1
|
Sabaghi M, Seyedalmoosavi MM. Applications of sustainable proteins in food and feed, and perspectives on health and circular bioeconomy. Int J Biol Macromol 2025; 309:143193. [PMID: 40246099 DOI: 10.1016/j.ijbiomac.2025.143193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
There has been a recent trend towards the use of "sustainable proteins" in attempts to meet the global challenge for healthier and more environmentally friendly food and feed systems. These renewable-source-derived proteins are novel sources of conventional proteins. The extraction methodologies for sustainable proteins, having been developed, are quite efficient in yielding high-quality proteins for such applications. Sustainable proteins have the potential to enhance nutritional profiles, enable advanced food and feed production techniques, and contribute to functional food product development. Furthermore, cross-linking and encapsulation strategies ensure stability and controlled delivery of proteins and derivatives from the green source to healthy pathways. By integrating sustainability assessments and life cycle analysis, sustainable proteins align with global biodiversity and climate goals, fostering a circular bioeconomy; this review explores their potential, focusing on extraction methodologies, functional applications, health benefits, and the role of policy frameworks in advancing resource-efficient and eco-friendly food and feed systems.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Univ Lyon, Université Lyon 1, ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Mohammad M Seyedalmoosavi
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Technology Assessment, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| |
Collapse
|
2
|
Di Sario L, Boeri P, Matus JT, Pizzio GA. Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops. Int J Mol Sci 2025; 26:1129. [PMID: 39940896 PMCID: PMC11817731 DOI: 10.3390/ijms26031129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The escalating impact of abiotic stress on crop productivity requires innovative strategies to ensure sustainable agriculture. This review examines the promising role of biostimulants in mitigating the adverse effects of abiotic stress on crops. Biostimulants, ranging from simple organic compounds to complex living microorganisms, have demonstrated significant potential in enhancing plant resilience, stress tolerance, and overall performance. The mechanisms underlying biostimulant action-such as enhancing antioxidant defenses, regulating hormonal pathways, and inducing metabolic adjustments-are reviewed. Furthermore, we incorporate the latest research findings, methodologies, and advancements in biostimulant applications for addressing abiotic stressors, including drought, salinity, high temperatures, and nutrient deficiencies. This review also highlights current challenges and future opportunities for optimizing biostimulant use in sustainable crop production. This revision aims to guide researchers and agronomists in applying biostimulants to improve crop resilience in the context of climate change.
Collapse
Affiliation(s)
- Luciana Di Sario
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - Patricia Boeri
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| | - Gastón A. Pizzio
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| |
Collapse
|
3
|
Chen K, Ahmad MI, Jiang Q, Zhang H. Acid-induced hydrogels of edible Chlorella pyrenoidosa protein with composite biopolymers network. Food Chem 2024; 460:140699. [PMID: 39116772 DOI: 10.1016/j.foodchem.2024.140699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
This study aimed to prepare Glucono-δ-lactone (GDL)-induced Chlorella pyrenoidosa protein (CPP) hydrogel and further investigate the effect of polysaccharides on the mechanical properties and stability enhancement of the composite hydrogels. Polysaccharides composed of different ratios of low acyl gellan gum (GE) and guar gum (GU) imparted dense honeycomb-like networks and adjustable textural properties to the composite hydrogels induced by CaCl2. In particular, the hardness of hydrogels increased significantly from 14 to 833 g. Scanning electron microscopy results revealed that CPP-GE/GU composite hydrogels had better stable spatial porous structures. Moreover, fourier transform infrared spectroscopy (FTIR) indicated hydrogen bonding interaction between CPP and GE/GU. The composite network showed improved viscoelasticity, increased thermal stability, and self-healing ability of hydrogels. The composite hydrogels also showed high water holding (89-98%) and swelling (747-862%) properties compared to the pure CPP hydrogel. These findings further expand CPP hydrogel products and broaden application in plant protein-based food.
Collapse
Affiliation(s)
- Kaini Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China
| | - Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
| |
Collapse
|
4
|
Veleva R, Ganeva V, Zhiponova M. Pulsed Electric Field Pretreatment Enhances the Enzyme Hydrolysis of Baker's Yeast. Microorganisms 2024; 12:2470. [PMID: 39770673 PMCID: PMC11728201 DOI: 10.3390/microorganisms12122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Baker's yeast is a key starting material for producing extracts with diverse compositions and applications. This study investigates the effect of pulsed electric field (PEF) pretreatment, which induces irreversible electropermeabilization, on the enzymatic hydrolysis of yeast. Cell suspensions were exposed to monopolar rectangular pulses in a continuous flow system followed by 4 h of incubation with Alcalase at concentrations of 0.2% and 0.5%. PEF pretreatment significantly improved enzymatic hydrolysis, with maximum intracellular content recovery under electrical conditions resulting in outlet temperatures of 56-58 °C. The released protein reached 163.7 ± 13 mg per gram of dry cell weight (DCW). SDS-PAGE analysis showed that the extracts predominantly contained peptides with molecular masses below 4.7 kDa. The phenolic content was comparable to that of cell lysates obtained after mechanical disruption. The free α-amino nitrogen content and total antioxidant activity reached 218.2 ± 26 mg/gDCW and 53.4 ± 4.6 mg TE/gDCW, respectively, representing 3.2-fold and 2.65-fold increases compared to cell lysates. The hydrolysates from PEF-pretreated cells demonstrated a positive effect on the proliferation of the human keratinocyte cell line HaCat. The obtained data lead to the conclusion that PEF pretreatment is a promising approach to enhance the production of yeast hydrolysates with various applications.
