzymes responsible for the conversion of triglycerides and other esterified substrates, they are involved in the basic metabolism of a wide number of organisms, from a simple microorganism and to mammals. They also have broad applicability in many fields from which industrial biotechnology, the production of cleaning agents, and pharmacy are the most important. The use of lipases in analytical chemistry where it can serve as a part of biosensors or bioassays is an application of growing interest and has become another important use. This review is focused on the description of lipases chemistry, their current applications and the methods for their assay measurement. Examples of bioassays and biosensors, including their physical and chemical principles, performance for specific substrates, and discussion of their relevance, are given in this work.
Collapse
|
21
|
Park JY, Park KM, Yoo Y, Yu H, Lee CJ, Jung HS, Kim K, Chang PS. Catalytic characteristics of a sn-1(3) regioselective lipase from Cordyceps militaris. Biotechnol Prog 2018; 35:e2744. [PMID: 30421587 DOI: 10.1002/btpr.2744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Indexed: 11/06/2022]
Abstract
A total of 39 agricultural products were screened for natural sources of lipases with distinctive positional specificity. Based on this, Cordyceps militaris lipase (CML) was selected and subsequently purified by sequential chromatography involving anion-exchange, hydrophobic-interaction, and gel-permeation columns. As a result of the overall purification procedure, a remarkable increase in the specific activity of the CML (4.733 U/mg protein) was achieved, with a yield of 2.47% (purification fold of 94.54). The purified CML has a monomeric structure with a molecular mass of approximately 62 kDa. It was further identified as a putative extracellular lipase from C. militaris by the partial sequence analysis using ESI-Q-TOF MS. In a kinetic study of the CML-catalyzed hydrolysis, the values of Vmax , Km , and kcat were determined to be 4.86 μmol·min-1 ·mg-1 , 0.07 mM, and 0.29 min-1 , respectively. In particular, the relatively low Km value indicated that CML has a high affinity for its substrate. With regard to positional specificity, CML selectively cleaved triolein at the sn-1 or 3 positions of glycerol backbone, releasing 1,2(2,3)-diolein as the major products. Therefore, CML can be considered a distinctive biocatalyst with sn-1(3) regioselectivity. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2744, 2019.
Collapse
Affiliation(s)
- Jun-Young Park
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Dept. of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yoonjung Yoo
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjong Yu
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Joo Lee
- Dept. of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keesung Kim
- Research Inst. of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pahn-Shick Chang
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.,Research Inst. of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
22
|
Joseph D, Chakraborty K. Production and Biotechnological Application of Extracellular Alkalophilic Lipase from Marine Macroalga-Associated Shewanella algae to Produce Enriched C 20-22 n-3 Polyunsaturated Fatty Acid Concentrate. Appl Biochem Biotechnol 2018; 185:55-71. [PMID: 29082477 DOI: 10.1007/s12010-017-2636-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/16/2017] [Indexed: 11/27/2022]
Abstract
An extracellular alkalophilic lipase was partially purified from heterotrophic Shewanella algae (KX 272637) associated with marine macroalgae Padina gymnospora. The enzyme possessed a molecular mass of 20 kD, and was purified 60-fold with a specific activity of 36.33 U/mg. The enzyme exhibited Vmax and Km of 1000 mM/mg/min and 157 mM, respectively, with an optimum activity at 55 °C and pH 10.0. The catalytic activity of the enzyme was improved by Ca2+ and Mg2+ ions, and the enzyme showed a good tolerance towards organic solvents, such as methanol, isopropanol, and ethanol. The purified lipase hydrolyzed the refined liver oil from leafscale gulper shark Centrophorus squamosus, yielding a total C20-22 n-3 PUFA concentration of 34.99% with EPA + DHA accounting the major share (34% TFA), after 3 h of hydrolysis. This study recognized the industrial applicability of the thermostable and alkalophilic lipase from marine macroalga-associated bacterium Shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate.
