1
|
Wang BT, Hu S, Oh DN, Jin CZ, Jin L, Lee JM, Jin FJ. Insights into the Lignocellulose-Degrading Enzyme System Based on the Genome Sequence of Flavodon sp. x-10. Int J Mol Sci 2025; 26:866. [PMID: 39940637 PMCID: PMC11816945 DOI: 10.3390/ijms26030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The efficient hydrolysis of lignocellulosic biomass relies on the action of enzymes, which are crucial for the development of economically feasible cellulose bioconversion processes. However, low hydrolysis efficiency and the inhibition of cellulase production by carbon catabolite repression (CCR) have been significant obstacles in this process. The aim of this study was to identify the patterns of cellulose degradation and related genes through the genome analysis of a newly isolated lignocellulose-degrading fungus Flavodon sp. x-10. The whole-genome sequencing showed that the genome size of Flavodon sp. x-10 was 37.1 Mb, with a GC content of 49.48%. A total of 11,277 genes were predicted, with a total length of 18,218,150 bp and an average length of 1615 bp. Additionally, 157 tRNA genes responsible for transporting different amino acids were predicted, and the repeats and tandem repeats accounted for only 0.76% of the overall sequences. A total of 5039 genes were annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, representing 44.68% of all genes, and 368 metabolic pathways were involved. Of the 595 genes annotated in the carbohydrate-active enzyme (CAZy) database, 183 are associated with plant cell wall-degrading enzymes (PCWDEs), surpassing those of Aspergillus niger (167), Trichoderma reesei (64), and Neurospora crassa (86). Compared to these three fungi, Flavodon sp. x-10 has a higher number of enzyme genes related to lignin degradation in its genome. Transporters were further identified by matching the whole-genome sequence to the Transporter Classification Database (TCDB), which includes 20 sugar transporters (STs) closely linked to sugar utilization. Through the comprehensive exploration of the whole-genome sequence, this study uncovered more vital lignocellulase genes and their degradation mechanisms, providing feasible strategies for improving the strains to reduce the cost of biofuel production.
Collapse
Affiliation(s)
- Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Dong Nyoung Oh
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Jong Min Lee
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| |
Collapse
|
2
|
Briganti L, Manzine LR, de Mello Capetti CC, de Araújo EA, de Oliveira Arnoldi Pellegrini V, Guimaraes FEG, de Oliveira Neto M, Polikarpov I. Unravelling biochemical and structural features of Bacillus licheniformis GH5 mannanase using site-directed mutagenesis and high-resolution protein crystallography studies. Int J Biol Macromol 2024; 274:133182. [PMID: 38885857 DOI: 10.1016/j.ijbiomac.2024.133182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Glycoside hydrolase family 5 (GH5) encompasses enzymes with several different activities, including endo-1,4-β-mannosidases. These enzymes are involved in mannan degradation, and have a number of biotechnological applications, such as mannooligosaccharide prebiotics production, stain removal and dyes decolorization, to name a few. Despite the importance of GH5 enzymes, only a few members of subfamily 7 were structurally characterized. In the present work, biochemical and structural characterization of Bacillus licheniformis GH5 mannanase, BlMan5_7 were performed and the enzyme cleavage pattern was analyzed, showing that BlMan5_7 requires at least 5 occupied subsites to perform efficient hydrolysis. Additionally, crystallographic structure at 1.3 Å resolution was determined and mannoheptaose (M7) was docked into the active site to investigate the interactions between substrate and enzyme through molecular dynamic (MD) simulations, revealing the existence of a - 4 subsite, which might explain the generation of mannotetraose (M4) as an enzyme product. Biotechnological application of the enzyme in stain removal was investigated, demonstrating that BlMan5_7 addition to washing solution greatly improves mannan-based stain elimination.
Collapse
Affiliation(s)
- Lorenzo Briganti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Livia R Manzine
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Evandro Ares de Araújo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, São Paulo, Brazil
| | | | - Francisco Eduardo Gontijo Guimaraes
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Jr. s/n, Botucatu 18618-000, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
3
|
Nath S, Kango N. Optimized production and characterization of endo-β-mannanase by Aspergillus niger for generation of prebiotic mannooligosaccharides from guar gum. Sci Rep 2024; 14:14015. [PMID: 38890382 PMCID: PMC11637063 DOI: 10.1038/s41598-024-63803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Optimized production of Aspergillus niger ATCC 26011 endo-β-mannanase (ManAn) on copra meal resulted in 2.46-fold increase (10,028 U/gds). Purified ManAn (47 kDa) showed high affinity towards guar gum (GG) as compared to konjac gum and locust bean gum with Km 2.67, 3.25 and 4.07 mg/mL, respectively. ManAn efficiently hydrolyzed GG and liberated mannooligosaccharides (MOS). Changes occurring in the rheological and compositional aspects of GG studied using Differential scanning calorimetry (DSC), Thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) revealed increased thermal stability and crystallinity of the partially hydrolyzed guar gum (PHGG). Parametric optimization of the time and temperature dependent hydrolysis of GG (1% w/v) with 100 U/mL of ManAn at 60 °C and pH: 5.0 resulted in 12.126 mg/mL of mannotetraose (M4) in 5 min. Enhanced growth of probiotics Lactobacilli and production of short chain fatty acids (SCFA) that inhibited enteropathogens, confirmed the prebiotic potential of PHGG and M4.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India.
