1
|
Abdelhak M, Al-Bedak OAHM, Abdelmoez MN, Abdellah AA, Abdel-Rahman ESA, El-Wahab MMA. Bacterial biodiversity and optimization of pilot plant-based storage parameters of beet thick juice under Egyptian environmental conditions. Sci Rep 2025; 15:17095. [PMID: 40379897 DOI: 10.1038/s41598-025-99870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/23/2025] [Indexed: 05/19/2025] Open
Abstract
In hot-weather regions such as Egypt, where maintaining lower storage temperatures is both economically unfeasible and a significantly difficult, this study was directed towards optimizing the storage of beet thick juice in order to enhance white sugar yield and reduce the impact of climate change. In this study, a pilot plant consisting of 12 storage cylinders was used to maintain thick beet juice with total soluble solids (ºBrix) of 67, 68, and 69 at 15, 25, and 35 ºC, respectively. Betastab® XL (Hop ß-acids) and KEBOCID 310 (sodium dimethyldithiocarbamate) were employed as biocides at 40 ppm. Surface sealing using 25.0% NaOH along with air removal was also applied. The relationships between bacterial count (CFUs), pH, lactic acid (LA) concentration, and reducing sugars (RS) content were evaluated. CFUs increased gradually with the length of the storage period in all tanks, reaching its peak (350 CFU/mL) in the control tank at 35 °C. LA and RS values were determined in all tanks and occurred at very low concentrations. pH exhibited a stable behavior with the exception of the control tank at 35 ºC that displayed degradation correlated to a pH drop to 7.32. Species of bacteria associated with the stored thick juice were isolated and identified by sequencing the 16 S rRNA. These included Bacillus cereus, B. licheniformis, B. paralicheniformis, B. subtilis, Bordetella muralis, Brevibacillus agri, Pseudomonas juntendi, and Stenotrophomonas geniculata. Antibacterial activity of both biocides at three concentrations-20, 40, and 60 ppm-was investigated against the species isolated. Hop ß-acid concentrations showed significant effects on the investigated bacteria with the exception of B. muralis and P. juntendi. All bacteria, with the exception of B. licheniformis AUMC B-550, were significantly affected by KEBOCID 310 concentrations. However, S. geniculata responded negatively to 20 ppm of KEBOCID 310. For the investigated strains, the effects of KEBOCID 310 at 40 and 60 ppm were almost identical. Along with better control over juice solids content and storage temperature, identifying the source and type of the bacterial infection can assist with managing the process and reduce thick juice deterioration. Sugar industry designers could potentially benefit from this study's elucidation of the ideal circumstances for cost-effective storage in hot temperature zones.
Collapse
Affiliation(s)
- Marwa Abdelhak
- Department of Science and Technology of Sugar Industry, Faculty of Sugar and Integrated Industries Technology, Assiut University, Assiut, 71511, Egypt
| | - Osama Abdel-Hafeez Mohamed Al-Bedak
- Assiut University Mycological Centre (AUMC), Assiut University, Assiut, 71511, Egypt
- ERU Science & Innovation Center of Excellence, Egyptian Russian University, Badr city, Cairo, 11829, Egypt
| | - Mahmoud N Abdelmoez
- Department of Mechanical Power Engineering, Faculty of Engineering, Assiut University, Assiut, 71511, Egypt
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Adel Ahmed Abdellah
- Alexandria Sugar Company (Savola Foods), Burg El Arab 21934, Alexandria, Egypt
| | - El-Sayed A Abdel-Rahman
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, 71511, Egypt
| | | |
Collapse
|
2
|
Kerek Á, Román I, Szabó Á, Pézsa NP, Jerzsele Á. Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. Vet Sci 2025; 12:217. [PMID: 40266902 PMCID: PMC11945515 DOI: 10.3390/vetsci12030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025] Open
Abstract
The rapid proliferation of antimicrobial resistance has emerged as one of the most pressing animal and public health challenges of our time. Probiotics, extensively employed in human and veterinary medicine, are instrumental in maintaining a balanced microbiome and mitigating its disruption during antibiotic therapy. While their numerous benefits are well documented, probiotics also present potential risks, notably the capacity to harbor antimicrobial resistance genes. This genetic reservoir could contribute to the emergence and spread of antimicrobial resistance by facilitating the horizontal transfer of resistance genes to pathogenic bacteria within the gut. This review critically examines the presence of antimicrobial resistance genes in commonly used probiotic strains, explores the underlying mechanisms of resistance, and provides a balanced analysis of the benefits and risks associated with their use. By addressing these dual aspects, this paper highlights the need for vigilant evaluation of probiotics to preserve their therapeutic potential while minimizing public health risks.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - István Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
| | - Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.R.); (Á.S.); (N.P.P.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| |
Collapse
|
3
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2025; 419:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Ruampatana J, Settachaimongkon S, Kaewsirikool J, Iamraksa P, Choompoo S, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Feyera T, Nuntapaitoon M. Alterations in Milk Biomolecular Profiles and Piglet Performances Due to Dietary Probiotic Bacillus licheniformis DSMZ 28710 Supplementation. J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39940111 DOI: 10.1111/jpn.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/14/2025]
Abstract
The present study aimed to investigate the effects of probiotic Bacillus licheniformis DSMZ 28710 supplementation on sow performance, Preweaning piglet performance, and the biochemical profiles of colostrum and milk. Sixty-eight crossbred sows (Landrace× $\times $ Yorkshire) were allocated to either a standard lactation diet (Control; n = 35) or the Control diet supplemented with 10 g/sow/day of B. licheniformis DSMZ 28710 (Treatment; n = 33), from day 109 of gestation until day 21 of lactation. Sow and piglet performance, as well as the incidence of piglet diarrhea, were recorded. Moreover, the study investigated the changes in major chemical compositions, immunoglobulins, fatty acids, and non-volatile polar metabolites in colostrum, transient milk, and mature milk of sows. Supplementation of B. licheniformis increased piglet body weight on day 21 of lactation in old parity sows (p = 0.037). Moreover, the incidence of diarrhea was reduced in piglets suckled by sows supplemented with B. licheniformis DSMZ 28710, regardless of sow's parity or lactation stage (p < 0.05). Probiotic supplementation decreased fat content in transient milk (p = 0.026) and increased lactose content in mature milk (p = 0.011). Chemometric analysis revealed clear distinctions between the Control and Treatment group in the fatty acid profiles of colostrum, transient milk, and mature milk, while notable differences in non-volatile polar metabolite profiles were observed specifically in mature milk. In conclusion, supplementation with B. licheniformis DSMZ 28710 reduced the incidence of diarrhea in piglets, increased body weight of the piglets in old parity sows and altered the biomolecular profiles in colostrum, transit milk, and mature milk of the sows.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Jedsadakorn Kaewsirikool