Collapse
Affiliation(s)
- Dexy Joseph
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
- Department of Biosciences, Mangalore University, Mangalagangothri, Karnataka State, 574199, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
23
|
Cloning, overexpression, and characterization of a novel organic solvent-tolerant lipase from Paenibacillus pasadenensis CS0611. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63033-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Kotogán A, Zambrano C, Kecskeméti A, Varga M, Szekeres A, Papp T, Vágvölgyi C, Takó M. An Organic Solvent-Tolerant Lipase with Both Hydrolytic and Synthetic Activities from the Oleaginous Fungus Mortierella echinosphaera. Int J Mol Sci 2018; 19:E1129. [PMID: 29642574 PMCID: PMC5979600 DOI: 10.3390/ijms19041129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Lipase enzymes of the oleaginous fungal group Mortierella are rarely studied. However, considering that most commercial lipases are derived from filamentous fungal sources, their investigation can contribute to the cost-effective development of new biotechnological processes. Here, an extracellular lipase with a molecular mass of 30 kDa was isolated from Mortierella echinosphaera CBS 575.75 and characterized. The purified lipase exhibited an optimal p-nitrophenyl palmitate (pNPP)-hydrolyzing activity at 25 °C and pH 6.6-7.0 and proved to be highly stable at temperatures up to 40 °C and under broad pH conditions. The enzyme was active under low temperatures, retaining 32.5% of its activity at 10 °C, and was significantly stable in polar and non-polar organic solvents. The Km, Vmax, and kcat for pNPP were 0.336 mM, 30.4 μM/min, and 45.7 1/min for pNPP and 0.333 mM, 36.9 μM/min, and 55.6 1/min for pNP-decanoate, respectively. The pNPP hydrolysis was inhibited by Hg2+, N-bromosuccinimide, and sodium dodecyl sulfate, while ethylenediaminetetraacetic acid and metal ions, such as Ca2+, Mg2+, Na⁺, and K⁺ enhanced the activity. The purified lipase had non-regioselective activity and wide substrate specificity, showing a clear preference for medium-chained p-nitrophenyl esters. Besides its good transesterification activity, the enzyme appeared as a suitable biocatalyst to operate selective esterification reactions to long-chained alkyl esters. Adsorption to Accurel MP1000 improved the storage stability of the enzyme at 5 °C. The immobilized lipase displayed tolerance to a non-aqueous environment and was reusable for up to five cycles without significant loss in its synthetic and hydrolytic activities. These findings confirm the applicability of both the free and the immobilized enzyme preparations in future research.
Collapse
Affiliation(s)
- Alexandra Kotogán
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Carolina Zambrano
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
25
|
Du W, Sun C, Yao Z, Wang J, Wang B, Xie W, Zhang Y, Duan D, Liu X. Production of a novel laccase from Paraphoma Sp. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1448798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Wen Du
- School of Biological Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Chunlong Sun
- School of Biological Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Zhigang Yao
- School of Biological Engineering, Binzhou University, Binzhou, China
| | - Jun Wang
- School of Biological Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Baoqin Wang
- School of Biological Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Wenjun Xie
- School of Biological Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Yumiao Zhang
- School of Biological Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Daixiang Duan
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Xuehong Liu
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| |
Collapse
|
26
|
Du W, Sun C, Wang J, Wang B, Yao Z, Qu F, Xia J, Xie W, Sun J, Duan D. Isolation, identification of a laccase-producing fungal strain and enzymatic properties of the laccase. 3 Biotech 2018; 8:137. [PMID: 29479513 DOI: 10.1007/s13205-018-1149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022] Open
Abstract
A new type of thermostable laccase was isolated from Paraphoma sp. GZS18, and its partial enzymatic properties were determined. A strain GZS18 of laccase with high yield was screened from forest soil and identified as Paraphoma sp. GZS18 through morphological characteristics and ITS sequence analysis. The laccase of Paraphoma sp. GZS18 (Lac-P) was obtained through cation-anion exchange chromatography, gel filtration chromatography, and other purification processes. The testing result shows that Lac-P is a single protein of 75 kDa, and the 11 amino acid sequences in the N-terminal are AXaVSVASREMT (Xa was the non-standard protein). The optimum temperature and optimum pH of lac-P activity are substrate-independent. The temperature is in the range of 50-70 °C, and pH has high catalytic efficiency in the acidic range. Lac-P has good stability in the temperature and pH. The half time at 70-60 °C is 1.5 and 4 h, respectively. At pH 6-9 and room temperature, there is more than 80% activity 24 h later. Lac-P is tolerant of most metal ions and low concentrations of inhibitors but is inhibited by Hg2+, Fe2+ and NaN3. The laccase from Paraphoma sp. GZS18 at high temperature and pH 6-9, with strong stability, has better industrial application characteristics.