Collapse
Affiliation(s)
- Ralitsa Veleva
- Department of Cell Biology and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Valentina Ganeva
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
5
|
Ferreira A, Corrêa DO, Ribeiro B, Lopes da Silva T, Marques-Dos-Santos C, Gabriel Acién F, Gouveia L. Bioprocess to produce biostimulants/biofertilizers based on microalgae grown using piggery wastewater as nutrient source. BIORESOURCE TECHNOLOGY 2024; 414:131619. [PMID: 39393644 DOI: 10.1016/j.biortech.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In the present work, two downstream processes - high-pressure homogenization at 100 (HPH-100) and 1200 bar (HPH-1200), and enzymatic hydrolysis (EH) - were tested to produce biostimulant extracts from Tetradesmus obliquus grown in piggery wastewater at two concentrations (12.8 and 88.3 g/L). Extracts before and after centrifugation (C) were evaluated in four bioassays using garden cress (germination), mung bean (auxin-like activity), and cucumber (auxin- and cytokinin-like activity) relative to distilled water. The initial microalgal culture, without any treatment, had the best germination results (162 % at 0.2 g/L) and the only one that showed cytokinin-like activity (141 % at 0.5 g/L). In both auxin-like bioassays, the HPH-1200 + C and EH + C originated high values (186 and 155 % for cucumber, 290 and 285 % for mung bean, respectively). For mung bean, the HPH-1200 achieved the highest auxin-like effect (378 %). Finally, the extracted biomass contained essential nutrients for biofertilization, complementing the biostimulant extracts for sustainable agriculture application.
Collapse
Affiliation(s)
- Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Diego O Corrêa
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), PO Box 19046, CEP 81531-980 Curitiba, Paraná, Brazil
| | - Belina Ribeiro
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal.
| | - Teresa Lopes da Silva
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal.
| | - Cláudia Marques-Dos-Santos
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - F Gabriel Acién
- Chemical Engineering Department, University of Almeria, Ctra. Sacramento, s/n, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain.
| | - Luisa Gouveia
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
7
|
Alavianghavanini A, Moheimani NR, Bahri PA. Process design and economic analysis for the production of microalgae from anaerobic digestates in open raceway ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171554. [PMID: 38458470 DOI: 10.1016/j.scitotenv.2024.171554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
A model based framework was established for large scale assessment of microalgae production using anaerobically digested effluent considering varied climatic parameters such as solar irradiance and air temperature. The aim of this research was to identify the optimum monthly average culture depth operation to minimize the cost of producing microalgae grown on anaerobic digestion effluents rich in ammoniacal nitrogen with concentration of 248 mg L-1. First, a productivity model combined with a thermal model was developed to simulate microalgae productivity in open raceway ponds as a function of climatic variables. Second, by combining the comprehensive open pond model with other harvesting equipment, the final techno economic model was developed to produce a microalgae product with 20 wt% biomass content and treated water with <1 mg L-1 ammoniacal nitrogen. The optimization approach on culture depth for outdoor open raceway ponds managed to reduce the cost of microalgae production grown in anaerobic digested wastewater up to 16 %, being a suitable solution for the production of low cost microalgae (1.7 AUD kg-1 dry weight) at possible scale of 1300 t dry weight microalgae yr-1.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
8
|
Szuba-Trznadel A, Jama-Rodzeńska A, Gałka B, Ramut R, Król Z, Jarki D, Latković D. The impact of the distribution method for struvite (Crystal Green) on the chemical composition of soybean and their utility in animal nutrition. Sci Rep 2024; 14:1093. [PMID: 38212440 PMCID: PMC10784568 DOI: 10.1038/s41598-024-51625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
One of the main factors considered in assessing the nutritional value of feed is its chemical composition, which can be modified by fertilization. Faced with reducing P resources, alternative sources of this element are being sought. Phosphorus is an essential nutrient in soybean cultivation. The aim of the study was to use an alternative source of phosphorus fertilizer and compare its impact on the chemical composition of soybean seeds with that of a traditional fertilizer (Super FOS DAR). The study investigated a range of factors in animal nutrition as well as the basic content of macro- and microelements. A pot experiment with the Abelina soybean variety was conducted at the Experimental Station of the Wroclaw University of Environmental and Life Sciences. The experiment considered two factors against the control: phosphorus fertilizer placement (band, broadcast) and different phosphorus fertilization (Super FOS DAR, Crystal Green). Use of struvite (Crystal Green)) caused positive changes in selected amino acids content and in the nutritional value of protein in soybean seeds; this can enhance the value of soybean seeds as well as increase certain macroelements and microelements. Phosphorus fertilizer significantly increased the content of lysine, leucine, valine, phenyloalanine and tyrosine. Band fertilization with struvite caused a significant increase in amino acids (lysine, leucine, valine, phenyloalanine and tyrosine) as well as in the nutritional value of protein (as measured by the essential amino acid index, protein efficiency ratio and biological value of the protein). Favorable changes under the influence of the application of struvite were recorded in the content of calcium, as well as phosphorus, iron, and manganese. The value of the struvite in the case of its use as phosphorus fertilizer is promising; however, it needs further study.
Collapse
Affiliation(s)
- Anna Szuba-Trznadel
- Department of Animal Nutrition and Feed Science, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Anna Jama-Rodzeńska
- Institute of Agroecology and Plant Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 50-363, Wroclaw, Poland.
| | - Bernard Gałka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 50-363, Wroclaw, Poland
| | - Rafał Ramut
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, 50-363, Wroclaw, Poland
| | - Zygmunt Król
- Saatbau Poland Sp. z o.o., Żytnia 1, 55-300, Środa Śląska, Poland
| | - Daniel Jarki
- Saatbau Poland Sp. z o.o., Żytnia 1, 55-300, Środa Śląska, Poland
| | - Dragana Latković
- Department of Field and Vegetable Crops, University of Novi Sad, 21000, Novi Sad, Serbia
| |
Collapse
|
9
|
Mortensen AT, Goonesekera EM, Dechesne A, Elad T, Tang K, Andersen HR, Smets BF, Valverde-Pérez B. Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply. WATER RESEARCH 2023; 242:120104. [PMID: 37348423 DOI: 10.1016/j.watres.2023.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH4 loading rates. Biomass productivity and CH4 loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L-1·d-1, with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L-1. Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH4 oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g-1·d-1 and 5.42 L·g-1·d-1, respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH4 and nutrients.
