1
|
Ha SH, Shin SG, Ahn JH. Optimization of synergistic microwave and zero-valent iron co-pretreatment for anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2025; 430:132568. [PMID: 40273956 DOI: 10.1016/j.biortech.2025.132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
This study optimized co-pretreatment of microwave temperature (TMW) and zero-valent iron dosage ([ZVI]) to enhance anaerobic digestion (AD) of waste activated sludge (WAS). WAS was pretreated at TMW = 100, 150, or 200 °C and [ZVI] = 1, 3, or 5 g/L using a central composite design. Optimal co-pretreatment (TMW = 168 °C and [ZVI] = 5 g/L) reduced the ratio of volatile solids (VS) to total solids by 21.5 %, increased the solubilization ratio seven-fold, removed 53.5 % of phosphate compared to WAS partly because of lignin fragmentation. Biochemical methane potential identified optimal conditions (TMW = 164 °C and [ZVI] = 4.8 g/L), enhancing VS removal by 70.9 %, methane yield by 60 %, and reducing hydrogen sulfide by 82.4 % compared to Control. Kinetic analysis indicated 61 - 108 % increase in maximum methane production rate. Microbial analysis revealed increased acetoclastic methanogens and decreased hydrogenotrophic methanogens. Thus, microwave-ZVI co-pretreatment enhanced WAS biodegradability and AD efficiency.
Collapse
Affiliation(s)
- Seung-Han Ha
- Department of Integrated Energy and Infra System, College of engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, College of engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Korea
| | - Johng-Hwa Ahn
- Department of Integrated Energy and Infra System, College of engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea.
| |
Collapse
|
2
|
Ngabala FJ, Emmanuel JK. Potential substrates for biogas production through anaerobic digestion-an alternative energy source. Heliyon 2024; 10:e40632. [PMID: 39669150 PMCID: PMC11636105 DOI: 10.1016/j.heliyon.2024.e40632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Energy is a crucial part of a comprehensive desire to reach any country's long-term economic and social development. Fossil fuels have for a long time been used as the major global cause of energy. However, dependence on fossil fuels contributes to environmental damage. Biogas generation from biodegradable organic materials is a potential and sustainable substitute for addressing global energy supply inadequacy and curbing the environmental challenges associated with fossil fuels. Biotechnologies particularly anaerobic digestion technology are important process for the recovery of energy from organic materials. Biogas comes from bio-decomposition of various organic substrates and trash. Human excreta, agricultural wastes, industrial food residues, municipal wastes, food wastes and residues, fishery wastes, aquatic plants and forest residues are among the common organic wastes from which biogas is produced today. Properly designed biogas systems play a crucial role in renewable energy production, providing electricity, heating, and lighting from organic waste materials that would otherwise go to landfill. These systems convert agricultural residues, food waste, livestock manure, and even energy crops into biogas, which can be used to power generators, provide heat for cooking, or supply light in homes. In urban and remote areas, biogas digesters offer clean, alternative energy solutions that not only meet local energy demands but also enhance living conditions by reducing the reliance on expensive or polluting energy sources. For instance, households can save on energy costs and improve air quality by using biogas for cooking instead of traditional fuels. Besides, the implementation of biogas technology can significantly mitigate environmental impact by lowering greenhouse gas emissions, reducing waste, and promoting sustainable agricultural practices and supporting circular economy. This review explores a diverse range of potential substrates for biogas production, highlighting their viability as alternatives to fossil fuel-based energy sources and emphasizing the multifaceted benefits they provide to communities.