Collapse
|
27
|
Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H. Bacterial lipases: A review on purification and characterization. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 132:23-34. [DOI: 10.1016/j.pbiomolbio.2017.07.014] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
|
28
|
Cui C, Zhang Z, Chen B. Environmentally-friendly strategy for separation of 1,3-propanediol using biocatalytic conversion. BIORESOURCE TECHNOLOGY 2017; 245:477-482. [PMID: 28898847 DOI: 10.1016/j.biortech.2017.08.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Glycerol waste from the biodiesel production can be used as a carbon source in the production of 1,3-propanediol (1,3-PD) through microbial fermentation. However, downstream processing is a major bottleneck that restricts its biological production. Here, we investigated an environmentally-friendly method to enzymatically separate 1,3-PD. The transformation of 1,3-PD to an ester was achieved by exploiting the esterification reaction with fatty acids under lipase catalysis. The reaction efficiency was optimized using different poly-alcohols that were existed in the fermentation broth reacted with a fatty acid. Whereas the 1,3-PD conversion reached 62%, only a 0.06% and 0.08% conversion was reached for 2,3-butanediol and glycerol, illustrating the former's more efficient separation. The recovery efficiency of 1,3-PD was 96%. Finally, 1,3-PD was obtained by lipase-directed ester hydrolysis. Taken together, the bio-catalyzed separation process presented here is a novel and promising method for recovering 1,3-PD.
Collapse
Affiliation(s)
- Caixia Cui
- Synthetic Biology Remarking Engineering & Application Laboratory, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China; National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Biology Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zhe Zhang
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Biology Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Biqiang Chen
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Biology Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
29
|
Samoylova YV, Piligaev AV, Sorokina KN, Parmon VN. Enzymatic interesterification of sunflower oil and hydrogenated soybean oil with the immobilized bacterial recombinant lipase from Geobacillus stearothermophilus G3. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417010123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Gudiukaite R, Sadauskas M, Gegeckas A, Malunavicius V, Citavicius D. Construction of a novel lipolytic fusion biocatalyst GDEst-lip for industrial application. J Ind Microbiol Biotechnol 2017; 44:799-815. [PMID: 28105534 DOI: 10.1007/s10295-017-1905-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/07/2017] [Indexed: 01/11/2023]
Abstract
The gene encoding esterase (GDEst-95) from Geobacillus sp. 95 was cloned and sequenced. The resulting open reading frame of 1497 nucleotides encoded a protein with calculated molecular weight of 54.7 kDa, which was classified as a carboxylesterase with an identity of 93-97% to carboxylesterases from Geobacillus bacteria. This esterase can be grouped into family VII of bacterial lipolytic enzymes, was active at broad pH (7-12) and temperature (5-85 °C) range and displayed maximum activity toward short acyl chain p-nitrophenyl (p-NP) esters. Together with GD-95 lipase from Geobacillus sp. strain 95, GDEst-95 esterase was used for construction of fused chimeric biocatalyst GDEst-lip. GDEst-lip esterase/lipase possessed high lipolytic activity (600 U/mg), a broad pH range of 6-12, thermoactivity (5-85 °C), thermostability and resistance to various organic solvents or detergents. For these features GDEst-lip biocatalyst has high potential for applications in various industrial areas. In this work the effect of additional homodomains on monomeric GDEst-95 esterase and GD-95 lipase activity, thermostability, substrate specificity and catalytic properties was also investigated. Altogether, this article shows that domain fusing strategies can modulate the activity and physicochemical characteristics of target enzymes for industrial applications.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania.