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pornpavit Iamraksa
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirawit Choompoo
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakornpathum, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, Tjele, Denmark
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhang P, Zhang J, Li L, Gu T, Chen S, Wang J, Gao M. The Release of Bound Phenolics to Enhance the Antioxidant Activity of Cornmeal by Liquid Fermentation with Bacillus subtilis. Foods 2025; 14:499. [PMID: 39942092 PMCID: PMC11817312 DOI: 10.3390/foods14030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the influence of Bacillus subtilis fermentation on the composition of phenolic substances and antioxidant activity in cornmeal. The results indicate that the fermentation process significantly increased both the total phenolic content (TPC) and total flavonoid content (TFC). After 5 days of fermentation, the TPC rose from 31.68 ± 1.72 mg/g to 39.46 ± 2.95 mg/g, representing a 24.56% increase, while the TFC increased from 2.13 ± 0.11 mg/g to 7.56 ± 0.29 mg/g, marking a 254.93% increase. Additionally, the proportion of free phenolic compounds in cornmeal increased from 20.24% to 83.98%, while the proportion of bound phenolic compounds decreased from 79.76% to 16.02%. Furthermore, the hydrolytic enzyme activities of cellulase, β-glucosidase, and xylanase were significantly correlated with the free phenolic content (FPC) (r > 0.85, p < 0.05), indicating their crucial role in releasing free phenolic compounds from cornmeal. Employing scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy analyses, we inferred that the enzymes produced by the microorganisms disrupted the cellular structure of cornmeal and weakened the interactions between bound phenolics and the food matrix, thereby facilitating the release of phenolic compounds. This release resulted in an overall increase in the antioxidant activity of the cornmeal. The study provided a novel approach to enhancing the bioavailability of phenolic acids in cornmeal, indicating the potential benefits of fermentation in food processing.
Collapse
Affiliation(s)
- Ping Zhang
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
| | - Jialan Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Tong Gu
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
| | - Suo Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
| | - Jinsong Wang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China;
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China; (P.Z.); (L.L.); (T.G.); (S.C.)
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
6
|
Herrmann LW, Letti LAJ, Penha RDO, Soccol VT, Rodrigues C, Soccol CR. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Biotechnol Adv 2024; 70:108300. [PMID: 38101553 DOI: 10.1016/j.biotechadv.2023.108300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In recent decades, environmental concerns have directed several policies, investments, and production processes. The search for sustainable and eco-friendly strategies is constantly increasing to reduce petrochemical product utilization, fossil fuel pollution, waste generation, and other major ecological impacts. The concepts of circular economy, bioeconomy, and biorefinery are increasingly being applied to solve or reduce those problems, directing us towards a greener future. Within the biotechnology field, the Bacillus genus of bacteria presents extremely versatile microorganisms capable of producing a great variety of products with little to no dependency on petrochemicals. They are able to grow in different agro-industrial wastes and extreme conditions, resulting in healthy and environmentally friendly products, such as foods, feeds, probiotics, plant growth promoters, biocides, enzymes, and bioactive compounds. The objective of this review was to compile the variety of products that can be produced with Bacillus cells, using the concepts of biorefinery and circular economy as the scope to search for greener alternatives to each production method and providing market and bioeconomy ideas of global production. Although the genus is extensively used in industry, little information is available on its large-scale production, and there is little current data regarding bioeconomy and circular economy parameters for the bacteria. Therefore, as this work gathers several products' economic, production, and environmentally friendly use information, it can be addressed as one of the first steps towards those sustainable strategies. Additionally, an extensive patent search was conducted, focusing on products that contain or are produced by the Bacillus genus, providing an indication of global technology development and direction of the bacteria products. The Bacillus global market represented at least $18 billion in 2020, taking into account only the products addressed in this article, and at least 650 patent documents submitted per year since 2017, indicating this market's extreme importance. The data we provide in this article can be used as a base for further studies in bioeconomy and circular economy and show the genus is a promising candidate for a greener and more sustainable future.
Collapse
Affiliation(s)
- Leonardo Wedderhoff Herrmann
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil.
| | - Luiz Alberto Junior Letti
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Rafaela de Oliveira Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Vanete Thomaz Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| |
Collapse
|
7
|
Gupta V, Odaneth AA, Lali AM. High cell density continuous fermentation for L-lactic acid production from cane molasses. Prep Biochem Biotechnol 2023; 53:1043-1057. [PMID: 36655700 DOI: 10.1080/10826068.2023.2166956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Commercial production of lactic acid (LA) utilizes mostly glucose or lactose coupled with yeast extract (YE) as a supplement. With sugars, nitrogen, and vitamin supplementation being most of the LA production costs, the use of inexpensive molasses, a by-product of the sugar industry, can provide considerable cost savings. There are just a few publications on the production of LA from molasses; consequently, the present investigation was conducted using molasses supplemented with yeast extract. The research was done in a continuous-flow, high-cell-density (HCD) bioreactor with an external membrane microfiltration device for cell recycling. The system, run at 1 L with Lactobacillus delbrueckii NCIM 2025, produced a LA yield of 0.95-0.98 g/g from ∼100 g sugars/L when supplemented with 1 g/L YE. Dilution rates in the range of 0.04-0.36 h-1 resulted in volumetric lactic acid productivities in the range of 4.3-27.6 g/L h, which compares favorably with the highest values recorded in literature, for glucose in the presence of YE, which was as high as 30 g/L. The utilization of cane molasses has a significant impact on the economics of lactic acid production, as measured by a comparison of costs with commercial glucose.