Collapse
Affiliation(s)
- Anders T Mortensen
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Estelle M Goonesekera
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Tal Elad
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Kai Tang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Henrik R Andersen
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark.
| |
Collapse
|
10
|
Wu H, Huang S, Wang K, Liu Z. Coproduction of amino acids and biohythane from microalgae via cascaded hydrothermal and anaerobic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162238. [PMID: 36804985 DOI: 10.1016/j.scitotenv.2023.162238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In search of the candidate for animal feed and clean energy, a new vision of algal biorefinery was firstly proposed to coproduce amino acids and biohythane via hydrothermal treatment and two-stage anaerobic fermentation. This study focused on the comprehensive analysis of amino acids recovered from Chlorella sp. and the subsequent biohythane production from microalgal residues. The content and recovery rate of amino acids were in the range of 2.07-27.62 g/100 g and 3.65 %-48.66 % with increasing temperature due to more cell wall disruptions. Furthermore, it was rich in essential amino acids for livestock, including leucine, arginine, isoleucine, valine and phenylalanine. A comparable hydrogen production (9 mL/g volatile solids (VS)) was reached at 70 °C and 90 °C, while it reduced to 5.84 mL/gVS at 150 °C. The group at 70 °C got the maximum methane generation of 311.9 mL/gVS, which was 16.67 %, 24.94 %, 38.38 % and 46.49 % higher than that of other groups. Microalgal residues at lower temperature contained more organics, which was the reason for the better biohythane production. The coproduction of amino acids and biohythane at 130 °C was favorable, which led to 43.71 % amino acids recovery and 93.82 mL biohythane production from per gVS of Chlorella sp. The improved microalgal biorefinery could provide an alternative way to mitigate the crisis of food and energy, but animal experimentations and techno-economic assessments should be considered for further study.
Collapse
Affiliation(s)
- Houkai Wu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sijie Huang
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
11
|
Chaouachi M, Vincent S, Groussard C. A Review of the Health-Promoting Properties of Spirulina with a Focus on athletes' Performance and Recovery. J Diet Suppl 2023; 21:210-241. [PMID: 37143238 DOI: 10.1080/19390211.2023.2208663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Spirulina species are photosynthetic and filamentous bacteria, commonly called 'blue-green microalgae'. Spirulina has a high nutrient content. It contains 60-70% protein with all essential amino acids present, and is rich in several vitamins, minerals, and bioactive compounds. Spirulina is also rich in essential fatty acids, and antioxidants. This rich nutritional content provides to Spirulina several health benefits including antioxidant, anti-inflammatory, immunomodulation, and insulin-sensitizing properties as well as positive effects in various diseases which could be also interesting for athletes. This paper mainly aims to review the interest and effects of Spirulina supplementation in athletes at rest, and in relation to exercise/training. Spirulina's biochemical composition, health properties/effects in humans, and effects in athletes including nutritional status, body composition, physical performance and intense exercise-related disorders were discussed in this review. Literature data showed that Spirulina seems to have positive effects on body composition especially in overweight and obese subjects which could not be the case in other pathologies and athletes. Spirulina appears to be also effective in improving aerobic fitness especially in untrained and moderately trained subjects. Results reported in the literature suggest that Spirulina may improve strength and power performance despite the minor or no significant effects in highly trained subjects. Most studies have shown that Spirulina improves antioxidant status, prevents and accelerates the recovery of exercise-induced lipid peroxidation, muscle damage and inflammation in trained and untrained subjects. Taken together, the results from these studies are encouraging and may demonstrate the potential benefits of Spirulina supplementation in athletes despite methodological differences.
Collapse
|
12
|
Oraby S, Hegazy MI, Labeeb HM, Mahdy A. Iron oxide nanoparticle-based pretreatment for simultaneous elevated hydrolysis efficiency and methanization augmentation of Chlorella vulgaris biomass. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Attar SBE, Morillas-España A, López JLC, Pinna-Hernández MG, Acién G. Rheology of microalgae concentrates and its influence on the power consumption of enzymatic hydrolysis processing. N Biotechnol 2022; 72:107-113. [PMID: 36307011 DOI: 10.1016/j.nbt.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
The optimization of downstream processing is a critical step in any microalgae-related process. The microalgal biomass is separated from the initial diluted cultures to form a concentrated slurry, the properties of which greatly influence the design and performance of further processing steps, such as enzymatic hydrolysis. In this work, the rheological behaviour of two microalgal concentrates produced both in freshwater (Scenedesmus almeriensis) and seawater (Nannochloropsis gaditana) were studied. Measurements were performed on the entire range of biomass concentrations, from 0.5 g/L to 264 g/L. Non-Newtonian behaviour was observed whatever the water type and biomass concentration used, especially at high biomass concentrations above 10 g/L. The rheological data were adjusted to the Power Law model, and the consistency and flow behaviour indexes were correlated with the biomass concentration. The results show that the freshwater and seawater biomasses exhibited different behaviours, with freshwater slurries being more viscous than seawater ones. The high viscosity of freshwater slurries requires increased energy consumption for mixing, with an estimated cost increase of 60% when using them under the non-Newtonian conditions considered. These findings highlight the considerable effect of algal biomass rheology on the mixing power required during microalgal biomass processing.
Collapse
Affiliation(s)
- Solaima Belachqer-El Attar
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), 04120 Almería, Spain
| | - Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), 04120 Almería, Spain
| | - José Luis Casas López
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), 04120 Almería, Spain
| | - María Guadalupe Pinna-Hernández
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), 04120 Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), 04120 Almería, Spain.