| |
Collapse
|
4
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Dou N, Li L, Fang Y, Fan S, Wu C. Comparative Physiological and Transcriptome Analyses of Tolerant and Susceptible Cultivars Reveal the Molecular Mechanism of Cold Tolerance in Anthurium andraeanum. Int J Mol Sci 2023; 25:250. [PMID: 38203421 PMCID: PMC10779044 DOI: 10.3390/ijms25010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Anthurium andraeanum is a tropical ornamental flower. The cost of Anthurium production is higher under low temperature (non-freezing) conditions; therefore, it is important to increase its cold tolerance. However, the molecular mechanisms underlying the response of Anthurium to cold stress remain elusive. In this study, comparative physiological and transcriptome sequencing analyses of two cultivars with contrasting cold tolerances were conducted to evaluate the cold stress response at the flowering stage. The activities of superoxide dismutase and peroxidase and the contents of proline, soluble sugar, and malondialdehyde increased under cold stress in the leaves of the cold tolerant cultivar Elegang (E) and cold susceptible cultivar Menghuang (MH), while the soluble protein content decreased in MH and increased in E. Using RNA sequencing, 24,695 differentially expressed genes (DEGs) were identified from comparisons between cultivars under the same conditions or between the treatment and control groups of a single cultivar, 9132 of which were common cold-responsive DEGs. Heat-shock proteins and pectinesterases were upregulated in E and downregulated in MH, indicating that these proteins are essential for Anthurium cold tolerance. Furthermore, four modules related to cold treatment were obtained by weighted gene co-expression network analysis. The expression of the top 20 hub genes in these modules was induced by cold stress in E or MH, suggesting they might be crucial contributors to cold tolerance. DEGs were significantly enriched in plant hormone signal transduction pathways, trehalose metabolism, and ribosomal proteins, suggesting these processes play important roles in Anthurium's cold stress response. This study provides a basis for elucidating the mechanism of cold tolerance in A. andraeanum and potential targets for molecular breeding.
Collapse
Affiliation(s)
- Na Dou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Li Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Yifu Fang
- Institute of Ornamental Plants, Shandong Provincial Academy of Forestry, Wenhua East Road 42, Jinan 250010, China;
| | - Shoujin Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China (S.F.)
| |
Collapse
|
6
|
Zheng F, Basit A, Zhang Z, Zhuang H, Chen J, Zhang J. Improved production of recombinant β-mannanase (TaMan5) in Pichia pastoris and its synergistic degradation of lignocellulosic biomass. Front Bioeng Biotechnol 2023; 11:1244772. [PMID: 37744260 PMCID: PMC10513448 DOI: 10.3389/fbioe.2023.1244772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Mannan, a highly abundant and cost-effective natural resource, holds great potential for the generation of high-value compounds such as bioactive polysaccharides and biofuels. In this study, we successfully enhanced the expression of constructed GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 by employing propeptide in Pichia pastoris. By replacing the α-factor with propeptide (MGNRALNSMKFFKSQALALLAATSAVA), TaMan5 activity was significantly increased from 67.5 to 91.7 U/mL. It retained higher activity in the presence of 20% ethanol and 15% NaCl. When incubated with a high concentration of mannotriose or mannotetraose, the transglycosylation action of TaMan5 can be detected, yielding the corresponding production of mannotetraose or mannooligosaccharides. Moreover, the unique mechanism whereby TaMan5 catalyzes the degradation of mannan into mannobiose involves the transglycosylation of mannose to mannotriose or mannotetraose as a substrate to produce a mannotetraose or mannopentose intermediate, respectively. Additionally, the production of soluble sugars from lignocellulose is a crucial step in bioethanol development, and it is noteworthy that TaMan5 could synergistically yield fermentable sugars from corn stover and bagasse. These findings offered valuable insights and strategies for enhancing β-mannanase expression and efficient conversion of lignocellulosic biomass, providing cost-effective and sustainable approaches for high-value biomolecule and biofuel production.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Zhiyue Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
7
|
Development of an oil-sealed anaerobic fermentation process for high production of γ-aminobutyric acid with Lactobacillus brevis isolated by directional colorimetric screening. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Acar M, Abul N, Yildiz S, Taskesenligil ED, Gerni S, Unver Y, Kalin R, Ozdemir H. Affinity-based and in a single step purification of recombinant horseradish peroxidase A2A isoenzyme produced by Pichia pastoris. Bioprocess Biosyst Eng 2023; 46:523-534. [PMID: 36527454 DOI: 10.1007/s00449-022-02837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Horseradish peroxidase (HRP) is an oxidoreductase enzyme and oxidizes various inorganic and organic compounds. It has wide application areas such as immunological tests, probe-based test techniques, removal of phenolic pollutants from wastewater and organic synthesis. HRP is found in the root of the horseradish plant as a mixture of different isoenzymes, and it is very difficult to separate these enzymes from each other. In this regard, recombinant production is a very advantageous method in terms of producing the desired isoenzyme. This study was performed to produce HRP A2A isoenzyme extracellularly in Pichia pastoris and to purify this enzyme in a single step using a 3-amino-4-chloro benzohydrazide affinity column. First, codon-optimized HRP A2A gene was amplified and inserted into pPICZαC. So, obtained pPICZαC-HRPA2A was cloned in E. coli cells. Then, P. pastoris X-33 cells were transformed with linearized recombinant DNA and a yeast clone was cultivated for extracellular recombinant HRP A2A (rHRP A2A) enzyme production. Then, the purification of this enzyme was performed in a single step by affinity chromatography. The molecular mass of purified rHRP A2A enzyme was found to be about 40 kDa. According to characterization studies of the purified enzyme, the optimum pH and ionic strength for the rHRP A2A isoenzyme were determined to be 6.0 and 0.04 M, respectively, and o-dianisidine had the highest specificity with the lowest Km and Vmax values. Thus, this is an economical procedure to purify HRP A2A isoenzyme without time-consuming and laborious isolation from an isoenzyme mixture.
Collapse
Affiliation(s)
- Melek Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Nurgul Abul
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ezgi Dag Taskesenligil
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Ramazan Kalin
- Department of Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Ozdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
9
|
Huang Y, Lin T, Lu L, Cai F, Lin J, Jiang YE, Lin Y. Codon pair optimization (CPO): a software tool for synthetic gene design based on codon pair bias to improve the expression of recombinant proteins in Pichia pastoris. Microb Cell Fact 2021; 20:209. [PMID: 34736476 PMCID: PMC8567542 DOI: 10.1186/s12934-021-01696-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Background Codon optimization is a common method to improve protein expression levels in Pichia pastoris and the current strategy is to replace rare codons with preferred codons to match the codon usage bias. However, codon-pair contexts have a profound effect on translation efficiency by influencing both translational elongation rates and accuracy. Until now, it remains untested whether optimized genes based on codon pair bias results in higher protein expression levels compared to codon usage bias. Results In this study, an algorithm based on dynamic programming was introduced to develop codon pair optimization (CPO) which is a software tool to provide simple and efficient codon pair optimization for synthetic gene design in Pichia pastoris. Two reporters (MT1-MMP E2C6 and ADAM17 A9B8 scFvs) were employed to test the effects of codon pair bias and CPO optimization on their protein expression levels. Four variants of MT1-MMP E2C6 and ADAM17 A9B8 for each were generated, one variant with the best codon-pair context, one with the worst codon-pair context, one with unbiased codon-pair context, and another optimized based on codon usage. The expression levels of variants with the worst codon-pair context were almost undetectable by Western blot and the variants with the best codon-pair context were expressed well. The expression levels on MT1-MMP E2C6 and ADAM17 A9B8 were more than five times and seven times higher in the optimized sequences based on codon-pair context compared to that based on codon usage, respectively. The results indicated that the codon-pair context-based codon optimization is more effective in enhancing expression of protein in Pichia pastoris. Conclusions Codon-pair context plays an important role on the protein expression in Pichia pastoris. The codon pair optimization (CPO) software developed in this study efficiently improved the protein expression levels of exogenous genes in Pichia pastoris, suggesting gene design based on codon pair bias is an alternative strategy for high expression of recombinant proteins in Pichia pastoris. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01696-y.