Collapse
Affiliation(s)
- Flaviana John Ngabala
- University of Dar Es Salaam, Mkwawa University College of Education, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Jovine Kamuhabwa Emmanuel
- University of Dar Es Salaam, Mkwawa University College of Education, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| |
Collapse
|
3
|
Magro AD, Lovarelli D, Bacenetti J, Guarino M. The potential of insect frass for sustainable biogas and biomethane production: A review. BIORESOURCE TECHNOLOGY 2024; 412:131384. [PMID: 39218362 DOI: 10.1016/j.biortech.2024.131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Insect-based protein production has gained traction in recent years. This has led to the increasing production of frass, the residual substrate from insect farming. As a relatively new substrate with characteristics that are not widely known, its energetic potential still needs to be investigated. In this context, this literature review aims to evaluate the potential of frass as a feedstock for bioenergy production through anaerobic digestion. From the literature search, 11 studies were selected, and showed a wide range of biogas (44 m3/ton VS to 668 m3/ton VS) and methane (26 m3/ton VS to 502 m3/ton VS) production potentials from insect frass, mostly comparable with traditional biomasses of liquid and solid slurry. Results are influenced by factors such as substrate type, digestion conditions and presence of co-digestion substrates. The need of further investigation on the economic viability has been highlighted, with a focus on the possibility of upgrading biogas to vehicle-grade biomethane.
Collapse
Affiliation(s)
- Adele Dal Magro
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | - Daniela Lovarelli
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | - Jacopo Bacenetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | - Marcella Guarino
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
4
|
Kang JH, Ahn JH. Optimization of cobalt, nickel, and iron supplement for mesophilic and thermophilic anaerobic digestion treating high-solid food waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:779-793. [PMID: 36154558 DOI: 10.1080/09593330.2022.2128890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
ABSTRACTThe effects of trace metals (iron (Fe), cobalt (Co) + Fe, and Co + nickel (Ni) + Fe) on mesophilic and thermophilic anaerobic digestion of food waste were quantified experimentally. Supplementation with 0 ≤ [Co] ≤ 5 mg/L, 0 ≤ [Ni] ≤ 10 mg/L, or 0 ≤ [Fe] ≤ 200 mg/L can significantly improve the productivity of mesophilic (MD) and thermophilic (TD) digesters. Addition of micronutrients increased biogas production, but excessive addition of trace metals hindered the production. Supplementation with Fe + Co or Fe + Co + Ni increased biogas production more than the addition of only Fe did. Within the design boundaries, the optimal concentrations for supplementation with three trace metals in MD were [Co] = 0.33 mg/L, [Ni] = 0.43 mg/L, and [Fe] = 5.35 mg/L, and in TD were [Co] = 1.41 mg/L, [Ni] = 3.84 mg/L, and [Fe] = 200 mg/L. TD required larger amounts of the trace metals than MD (4.3-37.4 times). The results can give quantitative information on trace metal supplementation for successful anaerobic digestion.
Collapse
Affiliation(s)
- Jang-Hyun Kang
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Korea
- Department of Environmental Resources Research, National Institute of Environmental Research, Incheon, Korea
| | - Johng-Hwa Ahn
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Korea
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
5
|
Luo X, Liu Y, Lei L, Shen J, Zhang Q, Wang Y, Ruan R, Cui X. Co-ensiling of rice straw and distillers grains to increase methane production and maximise energy output. BIORESOURCE TECHNOLOGY 2023; 386:129496. [PMID: 37468009 DOI: 10.1016/j.biortech.2023.129496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
High organic matter preservation during ensiling promotes material conversion and energy output. In this study, the effects of co-ensiling distillers grains and rice straw on methane production was evaluated, as distillers grains are highly acidic. For co-ensiling, distillers grains and rice straw were mixed to produce methane at five carbon/nitrogen (C/N) ratios. RD20 (C/N20) and RD25 (C/N25) were defined as high-distillers-grain groups and other mixed groups as low-distillers-grain groups. The results showed that Lactobacillus was enriched in RD25, with the highest lactic acid content reaching 54.0 g/kg of dry matter. The pH and organic dry matter loss of RD25 were lower than those of low-distillers-grain groups, but the result for lignocellulose degradation rate was reversed. An 8.6% increase in methane yield and 7.9% increase in energy output were achieved in RD25. Ensiling-anaerobic digestion systems of C/N25 provide high organic matter preservation and energy output.
