1
|
Kudalkar GP, Tiwari VK, Berkowitz DB. Exploiting Archaeal/Thermostable Enzymes in Synthetic Chemistry: Back to the Future? ChemCatChem 2024; 16:e202400835. [PMID: 40417414 PMCID: PMC12101612 DOI: 10.1002/cctc.202400835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 05/27/2025]
Abstract
Billions of years of evolution have led to the selection of (hyper)thermophiles capable of flourishing at elevated temperatures. The corresponding native (hyper)thermophilic enzymes retain their tertiary and quaternary structures at near-boiling water temperatures and naturally retain catalytically competent conformational dynamics under these conditions. And yet, while hyper/thermophilic enzymes offer special opportunities in biocatalysis and in hybrid bio/chemocatalytic approaches to modern synthesis in both academia and industry, these enzymes remain underexplored in biocatalysis. Among the strategic advantages that can be leveraged in running biocatalytic transformations at higher temperatures are included more favorable kinetics, removal of volatile byproducts to drive reactions forward, improved substrate solubility and product separation, and accelerated stereodynamics for dynamic kinetic resolutions. These topics are discussed and illustrated with contemporary examples of note, in sections organized by stratagem. Finally, the reader is alerted in particular to archaeal enzymes that have proven useful in non-natural synthetic chemistry ventures, and at the same time is referred to a rich area of archaea whose genomes have been sequenced but whose enzymatic activities of interest have not yet been mined. Though hyperthermophilic archaea are among the most ancient of organisms, their enzymes may hold the key to many future innovations in biocatalytic chemistry - perhaps we really do need to go 'back to the future'.
Collapse
Affiliation(s)
- Gaurav P Kudalkar
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| |
Collapse
|
2
|
Orrego AH, Rubanu MG, López IL, Andrés-Sanz D, García-Marquina G, Pieslinger GE, Salassa L, López-Gallego F. ATP-Independent and Cell-Free Biosynthesis of β-Hydroxy Acids Using Vinyl Esters as Smart Substrates. Angew Chem Int Ed Engl 2023; 62:e202218312. [PMID: 36718873 DOI: 10.1002/anie.202218312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
In vitro biosynthetic pathways that condense and reduce molecules through coenzyme A (CoASH) activation demand energy and redox power in the form of ATP and NAD(P)H, respectively. These coenzymes must be orthogonally recycled by ancillary reactions that consume chemicals, electricity, or light, impacting the atom economy and/or the energy consumption of the biosystem. In this work, we have exploited vinyl esters as dual acyl and electron donor substrates to synthesize β-hydroxy acids through a non-decarboxylating Claisen condensation, reduction and hydrolysis stepwise cascade, including a NADH recycling step, catalyzed by a total of 4 enzymes. Herein, the chemical energy to activate the acyl group with CoASH and the redox power for the reduction are embedded into the vinyl esters. Upon optimization, this self-sustaining cascade reached a titer of (S)-3-hydroxy butyrate of 24 mM without requiring ATP and simultaneously recycling CoASH and NADH. This work illustrates the potential of in vitro biocatalysis to transform simple molecules into multi-functional ones.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Maria Grazia Rubanu
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Idania L López
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Daniel Andrés-Sanz
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Guillermo García-Marquina
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - German E Pieslinger
- CONICET-Universidad de Buenos Aires. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, Donostia, Spain
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, Donostia, Spain.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Spain.,Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5., 48009, . Bilbao, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5., 48009, . Bilbao, Spain
| |
Collapse
|
3
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
4
|
Chen Q, Wang Y, Luo G. Recycling of Cofactors in Crude Enzyme Hydrogels as Co-immobilized Heterogeneous Biocatalysts for Continuous-Flow Asymmetric Reduction of Ketones. CHEMSUSCHEM 2023; 16:e202201654. [PMID: 36269055 DOI: 10.1002/cssc.202201654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Flow biocatalysis involving oxidoreductase is limited by the difficulty in recycling expensive cofactors. In this study, an enzyme-rich hydrogel monolithic microreactor was developed via in situ microfluidic assembly of inexpensive crude enzymes. This porous gel biocatalyst exhibited good tethering functions to nicotinamide cofactors; thus, they were retained by the hydrogel to controllably form a novel heterogeneous biocatalyst with self-sufficient cofactors. The flow asymmetric production of a chiral alcohol in this cofactor-entrapped gel microreactor achieved >99 % enantioselectivity and a high space-time yield of 46.3 g L-1 h-1 at 94.8 % conversion. Moreover, the turnover number of cofactors reached as high as 4800 after continuous operation of 160 reactor volumes, realizing significantly higher utilization of the cofactors compared with many reported strategies. Furthermore, this engineered heterogeneous biocatalyst exhibited improved performance in terms of product tolerance and storage stability, paving the way for a green, cost-effective, and sustainable continuous-flow production of enantiopure alcohols.