| |
Collapse
|
14
|
Guo B, Hornung U, Zhang S, Dahmen N. Techno‐Economic Assessment of a Microalgae Biorefinery. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Bingfeng Guo
- Fudan University Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) Department of Environmental Science and Engineering 200438 Shanghai China
- Karlsruhe Institute of Technology Institute for Catalysis Research and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ursel Hornung
- Karlsruhe Institute of Technology Institute for Catalysis Research and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Shicheng Zhang
- Fudan University Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) Department of Environmental Science and Engineering 200438 Shanghai China
| | - Nicolaus Dahmen
- Karlsruhe Institute of Technology Institute for Catalysis Research and Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
15
|
Chalermthai B, Giwa A, Moheimani N, Taher H. Techno-economic strategies for improving economic viability of β-carotene extraction using natural oil and supercritical solvent: A comparative assessment. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
Simulation and Techno-Economical Evaluation of a Microalgal Biofertilizer Production Process. BIOLOGY 2022; 11:biology11091359. [PMID: 36138838 PMCID: PMC9495801 DOI: 10.3390/biology11091359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The world’s population is expected to increase to almost 10,000 million by 2025, thus requiring an increase in agricultural production to meet the demand for food. Hence, an increase in fertilizer production will be needed, but with more environmentally sustainable fertilizers than those currently used. Traditional nitrogenous fertilizers (TNFs, inorganic compounds, for example nitrates and ammonium) are currently the most consumed. Biofertilizers concentrated in amino acids (BCAs) are a more sustainable alternative to TNF and could reduce the demand for TNFs. BCAs are widely used in intensive agriculture as growth and fruit formation enhancers, as well as in situations of stress for the plant, helping it to recover its vigor. In addition, BCAs minimize or contribute to reducing the damage caused by pests and diseases, have an immediate action, giving a full utilization and, lastly and most importantly, they produce savings in the crop. The objective of this work is to propose a process for the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant and to carry out techno-economic evaluation in such a way as to determine the viability of the proposal. Abstract Due to population growth in the coming years, an increase in agricultural production will soon be mandatory, thus requiring fertilizers that are more environmentally sustainable than the currently most-consumed fertilizers since these are important contributors to climate change and water pollution. The objective of this work is the techno-economic evaluation of the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant, to determine its economic viability. A process proposal has been made in six stages that have been modelled and simulated with the ASPEN Plus simulator. A profitability analysis has been carried out using a Box–Behnken-type response surface statistical design with three factors—the cost of the biomass sludge, the cost of the enzymes, and the sale price of the biofertilizer. It was found that the most influential factor in profitability is the sale price of the biofertilizer. According to a proposed representative base case, in which the cost of the biomass sludge is set to 0.5 EUR/kg, the cost of the enzymes to 20.0 EUR/kg, and the sale price of the biofertilizer to 3.5 EUR/kg, which are reasonable costs, it is concluded that the production of the biofertilizer would be economically viable.
Collapse
|
17
|
Biorefinery Approach Applied to the Production of Food Colourants and Biostimulants from Oscillatoria sp. BIOLOGY 2022; 11:biology11091278. [PMID: 36138757 PMCID: PMC9495851 DOI: 10.3390/biology11091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary In this study, a biorefinery based on Oscillatoria sp. is developed to produce high-value compounds such as C-phycocyanin, used in food colourant applications, and biostimulants, used in agriculture-related applications. The results confirm that C-phycocyanin concentrations ranging from 22 to 106 mg/L produce colours similar to commercial products; moreover, the safety of the extracted C-phycocyanin was confirmed through toxicity tests. The leftover biomass was confirmed as a biostimulant, with the results confirming a relevant auxin-like positive effect. Finally, an economic analysis was conducted to evaluate different scenarios, with results confirming this as the best scenario from an economic standpoint. Abstract In this study, a biorefinery based on Oscillatoria sp. is developed to produce high-value compounds such as C-phycocyanin, used in food colourant applications, and biostimulants, used in agriculture-related applications. First, the Oscillatoria biomass production was optimized at a pilot scale in an open raceway reactor, with biomass productivities equivalent to 52 t/ha·year being achieved using regular fertilizers as the nutrient source. The biomass produced contained 0.5% C-phycocyanins, 95% of which were obtained after freeze–thawing and extraction at pH 6.5 and ionic strength (FI) 100 mM, with a purity ratio of 0.71 achieved in the final extract. This purity ratio allows for use of the extract directly as a food colourant. Then, the extract’s colourant capacity on different beverages was evaluated. The results confirm that C-phycocyanin concentrations ranging from 22 to 106 mg/L produce colours similar to commercial products, thus avoiding the need for synthetic colourants. The colour remained stable for up to 12 days. Moreover, the safety of the extracted C-phycocyanin was confirmed through toxicity tests. The waste biomass was evaluated for use as a biostimulant, with the results confirming a relevant auxin-like positive effect. Finally, an economic analysis was conducted to evaluate different scenarios. The results confirm that the production of both C-phycocyanin and biostimulants is the best scenario from an economic standpoint. Therefore, the developed biomass processing scheme provides an opportunity to expand the range of commercial applications for microalgae-related processes.
Collapse
|
18
|
Morillas-España A, Lafarga T, Sánchez-Zurano A, Acién-Fernández FG, González-López C. Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges. CHEMOSPHERE 2022; 291:132968. [PMID: 34800510 DOI: 10.1016/j.chemosphere.2021.132968] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
One of the main social and economic challenges of the 21st century will be to overcome the worlds' water deficit expected by the end of this decade. Microalgae based wastewater treatment has been suggested as a strategy to recover nutrients from wastewater while simultaneously producing clean water. Consortia of microalgae and bacteria are responsible for recovering nutrients from wastewater. A better understanding of how environmental and operational conditions affect the composition of the microalgae-bacteria consortia would allow to maximise nutrient recoveries and biomass productivities. Most of the studies reported to date showed promising results, although up-scaling of these processes to reactors larger than 100 m2 is needed to better predict their industrial relevance. The main advantage of microalgae based wastewater treatment is that valuable biomass with unlimited applications is produced as a co-product. The aim of the current paper was to review microalgae based wastewater treatment processes focusing on strategies that allow increasing both biomass productivities and nutrient recoveries. Moreover, the benefits of microalgae based agricultural products were also discussed.
Collapse
Affiliation(s)
- Ainoa Morillas-España
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain.
| | - Ana Sánchez-Zurano
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Francisco Gabriel Acién-Fernández
- Department of Chemical Engineering, University of Almeria, 04120, Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | | |
Collapse
|
19
|
Continuous Culture of Auxenochlorella protothecoides on Biodiesel Derived Glycerol under Mixotrophic and Heterotrophic Conditions: Growth Parameters and Biochemical Composition. Microorganisms 2022; 10:microorganisms10030541. [PMID: 35336116 PMCID: PMC8953379 DOI: 10.3390/microorganisms10030541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
As crude glycerol comprises a potential substrate for microalga fermentation and value added products’ biosynthesis, Auxenochlorella protothecoides was grown on it under heterotrophic and mixotrophic conditions and its growth kinetics were evaluated in a continuous system under steady state conditions. Increasing initial glycerol concentration (from 30 to 50 g/L) in the heterotrophic culture led to reduced biomass yield (Yx/S) and productivity (Px), but favored lipid accumulation. Under heterotrophic conditions, the microalga was found to grow better (biomass up to 7.888 g/L) and faster (higher growth rates), the system functioned more effectively (higher Px) and crude glycerol was exploited more efficiently. Heterotrophy also favored proteins synthesis (up to 53%), lipids (up to 9.8%), and carbohydrates (up to 44.6%) accumulation. However, different trophic modes had no significant impact on the consistency of proteins and lipids. Oleic acid was the most abundant fatty acid detected (55–61.2% of the total lipids). The algal biomass contained many essential and non-essential amino acids, especially arginine, glutamic acid, lysine, aspartic acid, leucine, and alanine. In all the experimental trials, the protein contents in the microalgal biomass increased with the increasing dilution rate (D), with a concomitant decrease in the lipids and carbohydrates fractions.