Collapse
Affiliation(s)
- Xuan Luo
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Luyao Lei
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Jiali Shen
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
6
|
Elliott JA, Ball AS, Shah K. Investigations into valorisation of trade wastewater for biomethane production. Heliyon 2023; 9:e13309. [PMID: 36816286 PMCID: PMC9932477 DOI: 10.1016/j.heliyon.2023.e13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Biogas production from wastewater is one way that industrial sites can work towards the UN Sustainable Development Goals, while recovering a valuable resource. The objective of this study was to investigate the suitability of data collected by municipal wastewater service providers as a method of classifying and screening waste producers as potential sites for biogas resource recovery by anaerobic digestion. Industrial wastewater samples, including raw effluent and treated waste ready for discharge, were examined, and biomethane potential assays performed. Results of chemical analysis and lab-scale digestion were compared to historical service provider data, and patterns were observed. Biomethane yields of up to 357 mL/gVS and 287mL/gVS were achieved from raw and treated effluent respectively. Digestion at the top four prospects could produce over 4690 GJ of methane and save $47,000 in natural gas costs, offsetting 490 tonnes of CO2 equivalent annually. These streams, from logistics, waste management, food and animal product businesses, combined high levels of degradable substrates and low levels of inhibitory components. While it is unlikely that this type of screening program can be completely accurate, certain parameters, including high sodium concentration, are applicable for discounting the potential for biogas production. This knowledge can be a valuable tool in the process of selecting sites for future resource recovery, therefore increasing the uptake of these processes, resulting in economic, environmental, and climate change mitigation benefits.
Collapse
Affiliation(s)
- Jake A.K. Elliott
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University,Bundoora 3083, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University,Bundoora 3083, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University,Bundoora 3083, Australia
| |
Collapse
|
7
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023; 4. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
8
|
Luo X, Liu Y, Muhmood A, Zhang Q, Wang J, Ruan R, Wang Y, Cui X. Effect of time and temperature of pretreatment and anaerobic co-digestion of rice straw and swine wastewater by domesticated paddy soil microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116218. [PMID: 36108514 DOI: 10.1016/j.jenvman.2022.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Rice straw and swine wastewater are abundant, easy to obtain, and inexpensive biomass materials. Anaerobic digestion of rice straw and swine wastewater effectively regulates the carbon-to-nitrogen ratio and also improves methane production efficiency. The dense lignocellulosic structure, unsuitable carbon-to-nitrogen ratio, and light texture of rice straw hinder its application in anaerobic digestion. Effective pretreatment technologies can improve degradation efficiency and methane production. Our study is the first to apply domesticated paddy soil microbes to enhance the efficiency of hydrolytic acidification of rice straw and swine wastewater at varying temperatures and times. The results show that the highest total organic carbon (1757.2 mg/L), soluble chemical oxygen demand (5341.7 mg/L), and organic acid concentration (4134.6 mg/L) appeared in the hydrolysate after five days of hydrolytic acidification at 37 °C. Moreover, the use of hydrolysate produced 13% more gas and reduced the anaerobic digestion period by ten days compared to the untreated control. This suggests that using domesticated paddy soil microbes as a pretreatment might be a sustainable and cost-effective strategy for improving the degradation efficacy and methane production from lignocellulosic materials.
Collapse
Affiliation(s)
- Xuan Luo
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
9
|
Ore OT, Akeremale OK, Adeola AO, Ichipi E, Olubodun KO. Production and Kinetic Studies of Biogas from Anaerobic Digestion of Banana and Cassava Wastes. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Anaerobic Co-Digestion of Sugarcane Leaves, Cow Dung and Food Waste: Focus on Methane Yield and Synergistic Effects. FERMENTATION 2022. [DOI: 10.3390/fermentation8080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anaerobic co-digestion (AcoD) of food waste (FW) and lignocellulose waste is a promising technology for methane production. This work investigated the methane generation from AcoD of FW, sugarcane leaves (SLs), and cow dung (CD) under mesophilic conditions in a batch test. As for AcoD of two feedstocks (SL and FW or CD and FW), introduction of SL and CD (25%, volatile solid (VS) basis) showed slight improvement in methane production from FW. In contrast, positive synergistic effect (synergy index = 1.03–1.14 > 1) was observed in all the AcoD reactors of the three feedstocks (SL, CD, and FW). The optimum mixing ratio of FW:SL:CD (VS basis) was 85:11.25:3.75 with a synergy index of 1.07, achieving a methane yield rate and methane content of 297.16 mL/g VS and 73.26%, respectively. This group cumulative methane production was an improvement of 110.45 and 444.72% higher than mono-digestion of SL and CD. The biodegradability, soluble chemical oxygen demand (SCOD), and VS removal rate were 56.44, 44.55 and 55.38%, respectively. The optimum results indicated that AcoD of FW, SL, and CD have higher potentials for energy recovery and provided forceful scientific evidence for their energy utilization.