Collapse
Affiliation(s)
- Yide Huang
- Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China. .,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Ting Lin
- Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Lingfang Lu
- Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Fan Cai
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Jie Lin
- College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, China
| | - Yu E Jiang
- College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, China.
| | - Yao Lin
- Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China. .,Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
10
|
Magengelele M, Hlalukana N, Malgas S, Rose SH, van Zyl WH, Pletschke BI. Production and in vitro evaluation of prebiotic manno-oligosaccharides prepared with a recombinant Aspergillus niger endo-mannanase, Man26A. Enzyme Microb Technol 2021; 150:109893. [PMID: 34489046 DOI: 10.1016/j.enzmictec.2021.109893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In this study, a GH26 endo-mannanase (Man26A) from an Aspergillus niger ATCC 10864 strain, with a molecular mass of 47.8 kDa, was cloned in a yBBH1 vector and expressed in Saccharomyces cerevisiae Y294 strain cells. Upon fractionation by ultra-filtration, the substrate specificity and substrate degradation pattern of the endo-mannanase (Man26A) were investigated using ivory nut linear mannan and two galactomannan substrates with varying amounts of galactosyl substitutions, guar gum and locust bean gum. Man26A exhibited substrate specificity in the order: locust bean gum ≥ ivory nut mannan > guar gum; however, the enzyme generated more manno-oligosaccharides (MOS) from the galactomannans than from linear mannan during extended periods of mannan hydrolysis. MOS with a DP of 2-4 were the major products from mannan substrate hydrolysis, while guar gum also generated higher DP length MOS. All the Man26A generated MOS significantly improved the growth (approximately 3-fold) of the probiotic bacterial strains Streptococcus thermophilus and Bacillus subtilis in M9 minimal medium. Ivory nut mannan and locust bean gum derived MOS did not influence the auto-aggregation ability of the bacteria, while the guar gum derived MOS led to a 50 % reduction in bacterial auto-aggregation. On the other hand, all the MOS significantly improved bacterial biofilm formation (approximately 3-fold). This study suggests that the prebiotic characteristics exhibited by MOS may be dependent on their primary structure, i.e. galactose substitution and DP. Furthermore, the data suggests that the enzyme-generated MOS may be useful as potent additives to dietary foods.
Collapse
Affiliation(s)
- Mihle Magengelele
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown) 6140, South Africa
| | - Nosipho Hlalukana
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown) 6140, South Africa
| | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown) 6140, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda (Grahamstown) 6140, South Africa.
| |
Collapse
|
11
|
Song P, Feng W. Functional expression and characterization of a novel aminopeptidase B from Aspergillus niger in Pichia pastoris. 3 Biotech 2021; 11:366. [PMID: 34290949 DOI: 10.1007/s13205-021-02915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022] Open
Abstract
A novel aminopeptidase B (APB-AN) was identified from Aspergillus niger CGMCC 3.1454 for the first time and was cloned and expressed in Pichia pastoris. The mature enzyme of approximately 100 kDa was purified for characterization. The optimum pH and temperature of the recombinant APB-AN were determined to be 7.0 and 40 °C, respectively. The enzyme was stable below 40 °C and at pH values from 5.0 to 8.0. The K m and V max values were determined to be 0.61 mmol/L and 11.45 mmol/L/min, respectively, using Arg-pNA as the substrate. APB-AN was inhibited by Cu2+ and Fe2+ and activated by Co2+ and Na+. Most metal chelators (Ca2+, Mg2+ and Mn2+) and aminopeptidase inhibitors (bestatin and puromycin) suppressed its activity. APB-AN was found to be active towards 13 kinds of amino acid p-nitroanilide (pNA) substrates:Arg-pNA, Lys-pNA, Tyr- pNA, Trp-pNA, Phe-pNA, His-pNA, Ala-pNA, Met-pNA, Leu-pNA, Glu-pNA, Val-pNA, Pro-pNA and Ile-pNA, and the most preferred N-terminal amino acids were arginine and lysine. APB-AN also hydrolyzed 4 natural proteins: casein, bovine serum albumin, soy protein isolate and water-soluble wheat protein. It is expected that APB-AN has potential food processing applications.
Collapse
Affiliation(s)
- Peng Song
- School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Wei Feng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
12
|
Xie H, Poon CKK, Liu H, Wang D, Yang J, Han Z. Molecular and biochemical characterizations of a new cold-active and mildly alkaline β-Mannanase from Verrucomicrobiae DG1235. Prep Biochem Biotechnol 2021; 51:881-891. [PMID: 33439094 DOI: 10.1080/10826068.2020.1870235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mannanases catalyze the cleavage of β-1,4-mannosidic linkages in mannans and have various applications in different biotechnological industries. In this study, a new β-mannanase from Verrucomicrobiae DG1235 (ManDG1235) was biochemically characterized and its enzymatic properties were revealed. Amino acid alignment indicated that ManDG1235 belonged to glycoside hydrolase family 26 and shared a low amino acid sequence identity to reported β-mannanases (up to 50% for CjMan26C from Cellvibrio japonicus). ManDG1235 was expressed in Escherichia coli. Purified ManDG1235 (rManDG1235) exhibited the typical properties of cold-active enzymes, including high activity at low temperature (optimal at 20 °C) and thermal instability. The maximum activity of rManDG1235 was achieved at pH 8, suggesting that it is a mildly alkaline β-mannanase. rManDG1235 was able to hydrolyze a variety of mannan substrates and was active toward certain types of glucans. A structural model that was built by homology modeling suggested that ManDG1235 had four mannose-binding subsites which were symmetrically arranged in the active-site cleft. A long loop linking β2 and α2 as in CjMan26C creates a steric border in the glycone region of active-site cleft which probably leads to the exo-acting feature of ManDG1235, for specifically cleaving mannobiose from the non-reducing end of the substrate.