Collapse
Affiliation(s)
- Vaishali Gupta
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Annamma A Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
8
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
9
|
Chong SL, Tan IS, Foo HCY, Chan YS, Lam MK, Lee KT. Ultrasonic‑assisted molten salt hydrates pretreated Eucheuma cottonii residues as a greener precursor for third-generation l-lactic acid production. BIORESOURCE TECHNOLOGY 2022; 364:128136. [PMID: 36257523 DOI: 10.1016/j.biortech.2022.128136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study aims to establish an efficient pretreatment method that facilitates the conversion of sugars from macroalgae wastes, Eucheuma cottonii residues (ECRs) during hydrolysis and subsequently enhances l-lactic acid (L-LA) production. Hence, ultrasonic-assisted molten salt hydrates (UMSHs) pretreatment was proposed to enhance the accessibility of ECRs to hydrolyze into glucose through dilute acid hydrolysis (DAH). The obtained hydrolysates were employed as the substrate in producing L-LA by separate hydrolysis and fermentation (SHF). The maximum glucose yield (97.75 %) was achieved using UMSHs pretreated ECRs with 40 wt% ZnCl2 at 80 °C for 2 h and followed with DAH. The optimum glucose to L-LA yield obtained for SHF was 90.08 % using 5 % (w/w) inoculum cell densities of B. coagulans ATCC 7050 with yeast extract (YE). A comparable performance (89.65 %) was obtained using a nutrient combination (lipid-extracted Chlorella vulgaris residues (CVRs), vitamin B3, and vitamin B5) as a partial alternative for YE.
Collapse
Affiliation(s)
- Soo Ling Chong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
10
|
Storage Potential of the Cactus Pear (Opuntia ficus-indica) Fruit Juice and Its Biological and Chemical Evaluation during Fermentation into Cactus Pear Wine. BEVERAGES 2022. [DOI: 10.3390/beverages8040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cactus pear (Opuntia ficus-indica) fruit is widely cultivated and grown naturally in arid regions because it is adaptive to a wide range of soil and environments. The pear fruit is inhabited by different micro-organisms and has chemical composition suitable for wine making. Profiling the contributing micro-organisms and evaluating the chemical parameters of cactus pear wine can assist in selecting reliable microbes for use as starter cultures. Spontaneous fermentation was carried out for 13 days and followed by three months of cold storage. Fermenting microbes were isolated, characterised and identified. The chemical parameters, namely, sugar concentration, ethanol concentration, pH and total acidity, were analysed. A total of 22 micro-organisms were identified, among which nine yeast species, two acetic acid bacteria (Gluconobacter spp.) and eight Bacillus spp. were isolated. The simple sugars were used up, and ethanol was produced to a high concentration of 50.9 g/L. The pH ranged between 2.8 and 2.9; hence, a maximum total acidity of ±25 g/100 mL was achieved. At least 78% of the available tannins were used in the early stages of fermentation. Potassium and magnesium were the highest minerals obtained, and zinc was the lowest. The highest ash content obtained was 7.9 g/100 mL. The vitamin C content was retained and gradually increased throughout the fermentation process. The findings indicate that lasting flavoured wine can be developed from cactus pear fruit because of the fermenting microbes and the chemical composition of the fruit.
Collapse
|
11
|
Dias BGC, Santos FAP, Meschiatti M, Brixner BM, Almeida AA, Queiroz O, Cappellozza BI. Effects of feeding different probiotic types on metabolic, performance, and carcass responses of Bos indicus feedlot cattle offered a high-concentrate diet. J Anim Sci 2022; 100:skac289. [PMID: 36055763 PMCID: PMC9584148 DOI: 10.1093/jas/skac289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Two experiments were designed to evaluate the effects of different probiotic combinations on rumen fermentation characteristics, performance, and carcass characteristics of feedlot Bos indicus beef bulls offered a high-concentrate diet. In experiment 1, 30 rumen-fistulated Nellore steers were blocked by initial body weight (BW = 350 ± 35.0 kg) and within blocks (n = 10), animals were randomly assigned to receive: 1) high-concentrate diet without probiotic supplementation (n = 10; CONT), 2) CONT plus 1 g per head of a probiotic mixture containing three strains of Enterococcus faecium and one strain of Saccharomyces cerevisiae (3.5 × 109 CFU/g; n = 10; EFSC), and 3) CONT plus 2 g per head of a probiotic mixture containing Bacillus licheniformis and Bacillus subtilis (3.2 × 109 CFU/g; n = 10; BLBS). The experimental period lasted 35 d, being 28 d of adaptation and 7 d of sampling. From day 34 to day 35 of the experimental period, ruminal fluid and fecal samples were collected every 3 h, starting immediately before feeding (0 h) for rumen fermentation characteristics and apparent nutrient digestibility analysis, respectively. In experiment 2, 240 Nellore bulls were ranked by initial shrunk BW (375 ± 35.1 kg), assigned to pens (n = 4 bulls per pen), and pens randomly assigned to receive the same treatments as in experiment 1 (n = 20 pens per treatment). Regardless of treatment, all bulls received the same step-up and finishing diets throughout the experimental period, which lasted 115 d. In both experiments, data were analyzed as orthogonal contrasts to partition-specific treatment effects: 1) probiotic effect: CONT vs. PROB and 2) probiotic type: EFSC vs. BLBS (SAS Software Inc.). In experiment 1, no contrast effects were observed on nutrient intake, overall nutrient digestibility, and rumen fermentation analyses (P ≥ 0.13). Nonetheless, supplementation of probiotics, regardless of type (P = 0.59), reduced mean acetate:propionate ratio and rumen ammonia-N concentration vs. CONT (P ≤ 0.05). In experiment 2, no significant effects were observed for final BW and dry matter intake (P ≥ 0.12), but average daily gain and feed efficiency tended to improve (P ≤ 0.10) when probiotics were offered to the animals. Probiotic supplementation or type of probiotic did not affect carcass traits (P ≥ 0.22). In summary, supplementation of probiotics containing a mixture of E. faecium and S. cerevisiae or a mixture of B. licheniformis and B. subtilis reduced rumen acetate:propionate ratio and rumen ammonia-N levels and tended to improve the performance of feedlot cattle offered a high-concentrate diet.