Collapse
|
11
|
Vannarath A, Thalla AK. Effects of chemical pretreatments on material solubilization of Areca catechu L. husk: Digestion, biodegradability, and kinetic studies for biogas yield. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115322. [PMID: 35658262 DOI: 10.1016/j.jenvman.2022.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to understand the pretreatment-aided anaerobic digestion of lignocellulosic residues and to assess the substrate solubilization capacity of pretreatment processes. We evaluated the feasibility of biogas production using chemically pretreated Areca catechu L. (Arecanut husk, AH). AH was pretreated for 24h at two different temperatures-25 °C and 90 °C with four different chemicals viz. H2SO4 (acidic), NaOH (alkaline), H2O2 (oxidative), and ethanol in 1% H2SO4 (organosolv) under each temperature. AH solubilization assessment included analyses of parameters such as volatile solids to total solids (VS:TS) ratio, soluble chemical oxygen demand, total phenolic content, and biomass composition. Alkaline pretreatment of AH at 90 °C resulted in the maximum biogas yield of 683.89mL/gVS, which was 2.3 times more than that obtained using raw AH without pretreatment. Methane content of biogas produced using AH pretreated with 2-10% of NaOH was found to be between 71.53% and 75.06%; methane content of biogas using raw AH was 62.31%. In order to describe the AH degradation patterns, biogas production potential from pretreated AH was evaluated using bacterial kinetic growth models (First-order exponential, logistic, transference, and modified Gompertz models). The modified Gompertz and logistic models (correlation coefficient >0.99) were found to have the best fit of all kinetic models for the cumulative experimental biogas curve. We formulated a multiple linear regression equation depicting the biodegradability index (BI) as a technical tool to determine biomethane production; BI is represented as a function of biomass composition (cellulose, hemicellulose, and lignin), with a high correlation (>0.95). Based on our analyses of AH pretreatment and substrate utilization for biogas production, we propose that the biochemical composition of lignocellulosic residues should be carefully considered to ensure their biodegradability when subjected to anaerobic digestion.
Collapse
Affiliation(s)
- Adhirashree Vannarath
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India
| | - Arun Kumar Thalla
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
12
|
Kizito S, Jjagwe J, Mdondo SW, Nagawa CB, Bah H, Tumutegyereize P. Synergetic effects of biochar addition on mesophilic and high total solids anaerobic digestion of chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115192. [PMID: 35550972 DOI: 10.1016/j.jenvman.2022.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
High solids anaerobic digestion (AD) of chicken manure (CM) is often challenging due to ammonia-N inhibition and accumulation of volatile fatty acids (VFAs). This study evaluated the effect of adding biochars from different feedstock to ameliorate semi-dry AD of fresh CM during batch fermentation. Experiments were performed in 300 mL at two total solid (TS) levels (12% and 15%) under mesophilic (36 ±1ᵒC) conditions for 55 d, using activated sludge as inoculum. Treatments included: fresh CM (at 12% or 15% TS) mixed separately with rice husks char (RB), wood char (WB) and bamboo char (BB) at biochar dosages of 2.5%, 5% and 10% of TS in the CM, inoculum only and inoculum plus CM without addition of char as the control. Results indicated that addition of biochar reduced the lag phases to 4-5.4 d and AD performances were significantly improved with total volatile solids removal of 53-67% and 62-71%, and cumulative methane of 277-380 mL/gVS (CH4 content ≈ 51-63%) and 297-438 mL/gVS (CH4 content ≈ 49-67%) at 12% and 15% TS, respectively. Biochar buffered over acidification and stabilized pH in the range of 6.5-7.8 but mild ammonia inhibition still occurred in all biochar treatments due to the high residual total ammonia-N (4.3 g-5.6 g/L). For all the investigated parameters, WB amended digesters exhibited the best results owing to its high specific surface area, porosity, cationic exchange capacity, and elemental composition which were superior to those of RB and BB. At 10% dosage of all tested biochars, the AD process was more stable and methane content neared optimal of >65% CH4. Therefore, addition of biochar from lignocellulosic materials at a given threshold dosage could promote semi-dry and dry biogas production from chicken manure and thus add value to this waste which in most cases is improperly managed.