Collapse
Affiliation(s)
- Huifang Xie
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chun Kin Kingsley Poon
- Shanghai Xuhui Siqiao Science & Technology Research Center, Shanghai, China.,Shanghai High School International Division, Shanghai, China
| | - Hanyan Liu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dan Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhenggang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
13
|
Wang NN, Liu J, Li YX, Ma JW, Yan QJ, Jiang ZQ. High-level expression of a glycoside hydrolase family 26 β-mannanase from Aspergillus niger in Pichia pastoris for production of partially hydrolysed fenugreek gum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Liu Z, Ning C, Yuan M, Fu X, Yang S, Wei X, Xiao M, Mou H, Zhu C. High-efficiency expression of a superior β-mannanase engineered by cooperative substitution method in Pichia pastoris and its application in preparation of prebiotic mannooligosaccharides. BIORESOURCE TECHNOLOGY 2020; 311:123482. [PMID: 32416491 DOI: 10.1016/j.biortech.2020.123482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
β-mannanase with high specific activity is a prerequisite for the industrial preparation of prebiotic mannooligosaccharides. Three mutants, namely MEI, MER, and MEIR, were constructed by cooperative substitution based on three predominant single-point site mutations (K291E, L211I, and Q112R, respectively). Heterologous expression was facilitated in Pichia pastoris and the recombinase was characterized completely. The specific activities of MER (7481.9 U mg-1) and MEIR (9003.1 U mg-1) increased by 1.07- and 1.29-fold from the initial activity of ME (6970.2U mg-1), respectively. MEIR was used for high-cell-density fermentation to further improve enzyme activity, and the expression levels achieved in the 10-L fermenter were significantly high (105,836 U mL-1). The prebiotic mannooligosaccharides (<2000 Da) were prepared by hydrolyzing konjac gum and locust bean gum with MEIR, with 100% and 76.40% hydrolysis rates, respectively. These characteristics make MEIR highly attractive for prebiotic development in food and related industries.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
15
|
Liu S, Cui T, Song Y. Expression, homology modeling and enzymatic characterization of a new β-mannanase belonging to glycoside hydrolase family 1 from Enterobacter aerogenes B19. Microb Cell Fact 2020; 19:142. [PMID: 32665004 PMCID: PMC7362650 DOI: 10.1186/s12934-020-01399-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND β-mannanase can hydrolyze β-1,4 glycosidic bond of mannan by the manner of endoglycosidase to generate mannan-oligosaccharides. Currently, β-mannanase has been widely applied in food, medicine, textile, paper and petroleum exploitation industries. β-mannanase is widespread in various organisms, however, microorganisms are the main source of β-mannanases. Microbial β-mannanases display wider pH range, temperature range and better thermostability, acid and alkali resistance, and substrate specificity than those from animals and plants. Therefore microbial β-mannanases are highly valued by researchers. Recombinant bacteria constructed by gene engineering and modified by protein engineering have been widely applied to produce β-mannanase, which shows more advantages than traditional microbial fermentation in various aspects. RESULTS A β-mannanase gene (Man1E), which encoded 731 amino acid residues, was cloned from Enterobacter aerogenes. Man1E was classified as Glycoside Hydrolase family 1. The bSiteFinder prediction showed that there were eight essential residues in the catalytic center of Man1E as Trp166, Trp168, Asn229, Glu230, Tyr281, Glu309, Trp341 and Lys374. The catalytic module and carbohydrate binding module (CBM) of Man1E were homologously modeled. Superposition analysis and molecular docking revealed the residues located in the catalytic module of Man1E and the CBM of Man1E. The recombinant enzyme was successfully expressed, purified, and detected about 82.5 kDa by SDS-PAGE. The optimal reaction condition was 55 °C and pH 6.5. The enzyme exhibited high stability below 60 °C, and in the range of pH 3.5-8.5. The β-mannanase activity was activated by low concentration of Co2+, Mn2+, Zn2+, Ba2+ and Ca2+. Man1E showed the highest affinity for Locust bean gum (LBG). The Km and Vmax values for LBG were 3.09 ± 0.16 mg/mL and 909.10 ± 3.85 μmol/(mL min), respectively. CONCLUSIONS A new type of β-mannanase with high activity from E. aerogenes is heterologously expressed and characterized. The enzyme belongs to an unreported β-mannanase family (CH1 family). It displays good pH and temperature features and excellent catalysis capacity for LBG and KGM. This study lays the foundation for future application and molecular modification to improve its catalytic efficiency and substrate specificity.
Collapse
Affiliation(s)
- Siyu Liu
- School of Biological Science and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Tangbing Cui
- School of Biological Science and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Yan Song
- School of Biological Science and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
16
|
Enhancing β-mannanase production by controlling fungal morphology in the bioreactor with microparticle addition. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
A novel thermophilic β-mannanase with broad-range pH stability from Lichtheimia ramosa and its synergistic effect with α-galactosidase on hydrolyzing palm kernel meal. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Zhang HL, Wei JK, Wang QH, Yang R, Gao XJ, Sang YX, Cai PP, Zhang GQ, Chen QJ. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Sci Rep 2019; 9:1151. [PMID: 30718596 PMCID: PMC6362146 DOI: 10.1038/s41598-018-37681-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Agaricus bisporus is in general cultivated on wheat and rice straw in China. However, millet straw is a potential alternative resource for Agaricus bisporus cultivation, but this has hardly been studied. In the present study, the feasibility of millet straw based mushroom production was analyzed by three successive trials. Mature compost demonstrated high quality with total nitrogen, pH, and C/N ratio of 2.0%, 7.5, and 18:1 respectively, which was suitable for mushroom mycelia growth. During composting, 47–50% of cellulose, 63–65% of hemicellulose, and 8–17% lignin were degraded, while 22–27% of cellulose, 14–16% of hemicellulose, and 15–21% of lignin were consumed by A. bisporus mycelia during cultivation. The highest FPUase and CMCase were observed during mushroom flushes. Endo-xylanase had the key role in hemicellulose degradation with high enzyme activity during cultivation stages. Laccase participated in lignin degradation with the highest enzyme activity in Pinning stage followed by a sharp decline at the first flush. Yield was up to 20 kg/m2, as this is similar to growth on wheat straw, this shows that millet straw is an effective resource for mushroom cultivation. Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria were the dominant phyla, based on 16S rRNA gene sequencing during composting. The key environmental factors dominating bacterial communities of the samples were determined to be pH value, cellulose content, and hemicellulose content for prewetting and premixed phase of basic mixture (P0); moisture content for phase I (PI); and nitrogen content, lignin content, and ash content for phase II (PII), respectively.