Collapse
Affiliation(s)
- Qiang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujun Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Musa MM. Alcohol Dehydrogenases with anti-Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen 2022; 11:e202100251. [PMID: 35191611 PMCID: PMC8973272 DOI: 10.1002/open.202100251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Biocatalytic production of both enantiomers of optically active alcohols with high enantiopurities is of great interest in industry. Alcohol dehydrogenases (ADHs) represent an important class of enzymes that could be used as catalysts to produce optically active alcohols from their corresponding prochiral ketones. This review covers examples of the synthesis of optically active alcohols using ADHs that exhibit anti-Prelog stereopreference. Both wild-type and engineered ADHs that exhibit anti-Prelog stereopreference are highlighted.
Collapse
Affiliation(s)
- Musa M. Musa
- Department of Chemistry Interdisciplinary Research Center for Refining and Advanced ChemicalsKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
6
|
Rapp C, Pival-Marko S, Tassano E, Nidetzky B, Kratzer R. Reductive enzymatic dynamic kinetic resolution affording 115 g/L (S)-2-phenylpropanol. BMC Biotechnol 2021; 21:58. [PMID: 34635076 PMCID: PMC8507385 DOI: 10.1186/s12896-021-00715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Published biocatalytic routes for accessing enantiopure 2-phenylpropanol using oxidoreductases afforded maximal product titers of only 80 mM. Enzyme deactivation was identified as the major limitation and was attributed to adduct formation of the aldehyde substrate with amino acid residues of the reductase. Results A single point mutant of Candida tenuis xylose reductase (CtXR D51A) with very high catalytic efficiency (43·103 s−1 M−1) for (S)-2-phenylpropanal was found. The enzyme showed high enantioselectivity for the (S)-enantiomer but was deactivated by 0.5 mM substrate within 2 h. A whole-cell biocatalyst expressing the engineered reductase and a yeast formate dehydrogenase for NADH-recycling provided substantial stabilization of the reductase. The relatively slow in situ racemization of 2-phenylpropanal and the still limited biocatalyst stability required a subtle adjustment of the substrate-to-catalyst ratio. A value of 3.4 gsubstrate/gcell-dry-weight was selected as a suitable compromise between product ee and the conversion ratio. A catalyst loading of 40 gcell-dry-weight was used to convert 1 M racemic 2-phenylpropanal into 843 mM (115 g/L) (S)-phenylpropanol with 93.1% ee. Conclusion The current industrial production of profenols mainly relies on hydrolases. The bioreduction route established here represents an alternative method for the production of profenols that is competitive with hydrolase-catalyzed kinetic resolutions. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00715-5.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Simone Pival-Marko
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 8010, Graz, Austria
| | - Erika Tassano
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 8010, Graz, Austria
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
| |
Collapse
|
7
|
Orrego AH, Andrés-Sanz D, Velasco-Lozano S, Sanchez-Costa M, Berenguer J, Guisan JM, Rocha-Martin J, López-Gallego F. Self-sufficient asymmetric reduction of β-ketoesters catalysed by a novel and robust thermophilic alcohol dehydrogenase co-immobilised with NADH. Catal Sci Technol 2021; 11:3217-3230. [PMID: 34094502 PMCID: PMC8111925 DOI: 10.1039/d1cy00268f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/04/2022]
Abstract
β-Hydroxyesters are essential building blocks utilised by the pharmaceutical and food industries in the synthesis of functional products. Beyond the conventional production methods based on chemical catalysis or whole-cell synthesis, the asymmetric reduction of β-ketoesters with cell-free enzymes is gaining relevance. To this end, a novel thermophilic (S)-3-hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus HB27 (Tt27-HBDH) has been expressed, purified and biochemically characterised, determining its substrate specificity towards β-ketoesters and its dependence on NADH as a cofactor. The immobilization of Tt27-HBDH on agarose macroporous beads and its subsequent coating with polyethyleneimine has been found the best strategy to increase the stability and workability of the heterogeneous biocatalyst. Furthermore, we have embedded NADH in the cationic layer attached to the porous surface of the carrier. Since Tt27-HBDH catalyses cofactor recycling through 2-propanol oxidation, we achieve a self-sufficient heterogeneous biocatalyst where NADH is available for the immobilised enzymes but its lixiviation to the reaction bulk is avoided. Taking advantage of the autofluorescence of NADH, we demonstrate the activity of the enzyme towards the immobilised cofactor through single-particle analysis. Finally, we tested the operational stability in the asymmetric reduction of β-ketoesters in batch, succeeding in the reuse of both the enzyme and the co-immobilised cofactor up to 10 reaction cycles.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP), CSIC Campus UAM, Cantoblanco 28049 Madrid Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology Severo-Ochoa (UAM-CSIC) Nicolás Cabrera 1 28049 Madrid Spain
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
| | - Daniel Andrés-Sanz
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
| | - Mercedes Sanchez-Costa
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology Severo-Ochoa (UAM-CSIC) Nicolás Cabrera 1 28049 Madrid Spain