Collapse
Affiliation(s)
- Simon Kizito
- Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda.
| | - Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O.Box.7062, Kampala, Uganda
| | - Simon Wandera Mdondo
- Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 43844-00100, Nairobi, Kenya
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda
| | - Hamidou Bah
- Institute Superior Agronomy and Veterinary of Faranah (ISAV/F), Faranah 131, Guinea
| | - Peter Tumutegyereize
- Department of Agricultural and Biosystems Engineering, School of Food Technology, Nutrition and Bioengineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
13
|
Choudhury A, Lepine C, Witarsa F, Good C. Anaerobic digestion challenges and resource recovery opportunities from land-based aquaculture waste and seafood processing byproducts: A review. BIORESOURCE TECHNOLOGY 2022; 354:127144. [PMID: 35413421 DOI: 10.1016/j.biortech.2022.127144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The unprecedented demand for seafood has resulted in land-based recirculating aquaculture systems (RAS), a highly intensive but sustainable fish farming method. However, intensification also results in concentrated waste streams of fecal matter and uneaten feed. Harvesting and processing vast quantities of fish also leads to the production of byproducts, further creating disposal challenges for fish farms. Recent research indicates that anaerobic digestion (AD), often used for waste treatment in agricultural and wastewater industries, may provide a viable solution. Limited research on AD of freshwater, brackish, and saline wastewater from RAS facilities and co-digestion of seafood byproducts has shown promising results but with considerable operational and process stability issues. This review discusses challenges to AD due to low solid concentrations, salinity, low carbon/nitrogen ratio, and high lipid content in the waste streams. Opportunities for recovering valuable biomolecules and nutrients through microbial treatment, aquaponics, microalgae, and polyhydroxyalkanoate production are also discussed.
Collapse
Affiliation(s)
- Abhinav Choudhury
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA.
| | - Christine Lepine
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA
| | - Freddy Witarsa
- Colorado Mesa University, Department of Environmental Science and Technology, Wubben Hall and Science Center, Grand Junction, CO 81501, USA
| | - Christopher Good
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA
| |
Collapse
|
14
|
Effect of Pretreatment by Freeze Vacuum Drying on Solid-State Anaerobic Digestion of Corn Straw. FERMENTATION 2022. [DOI: 10.3390/fermentation8060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a common agricultural waste, corn straw (CS) has a refractory structure, which is not conducive to anaerobic digestion (AD). Appropriate pretreatment is crucial for addressing this problem. Thus, freeze vacuum drying (FVD) was proposed. In this study, fresh CS (F-CS) pretreated (5 h, −40 °C) by FVD and naturally dried CS (D-CS) were compared. Differences in substrate surface structure and nutrient composition were first investigated. Results show that a loose and porous structure, crystallinity, and broken chemical bonds, as well as higher proportions of VS, C, N, cellulose, hemicellulose, and crude proteins in F-CS show a potential for methane production. Besides, process performance and stability were also examined in both high (4, VS basis) and low (1, VS basis) S/I ratio AD. A higher degradation ratio of hemicellulose as well as richer dissolved microbial metabolites, coenzymes, tyrosine-like proteins, and hydrolysis rate of particulate organic matter in the F-CS system enhanced the efficiency of methane conversion. The cumulative methane yield increased from 169.66 (D-CS) to 209.97 (F-CS) mL/gVS in the high S/I ratio system (p = 0.02 < 0.05), and 156.97 to 171.89 mL/gVS in the low S/I ratio system. Additionally, 16S-rRNA-gene-based analysis was performed. Interestingly, the coordination of key bacteria (Clostridium_sensu_stricto_1, Bacillus, Terrisporobacter. Clostridium_sensu_stricto_7, Thermoclostrium, UCG-012, and HN-HF0106) was more active. Poorer Methanosarcina and Methanomassiliicoccus as well as richer Methanobrevibacter and Methanoculleus stimulated the co-relationship of key archaea with diverse methanogenesis pathways. This study aims to verify the positive effect of FVD pretreatment on AD of CS, so as to provide a reference for applications in waste management.