Collapse
Affiliation(s)
- Hao-Lin Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jin-Kang Wei
- Beijing Agricultural Technology Extension Station, Beijing, 100029, China
| | - Qing-Hui Wang
- Chengde Xingchunhe Agricultural Co. Ltd., Chengde, 067000, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiao-Jing Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yu-Xi Sang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Pan-Pan Cai
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Guo-Qing Zhang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China.
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
19
|
Zheng F, Liu J, Basit A, Miao T, Jiang W. Insight to Improve α-L-Arabinofuranosidase Productivity in Pichia pastoris and Its Application on Corn Stover Degradation. Front Microbiol 2018; 9:3016. [PMID: 30631307 PMCID: PMC6315152 DOI: 10.3389/fmicb.2018.03016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
α-L-arabinofuranosidase (ARA) with enhanced specific activity and in large amounts, is needed for a variety of industrial applications. To improve ARA production with engineered methylotrophic yeast Pichia pastoris, a genetically modified ara gene from Aspergillus niger ND-1 was investigated. Through codon optimization and rational replacement of α-factor signal peptide with the native propeptide (MFSRRNLVALGLAATVSA), ARA production was improved from 2.61 ± 0.13 U/mL to 14.37 ± 0.22 U/mL in shaking flask culture (a 5.5-fold increase). Results of N-terminal sequencing showed that secreted active ARA of recombinant strain p-oARA had theoretical initial five amino acids (GPCDI) comparable to the mature sequences of α-oARA (EAEAG) and αp-oARA (NLVAL). The kinetic values have been determined for ARA of recombinant strain p-oARA (Vmax = 747.55 μmol/min/mg, Km = 5.36 mmol/L), optimal activity temperature 60°C and optimal pH 4.0. Scaling up of ARA production by p-oARA in a 7.5-L fermentor resulted in remarkably high extracellular ARA specific activity (479.50 ± 12.83 U/mg) at 168 h, and maximal production rate 164.47 ± 4.40 U/mL. In studies of corn stover degradation activity, degree of synergism for ARA and xylanase was 32.4% and enzymatic hydrolysis yield for ARA + xylanase addition was 15.9% higher than that of commercial cellulase, indicating significant potential of ARA for catalytic conversion of corn stover to fermentable sugars for biofuel production.
Collapse
Affiliation(s)
- Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Costa DAL, Filho EXF. Microbial β-mannosidases and their industrial applications. Appl Microbiol Biotechnol 2018; 103:535-547. [PMID: 30426153 DOI: 10.1007/s00253-018-9500-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Heteropolymers of mannan are polysaccharide components of the plant cell wall of gymnosperms and some angiosperms, including palm trees (Arecales and Monocot). Degradation of the complex structure of these polysaccharides requires the synergistic action of enzymes that disrupt the internal carbon skeleton of mannan and accessory enzymes that remove side chain substituents. However, complete degradation of these polysaccharides is carried out by an exo-hydrolase termed β-mannosidase. Microbial β-mannosidases belong to families 1, 2, and 5 of glycosyl hydrolases, and catalyze the hydrolysis of non-reducing ends of mannose oligomers. Besides, these enzymes are also involved in transglycosylation reactions. Because of their activity at different temperatures and pH values, these enzymes are used in a variety of industrial applications and the pharmaceutical, food, and biofuel industries.
Collapse
|
21
|
Dong W, Liu K, Liu J, Shi Z, Xin F, Zhang W, Ma J, Wu H, Wang F, Jiang M. Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8. BIORESOURCE TECHNOLOGY 2018; 248:153-159. [PMID: 28684178 DOI: 10.1016/j.biortech.2017.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCαCβ) were expressed and purified with the highest activity of 1934.6U·mgprotein-1 and 32.80U·mgprotein-1, respectively. BOA could be hydrolyzed to 2AP by rCbaA, which was further transformed to picolinic acid by rCnbCαCβ based on identified catalytic product. The optimal pH and temperature for rCbaA are 9.0 and 55°C with excellent stability for catalytic environments, and the residual activity was >50% after incubation at temperatures <45°C or at pH between 6.0 and 10.0 for 24h. On the contrary, rCnbCαCβ composed of α-subunit (33kDa) and β-subunit (38kDa) showed poor stability against environmental factors, including temperature, pH, metal ions and chemicals.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
22
|
Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv 2017; 36:182-195. [PMID: 29129652 DOI: 10.1016/j.biotechadv.2017.11.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Pichia pastoris has been recognized as one of the most industrially important hosts for heterologous protein production. Despite its high protein productivity, the optimization of P. pastoris cultivation is still imperative due to strain- and product-specific challenges such as promoter strength, methanol utilization type and oxygen demand. To address the issues, strategies involving genetic and process engineering have been employed. Optimization of codon usage and gene dosage, as well as engineering of promoters, protein secretion pathways and methanol metabolic pathways have proved beneficial to innate protein expression levels. Large-scale production of proteins via high cell density fermentation additionally relies on the optimization of process parameters including methanol feed rate, induction temperature and specific growth rate. Recent progress related to the enhanced production of proteins in P. pastoris via various genetic engineering and cultivation strategies are reviewed. Insight into the regulation of the P. pastoris alcohol oxidase 1 (AOX1) promoter and the development of methanol-free systems are highlighted. Novel cultivation strategies such as mixed substrate feeding are discussed. Recent advances regarding substrate and product monitoring techniques are also summarized. Application of P. pastoris to the production of biodiesel and other value-added products via metabolic engineering are also reviewed. P. pastoris is becoming an indispensable platform through the use of these combined engineering strategies.