| | - José Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology Severo-Ochoa (UAM-CSIC) Nicolás Cabrera 1 28049 Madrid Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP), CSIC Campus UAM, Cantoblanco 28049 Madrid Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP), CSIC Campus UAM, Cantoblanco 28049 Madrid Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
8
|
Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials. Methods Mol Biol 2021; 2100:297-308. [PMID: 31939131 DOI: 10.1007/978-1-0716-0215-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immobilization of multi-enzyme systems on solid materials is rapidly gaining interest for the construction of biocatalytic cascades with biotechnological applications in industry. The heterogenization and control of the spatial organization across porous materials of the system components are essentials to improve the performance of the process providing higher robustness, yield, and productivity. In this chapter, the co-immobilization and co-localization of a bi-enzymatic bio-redox orthogonal cascade with in situ cofactor regeneration are described. An NADH-dependent alcohol dehydrogenase catalyzes the asymmetric reduction of 2,2,2 trifluoroacetophenone using an NADH regeneration system consisting of a glutamate dehydrogenase and glutamic acid. Three different spatial organizations of the enzymes were compared in terms of cofactor-recycling efficiency. Furthermore, we demonstrated how the co-localization and uniform distribution (by controlling the enzyme immobilization rate) of the main and recycling dehydrogenases inside the same porous particle lead to enhance the cofactor-recycling efficiency of the bi-enzymatic bio-redox systems.
Collapse
|
9
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
10
|
Velasco-Lozano S, Jackson E, Ripoll M, López-Gallego F, Betancor L. Stabilization of ω-transaminase from Pseudomonas fluorescens by immobilization techniques. Int J Biol Macromol 2020; 164:4318-4328. [PMID: 32898544 DOI: 10.1016/j.ijbiomac.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Transaminases are a class of enzymes with promising applications for the preparation and resolution of a vast diversity of valued amines. Their poor operational stability has fueled many investigations on its stabilization due to their biotechnological relevance. In this work, we screened the stabilization of the tetrameric ω-transaminase from Pseudomonas fluorescens (PfωTA) through both carrier-bound and carrier-free immobilization techniques. The best heterogeneous biocatalyst was the PfωTA immobilized as cross-linked enzyme aggregates (PfωTA-CLEA) which resulted after studying different parameters as the precipitant, additives and glutaraldehyde concentrations. The best conditions for maximum recovered activity (29 %) and maximum thermostability at 60 ºC and 70 ºC (100 % and 71 % residual activity after 1 h, respectively) were achieved by enzyme precipitation with 90% acetone or ethanol, in presence of BSA (100 mg/mL) and employing glutaraldehyde (100 mM) as cross-linker. Studies on different conditions for PfωTA-CLEA preparation yielded a biocatalyst that exhibited 31 and 4.6 times enhanced thermal stability at 60 °C and 70 °C, respectively, compared to its soluble counterpart. The PfωTA-CLEA was successfully used in the bioamination of 4-hydroxybenzaldehyde to 4-hydroxybenzylamine. To the best of our knowledge, this is the first report describing a transaminase cross-linked enzyme aggregates as immobilization strategy to generate a biocatalyst with outstanding thermostability.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain.
| | - Erienne Jackson
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay
| | - Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay
| | - Fernando López-Gallego
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay.
| |
Collapse
|
11
|
High Stabilization of Enzymes Immobilized on Rigid Hydrophobic Glyoxyl-Supports: Generation of Hydrophilic Environments on Support Surfaces. Catalysts 2020. [DOI: 10.3390/catal10060676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Very rigid supports are useful for enzyme immobilization to design continuous flow reactors and/or to work in non-conventional media. Among them, epoxy-methacrylic supports are easily functionalized with glyoxyl groups, which makes them ideal candidates for enzyme stabilization via multipoint covalent immobilization. However, these supports present highly hydrophobic surfaces, which might promote very undesirable effects on enzyme activity and/or stability. The hydrophilization of the support surface after multipoint enzyme immobilization is proposed here as an alternative to reduce these undesirable effects. The remaining aldehyde groups on the support are modified with aminated hydrophilic small molecules (glycine, lysine or aspartic acid) in the presence of 2-picoline borane. The penicillin G acylase from Escherichia coli (PGA) and alcohol dehydrogenase from Thermus thermophilus HB27 (ADH2) were immobilized on glyoxyl-functionalized agarose, Relizyme and Relisorb. Despite the similar density of aldehyde groups displayed by functionalized supports, their stabilization effects on immobilized enzymes were quite different: up to 300-fold lower by hydrophobic supports than by highly hydrophilic glyoxyl-agarose. A dramatic increase in the protein stabilities was shown when a hydrophilization treatment of the hydrophobic support surface was done. The PGA immobilized on the glyoxyl-Relisorb hydrophilized with aspartic acid becomes 280-fold more stable than without any treatment, and it is even more stable than the PGA immobilized on the glyoxyl agarose.