Collapse
Affiliation(s)
- Bruno G C Dias
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Flávio A P Santos
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Murillo Meschiatti
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Bárbara M Brixner
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Alecsander A Almeida
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | | | | |
Collapse
|
12
|
Engineered Microbial Cell Factories for Sustainable Production of L-Lactic Acid: A Critical Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With the increasing demand for the biodegradable polymer material polylactic acid and its advantage of being metabolized by the human body, L-lactic acid (L-LA) is becoming increasingly attractive in environmental protection and food industry applications. However, the supply of L-LA is not satisfied, and the price is still high. Compared to enzymatic and chemical synthesis methods, L-LA production by microbial fermentation has the advantages of low cost, large yield, simple operation, and environmental protection. This review summarizes the advances in engineering microbial cell factories to produce L-LA. First, the synthetic pathways and microorganisms for L-LA production are outlined. Then, the metabolic engineering strategies for constructing cell factories to overproduce L-LA are summarized and fermentation modes for L-LA production are also given. Finally, the challenges and prospects of the microbial production of L-LA are discussed. This review provides theoretical guidance for researchers engaged in L-LA production.
Collapse
|
13
|
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed.
Collapse
|
14
|
Recent Advances in Lactic Acid Production by Lactic Acid Bacteria. Appl Biochem Biotechnol 2021; 193:4151-4171. [PMID: 34519919 DOI: 10.1007/s12010-021-03672-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.
Collapse
|
15
|
Ion-Exchange Technology for Lactic Acid Recovery in Downstream Processing: Equilibrium and Kinetic Parameters. WATER 2021. [DOI: 10.3390/w13111572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The downstream processing for the separation and purification of lactic acid is a hot research area in the bio-refinery field due to its continuous growing market in different sectors, such as the food, cosmetic and pharmaceutical sectors. In this work, the use of ion-exchange technology for lactic acid recovery is proposed. For that, four anion exchange resins with different polymer structures and functional groups were tested (A100, MN100, A200E and MP64). The sorption process was optimized by the Box–Behnken factorial design, and the experimental data obtained in the sorption process were analyzed by using the response surface methodology and fitted at different isotherms and kinetics models. Moreover, regenerant type, contact time and solid/liquid ratio were evaluated in the desorption process. Results showed that the best resin for lactic acid removal was A100, at pH = 4, with a resin/lactic acid solution ratio of 0.15 g/mL during a maximum of 1 h, achieving 85% of lactic acid removal. Moreover, equilibrium data sorption of lactic acid onto A100 resin was fitted by a Langmuir isotherm and by a kinetic model of a pseudo-second order. In addition, in the desorption process, it was stablished that a resin/regenerant ratio of 0.15 g/mL during 30 min with 0.1 M of NaOH solution provided the best results (4.45 ± 0.08 mg/g).
Collapse
|
16
|
Park SA, Bhatia SK, Park HA, Kim SY, Sudheer PDVN, Yang YH, Choi KY. Bacillus subtilis as a robust host for biochemical production utilizing biomass. Crit Rev Biotechnol 2021; 41:827-848. [PMID: 33622141 DOI: 10.1080/07388551.2021.1888069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacillus subtilis is regarded as a suitable host for biochemical production owing to its excellent growth and bioresource utilization characteristics. In addition, the distinct endogenous metabolic pathways and the suitability of the heterologous pathways have made B. subtilis a robust and promising host for producing biochemicals, such as: bioalcohols; bioorganic acids (lactic acids, α-ketoglutaric acid, and γ-aminobutyric acid); biopolymers (poly(γ-glutamic acid, polyhydroxyalkanoates (PHA), and polysaccharides and monosaccharides (N-acetylglucosamine, xylooligosaccharides, and hyaluronic acid)); and bioflocculants. Also for producing oligopeptides and functional peptides, owing to its efficient protein secretion system. Several metabolic and genetic engineering techniques, such as target gene overexpression and inactivation of bypass pathways, have led to the improvement in production titers and product selectivity. In this review article, recent progress in the utilization of robust B. subtilis-based host systems for biomass conversion and biochemical production has been highlighted, and the prospects of such host systems are suggested.