Collapse
|
20
|
Zhang Y, Kang X, Zhen F, Wang Z, Kong X, Sun Y. Assessment of enzyme addition strategies on the enhancement of lipid yield from microalgae. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
A cascade biorefinery for the valorization of microalgal biomass: biodiesel, biogas, fertilizers and high valuable compounds. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho SH, Rajesh Banu J, Show PL. Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. CHEMOSPHERE 2021; 281:130886. [PMID: 34020196 DOI: 10.1016/j.chemosphere.2021.130886] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Microalgae have drawn significant interest worldwide, owing to their enormous application potential in the green energy, biopharmaceutical, and nutraceutical industries. Many studies have proved and stated the potential of microalgae in the area of biofuel which is economically effective and environmentally friendly. Besides the commercial value, the potential of microalgae in environmental protection has also been investigated. Microalgae-based process is one of the most effective way to treat heavy metal pollution, compared to conventional methods, it does not release any toxic waste or harmful gases, and the aquatic organism will not receive any harmful effects. The potential dual role of microalge in phytoremedation and energy production has made it widely explored for its capability. The interest of microalgae in various application has motivated a new focus in green technologies. Considering the rapid population growth with the continuous increase on the global demand and the application of biomass in diverse field, significant upgrades have been performed to accommodate green technological advancement. In the past decade, noteworthy advancement has been made on the technology involving the diverse application of microalgae biomass. This review aims to explore on the application of microalgae and the development of green technology in various application for microalgae biomass. There is great prospects for researchers in this field to delve into other potential utilization of microalgae biomass not only for bioremediation process but also to generate revenues from microalgae by incorporating clean and green technology for long-term sustainability and environmental benefits.
Collapse
Affiliation(s)
- Jiunn Kwok Yap
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu, 610005, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
23
|
Soto-Sierra L, Wilken LR, Mallawarachchi S, Nikolov ZL. Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Kapoore RV, Wood EE, Llewellyn CA. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 2021; 49:107754. [PMID: 33892124 DOI: 10.1016/j.biotechadv.2021.107754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
For the growing human population to be sustained during present climatic changes, enhanced quality and quantity of crops are essential to enable food security worldwide. The current consensus is that we need to make a transition from a petroleum-based to a bio-based economy via the development of a sustainable circular economy and biorefinery approaches. Both macroalgae (seaweeds) and microalgae have been long considered a rich source of plant biostimulants with an attractive business opportunity in agronomy and agro-industries. To date, macroalgae biostimulants have been well explored. In contrast, microalgal biostimulants whilst known to have positive effects on development, growth and yields of crops, their commercial implementation is constrained by lack of research and cost of production. The present review highlights the current knowledge on potential biostimulatory compounds, key sources and their quantitative information from algae. Specifically, we provide an overview on the prospects of microalgal biostimulants to advance crop production and quality. Key aspects such as specific biostimulant effects caused by extracts of microalgae, feasibility and potential of co-cultures and later co-application with other biostimulants/biofertilizers are highlighted. An overview of the current knowledge, recent advances and achievements on extraction techniques, application type, application timing, current market and regulatory aspects are also discussed. Moreover, aspects involved in circular economy and biorefinery approaches are also covered, such as: integration of waste resources and implementation of high-throughput phenotyping and -omics tools in isolating novel strains, exploring synergistic interactions and illustrating the underlying mode of microalgal biostimulant action. Overall, this review highlights the current and future potential of microalgal biostimulants, algal biochemical components behind these traits and finally bottlenecks and prospects involved in the successful commercialisation of microalgal biostimulants for sustainable agricultural practices.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Eleanor E Wood
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Carole A Llewellyn
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
25
|
Haske-Cornelius O, Gierlinger S, Vielnascher R, Gabauer W, Prall K, Pellis A, Guebitz GM. Cultivation of heterotrophic algae on paper waste material and digestate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Timira V, Meki K, Li Z, Lin H, Xu M, Pramod SN. A comprehensive review on the application of novel disruption techniques for proteins release from microalgae. Crit Rev Food Sci Nutr 2021; 62:4309-4325. [PMID: 33480267 DOI: 10.1080/10408398.2021.1873734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is an emergent demand for sustainable and alternative protein sources such as insects and microorganisms that meet the nutritional requirements. Microalgae possess valuable substances that could satisfy the population's dietary requirement, medicinal purpose, and energy, aligned with effective processing techniques. Several disruption techniques were applied to microalgae species for protein recovery and other compounds. The thick microalgae cell wall makes it difficult to recover all the valuable biomolecules through several downstream processes. Thus, forethought key factors need to be considered when choosing a cell lysis method. The most challenging and crucial issue is selecting a technique that requires consideration of their ability to disrupt all cell types, easy to use, purity degree, reproducible, scalable, and energy efficient. This review aims to provide useful information specifically on mechanical and non-mechanical disruption methods, the status and potential in protein extraction capacities, and constraints. Therefore, further attention in the future on potential technologies, namely explosive decompression, microfluidization, pulsed arc technology, is required to supplement the discussed techniques. This article summarizes recent advances in cell disruption methods and demonstrates insights on new directions of the techniques and future developments.