Collapse
|
12
|
Han MN, Wang XM, Pei CH, Zhang C, Xu Z, Zhang HL, Li W. Green and scalable synthesis of chiral aromatic alcohols through an efficient biocatalytic system. Microb Biotechnol 2020; 14:444-452. [PMID: 32476251 PMCID: PMC7936284 DOI: 10.1111/1751-7915.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Chiral aromatic alcohols have received much attention due to their widespread use in pharmaceutical industries. In the asymmetric synthesis processes, the excellent performance of alcohol dehydrogenase makes it a good choice for biocatalysts. In this study, a novel and robust medium‐chain alcohol dehydrogenase RhADH from Rhodococcus R6 was discovered and used to catalyse the asymmetric reduction of aromatic ketones to chiral aromatic alcohols. The reduction of 2‐hydroxyacetophenone (2‐HAP) to (R)‐(‐)‐1‐phenyl‐1,2‐ethanediol ((R)‐PED) was chosen as a template to evaluate its catalytic activity. A specific activity of 110 U mg−1 and a 99% purity of e.e. was achieved in the presence of NADH. An efficient bienzyme‐coupled catalytic system (RhADH and formate dehydrogenase, CpFDH) was established using a two‐phase strategy (dibutyl phthalate and buffer), which highly raised the tolerated substrate concentration (60 g l−1). Besides, a broad range of aromatic ketones were enantioselectively reduced to the corresponding chiral alcohols by this enzyme system with highly enantioselectivity. This system is of the potential to be applied at a commercial scale.
Collapse
Affiliation(s)
- Meng-Nan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Xu-Ming Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Chao-Hong Pei
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Zhidong Xu
- Shijiazhuang Vince Pharma Tech Co Ltd Fangda Science and Technology Park, 266 Tianshan Street, Shijiazhuang City, China
| | - Hong-Lei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| |
Collapse
|
13
|
Trobo-Maseda L, H Orrego A, Guisan JM, Rocha-Martin J. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. Int J Biol Macromol 2020; 157:510-521. [PMID: 32344088 DOI: 10.1016/j.ijbiomac.2020.04.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023]
Abstract
Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-β-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Functional Characterization and Structural Analysis of NADH Oxidase Mutants from Thermus thermophilus HB27: Role of Residues 166, 174, and 194 in the Catalytic Properties and Thermostability. Microorganisms 2019; 7:microorganisms7110515. [PMID: 31683638 PMCID: PMC6921046 DOI: 10.3390/microorganisms7110515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
The Thermus thermophilus strain HB27 NADH-oxidase (Tt27-NOX) catalyzes the oxidation of nicotinamide adenine dinucleotide (NAD(P)H) by reducing molecular oxygen to hydrogen peroxide in a two-electron transfer mechanism. Surprisingly, Tt27-NOX showed significant differences in catalytic properties compared to its counterpart from the strain HB8 (Tt8-NOX), despite a high degree of sequence homology between both variants. The sequence comparison between both enzymes revealed only three divergent amino acid residues at positions 166, 174, and 194. Motivated with these findings, in this work we performed mutagenesis experiments in the former three positions to study the specific role of these residues in the catalytic properties and thermostability of Tt27-NOX. We subjected five mutants, along with the wild-type enzyme, to biochemical characterization and thermal stability studies. As a result, we identified two more active and more thermostable variants than any Tt8-NOX variant reported in the literature. The most active and thermostable variant K166/H174/Y194 retained 90% of its initial activity after 5 h at pH 7 and 80 °C and an increase in melting temperature of 48.3 °C compared with the least active variant K166/R174/Y194 (inactivated after 15 min of incubation). These results, supported by structural analysis and molecular dynamics simulation studies, suggest that Lys at position 166 may stabilize the loop in which His174 is located, increasing thermal stability.
Collapse
|
15
|
Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization. Bioprocess Biosyst Eng 2019; 43:21-31. [PMID: 31542820 DOI: 10.1007/s00449-019-02201-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate [(3R,5S)-CDHH] is the key chiral intermediate to synthesize the side chain of the lipid-lowering drug rosuvastatin. Carbonyl reductases showed excellent activity for the biosynthesis of (3R,5S)-CDHH. The requirement of cofactor NADH/NADPH leads to high cost for the industrial application of carbonyl reductases. In this study, a self-sufficient biocatalyst based on carbonyl reductase and NADP+ co-immobilization strategy was developed on an amino resin carrier LX-1000HAA (SCR-NADP+@LX-1000HAA). The self-sufficient biocatalyst achieved in situ cofactor regeneration and showed the activity recovery of 77.93% and the specific activity of 70.45 U/g. Asymmetric synthesis of (3R,5S)-CDHH using SCR-NADP+@LX-1000HAA showed high enantioselectivity (> 99% e.e.) and yield (98.54%). Batch reactions were performed for ten cycles without extra addition of NADP+, and the total yield of (3R,5S)-CDHH achieved at 10.56 g/g biocatalyst. The present work demonstrated the potential of the self-sufficient biocatalyst for the asymmetric biosynthesis of rosuvastatin intermediate.