Collapse
|
15
|
Zhang W, Wang S, Yin F, Dong H, Cao Q, Lian T, Zhu J. Produce individual medium chain carboxylic acids (MCCA) from swine manure: Performance evaluation and economic analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:255-262. [PMID: 35413524 DOI: 10.1016/j.wasman.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Environmental issues caused by untreated animal manure require the development of resource recovery from waste through a circular economy approach. Producing medium chain carboxylic acids (MCCA) with higher value than biogas from manure has become promising. The objective of this study was to develop an effective individual MCCA produce process utilizing manure. In this study, animal manure was firstly anaerobic fermentation into short chain fatty acids (SCFA), then acidified manure and ethanol were fed into the chain elongation reactor with gradually increasing the organic loading rate (OLR) from 7.0 to 18.5 gCOD/L/d, and the mixed MCCA was separated individually via a fractional distillation process. The SCFA fermentation occurred mainly at the first 10 days, and the optimum concentrations of SCFA for treatments at 2 %VS, 4 %VS and 6 %VS were 6.58, 10.40 and 14.10 g/L, respectively. For the chain elongation reactor, the maximum concentrations of n-caproate and n-caprylate were 10.25 and 0.63 g/L, respectively, which were comparable with that obtained from other complex wastes. Over 90% MCCA can be recovered from the fermentation broth via the optimized extractant of methyl tert-butyl ether (MTBE) and the fractional distillation system. Preliminary economic analysis shows that this MCCA production process presented a higher economic benefit (9.25 $/m3 manure) than traditional biogas production (2.65 $/m3 manure), making MCCA production from swine manure economically competitive. This work provides a new route for manure resource recovery besides the biogas process.
Collapse
Affiliation(s)
- Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
16
|
Abu Hanifa Jannat M, Hyeok Park S, Chairattanawat C, Yulisa A, Hwang S. Effect of different microbial seeds on batch anaerobic digestion of fish waste. BIORESOURCE TECHNOLOGY 2022; 349:126834. [PMID: 35149182 DOI: 10.1016/j.biortech.2022.126834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Initial microbial compositions would be the precursor for the efficient anaerobic digestion (AD) of fish waste (FW). A mesophilic batch test was conducted using four seeds collected from different digesters treating various combinations of substrates to investigate their effects on FW degradation. Key microbial groups were identified by 16s rRNA gene-based metagenomics analysis. Among four, the seed from the digester co-digesting livestock manure, food waste, and food wastewater showed the best performance and obtained the highest methane yield (350.5 ± 5.2 mL/gVSadded) and lowest lag phase (0.6 ± 0.1 d). Proteiniphilum, Aminobacterium, dgA-11 gut group, and Syntrophomonas were dominant bacterial genera identified in FW degradation. Methanosaeta was the dominant methanogen in the best performing seed and microbial network analysis revealed its contribution to achieving the highest CH4 yield. Obtained results could be useful in selecting microbial seed sources to avoid system imbalance in full-scale digesters that treat FW.