Collapse
Affiliation(s)
- Seo A Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Hyun A Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Seo Yeong Kim
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | | | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
17
|
Wang C, Wei S, Xu B, Hao L, Su W, Jin M, Wang Y. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow's performance, immune status and gut microbiota. Microb Biotechnol 2020; 14:614-627. [PMID: 33026173 PMCID: PMC7936319 DOI: 10.1111/1751-7915.13672] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented feed (FF) is widely applied to improve swine performance. However, the understandings of the effects of FF on the immune status and gut microbiota of lactating sows and whether probiotics are the effective composition of FF are still limited. The present study aimed to investigate the performance, immune status and gut microbiota of lactating sows fed with a basal diet supplemented with Bacillus subtilis and Enterococcus faecium co-fermented feed (FF), with the probiotic combination (PRO) of B. subtilis and E. faecium and control diet (CON) as controls. Compared with the CON group, FF group remarkably improved the average daily feed intake of sows and the weight gain of piglets, while significantly decreased the backfat loss, constipation rate of sows and diarrhoea incidence of piglets. The yield and quality of milk of sows in FF group were improved. Besides, faecal acetate and butyrate were promoted in FF group. Additionally, FF increased the level of IgG, IgM and IL-10 and decreased the concentration of TNF-α in serum. Furthermore, FF reduced the abundance of Enterobacteriaceae and increased the level of Lactobacillus and Succiniclasticum, which were remarkably associated with growth performance and serum immune parameters. Accordingly, microbial metabolic functions including DNA repair and recombination proteins, glycolysis and gluconeogenesis, mismatch repair and d-alanine metabolism were significantly upregulated, while amino acid metabolism was downregulated in FF group. Overall, the beneficial effects of FF were superior to PRO treatment. Altogether, administration of FF during lactation improved the performance and immune status, and modulated gut microbiota of sows. Probiotics are not the only one effective compound of FF.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Siyu Wei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Lihong Hao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
18
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
19
|
Cuny L, Pfaff D, Luther J, Ranzinger F, Ödman P, Gescher J, Guthausen G, Horn H, Hille‐Reichel A. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol Bioeng 2019; 116:2687-2697. [DOI: 10.1002/bit.27080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/11/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Laure Cuny
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | - Daniel Pfaff
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | - Jonas Luther
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | - Florian Ranzinger
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | | | - Johannes Gescher
- Department of Applied Biology, Institute for Applied BiologyKarlsruhe Institute of Technology Karlsruhe Germany
| | - Gisela Guthausen
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
- Karlsruhe Institute of TechnologyMechanical Process Engineering and Mechanics Karlsruhe Germany
| | - Harald Horn
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
- DVGW Research Laboratories for Water Chemistry and Water Technology Karlsruhe Germany
| | - Andrea Hille‐Reichel
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| |
Collapse
|
20
|
A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Tsuge Y, Kato N, Yamamoto S, Suda M, Jojima T, Inui M. Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade L- and D-lactic acid. Appl Microbiol Biotechnol 2019; 103:3381-3391. [PMID: 30877357 DOI: 10.1007/s00253-019-09737-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 01/22/2023]
Abstract
Strain development is critical for microbial production of bio-based chemicals. The stereo-complex form of polylactic acid, a complex of poly-L- and poly-D-lactic acid, is a promising polymer candidate due to its high thermotolerance. Here, we developed Corynebacterium glutamicum strains producing high amounts of L- and D-lactic acid through intensive metabolic engineering. Chromosomal overexpression of genes encoding the glycolytic enzymes, glucokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, triosephosphate isomerase, and enolase, increased L- and D-lactic acid concentration by 146% and 56%, respectively. Chromosomal integration of two genes involved in the Entner-Doudoroff pathway (6-phosphogluconate dehydratase and 2-dehydro-3-deoxyphosphogluconate aldolase), together with a gene encoding glucose-6-phosphate dehydrogenase from Zymomonas mobilis, to bypass the carbon flow from glucose, further increased L- and D-lactic acid concentration by 11% and 44%, respectively. Finally, additional chromosomal overexpression of a gene encoding NADH dehydrogenase to modulate the redox balance resulted in the production of 212 g/L L-lactic acid with a 97.9% yield and 264 g/L D-lactic acid with a 95.0% yield. The optical purity of both L- and D-lactic acid was 99.9%. Because the constructed metabolically engineered strains were devoid of plasmids and antibiotic resistance genes and were cultivated in mineral salts medium, these strains could contribute to the cost-effective production of the stereo-complex form of polylactic acid in practical scale.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Naoto Kato
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Shogo Yamamoto
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan. .,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
22
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Wolf Maciel MR, Maciel Filho R. Concentrating second-generation lactic acid from sugarcane bagasse via hybrid short path evaporation: Operational challenges. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Wang C, Su W, Zhang Y, Hao L, Wang F, Lu Z, Zhao J, Liu X, Wang Y. Solid-state fermentation of distilled dried grain with solubles with probiotics for degrading lignocellulose and upgrading nutrient utilization. AMB Express 2018; 8:188. [PMID: 30478751 PMCID: PMC6261088 DOI: 10.1186/s13568-018-0715-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
Solid-state fermentation (SSF) was carried out in this study to improve the nutritional digestibility of two types of distilled dried grain with solubles (DDGS) by inoculating probiotic combinations. The fermented DDGS (FDDGS) contained more crude protein, small peptides and total amino acids than did unfermented DDGS. The concentrations of fiber indexes significantly declined after fermentation. The amounts of probiotics, enzymes and organic acids were significantly improved after fermentation. Microscopy revealed that SSF disrupted the surface structure and increased small fragments of DDGS substrate, thereby facilitating in vitro digestibility of FDDGS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography indicated the breakdown of macromolecular protein and lignocellulose, which contributed to the increase of small peptides and monosaccharides. These findings suggested the great potential of SSF to promote the nutritional quality and digestibility of the two DDGS and to expand their utilization.
Collapse
|
24
|
Fu Y, Sun X, Zhu H, Jiang R, Luo X, Yin L. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae. World J Microbiol Biotechnol 2018; 34:74. [PMID: 29786118 DOI: 10.1007/s11274-018-2455-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/12/2018] [Indexed: 11/26/2022]
Abstract
In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate L-lactic acid (L-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of L-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing L-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of L-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in L-LA production or yield; however, the productivity of L-LA increased by 14.3%.