Collapse
|
16
|
Torres P, Batista-Viera F. Production of d-tagatose and d-fructose from whey by co-immobilized enzymatic system. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Zhang HL, Zhang C, Pei CH, Han MN, Li W. Enantioselective synthesis of enantiopure chiral alcohols using carbonyl reductases screened from Yarrowia lipolytica. J Appl Microbiol 2018; 126:127-137. [PMID: 30291666 DOI: 10.1111/jam.14125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 11/27/2022]
Abstract
AIMS We aimed to explore Yarrowia lipolytica carbonyl reductases as effective biocatalysts and to develop efficient asymmetric reduction systems for chiral alcohol synthesis. METHODS AND RESULTS Yarrowia lipolytica carbonyl reductase genes were obtained via homologous sequence amplification strategy. Two carbonyl reductases, YaCRI and YaCRII, were identified and characterized, and used to catalyse the conversion of 2-hydroxyacetophenone (2-HAP) to optically pure (S)-1-phenyl-1,2-ethanediol. Enzymatic assays revealed that YaCRI and YaCRII exhibited specific activities of 6·96 U mg-1 (99·8% e.e.) and 7·85 U mg-1 (99·9% e.e.), respectively, and showed moderate heat resistance at 40-50°C and acid tolerance at pH 5·0-6·0. An efficient whole-cell two-phase system was established using reductase-expressing recombinant Escherichia coli. The conversion of 2-HAP (20·0 g l-1 ) conversion with the solvent of dibutyl phthalate was approximately 70-fold higher than in water. Furthermore, the two recombinant E. coli displayed biocatalyst activity and enantioselectivity towards several different carbonyl compounds, and E. coli BL21 (DE3)/pET-28a-yacrII showed a broad substrate spectrum. CONCLUSIONS A new whole-cell recombinant E. coli-based bioreduction system for enantiopure alcohol synthesis with high enantioselectivity at high substrate concentrations was developed. SIGNIFICANCE AND IMPACT OF THE STUDY We proposed a promising approach for the efficient preparation of enantiopure chiral alcohols.
Collapse
Affiliation(s)
- H-L Zhang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - C Zhang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - C-H Pei
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - M-N Han
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - W Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| |
Collapse
|
18
|
Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent. Catalysts 2018. [DOI: 10.3390/catal8080333] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enzyme immobilization by multipoint covalent attachment on supports activated with aliphatic aldehyde groups (e.g., glyoxyl agarose) has proven to be an excellent immobilization technique for enzyme stabilization. Borohydride reduction of immobilized enzymes is necessary to convert enzyme–support linkages into stable secondary amino groups and to convert the remaining aldehyde groups on the support into hydroxy groups. However, the use of borohydride can adversely affect the structure–activity of some immobilized enzymes. For this reason, 2-picoline borane is proposed here as an alternative milder reducing agent, especially, for those enzymes sensitive to borohydride reduction. The immobilization-stabilization parameters of five enzymes from different sources and nature (from monomeric to multimeric enzymes) were compared with those obtained by conventional methodology. The most interesting results were obtained for bacterial (R)-mandelate dehydrogenase (ManDH). Immobilized ManDH reduced with borohydride almost completely lost its catalytic activity (1.5% of expressed activity). In contrast, using 2-picoline borane and blocking the remaining aldehyde groups on the support with glycine allowed for a conjugate with a significant activity of 19.5%. This improved biocatalyst was 357-fold more stable than the soluble enzyme at 50 °C and pH 7. The results show that this alternative methodology can lead to more stable and active biocatalysts.
Collapse
|
19
|
Alsafadi D, Alsalman S, Paradisi F. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols. Org Biomol Chem 2018; 15:9169-9175. [PMID: 29067382 DOI: 10.1039/c7ob02299a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.