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Audrius Gegeckas
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Donaldas Citavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| |
Collapse
|
31
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
32
|
Gricajeva A, Bendikienė V, Kalėdienė L. Lipase of Bacillus stratosphericus L1: Cloning, expression and characterization. Int J Biol Macromol 2016; 92:96-104. [DOI: 10.1016/j.ijbiomac.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023]
|
33
|
Samoylova YV, Piligaev AV, Sorokina KN, Rozanov AS, Peltek SE, Novikov AA, Almyasheva NR, Parmon VN. Application of the immobilized bacterial recombinant lipase from Geobacillus stearothermophilus G3 for the production of fatty acid methyl esters. CATALYSIS IN INDUSTRY 2016. [DOI: 10.1134/s2070050416020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Kotogán A, Kecskeméti A, Szekeres A, Papp T, Chandrasekaran M, Kadaikunnan S, Alharbi NS, Vágvölgyi C, Takó M. Characterization of transesterification reactions by Mucoromycotina lipases in non-aqueous media. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Mo Q, Liu A, Guo H, Zhang Y, Li M. A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization. Extremophiles 2016; 20:157-65. [DOI: 10.1007/s00792-016-0809-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
36
|
Tong X, Busk PK, Lange L. Characterization of a newsn-1,3-regioselective triacylglycerol lipase fromMalbranchea cinnamomea. Biotechnol Appl Biochem 2015; 63:471-8. [DOI: 10.1002/bab.1394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoxue Tong
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
| | - Peter Kamp Busk
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
- Barentzymes A/S; A C Meyers Vaenge 15; Copenhagen SV Denmark
| | - Lene Lange
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
- Barentzymes A/S; A C Meyers Vaenge 15; Copenhagen SV Denmark
| |
Collapse
|
37
|
Brumm PJ, De Maayer P, Mead DA, Cowan DA. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies. Front Microbiol 2015; 6:430. [PMID: 26029180 PMCID: PMC4428132 DOI: 10.3389/fmicb.2015.00430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 11/13/2022] Open
Abstract
In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan.
Collapse
Affiliation(s)
- Phillip J. Brumm
- C5•6 TechnologiesMiddleton, WI, USA
- Great Lakes Bioenergy Research Center, University of WisconsinMadison, WI, USA
| | - Pieter De Maayer
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
- Department of Microbiology and Plant Pathology, University of PretoriaPretoria, South Africa
| | - David A. Mead
- C5•6 TechnologiesMiddleton, WI, USA
- Great Lakes Bioenergy Research Center, University of WisconsinMadison, WI, USA
- Lucigen CorporationMiddleton, WI, USA
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
38
|
Purification and characterization of lipase from Burkholderia sp. EQ3 isolated from wastewater from a canned fish factory and its application for the synthesis of wax esters. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ghazali HM, Dollah S, Abdulkarim SM, Ahmad SH, Khoramnia A. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil. GRASAS Y ACEITES 2015. [DOI: 10.3989/gya.0695141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
|
41
|
Zhu Y, Li H, Ni H, Xiao A, Li L, Cai H. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J Microbiol Biotechnol 2014; 31:295-306. [DOI: 10.1007/s11274-014-1775-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023]
|
42
|
A New Thermostable and Organic Solvent-Tolerant Lipase from Staphylococcus warneri; Optimization of Media and Production Conditions Using Statistical Methods. Appl Biochem Biotechnol 2014; 175:855-69. [DOI: 10.1007/s12010-014-1331-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
43
|
Tan CH, Show PL, Ooi CW, Ng EP, Lan JCW, Ling TC. Novel lipase purification methods - a review of the latest developments. Biotechnol J 2014; 10:31-44. [PMID: 25273633 DOI: 10.1002/biot.201400301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 08/28/2014] [Indexed: 11/05/2022]
Abstract
Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
Collapse
Affiliation(s)
- Chung Hong Tan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | |
Collapse
|
44
|
Asoodeh A, Emtenani S, Emtenani S. Expression and biochemical characterization of a thermophilic organic solvent-tolerant lipase from Bacillus sp. DR90. Protein J 2014; 33:410-421. [PMID: 25070564 DOI: 10.1007/s10930-014-9574-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of the present study was the isolation, molecular cloning and biochemical characterization of a thermophilic organic solvent-resistant lipase from Bacillus sp. DR90. The lipase gene was expressed in Escherichia coli BL21(DE3) using pET-28a(+) vector. The purification of recombinant lipase was conducted by nickel affinity chromatography and its biochemical properties were determined. The lipase sequence with an ORF of 639 bp contains the conserved pentapeptide Ala-His-Ser-Met-Gly. His-tagged recombinant lipase had a specific activity of 1,126 U/mg with a molecular mass of 26.8 kDa. The cloned lipase was optimally active at pH 8.0 and 75 °C representing high stability in broad ranges of temperature and pH. High performance liquid chromatography was used to determine the major compounds released during the lipase-catalyzed reaction of p-nitrophenyl derivatives as well as the substrate specificity. The purified lipase showed high compatibility towards various organic solvents, surfactants and commercial solid/liquid detergents; therefore the recombinant DR90 lipase could be considered as a probable candidate for future applications, predominantly in detergent processing industries.