Collapse
Affiliation(s)
- Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Jiaojiang, 318000, Zhejiang, People's Republic of China.
| | - Xiaolong Sun
- Institute of Biomass Resources, Taizhou University, Jiaojiang, 318000, Zhejiang, People's Republic of China
| | - Huayue Zhu
- Institute of Biomass Resources, Taizhou University, Jiaojiang, 318000, Zhejiang, People's Republic of China
| | - Ru Jiang
- Institute of Biomass Resources, Taizhou University, Jiaojiang, 318000, Zhejiang, People's Republic of China
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Jiaojiang, 318000, Zhejiang, People's Republic of China
| | - Longfei Yin
- Institute of Biomass Resources, Taizhou University, Jiaojiang, 318000, Zhejiang, People's Republic of China
| |
Collapse
|
25
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Wang C, Lin C, Su W, Zhang Y, Wang F, Wang Y, Shi C, Lu Z. Effects of supplementing sow diets with fermented corn and soybean meal mixed feed during lactation on the performance of sows and progeny. J Anim Sci 2018; 96:206-214. [PMID: 29378011 PMCID: PMC6140954 DOI: 10.1093/jas/skx019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
In the present study, two experiments were performed to study the effects of feeding fermented corn and soybean meal mixed feed (FMF) with Bacillus subtilis and Enterococcus faecium to lactating sows on the performance of the sows and their progeny. In experiment 1, 60 sows were allocated to the following three dietary treatments: 1) sows fed a corn and soybean meal basal diet (control) from day 3 before parturition to weaning, 2) sows fed a diet with 7.5% FMF, and 3) sows fed a diet with 15% FMF. Results indicated that feeding 15% FMF significantly improved (P < 0.05) the sows' ADFI, the individual piglet weaning weights, and piglet weight gain and reduced (P < 0.05) the backfat loss of sows compared with the control group. However, the 7.5% FMF treatment did not alter the performance of the sows or their progeny. Therefore, we considered the level of 15% FMF to be more efficient than 7.5% FMF. To verify the results of experiment 1, we performed experiment 2, in which 60 sows at 111 d of gestation were allocated into the following two dietary treatments: 1) sows fed a basal lactation diet (control) from d 111 of gestation to weaning and 2) sows fed a basal diet with 15% FMF. Compared with the control group, 15% FMF inclusion significantly increased (P < 0.05) the sows' ADFI, litter weight gain, and individual piglet weight gain during lactation and markedly decreased the backfat loss of sows (P < 0.05) and piglet diarrhea incidence (P < 0.05). Additionally, the milk yield and IgA contents of the milk in sows fed 15% FMF were greater (P < 0.05) than those of the control group. Furthermore, the apparent total tract digestibility of GE, DM, and total P of sows was increased (P < 0.05) with 15% FMF supplementation. Therefore, the present study indicates that supplementing sow diets with 15% FMF from parturition to weaning has the potential to 1) increase sow ADFI, milk production, milk IgA content, and nutrient digestibility and promote sow reproductive performance by shortening the weaning-to-estrous interval and 2) promote the growth performance of their progeny and decrease diarrhea incidence.
Collapse
Affiliation(s)
- C Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - C Lin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - W Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - Y Zhang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - F Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - Y Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - C Shi
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| | - Z Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou Zhejiang, P.R. China
| |
Collapse
|
27
|
Pejin J, Radosavljević M, Kocić-Tanackov S, Mladenović D, Djukić-Vuković A, Mojović L. Fed-batch l
-(+)-lactic acid fermentation of brewer's spent grain hydrolysate. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jelena Pejin
- Faculty of Technology; University of Novi Sad; Bulevar cara Lazara 1 21 000 Novi Sad Serbia
| | - Miloš Radosavljević
- Faculty of Technology; University of Novi Sad; Bulevar cara Lazara 1 21 000 Novi Sad Serbia
| | - Sunčica Kocić-Tanackov
- Faculty of Technology; University of Novi Sad; Bulevar cara Lazara 1 21 000 Novi Sad Serbia
| | - Dragana Mladenović
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| | | | - Ljiljana Mojović
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| |
Collapse
|
28
|
Thitiprasert S, Kodama K, Tanasupawat S, Prasitchoke P, Rampai T, Prasirtsak B, Tolieng V, Piluk J, Assabumrungrat S, Thongchul N. A homofermentative Bacillus sp. BC-001 and its performance as a potential l-lactate industrial strain. Bioprocess Biosyst Eng 2017; 40:1787-1799. [DOI: 10.1007/s00449-017-1833-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022]
|
29
|
Fan R, Ebrahimi M, Czermak P. Anaerobic Membrane Bioreactor for Continuous Lactic Acid Fermentation. MEMBRANES 2017; 7:membranes7020026. [PMID: 28467384 PMCID: PMC5489860 DOI: 10.3390/membranes7020026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022]
Abstract
Membrane bioreactor systems can enhance anaerobic lactic acid fermentation by reducing product inhibition, thus increasing productivity. In batch fermentations, the bioconversion of glucose is strongly inhibited in the presence of more than 100 g·L−1 lactic acid and is only possible when the product is simultaneously removed, which can be achieved by ceramic membrane filtration. The crossflow velocity is a more important determinant of flux than the transmembrane pressure. Therefore, to stabilize the performance of the membrane bioreactor system during continuous fermentation, the crossflow velocity was controlled by varying the biomass concentration, which was monitored in real-time using an optical sensor. Continuous fermentation under these conditions, thus, achieved a stable productivity of ~8 g·L−1·h−1 and the concentration of lactic acid was maintained at ~40 g·L−1 at a dilution rate of 0.2 h−1. No residual sugar was detected in the steady state with a feed concentration of 50 g·L−1.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen 35390, Germany.