Collapse
|
20
|
Orrego AH, Ghobadi R, Moreno-Perez S, Mendoza AJ, Fernandez-Lorente G, Guisan JM, Rocha-Martin J. Stabilization of Immobilized Lipases by Intense Intramolecular Cross-Linking of Their Surfaces by Using Aldehyde-Dextran Polymers. Int J Mol Sci 2018; 19:E553. [PMID: 29439521 PMCID: PMC5855775 DOI: 10.3390/ijms19020553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Immobilized enzymes have a very large region that is not in contact with the support surface and this region could be the target of new stabilization strategies. The chemical amination of these regions plus further cross-linking with aldehyde-dextran polymers is proposed here as a strategy to increase the stability of immobilized enzymes. Aldehyde-dextran is not able to react with single amino groups but it reacts very rapidly with polyaminated surfaces. Three lipases-from Thermomyces lanuginosus (TLL), Rhizomucor miehiei (RML), and Candida antarctica B (CALB)-were immobilized using interfacial adsorption on the hydrophobic octyl-Sepharose support, chemically aminated, and cross-linked. Catalytic activities remained higher than 70% with regard to unmodified conjugates. The increase in the amination degree of the lipases together with the increase in the density of aldehyde groups in the dextran-aldehyde polymer promoted a higher number of cross-links. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of those conjugates demonstrates the major role of the intramolecular cross-linking on the stabilization of the enzymes. The highest stabilization was achieved by the modified RML immobilized on octyl-Sepharose, which was 250-fold more stable than the unmodified conjugate. The TLL and the CALB were 40-fold and 4-fold more stable than the unmodified conjugate.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Rohollah Ghobadi
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
- Department of Chemistry, Kharazmi University, 1417466191 Tehran, Iran.
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.
| | - Adriana Jaime Mendoza
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
- Departamento de Química, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico.
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
21
|
Tang Y, Zhang G, Wang Z, Liu D, Zhang L, Zhou Y, Huang J, Yu F, Yang Z, Ding G. Efficient synthesis of a (S)-fluoxetine intermediate using carbonyl reductase coupled with glucose dehydrogenase. BIORESOURCE TECHNOLOGY 2018; 250:457-463. [PMID: 29197272 DOI: 10.1016/j.biortech.2017.10.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
(S)-3-chloro-1-phenyl-1-propanol ((S)-CPPO) is an important chiral intermediate predominantly used in the synthesis of the chiral side chain of (S)-fluoxetine. In this study, carbonyl reductase (CBR) from Novosphingobium aromaticivorans was successfully expressed in recombinant E. coli. The enzymatic activity of the recombinant CBR was significantly increased to 1875 U/mL in the fed-batch fermentation in a 10 L fermenter and recombinant CBR was then purified and characterized. By regenerating NADH with glucose dehydrogenase, 100 g/L 3-chloro-1-phenyl-1-propanone (3-CPP) was successfully converted to (S)-CPPO with a conversion of 100% and ee value of 99.6% after 12 h at 30 °C in PBS buffer (pH 7.0), which are the highest reported to date for the bio-production of (S)-CPPO and presented great potential for green production of (S)-CPPO at industrial scale.
Collapse
Affiliation(s)
- Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guomei Zhang
- Institute of Health Food of Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Zheng Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Dan Liu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Linglu Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
22
|
|
23
|
Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM. Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzyme Microb Technol 2017; 105:51-58. [PMID: 28756861 DOI: 10.1016/j.enzmictec.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 11/25/2022]
Abstract
Sucrose synthases (SuSys) can be used to synthesize cost-effective uridine 5'-diphosphate glucose (UDP-glc) or can be coupled to glycosyltransferases (GTs) for the continuous recycling of UDP-glc. In this study, we present the first report of the immobilization-stabilization of a SuSy by multipoint covalent attachment. This stabilization strategy is very complex for multimeric enzymes because a very intense multipoint attachment can promote a dramatic loss of activity and/or stability. The homotetrameric SuSy from Nitrosomonas europaea (SuSyNe) was immobilized on a glyoxyl agarose support through two different orientations. The first occurred at pH 8.5 through the surface area containing the greatest number of amino termini from several enzyme subunits. The second orientation occurred at pH 10 through the region of the whole enzyme containing the highest number of Lys residues. The multipoint covalent immobilization of SuSy on glyoxyl agarose at pH 10 provided a very significant stabilization factor under reaction conditions (almost 1000-fold more stable than soluble enzyme). Unfortunately, this important enzyme rigidification led to a dramatic loss of catalytic activity. A less stabilized conjugate, which was 65-fold more stable than the soluble form, preserved 64% of its initial catalytic activity. This derivative could be used for 3 reaction cycles and yielded approximately 210mM of UDP-glc per cycle. This optimal biocatalyst was modified with a polycationic polymer, polyethyleneimine (PEI), increasing its stability in the presence of the organic co-solvents necessary to glycosylate apolar antioxidants by GTs coupled to SuSy.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Lara Trobo-Maseda
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| | - Jose M Guisan
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| |
Collapse
|
24
|
Martins de Oliveira S, Moreno-Perez S, Romero-Fernández M, Fernandez-Lorente G, Rocha-Martin J, Guisan JM. Immobilization and stabilization of commercial β-1,4-endoxylanase Depol™ 333MDP by multipoint covalent attachment for xylan hydrolysis: Production of prebiotics (xylo-oligosaccharides). BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1308497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandro Martins de Oliveira
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, Madrid, Spain
| | - Maria Romero-Fernández
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Department of Biotechnology and Microbiology (MICRO-BIO), Institute of Food Science Research (CIAL) CSIC – Campus UAM, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Jose M. Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| |
Collapse
|
25
|
Zheng YG, Yin HH, Yu DF, Chen X, Tang XL, Zhang XJ, Xue YP, Wang YJ, Liu ZQ. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol 2017; 101:987-1001. [PMID: 28074225 DOI: 10.1007/s00253-016-8083-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dao-Fu Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
26
|
Hydrolysis and oxidation of racemic esters into prochiral ketones catalyzed by a consortium of immobilized enzymes. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Li A, Ye L, Wu H, Yang X, Yu H. Characterization of an excellent anti-Prelog short-chain dehydrogenase/reductase EbSDR8 from Empedobacter brevis ZJUY-1401. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Díaz-Rodríguez A, Ríos-Lombardía N, Sattler JH, Lavandera I, Gotor-Fernández V, Kroutil W, Gotor V. Deracemisation of profenol core by combining laccase/TEMPO-mediated oxidation and alcohol dehydrogenase-catalysed dynamic kinetic resolution. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01351d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step chemoenzymatic protocol to deracemise a profen-like derivative has been designed.