Collapse
|
23
|
Sakai K, Mochizuki M, Yamada M, Shinzawa Y, Minezawa M, Kimoto S, Murata S, Kaneko Y, Ishihara S, Jindou S, Kobayashi T, Kato M, Shimizu M. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae. Appl Microbiol Biotechnol 2017; 101:3237-3245. [DOI: 10.1007/s00253-017-8107-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 11/29/2022]
|
24
|
A Recombinant Highly Thermostable β-Mannanase (ReTMan26) from Thermophilic Bacillus subtilis (TBS2) Expressed in Pichia pastoris and Its pH and Temperature Stability. Appl Biochem Biotechnol 2017; 182:1259-1275. [PMID: 28101787 DOI: 10.1007/s12010-017-2397-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
A gene encoding a highly thermostable β-mannanase from a thermophilic Bacillus subtilis (TBS2) was successfully expressed in Pichia pastoris. The maximum activity of the recombinant thermostable β-mannanase (ReTMan26) was 5435 U/mL, which was obtained by high-density, fed-batch cultivation after 168-h induction with methanol in a 50-L bioreactor. The protein yield reached 3.29 mg/mL, and the protein had a molecular weight of ~42 kDa. After fermentation, ReTMan26 was purified using a 10-kDa cut-off membrane and Sephadex G-75 column. The pH and temperature optima of purified ReTMan26 were pH 6.0 and 60 °C, respectively, and the enzyme was stable at pH 2.0-8.0 and was active at 20-100 °C. HPLC analysis of the products of locust bean gum hydrolysis showed that the mannan-oligosaccharide content was 62.5%. ReTMan26 retained 58.6% of its maximum activity after treatment at 100 °C for 10 min, which was higher than any other β-mannanase reported up to now, suggesting its potential for industrial applications.
Collapse
|
25
|
Harnpicharnchai P, Pinngoen W, Teanngam W, Sornlake W, Sae-Tang K, Manitchotpisit P, Tanapongpipat S. Production of high activity Aspergillus niger BCC4525 β-mannanase in Pichia pastoris and its application for mannooligosaccharides production from biomass hydrolysis. Biosci Biotechnol Biochem 2016; 80:2298-2305. [DOI: 10.1080/09168451.2016.1230003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
A cDNA encoding β-mannanase was cloned from Aspergillus niger BCC4525 and expressed in Pichia pastoris KM71. The secreted enzyme hydrolyzed locust bean gum substrate with very high activity (1625 U/mL) and a relatively high kcat/Km (461 mg−1 s−1 mL). The enzyme is thermophilic and thermostable with an optimal temperature of 70 °C and 40% retention of endo-β-1,4-mannanase activity after preincubation at 70 °C. In addition, the enzyme exhibited broad pH stability with an optimal pH of 5.5. The recombinant enzyme hydrolyzes low-cost biomass, including palm kernel meal (PKM) and copra meal, to produce mannooligosaccharides, which is used as prebiotics to promote the growth of beneficial microflora in animals. An in vitro digestibility test simulating the gastrointestinal tract system of broilers suggested that the recombinant β-mannanase could effectively liberate reducing sugars from PKM-containing diet. These characteristics render this enzyme suitable for utilization as a feed additive to improve animal performance.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Waraporn Pinngoen
- Faculty of Science, Department of Medical Sciences, Rangsit University, Pathum Thani, Thailand
| | - Wanwisa Teanngam
- Faculty of Science, Department of Medical Sciences, Rangsit University, Pathum Thani, Thailand
| | - Warasirin Sornlake
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kittapong Sae-Tang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pennapa Manitchotpisit
- Faculty of Science, Department of Medical Sciences, Rangsit University, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
26
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
27
|
Yang H, Zhu Q, Zhou N, Tian Y. Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation. World J Microbiol Biotechnol 2016; 32:176. [PMID: 27628336 DOI: 10.1007/s11274-016-2135-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).
Collapse
Affiliation(s)
- Hongyu Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiang Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaping Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
28
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
29
|
Katsimpouras C, Dimarogona M, Petropoulos P, Christakopoulos P, Topakas E. A thermostable GH26 endo-β-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol 2016; 100:8385-97. [PMID: 27193267 DOI: 10.1007/s00253-016-7609-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/24/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
The endomannanase gene em26a from the thermophilic fungus Myceliophthora thermophila, belonging to the glycoside hydrolase family 26, was functionally expressed in the methylotrophic yeast Pichia pastoris. The putative endomannanase, dubbed MtMan26A, was purified to homogeneity (60 kDa) and subsequently characterized. The optimum pH and temperature for the enzymatic activity of MtMan26A were 6.0 and 60 °C, respectively. MtMan26A showed high specific activity against konjac glucomannan and carob galactomannan, while it also exhibited high thermal stability with a half-life of 14.4 h at 60 °C. Thermostability is of great importance, especially in industrial processes where harsh conditions are employed. With the aim of better understanding its structure-function relationships, a homology model of MtMan26A was constructed, based on the crystallographic structure of a close homologue. Finally, the addition of MtMan26A as a supplement to the commercial enzyme mixture Celluclast® 1.5 L and Novozyme® 188 resulted in enhanced enzymatic hydrolysis of pretreated beechwood sawdust, improving the release of total reducing sugars and glucose by 13 and 12 %, respectively.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens, 15780, Greece
| | - Maria Dimarogona
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens, 15780, Greece
| | - Pericles Petropoulos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens, 15780, Greece
| | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens, 15780, Greece.