Collapse
Affiliation(s)
- Md Abu Hanifa Jannat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Sang Hyeok Park
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Chayanee Chairattanawat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Arma Yulisa
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea; Yonsei University Institute for Convergence Research and Education in Advanced Technology (I-CREATE), 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
17
|
Yan C, Liu Y, Cui X, Cao L, Xiong J, Zhang Q, Wang Y, Ruan R. Improving the efficiency of anaerobic digestion: Domesticated paddy soil microbes enhance the hydrolytic acidification of rice straw and pig manure. BIORESOURCE TECHNOLOGY 2022; 345:126570. [PMID: 34921923 DOI: 10.1016/j.biortech.2021.126570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Improving the efficiency of hydrolytic acidification is critical for methane production from agricultural waste. This study is the first to apply domesticated paddy soil microbes to (DPSM) enhance the hydrolytic acidification of rice straw (RS) and pig manure (PM) to obtain acidizing fluid for anaerobic digestion (AD). At a substrate concentration of 20%, the inoculation of an RS-PM mixture (1:3) with 35% DPSM degraded the volatile solids by 48.1% and yielded 6.8 g/L of volatile fatty acids and 4.7 g/L of acetic acid after seven days of hydrolytic acidification. After 10 days of subsequent AD, the cumulative methane production of the acidizing fluid was 304.96 mL/g COD, similar (P > 0.05) to the control (318.27 mL/g COD). However, the methane production time decreased by 43.4% (from 30 to 17 days), thereby improving the AD efficiency. Inoculation with DPSM is therefore an effective pre-treatment for agricultural waste for methane production.
Collapse
Affiliation(s)
- Chen Yan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jianghua Xiong
- Agricultural Ecology and Resources Protection Station of Jiangxi Province, Jiangxi, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| |
Collapse
|
18
|
Kassongo J, Shahsavari E, Ball AS. Substrate-to-inoculum ratio drives solid-state anaerobic digestion of unamended grape marc and cheese whey. PLoS One 2022; 17:e0262940. [PMID: 35085345 PMCID: PMC8794148 DOI: 10.1371/journal.pone.0262940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Inoculation dose is a key operational parameter for the solid-state anaerobic digestion (SS-AD) of lignocellulosic biomass, maximum methane recovery, and stable digester performance. The novelty of this study was the co-digestion of unamended full-strength grape marc and cheese whey for peak methane extraction at variable inoculation levels. An acclimatised digestate from a preceding anaerobic treatment was used as a downstream inoculum. The impact of inoculum size (wet weight) was evaluated at 0/10, 5/5, 7/3 and 9/1 substrate-to-inoculum (S/I) ratios, corresponding to an initial concentration of 20-30% total solids (TS) in digesters over 58 days at 45°C. The optimal 7/3 S/I produced the highest cumulative methane yield, 6.45 L CH4 kg-1 VS, coinciding with the lowest initial salinity at 11%; the highest volumetric methane productivity rate of 0.289±0.044 L CH4 LWork-1 d-1; the highest average COD/N ratio of 9.88; the highest final pH of 9.13, and a maximum 15.07% elemental carbon removal; for a lag time of 9.4 days. This study identified an optimal inoculation dose and opens up an avenue for the direct co-digestion of grape marc and cheese whey without requirements for substrate pretreatment, thus improving the overall bioenergy profile of the winery and dairy joint resource recovery operations.
Collapse
Affiliation(s)
- Josue Kassongo
- ARC Training Centre for the Transformation of Australia’s Biosolids Resource, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Esmaeil Shahsavari
- ARC Training Centre for the Transformation of Australia’s Biosolids Resource, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia’s Biosolids Resource, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Abstract
Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.