Collapse
Affiliation(s)
- Vaileth Timira
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Kudakwashe Meki
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhenxing Li
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Hong Lin
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Mengyao Xu
- College College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, PR China
| | - Siddanakoppalu N Pramod
- Laboratory of immunomodulation and inflammation biology, Department of Studies and Research in Biochemistry, Sahyadri Science College, Kuvempu University, Shimoga, Karnataka, India
| |
Collapse
|
27
|
Papachristou I, Akaberi S, Silve A, Navarro-López E, Wüstner R, Leber K, Nazarova N, Müller G, Frey W. Analysis of the lipid extraction performance in a cascade process for Scenedesmus almeriensis biorefinery. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:20. [PMID: 33446259 PMCID: PMC7807813 DOI: 10.1186/s13068-020-01870-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microalgae have attracted considerable interest due to their ability to produce a wide range of valuable compounds. Pulsed Electric Fields (PEF) has been demonstrated to effectively disrupt the microalgae cells and facilitate intracellular extraction. To increase the commercial viability of microalgae, the entire biomass should be exploited with different products extracted and valorized according to the biorefinery scheme. However, demonstrations of multiple component extraction in series are very limited in literature. This study aimed to develop an effective lipid extraction protocol from wet Scenedesmus almeriensis after PEF-treatment with 1.5 MJ·kgDW-1. A cascade process, i.e., the valorization of several products in row, was tested with firstly the collection of the released carbohydrates in the water fraction, then protein enzymatic hydrolysis and finally lipid extraction. Biomass processed with high pressure homogenization (HPH) on parallel, served as benchmark. RESULTS Lipid extraction with ethanol:hexane (1:0.41 vol/vol) offered the highest yields from the different protocols tested. PEF-treatment promoted extraction with almost 70% of total lipids extracted against 43% from untreated biomass. An incubation step after PEF-treatment, further improved the yields, up to 83% of total lipids. Increasing the solvent volume by factor 2 offered no improvement. In comparison, extraction with two other systems utilizing only ethanol at room temperature or elevated at 60 °C were ineffective with less than 30% of total lipids extracted. Regarding cascade extraction, carbohydrate release after PEF was detected albeit in low concentrations. PEF-treated samples displayed slightly better kinetics during the enzymatic protein hydrolysis compared to untreated or HPH-treated biomass. The yields from a subsequent lipid extraction were not affected after PEF but were significantly increased for untreated samples (66% of total lipids), while HPH displayed the lowest yields (~ 49% of total lipids). CONCLUSIONS PEF-treatment successfully promoted lipid extraction from S. almeriensis but only in combination with a polar:neutral co-solvent (ethanol:hexane). After enzymatic protein hydrolysis in cascade processing; however, untreated biomass displayed equal lipid yields due to the disruptive effect of the proteolytic enzymes. Therefore, the positive impact of PEF in this scheme is limited on the improved reaction kinetics exhibited during the enzymatic hydrolysis step.
Collapse
Affiliation(s)
- I Papachristou
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany.
| | - S Akaberi
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - A Silve
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - R Wüstner
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - K Leber
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - N Nazarova
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - G Müller
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - W Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Navarro-López E, Cerón-García MDC, López-Rodríguez M, Acién-Fernández FG, Molina-Grima E. Biostimulants obtained after pilot-scale high-pressure homogenization of Scenedesmus sp. grown in pig manure. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
The role of microalgae in the bioeconomy. N Biotechnol 2020; 61:99-107. [PMID: 33249179 DOI: 10.1016/j.nbt.2020.11.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
The bioeconomy is a new and essential paradigm for reducing our dependence on natural resources and responding to the environmental threats that the Earth is currently facing. In this regard, microalgae offer almost unlimited possibilities for developing a modern bioeconomy given their metabolic flexibility and high biomass output rates, even when produced under harsh conditions, such as when treating wastewaters or using flue gases. In this article, the microalgal contribution to important economic activities such as the production of food and feed, cosmetics and health-related compounds is reviewed. Moreover, potential contributions of microalgae to emerging sectors are discussed, as in the production of biomaterials, agriculture-related products, biofuels and provision of services such as wastewater treatment and the clean-up of industrial gases. The different microalgal production technologies have also been analyzed to identify the main bottlenecks affecting microalgal use in different applications. Finally, the major challenges facing microalgal biotechnology in enlarging its contribution to the bioeconomy are evaluated, and future trends discussed.
Collapse
|
30
|
Callejo-López J, Ramírez M, Cantero D, Bolívar J. Versatile method to obtain protein- and/or amino acid-enriched extracts from fresh biomass of recalcitrant microalgae without mechanical pretreatment. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Biostimulant Potential of Scenedesmus obliquus Grown in Brewery Wastewater. Molecules 2020; 25:molecules25030664. [PMID: 32033149 PMCID: PMC7037087 DOI: 10.3390/molecules25030664] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 11/16/2022] Open
Abstract
Microalgae are microorganisms with the capacity to contribute to the sustainable and healthy food production, in addition to wastewater treatment. The subject of this work was to determine the potential of Scenedesmus obliquus microalga grown in brewery wastewater to act as a plant biostimulant. The germination index of watercress seeds, as well as the auxin-like activity in mung bean and cucumber, and in the cytokinin-like activity in cucumber bioassays were used to evaluate the biostimulant potential. Several biomass processes were studied, such as centrifugation, ultrasonication and enzymatic hydrolysis, as well as the final concentration of microalgal extracts to determine their influence in the biostimulant activity of the Scenedesmus biomass. The results showed an increase of 40% on the germination index when using the biomass at 0.1 g/L, without any pre-treatment. For auxin-like activity, the best results (up to 60% with respect to control) were obtained at 0.5 g/L of biomass extract, after a combination of cell disruption, enzymatic hydrolysis and centrifugation. For cytokinin-like activity, the best results (up to 187.5% with respect to control) were achieved without cell disruption, after enzymatic hydrolysis and centrifugation at a biomass extract concentration of 2 g/L.