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen 35390, Germany.
| | - Peter Czermak
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen 35390, Germany.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
- Faculty of Biology and Chemistry, Justus Liebig University Giessen, Giessen 35390, Germany.
| |
Collapse
|
30
|
Bohn J, Yüksel-Dadak A, Dröge S, König H. Isolation of lactic acid-forming bacteria from biogas plants. J Biotechnol 2016; 244:4-15. [PMID: 28011128 DOI: 10.1016/j.jbiotec.2016.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023]
Abstract
Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.
Collapse
Affiliation(s)
- Jelena Bohn
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany.
| | - Aytül Yüksel-Dadak
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany
| | - Stefan Dröge
- Test and Research Institute Pirmasens (PFI), Marie-Curie-Straße 19, 66953 Pirmasens, Germany
| | - Helmut König
- Institute of Microbiology and Wine Research (IMW), Johannes Gutenberg-Universität of Mainz, Johann-Joachim-Becherweg 15, 55099 Mainz, Germany
| |
Collapse
|
31
|
Fan R, Ebrahimi M, Quitmann H, Czermak P. Lactic acid production in a membrane bioreactor system with thermophilic Bacillus coagulans: Online monitoring and process control using an optical sensor. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1213747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Hendrich Quitmann
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas, USA
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| |
Collapse
|
32
|
He Y, Mao C, Chen Z, Wen H, Lu W, Wu H. Identification of differential metabolites in liquid diet fermented with Bacillus subtilis using gas chromatography time of flight mass spectrometry. ACTA ACUST UNITED AC 2016; 2:351-356. [PMID: 29767058 PMCID: PMC5941047 DOI: 10.1016/j.aninu.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023]
Abstract
Growth and health responses of pigs fed fermented liquid diet are not always consistent and causes for this issue are still not very clear. Metabolites produced at different fermentation time points should be one of the most important contributors. However, currently no literatures about differential metabolites of fermented liquid diet are reported. The aim of this experiment was to explore the difference of metabolites in a fermented liquid diet between different fermentation time intervals. A total of eighteen samples that collected from Bacillus subtilis fermented liquid diet on days 7, 21 and 35 respectively were used for the identification of metabolites by gas chromatography time of flight mass spectrometry (GC-TOF-MS). Fifteen differential metabolites including melibiose, sortitol, ribose, cellobiose, maltotriose, sorbose, isomaltose, maltose, fructose, d-glycerol-1-phosphate, 4-aminobutyric acid, beta-alanine, tyrosine, pyruvic acid and pantothenic acid were identified between 7-d samples and 21-d samples. The relative level of melibiose, ribose, maltotriose, d-glycerol-1-phosphate, tyrosine and pyruvic acid in samples collected on day 21 was significantly higher than that in samples collected on day 7 (P < 0.01), respectively. Eight differential metabolites including ribose, sorbose, galactinol, cellobiose, pyruvic acid, galactonic acid, pantothenic acid and guanosine were found between 21-d samples and 35-d samples. Samples collected on day 35 had a higher relative level of ribose than that in samples collected on day 21 (P < 0.01). In conclusion, many differential metabolites which have important effects on the growth and health of pigs are identified and findings contribute to explain the difference in feeding response of fermented liquid diet.
Collapse
Affiliation(s)
- Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chunxia Mao
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhiyu Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hong Wen
- Jiangxi Provincial Institute of Veterinary Drugs and Feed Control, Nanchang 330096, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
33
|
Wang Y, Meng H, Cai D, Wang B, Qin P, Wang Z, Tan T. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation. BIORESOURCE TECHNOLOGY 2016; 211:291-297. [PMID: 27023384 DOI: 10.1016/j.biortech.2016.03.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
In order to efficiently produce l-lactic acid from non-food feedstocks, sweet sorghum juice (SSJ), which is rich of fermentable sugars, was directly used for l-lactic acid fermentation by Lactobacillus rhamnosus LA-04-1. A membrane integrated repeated batch fermentation (MIRB) was developed for productivity improvement. High-cell-density fermentation was achieved with a final cell density (OD620) of 42.3, and the CCR effect was overcomed. When SSJ (6.77gL(-1) glucose, 4.51gL(-1) fructose and 50.46gL(-1) sucrose) was used as carbon source in MIRB process, l-lactic acid productivity was increased significantly from 1.45gL(-1)h(-1) (batch 1) to 17.55gL(-1)h(-1) (batch 6). This process introduces an effective way to produce l-lactic acid from SSJ.
Collapse
Affiliation(s)
- Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongyu Meng
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bin Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
34
|
Poudel P, Tashiro Y, Sakai K. New application of Bacillus strains for optically pure l-lactic acid production: general overview and future prospects. Biosci Biotechnol Biochem 2016; 80:642-54. [DOI: 10.1080/09168451.2015.1095069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Members of the genus Bacillus are considered to be both, among the best studied and most commonly used bacteria as well as the most still unexplored and the most wide-applicable potent bacteria because novel Bacillus strains are continuously being isolated and used in various areas. Production of optically pure l-lactic acid (l-LA), a feedstock for bioplastic synthesis, from renewable resources has recently attracted attention as a valuable application of Bacillus strains. l-LA fermentation by other producers, including lactic acid bacteria and Rhizopus strains (fungi) has already been addressed in several reviews. However, despite the advantages of l-LA fermentation by Bacillus strains, including its high growth rate, utilization of various carbon sources, tolerance to high temperature, and growth in simple nutritional conditions, it has not been reviewed. This review article discusses new findings on LA-producing Bacillus strains and compares them to other producers. The future prospects for LA-producing Bacillus strains are also discussed.