Collapse
Affiliation(s)
- Ahmad Asoodeh
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran,
| | | | | |
Collapse
|
45
|
Aradhana D, Sreeja HP, Sharmila G, Muthukumaran C. Optimization ofRhizopus niveusLipase Partitioning by an Aqueous Biphasic System. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201300652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Rana M, Kumari A, Chauhan GS, Chauhan K. Modified chitosan microspheres in non-aggregated amylase immobilization. Int J Biol Macromol 2014; 66:46-51. [DOI: 10.1016/j.ijbiomac.2014.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
47
|
Karimi E, Karkhane AA, Yakhchali B, Shamsara M, Aminzadeh S, Torktaz I, Hosseini M, Safari Z. Study of the effect of F17A mutation on characteristics ofBacillus thermocatenulatuslipase expressed inPichia pastorisusingin silicoand experimental methods. Biotechnol Appl Biochem 2014; 61:264-73. [DOI: 10.1002/bab.1164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/31/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Esmat Karimi
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Bagher Yakhchali
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Mehdi Shamsara
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Ibrahim Torktaz
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Mostafa Hosseini
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Zahra Safari
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| |
Collapse
|
48
|
Gudiukaitė R, Gegeckas A, Kazlauskas D, Citavicius D. Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95. Extremophiles 2013; 18:131-45. [DOI: 10.1007/s00792-013-0605-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
|
49
|
Production and characterization of a halo-, solvent-, thermo-tolerant alkaline lipase by Staphylococcus arlettae JPBW-1, isolated from rock salt mine. Appl Biochem Biotechnol 2013; 171:1429-43. [PMID: 23955348 DOI: 10.1007/s12010-013-0433-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Studies on lipase production and characterization were carried out with a bacterial strain Staphylococcus arlettae JPBW-1 isolated from rock salt mine, Darang, HP, India. Higher lipase activity has been obtained using 10 % inoculum with 5 % of soybean oil as carbon source utilizing a pH 8.0 in 3 h at 35 °C and 100 rpm through submerged fermentation. Partially purified S. arlettae lipase has been found to be active over a broad range of temperature (30-90 °C), pH (7.0-12.0) and NaCl concentration (0-20 %). It has shown extreme stability with solvents such as benzene, xylene, n-hexane, methanol, ethanol and toluene up to 30 % (v/v). The lipase activity has been found to be inhibited by metal ions of K(+), Co(2+) and Fe (2+) and stimulated by Mn(2+), Ca(2+) and Hg(2+). Lipase activity has been diminished with denaturants, but enhanced effect has been observed with surfactants, such as Tween 80, Tween 40 and chelator EDTA. The K m and V max values were found to be 7.05 mM and 2.67 mmol/min, respectively. Thus, the lipase from S. arlettae may have considerable potential for industrial application from the perspectives of its tolerance towards industrial extreme conditions of pH, temperature, salt and solvent.
Collapse
|
50
|
Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 2013; 17:677-87. [DOI: 10.1007/s00792-013-0551-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
|