Collapse
|
32
|
Izaguirre JK, Dietrich T, Villarán MC, Castañón S. Protein hydrolysate from organic fraction of municipal solid waste compost as nitrogen source to produce lactic acid by Lactobacillus fermentum ATCC 9338 and Lactobacillus plantarum NCIMB 8826. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Akaberi S, Gusbeth C, Silve A, Senthilnathan DS, Navarro-López E, Molina-Grima E, Müller G, Frey W. Effect of pulsed electric field treatment on enzymatic hydrolysis of proteins of Scenedesmus almeriensis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Guo B, Yang B, Silve A, Akaberi S, Scherer D, Papachristou I, Frey W, Hornung U, Dahmen N. Hydrothermal liquefaction of residual microalgae biomass after pulsed electric field-assisted valuables extraction. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production. Appl Biochem Biotechnol 2019; 190:907-917. [DOI: 10.1007/s12010-019-03126-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023]
|
36
|
Lafarga T. Cultured Microalgae and Compounds Derived Thereof for Food Applications: Strain Selection and Cultivation, Drying, and Processing Strategies. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1655572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tomás Lafarga
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Processed Fruits and Vegetables, Lleida, Spain
| |
Collapse
|
37
|
Liu F, Lane P, Hewson JC, Stavila V, Tran-Gyamfi MB, Hamel M, Lane TW, Davis RW. Development of a closed-loop process for fusel alcohol production and nutrient recycling from microalgae biomass. BIORESOURCE TECHNOLOGY 2019; 283:350-357. [PMID: 30933901 DOI: 10.1016/j.biortech.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Improving the economic feasibility is necessary for algae-based processes to achieve commercial scales for biofuels and bioproducts production. A closed-loop system for fusel alcohol production from microalgae biomass with integrated nutrient recycling was developed, which enables the reuse of nitrogen and phosphorus for downstream application and thus reduces the operational requirement for external major nutrients. Mixed fusel alcohols, primarily isobutanol and isopentanol were produced from Microchloropsis salina hydrolysates by an engineered E. coli co-culture. During the process, cellular nitrogen from microalgae biomass was converted into ammonium, whereas cellular phosphorus was liberated by an osmotic shock treatment. The formation of struvite from the liberated ammonium and phosphate, and the subsequent utilization of struvite to support M. salina cultivation was demonstrated. The closed loop system established here should help overcome one of the identified economic barriers to scale-up of microalgae production, and enhance the sustainability of microalgae-based chemical commodities production.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Pamela Lane
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - John C Hewson
- Department of Fire Science and Technology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Vitalie Stavila
- Department of Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Mary B Tran-Gyamfi
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Michele Hamel
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Todd W Lane
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Ryan W Davis
- Department of Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, CA 94550, USA.
| |
Collapse
|
38
|
Martini FA, Rubert A, de Souza MP, Kist LT, Hoeltz M, Benitez LB, Rizzetti TM, Gressler PD, Schneider RDCDS. Periphytic biomass composition and exploitation from algae turf scrubber system. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0802-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
39
|
Main Variables Affecting a Chemical-Enzymatic Method to Obtain Protein and Amino Acids from Resistant Microalgae. J CHEM-NY 2019. [DOI: 10.1155/2019/1390463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The development of microalgae uses requires further investigation in cell disruption alternatives to reduce the costs associated to this processing stage. This study aimed to evaluate the main variables affecting an extraction method to obtain protein and amino acids from microalgae. The method was based on a sequential alkaline-enzymatic process, with separate extractions and noncontrolled pH, and was applied to fresh biomass of a resistant species. The processed microalgae were composed of a consortium with Nannochloropsis sp. as predominant species. After the optimization of the pH of the alkaline reaction, the effect of the time of the alkaline reaction (30–120 min), the time (30–120 min) and temperature (40–60°C) of the enzymatic reaction, and the biomass concentration (50–150 mg·ml−1), on the extraction yields of protein and free amino nitrogen (FAN) and on the final concentration of protein in the extract, was studied using a response surface methodology. Even though all the variables and some interactions among them had a significant effect, the biomass concentration was the most important factor affecting the overall process. The results showed relevant information about the different options in order to maximize not only the response variables individually but also different combinations of them. Assays with optimized values reached maximum yields of 80.3% and 1.07% of protein (% of total protein) and FAN (% of total biomass), respectively, and a protein concentration in the extract of 15.2 mg·ml−1. The study provided the essential information of an alternative approach to obtain protein and amino acids from fresh biomass of resistant microalgae with a high yield, also opening perspectives for further research in particular aspects.
Collapse
|
40
|
Abstract
Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.
Collapse
|
41
|
Molecular characterization and atomistic model of biocrude oils from hydrothermal liquefaction of microalgae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Acién Fernández FG, Gómez-Serrano C, Fernández-Sevilla JM. Recovery of Nutrients From Wastewaters Using Microalgae. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00059] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Ryu KH, Sung M, Kim B, Heo S, Chang YK, Lee JH. A mathematical model of intracellular behavior of microalgae for predicting growth and intracellular components syntheses under nutrient‐replete and ‐deplete conditions. Biotechnol Bioeng 2018; 115:2441-2455. [DOI: 10.1002/bit.26744] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/13/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kyung Hwan Ryu
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
| | - Min‐Gyu Sung
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
| | - Boeun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
| | - Seongmin Heo
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
- Advanced Biomass R&D Center, Korea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
| | - Jay H. Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDeajeon Republic of Korea
| |
Collapse
|
44
|
Arashiro LT, Montero N, Ferrer I, Acién FG, Gómez C, Garfí M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1118-1130. [PMID: 29890581 DOI: 10.1016/j.scitotenv.2017.12.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 05/24/2023]
Abstract
The aim of this study was to assess the potential environmental impacts associated with high rate algal ponds (HRAP) systems for wastewater treatment and resource recovery in small communities. To this aim, a Life Cycle Assessment (LCA) was carried out evaluating two alternatives: i) a HRAP system for wastewater treatment where microalgal biomass is valorized for energy recovery (biogas production); ii) a HRAP system for wastewater treatment where microalgal biomass is reused for nutrients recovery (biofertilizer production). Additionally, both alternatives were compared to a typical small-sized activated sludge system. An economic assessment was also performed. The results showed that HRAP system coupled with biogas production appeared to be more environmentally friendly than HRAP system coupled with biofertilizer production in the climate change, ozone layer depletion, photochemical oxidant formation, and fossil depletion impact categories. Different climatic conditions have strongly influenced the results obtained in the eutrophication and metal depletion impact categories. In fact, the HRAP system located where warm temperatures and high solar radiation are predominant (HRAP system coupled with biofertilizer production) showed lower impact in those categories. Additionally, the characteristics (e.g. nutrients and heavy metals concentration) of microalgal biomass recovered from wastewater appeared to be crucial when assessing the potential environmental impacts in the terrestrial acidification, particulate matter formation and toxicity impact categories. In terms of costs, HRAP systems seemed to be more economically feasible when combined with biofertilizer production instead of biogas. On the whole, implementing HRAPs instead of activated sludge systems might increase sustainability and cost-effectiveness of wastewater treatment in small communities, especially if implemented in warm climate regions and coupled with biofertilizer production.