Collapse
Affiliation(s)
- Alba Díaz-Rodríguez
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Instituto Universitario de Biotecnología de Asturias
- 33006 Oviedo
- Spain
| | - Nicolás Ríos-Lombardía
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Instituto Universitario de Biotecnología de Asturias
- 33006 Oviedo
- Spain
| | - Johann H. Sattler
- Department of Chemistry, Organic and Bioorganic Chemistry
- University of Graz
- NAWI Graz
- 8010 Graz
- Austria
| | - Iván Lavandera
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Instituto Universitario de Biotecnología de Asturias
- 33006 Oviedo
- Spain
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Instituto Universitario de Biotecnología de Asturias
- 33006 Oviedo
- Spain
| | - Wolfgang Kroutil
- Department of Chemistry, Organic and Bioorganic Chemistry
- University of Graz
- NAWI Graz
- 8010 Graz
- Austria
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- Instituto Universitario de Biotecnología de Asturias
- 33006 Oviedo
- Spain
| |
Collapse
|
29
|
Tang C, Saquing CD, Sarin PK, Kelly RM, Khan SA. Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Rocha-Martin J, Acosta A, Berenguer J, Guisan JM, Lopez-Gallego F. Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. BIORESOURCE TECHNOLOGY 2014; 170:445-453. [PMID: 25164336 DOI: 10.1016/j.biortech.2014.07.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Glycerol dehydrogenase (GlyDH) catalyzes the regioselective oxidation of glycerol to yield 1,3-dihydroxyacetone (DHA); an important building block in chemical industry. Three recombinant GlyDHs from Geobacillus stearothermophilus, from Citrobacter braakii and from Cellulomonas sp. were stabilized by covalent immobilization. The highest activity recoveries (40-50%) of the insoluble preparations were obtained by immobilizing these enzymes in presence of polyethylene glycol (PEG). Noteworthy, these immobilized preparations were more stable and less inhibited by DHA than their soluble counterparts. In particular, GlyDH from G.stearothermophilus immobilized on agarose activated with both amine and glyoxyl groups and crosslinked with dextran aldehyde was 3.7-fold less inhibited by DHA than its soluble form and retained 100% of its initial activity after 18h of incubation at 65°C and pH 7. This is one of the few examples where the same immobilization protocol has minimized enzyme product inhibition and maximized thermal stability.
Collapse
Affiliation(s)
- Javier Rocha-Martin
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Andreína Acosta
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose Berenguer
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose M Guisan
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Fernando Lopez-Gallego
- Biofunctional Nanomaterials Unit, CIC BiomaGUNE, Paseo Miramon 182, 20009 San Sebasitan, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
31
|
Tang C, Saquing CD, Morton SW, Glatz BN, Kelly RM, Khan SA. Cross-linked polymer nanofibers for hyperthermophilic enzyme immobilization: approaches to improve enzyme performance. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11899-906. [PMID: 25058141 DOI: 10.1021/am5033633] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report an enzyme immobilization method effective at elevated temperatures (up to 105 °C) and sufficiently robust for hyperthermophilic enzymes. Using a model hyperthermophilic enzyme, α-galactosidase from Thermotoga maritima, immobilization within chemically cross-linked poly(vinyl alcohol) (PVA) nanofibers to provide high specific surface area is achieved by (1) electrospinning a blend of a PVA and enzyme and (2) chemically cross-linking the polymer to entrap the enzyme within a water insoluble PVA fiber. The resulting enzyme-loaded nanofibers are water-insoluble at elevated temperatures, and enzyme leaching is not observed, indicating that the cross-linking effectively immobilizes the enzyme within the fibers. Upon immobilization, the enzyme retains its hyperthermophilic nature and shows improved thermal stability indicated by a 5.5-fold increase in apparent half-life at 90 °C, but with a significant decrease in apparent activity. The loss in apparent activity is attributed to enzyme deactivation and mass transfer limitations. Improvements in the apparent activity can be achieved by incorporating a cryoprotectant during immobilization to prevent enzyme deactivation. For example, immobilization in the presence of trehalose improved the apparent activity by 10-fold. Minimizing the mat thickness to reduce interfiber diffusion was a simple and effective method to further improve the performance of the immobilized enzyme.