Collapse
Affiliation(s)
- Pramod Poudel
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
ÿztürk S, ÿalık P, ÿzdamar TH. Fed-Batch Biomolecule Production by Bacillus subtilis : A State of the Art Review. Trends Biotechnol 2016; 34:329-345. [DOI: 10.1016/j.tibtech.2015.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 12/27/2022]
|
36
|
Metabolic potential of Bacillus subtilis 168 for the direct conversion of xylans to fermentation products. Appl Microbiol Biotechnol 2015; 100:1501-1510. [PMID: 26559526 DOI: 10.1007/s00253-015-7124-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn) respectively comprise most of the hemicellulose fractions in dicots and monocots and, next to cellulose, are the major resources for the production of fuels and chemicals from lignocellulosics. With either MeGXn or MeGAXn as a substrate, Bacillus subtilis 168 accumulates acidic methylglucuronoxylotriose as a limit product following the uptake and metabolism of neutral xylooligosaccharides. Secreted GH11 endoxylanase (Xyn11A), GH30 endoxylanase (Xyn30C), and GH43 arabinoxylan arabinofuranohydrolase (Axh43) respectively encoded by the xynA, xynC, and xynD genes collectively contribute to the depolymerization of MeGAXn. Studies here demonstrate the complementary roles of these enzymes in the digestion of MeGAXn. Coordinate expression of the xynD and xynC genes defines an operon accounting for the Axh43-catalyzed release of arabinose followed by Xyn30C and Xyn11A-catalyzed depolymerization of MeGAXn. Both sources generate acetate and lactate as the principal fermentation products, with yields of 26 % acetate and 32 % lactate from MeGXn compared to 22 % acetate and 21 % lactate from MeGAXn. These studies of the GH43/GH30/GH11 system in B. subtilis 168 provide a basis for the further development of B. subtilis and related species as biocatalysts for direct conversion of hemicellulose derived from energy crops as well as agricultural and forest residues to chemical feedstocks.
Collapse
|
37
|
Fan R, Ebrahimi M, Quitmann H, Czermak P. Lactic acid production in a membrane bioreactor system with thermophilic Bacillus coagulans: fouling analysis of the used ceramic membranes. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1031401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Sun W, Liu J, Xu H, Li W, Zhang J. l-Lactic acid fermentation by Enterococcus faecium: a new isolate from bovine rumen. Biotechnol Lett 2015; 37:1379-83. [DOI: 10.1007/s10529-015-1821-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
|
39
|
He Y, Chen Z, Liu X, Wang C, Lu W. Influence of trace elements mixture on bacterial diversity and fermentation characteristics of liquid diet fermented with probiotics under air-tight condition. PLoS One 2014; 9:e114218. [PMID: 25486254 PMCID: PMC4259320 DOI: 10.1371/journal.pone.0114218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 11/05/2014] [Indexed: 12/20/2022] Open
Abstract
Cu2+, Zn2+, Fe2+ and I- are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I- mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I- mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I- at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I- is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I- in a 21-d fermentation and Cu2+>I->Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I- is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.
Collapse
Affiliation(s)
- Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zhiyu Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xiaolan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Chengwei Wang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, People’s Republic of China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- * E-mail:
| |
Collapse
|
40
|
Wang Y, Yang Z, Qin P, Tan T. Fermentative l-(+)-lactic acid production from defatted rice bran. RSC Adv 2014. [DOI: 10.1039/c3ra46140h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Ma K, Maeda T, You H, Shirai Y. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. BIORESOURCE TECHNOLOGY 2014; 151:28-35. [PMID: 24201025 DOI: 10.1016/j.biortech.2013.10.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 05/13/2023]
Abstract
The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, People's Republic of China; Department of Biological Functions and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsh-ku, Kitakyushu 808-0196, Japan.
| | | | | | | |
Collapse
|
42
|
Gao T, Ho KP. l-Lactic acid production by Bacillus subtilis MUR1 in continuous culture. J Biotechnol 2013; 168:646-51. [DOI: 10.1016/j.jbiotec.2013.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022]
|
43
|
Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 2013; 31:877-902. [DOI: 10.1016/j.biotechadv.2013.04.002] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
44
|
Ye L, Zhou X, Hudari MSB, Li Z, Wu JC. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. BIORESOURCE TECHNOLOGY 2013; 132:38-44. [PMID: 23399496 DOI: 10.1016/j.biortech.2013.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/30/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Cost-effective production of optically pure lactic acid from lignocellulose sugars is commercially attractive but challenging. Bacillus coagulans C106 was isolated from environment and used to produce l-lactic acid from xylose at 50°C and pH 6.0 in mineral salts medium containing 1-2% (w/v) of yeast extract without sterilizing the medium before fermentation. In batch fermentation with 85g/L of xylose, lactic acid titer and productivity reached 83.6g/L and 7.5g/Lh, respectively. When fed-batch (120+80+60g/L) fermentation was applied, they reached 215.7g/L and 4.0g/Lh, respectively. In both cases, the lactic acid yield and optical purity reached 95% and 99.6%, respectively. The lactic acid titer and productivity on xylose are the highest among those ever reported. Ca(OH)2 was found to be a better neutralizing agent than NaOH in terms of its giving higher lactic acid titer (1.2-fold) and productivity (1.8-fold) under the same conditions.
Collapse
Affiliation(s)
- Lidan Ye
- Institute of Chemical and Engineering Sciences, Agency for Sciences, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | | | | | | | | |
Collapse
|
45
|
Quitmann H, Fan R, Czermak P. Acidic organic compounds in beverage, food, and feed production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 143:91-141. [PMID: 24275825 DOI: 10.1007/10_2013_262] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.
Collapse
Affiliation(s)
- Hendrich Quitmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Science Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | | | | |
Collapse
|