Collapse
Affiliation(s)
- Larissa Terumi Arashiro
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; Department of Industrial Biological Sciences, Ghent University, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Neus Montero
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | | | - Cintia Gómez
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
45
|
Lane CD, Coury DA, Allnutt FT. Composition and Potential Products fromAuxenochlorella protothecoides, Chlorella sorokinianaandChlorella vulgaris. Ind Biotechnol (New Rochelle N Y) 2017. [DOI: 10.1089/ind.2017.0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Cao B, Fang L, Liu C, Min W, Liu J. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts. FOOD SCI TECHNOL INT 2017; 24:53-66. [DOI: 10.1177/1082013217726883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Baiying Cao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| |
Collapse
|
47
|
Lupatini AL, Colla LM, Canan C, Colla E. Potential application of microalga Spirulina platensis as a protein source. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:724-732. [PMID: 27507218 DOI: 10.1002/jsfa.7987] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/28/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The high protein level of various microalgal species is one of the main reasons to consider them an unconventional source of this compound. Spirulina platensis stands out for being one of the richest protein sources of microbial origin (460-630 g kg-1 , dry matter basis), having similar protein levels when compared to meat and soybeans. The use of S. platensis in food can bring benefits to human health owing to its chemical composition, since it has high levels of vitamins, minerals, phenolics, essential fatty acids, amino acids and pigments. Furthermore, the development of new protein sources to supply the shortage of this nutrient is an urgent need, and protein from S. platensis plays an important role in this scenario. In this sense, extraction processes that allow maximum protein yield and total utilization of biomass is an urgent need, and ultrasonic waves have proven to be an effective extraction technique. The number of scientific papers related to protein fraction from S. platensis is still limited; thus further studies on its functional and technological properties are needed. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anne Luize Lupatini
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
| | - Luciane Maria Colla
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Cristiane Canan
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
| | - Eliane Colla
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
| |
Collapse
|
48
|
|
49
|
Lupatini AL, de Oliveira Bispo L, Colla LM, Costa JAV, Canan C, Colla E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res Int 2016; 99:1028-1035. [PMID: 28865613 DOI: 10.1016/j.foodres.2016.11.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 01/02/2023]
Abstract
Spirulina platensis is considered an alternative and excellent source of protein [46-63% dry basis (DB)], having protein levels comparable to meat and soybeans. Thus, it can be considered an adequate ingredient to supply the necessity of this compound in the food industry. Its carbohydrates (8-14% DB) may also be a useful food ingredient or a potential source of bioenergy. Thus, extracting these compounds from the microalgae biomass will maximize its exploitation. Sonication can completely or partially degrade the microalgal cell wall, providing a useful technique to extract the protein and carbohydrate. This study used a sequential strategy of experimental design (fractional factorial design and central composite rotatable design) to evaluate the protein and carbohydrate extraction from S. platensis defatted biomass using ultrasonic waves and mechanical agitation, under alkaline conditions. The optimal conditions for protein and carbohydrate co-extraction were established by selecting and maximizing the variables that significantly influenced the extraction. The optimized percentages recovery from the extraction process yielded 75.76% protein and 41.52% carbohydrate at 33-40min sonication and 40-55min agitation. The protein fraction may be further concentrated and purified for use in food formulations, and the carbohydrates may be a useful feedstock for bioethanol production.
Collapse
Affiliation(s)
- Anne Luize Lupatini
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| | - Larissa de Oliveira Bispo
- Department of Food, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| | - Luciane Maria Colla
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, Passo Fundo, Rio Grande do Sul, P.O. Box: 611, Postal Code 99.001-970, Brazil.
| | - Jorge Alberto Vieira Costa
- Graduate Program in Engineering and Food Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, P.O. Box: 474, Postal Code 96.201-900, Brazil.
| | - Cristiane Canan
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| | - Eliane Colla
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| |
Collapse
|
50
|
Wágner DS, Valverde-Pérez B, Sæbø M, Bregua de la Sotilla M, Van Wagenen J, Smets BF, Plósz BG. Towards a consensus-based biokinetic model for green microalgae - The ASM-A. WATER RESEARCH 2016; 103:485-499. [PMID: 27525381 DOI: 10.1016/j.watres.2016.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Cultivation of microalgae in open ponds and closed photobioreactors (PBRs) using wastewater resources offers an opportunity for biochemical nutrient recovery. Effective reactor system design and process control of PBRs requires process models. Several models with different complexities have been developed to predict microalgal growth. However, none of these models can effectively describe all the relevant processes when microalgal growth is coupled with nutrient removal and recovery from wastewaters. Here, we present a mathematical model developed to simulate green microalgal growth (ASM-A) using the systematic approach of the activated sludge modelling (ASM) framework. The process model - identified based on a literature review and using new experimental data - accounts for factors influencing photoautotrophic and heterotrophic microalgal growth, nutrient uptake and storage (i.e. Droop model) and decay of microalgae. Model parameters were estimated using laboratory-scale batch and sequenced batch experiments using the novel Latin Hypercube Sampling based Simplex (LHSS) method. The model was evaluated using independent data obtained in a 24-L PBR operated in sequenced batch mode. Identifiability of the model was assessed. The model can effectively describe microalgal biomass growth, ammonia and phosphate concentrations as well as the phosphorus storage using a set of average parameter values estimated with the experimental data. A statistical analysis of simulation and measured data suggests that culture history and substrate availability can introduce significant variability on parameter values for predicting the reaction rates for bulk nitrate and the intracellularly stored nitrogen state-variables, thereby requiring scenario specific model calibration. ASM-A was identified using standard cultivation medium and it can provide a platform for extensions accounting for factors influencing algal growth and nutrient storage using wastewater resources.
Collapse
Affiliation(s)
- Dorottya S Wágner
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
| | - Mariann Sæbø
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
| | - Marta Bregua de la Sotilla
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
| | - Jonathan Van Wagenen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|