| |
Collapse
|
30
|
Pongsapipatana N, Damrongteerapap P, Chantorn S, Sintuprapa W, Keawsompong S, Nitisinprasert S. Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters. Enzyme Microb Technol 2016; 89:39-51. [PMID: 27233126 DOI: 10.1016/j.enzmictec.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Gene encoding for β-mannanase (E.C 3.2.1.78) from Klebsiella oxytoca KUB-CW2-3 was cloned and expressed by an E. coli system resulting in 400 times higher mannanase activities than the wild type. A 3314bp DNA fragment obtained revealed an open reading frame of 1164bp, namely kman-2, which encoded for 387 amino acids with an estimated molecular weight of 43.2kDa. It belonged to the glycosyl hydrolase family 26 (GH26) exhibited low similarity of 50-71% to β-mannanase produced by other microbial sources. Interestingly, the enzyme had a broad range of substrate specificity of homopolymer of ivory nut mannan (6%), carboxymethyl cellulose (30.6%) and avicel (5%), and heteropolymer of konjac glucomannan (100%), locust bean gum (92.6%) and copra meal (non-defatted 5.3% and defatted 7%) which would be necessary for in vivo feed digestion. The optimum temperature and pH were 30-50°C and 4-6, respectively. The enzyme was still highly active over a low temperature range of 10-40°C and over a wide pH range of 4-10. The hydrolysates of konjac glucomannan (H-KGM), locust bean gum (H-LBG) and defatted copra meal (H-DCM) composed of compounds which were different in their molecular weight range from mannobiose to mannohexaose and unknown oligosaccharides indicating the endo action of mannanase. Both H-DCM and H-LBG enhanced the growth of lactic acid bacteria and some pathogens except Escherichia coli E010 with a specific growth rate of 0.36-0.83h(-1). H-LBG was more specific to 3 species of Weissella confusa JCM 1093, Lactobacillus reuteri KUB-AC5, Lb salivarius KL-D4 and E. coli E010 while both H-KGM and H-DCM were to Lb. reuteri KUB-AC5 and Lb. johnsonii KUNN19-2. Based on the nucleotide sequence of kman-2 containing two open reading frames of 1 and 2at 5' end of the +1 and +43, respectively, removal of the first open reading frame provided the recombinant clone E. coli KMAN-3 resulting in the mature protein of mannanase composing of 345 amino acid residues confirmed by 3D structure analysis and amino acid sequence at N-terminal namely KMAN (GenBank accession number KM100456). It exhibited 10 times higher extracellular and periplasmic total activities of 17,600 and 14,800 units than E. coli KMAN-2. With its low similarity to mannanases previously proposed, wide range of homo- and hetero-polysaccharide specificity, negative effect to E. coli and most importance of high production, it would be proposed as a novel mannanase source for application in the future.
Collapse
Affiliation(s)
- Nawapan Pongsapipatana
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERD O-CHE), Bangkok 10900, Thailand
| | - Piyanat Damrongteerapap
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sudathip Chantorn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Thailand
| | - Wilawan Sintuprapa
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Suttipun Keawsompong
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERD O-CHE), Bangkok 10900, Thailand
| | - Sunee Nitisinprasert
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERD O-CHE), Bangkok 10900, Thailand.
| |
Collapse
|
31
|
Chai SY, Abu Bakar FD, Mahadi NM, Murad AMA. A thermotolerant Endo-1,4-β-mannanase from Trichoderma virens UKM1: Cloning, recombinant expression and characterization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Affiliation(s)
- Prakram Singh Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Mohali, India and
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
33
|
Zang H, Xie S, Wu H, Wang W, Shao X, Wu L, Rajer FU, Gao X. A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Enzyme Microb Technol 2015. [DOI: 10.1016/j.enzmictec.2015.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
You J, Liu JF, Yang SZ, Mu BZ. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18. J Biosci Bioeng 2015; 121:140-6. [PMID: 26168907 DOI: 10.1016/j.jbiosc.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/21/2015] [Accepted: 06/06/2015] [Indexed: 02/05/2023]
Abstract
A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature.
Collapse
Affiliation(s)
- Jia You
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China; Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China.
| |
Collapse
|
35
|
High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris. Biotechnol Lett 2015; 37:1853-9. [PMID: 25967034 DOI: 10.1007/s10529-015-1848-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/01/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A novel, high-level expression, thermostable mannan endo-1,4-beta-mannosidase is urgently needed for industrial applications. RESULTS The mannan endo-1,4-β-mannosidase gene (MAN) from Aspergillus niger CBS 513.88 was optimized based on the codon usage bias in Pichia pastoris and synthesized by overlapping PCR to produce MAN-P. It was expressed in P. pastoris GS115 from a constitutive expression vector pHBM-905 M. MAN-P reached 594 mg/l in shake-flasks after 192 h induction. On production in a 5 l fermenter, the yield of MAN-P reached ~3.5 mg/ml and the enzyme activity was 1612 U/ml. The enzyme exhibited a maximum activity of 3049 U/ml at 80 °C and retained 60% enzyme activity at 80 °C for 2 h. The pH optimum was 4.5 and the enzyme was stable over the pH range 1.5-11. CONCLUSION The thermostability of MAN-P is higher than other known fungal mannanases and the expression and thermophilic properties make MAN-P useful for industrial applications.
Collapse
|
36
|
Malgas S, van Dyk SJ, Pletschke BI. β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism – A key factor for the hydrolysis of galactomannan substrates. Enzyme Microb Technol 2015; 70:1-8. [DOI: 10.1016/j.enzmictec.2014.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022]
|
37
|
|
38
|
Secretory expression and characterization of a novel thermo-stable, salt-tolerant endo-1,4-β-mannanase of Bacillus subtilis WD23 by Pichia pastoris. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Appl Microbiol Biotechnol 2014; 99:1217-28. [DOI: 10.1007/s00253-014-5979-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022]
|
40
|
Zheng J, Guo N, Zhou HB. A simple strategy for the generation of multi-copyPichia pastoriswith the efficient expression of mannanase. J Basic Microbiol 2014; 54:1410-6. [DOI: 10.1002/jobm.201400208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/26/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Jia Zheng
- School of Minerals Processing and Bioengineering; Central South University; Changsha P. R. China
| | - Ning Guo
- School of Minerals Processing and Bioengineering; Central South University; Changsha P. R. China
| | - Hong-Bo Zhou
- School of Minerals Processing and Bioengineering; Central South University; Changsha P. R. China
- Key Laboratory of Biometallurgy of Ministry of Education; Central South University; Changsha P. R. China
| |
Collapse
|
41
|
Guo N, Zheng J, Wu LS, Tian J, Zhou HB. Engineered bifunctional enzymes of endo-1,4-β-xylanase/endo-1,4-β-mannanase were constructed for synergistically hydrolyzing hemicellulose. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Screening of multi-copy mannanase recombinants of Pichia pastoris based on colony size. World J Microbiol Biotechnol 2013; 30:579-84. [PMID: 24002577 DOI: 10.1007/s11274-013-1479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/29/2013] [Indexed: 02/04/2023]
Abstract
Pichia pastoris pGAP (glyceraldehyde dehydrogenase promoter) expression system was widely used for the expression and production of heterologous proteins. Screening multi-copy recombinants was an effective strategy to improve the heterologous protein production in P. pastoris. Because multiple gene insertion events occurred with a low frequency, hundreds to thousands of antibiotic-resistance recombinants need to be screened. The common way of improving screening efficiency was to increase antibiotic concentration in screening plates. Here we developed a screening method by selecting small colonies from low-concentration antibiotic screening plates. This strategy greatly improved the probability of obtaining multi-copy mannanase gene (man) recombinants and it could replace the common strategy by increasing antibiotic concentration in screening plates. The further study in liquid shake flask cultures revealed that cell concentrations, growth rates and substrate consumption rates of recombinants gradually decreased with the increase in man copy number. This indicated that such a screening strategy was effective to screen multi-copy recombinants based on colony size.