Collapse
Affiliation(s)
- Christina Tang
- Department of Chemical and Biomolecular Engineering North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
32
|
Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency. Appl Microbiol Biotechnol 2014; 98:8591-601. [DOI: 10.1007/s00253-014-5770-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/03/2023]
|
33
|
Chen XH, Wei P, Wang XT, Zong MH, Lou WY. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization. PLoS One 2014; 9:e94543. [PMID: 24740089 PMCID: PMC3989197 DOI: 10.1371/journal.pone.0094543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 03/18/2014] [Indexed: 11/20/2022] Open
Abstract
A novel carbonyl reductase (AcCR) catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H) or NADP(H) can be used as coenzyme. For the reduction of 4'-chloroacetophenone, the Km value for NADH was around 25-fold greater than that for NADPH (0.66 mM vs 0.026 mM), showing that AcCR preferred NADPH over NADH. However, when NADH was used as cofactor, the response of AcCR activity to increasing concentration of 4'-chloroacetophenone was clearly sigmoidal with a Hill coefficient of 3.1, suggesting that the enzyme might possess four substrate-binding sites cooperating with each other The Vmax value for NADH-linked reduction was higher than that for NADPH-linked reduction (0.21 mM/min vs 0.17 mM/min). For the oxidation of isopropanol, the similar enzymological properties of AcCR were found using NAD+ or NADP+ as cofactor. Furthermore, a broad range of ketones such as aryl ketones, α-ketoesters and aliphatic ketones could be enantioselectively reduced into the corresponding chiral alcohols by this enzyme with high activity.
Collapse
Affiliation(s)
- Xiao-Hong Chen
- Lab of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
| | - Ping Wei
- Lab of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiao-Ting Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Liu Y, Tang TX, Pei XQ, Zhang C, Wu ZL. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl Microbiol Biotechnol 2014; 98:3889-904. [DOI: 10.1007/s00253-014-5619-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
36
|
Hibino A, Ohtake H. Use of hydrophobic bacterium Rhodococcus rhodochrous NBRC15564 expressed thermophilic alcohol dehydrogenases as whole-cell catalyst in solvent-free organic media. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Quaglia D, Pori M, Galletti P, Emer E, Paradisi F, Giacomini D. His-tagged Horse Liver Alcohol Dehydrogenase: Immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Rocha-Martín J, Rivas BDL, Muñoz R, Guisán JM, López-Gallego F. Rational Co-Immobilization of Bi-Enzyme Cascades on Porous Supports and their Applications in Bio-Redox Reactions with In Situ Recycling of Soluble Cofactors. ChemCatChem 2012. [DOI: 10.1002/cctc.201200146] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Quezada MA, Carballeira JD, Sinisterra JV. Diplogelasinospora grovesii IMI 171018 immobilized in polyurethane foam. An efficient biocatalyst for stereoselective reduction of ketones. BIORESOURCE TECHNOLOGY 2012; 112:18-27. [PMID: 22424921 DOI: 10.1016/j.biortech.2012.02.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Diplogelasinospora grovesii has been reported as a very active biocatalyst in the reduction of ketones. Along the text, the properties of this filamentous fungus as an immobilized catalyst are described. For this purpose, several immobilization supports as agar and polyurethane foam were tested. Experimental assays were also performed to test different co-substrates for the regeneration of the required enzyme cofactor. The fungus immobilized in polyurethane foam lead to the most stable and active catalyst. This derivative, using i-PrOH as co-substrate, could be reused at least 18 times without appreciable activity loss (>90% activity remains). Kinetic runs experiments shown that the reduction of cyclohexanone, selected as model substrate, followed a pseudo-first kinetic order and that the rate controlling step was the mass transfer through the cell wall. The deactivation kinetic constants were also determined. The reduction of different chiral ketones showed that the ketone reductase activity followed the Prelog's rule.
Collapse
Affiliation(s)
- M A Quezada
- Department of Chemical Engineering, Faculty of Chemical Engineering, Universidad Nacional de Trujillo, Peru
| | | | | |
Collapse
|