Collapse
|
43
|
Spadiut O, Herwig C. Production and purification of the multifunctional enzyme horseradish peroxidase. PHARMACEUTICAL BIOPROCESSING 2013; 1:283-295. [PMID: 24683473 PMCID: PMC3968938 DOI: 10.4155/pbp.13.23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme-prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing.
Collapse
Affiliation(s)
- Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, A-1060 Vienna, Austria
| |
Collapse
|
44
|
Recombinant snake venom metalloproteinase inhibitor BJ46A inhibits invasion and metastasis of B16F10 and MHCC97H cells through reductions of matrix metalloproteinases 2 and 9 activities. Anticancer Drugs 2013; 24:461-72. [DOI: 10.1097/cad.0b013e32835f258d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Zheng J, Guo N, Wu L, Tian J, Zhou H. Characterization and constitutive expression of a novel endo-1,4-β-D-xylanohydrolase from Aspergillus niger in Pichia pastoris. Biotechnol Lett 2013; 35:1433-40. [PMID: 23690032 DOI: 10.1007/s10529-013-1220-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
A putative endo-1,4-β-D-xylanohydrolase gene xyl10 from Aspergillus niger, encoding a 308-residue mature xylanase belonging to glycosyl hydrolase family 10, was constitutively expressed in Pichia pastoris. The recombinant Xyl10 exhibited optimal activity at pH 5.0 and 60 °C with more than 50 % of the maximum activity from 40 to 70 °C. It retained more than 90 % of the original activity after incubation at 60 °C (pH 5.0) for 30 min and more than 74 % after incubation at pH 3.0-13.0 for 2 h (25 °C). The specific activity, K m and V max values for purified Xyl10 were, respectively, 3.2 × 10(3) U mg(-1), 3.6 mg ml(-1) and 5.4 × 10(3) μmol min(-1 )mg(-1) towards beechwood xylan. The enzyme degraded xylan to a series of xylooligosaccharides and xylose. The recombinant enzyme with these properties has the potential for various industrial applications.
Collapse
Affiliation(s)
- Jia Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | | | | | | | | |
Collapse
|
46
|
Zheng J, Zhao W, Guo N, Lin F, Tian J, Wu L, Zhou H. Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant β-mananase by Pichia pastoris. BIORESOURCE TECHNOLOGY 2012; 118:257-264. [PMID: 22705532 DOI: 10.1016/j.biortech.2012.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
An industrial medium, Corn Steep Liquor Powder Dextrose (CSD medium) was developed for constitutive expression of recombinant β-mananase by Pichia pastoris. The β-mananase activity (513 U/mL) with CSD medium was 1.64- and 2.5-fold higher than with YPD and BSM in shaken flasks. The β-mananase productivity with CSD medium was 61.0 U/mL h, which was 1.7- and 2.5-fold higher than with YPD and BSM in a 5-L fermenter based on a novel fed-batch strategy combining the real-time exponential feed mode with the DO-stat feed mode. The β-mananase activity, dry cell weight and the recombinant enzyme reached up to 5132 U/mL, 110.0 g/L and 4.50 g/L after 50 h cultivation in a 50-L fermenter. The high efficient expression of recombinant β-mananase by P. pastoris indicated that CSD medium and the novel fed-batch strategy have great potential for the production of recombinant β-mananase in industrial fermentation.
Collapse
Affiliation(s)
- Jia Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhou J, Zhang R, Gao Y, Li J, Tang X, Mu Y, Wang F, Li C, Dong Y, Huang Z. Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain. J Biosci Bioeng 2012; 113:568-74. [DOI: 10.1016/j.jbiosc.2011.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/15/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
48
|
Li JF, Zhao SG, Tang CD, Wang JQ, Wu MC. Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:765-773. [PMID: 22225502 DOI: 10.1021/jf2041565] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A cDNA fragment of the Anman5A, a gene that encodes an acidophilic β-mannanase of Aspergillus niger LW-1 (abbreviated as AnMan5A), was cloned and functionally expressed in Pichia pastoris . Homology alignment of amino acid sequences verified that the AnMan5A belongs to the glycoside hydrolase (GH) family 5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assay demonstrated that the recombinant AnMan5A (reAnMan5A), a N-glycosylated protein with an apparent molecular weight of 52.0 kDa, was secreted into the medium. The highest reAnMan5A activity expressed by one P. pastoris transformant, labeled as GSAnMan4-12, reached 29.0 units/mL. The purified reAnMan5A displayed the highest activity at pH 3.5 and 70 °C. It was stable at a pH range of 3.0-7.0 and at a temperature of 60 °C or below. Its activity was not significantly affected by an array of metal ions and ethylenediaminetetraacetic acid (EDTA). The K(m) and V(max) of the reAnMan5A, toward locust bean gum, were 1.10 mg/mL and 266.7 units/mg, respectively.
Collapse
Affiliation(s)
- Jian-Fang Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | | | | |
Collapse
|