Collapse
|
20
|
Zara S, Rihani R, Blel W, Bentahar F. Anaerobic co-digestion of dairy raw by-products and Ulva sp. macroalgae: effect of organic and inorganic additives. CR CHIM 2021. [DOI: 10.5802/crchim.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhao Q, Arhin SG, Yang Z, Liu H, Li Z, Anwar N, Papadakis VG, Liu G, Wang W. pH regulation of the first phase could enhance the energy recovery from two-phase anaerobic digestion of food waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1370-1380. [PMID: 33528855 DOI: 10.1002/wer.1527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The effect of pH regulation in phase I on hydrolysis and acidogenesis rate, metabolites production, microbial community, and the overall energy recovery efficiency during two-phase anaerobic digestion (AD) of food waste (FW) was investigated. pH strongly affected the acidogenesis rate and the yield of the fermentation products. The highest acidogenesis efficiency (60.4%) and total volatile fatty acids (VFA)/ethanol concentration (12.4 g/L) were obtained at pH 8 during phase I. Microbial community analysis revealed that Clostridium IV was enriched at pH 8, relating to the accumulation of butyrate. Also, Clostridium sensu stricto played a crucial role in hydrogen production and was abundant at pH 6, resulting in the highest hydrogen yield (212.2 ml/g VS). In phase II, the highest cumulative methane yield (412.6 ml/g VS) was obtained at pH 8. By considering the hydrogen and methane production stages, the highest energy yield (22.8 kJ/g VS, corresponding to a 76.4% recovery efficiency) was generated at pH 8, which indicates that pH 8 was optimal for energy recovery during two-phase AD of FW. Overall, the results demonstrated the possibility of increasing the energy recovery from FW by regulating the pH in the hydrolysis/acidogenesis phase based on the two-phase AD system. PRACTITIONER POINTS: pH 8 was suitable for hydrolysis, acidogenesis, and methanogenesis. High hydrogen yields were obtained at pH 5-8 (about 200 ml/d). Clostridium sensu stricto might have played a crucial role in hydrogen production. High methane production (about 400 ml/g VS) was obtained at pH 7-9. pH 8 was optimal for energy recovery from FW with an efficiency of 76.4% (22.8 kJ/g VS).
Collapse
Affiliation(s)
- Qing Zhao
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Samuel Gyebi Arhin
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Haopeng Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Zongye Li
- Beijing No. 80 High School, Beijing, China
| | - Naveed Anwar
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Vagelis G Papadakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
22
|
Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste? Molecules 2021; 26:molecules26144175. [PMID: 34299449 PMCID: PMC8303515 DOI: 10.3390/molecules26144175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Pretreatment and codigestion are proven to be effective strategies for the enhancement of the anaerobic digestion of lignocellulosic residues. The purpose of this study is to evaluate the effects of pretreatment and codigestion on methane production and the hydrolysis rate in the anaerobic digestion of agricultural wastes (AWs). Thermal and different thermochemical pretreatments were applied on AWs. Sewage sludge (SS) was selected as a cosubstrate. Biochemical methane potential tests were performed by mixing SS with raw and pretreated AWs at different mixing ratios. Hydrolysis rates were estimated by the best fit obtained with the first-order kinetic model. As a result of the experimental and kinetic studies, the best strategy was determined to be thermochemical pretreatment with sodium hydroxide (NaOH). This strategy resulted in a maximum enhancement in the anaerobic digestion of AWs, a 56% increase in methane production, an 81.90% increase in the hydrolysis rate and a 79.63% decrease in the technical digestion time compared to raw AWs. On the other hand, anaerobic codigestion (AcoD) with SS was determined to be ineffective when it came to the enhancement of methane production and the hydrolysis rate. The most suitable mixing ratio was determined to be 80:20 (Aws/SS) for the AcoD of the studied AWs with SS in order to obtain the highest possible methane production without any antagonistic effect.
Collapse
|
23
|
Ravanipour M, Bagherzadeh R, Mahvi AH. Fish and shrimp waste management at household and market in Bushehr, Iran. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2021; 23:1394-1403. [DOI: 10.1007/s10163-021-01219-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/18/2021] [Indexed: 01/17/2023]
|
24
|
Gaviria Gaviria YS, Camaño Echavarría JA, Zapata Montoya JE. Evaluation of the environmental impact of dry chemical silage obtained from the viscera of red tilapia ( Oreochromis spp.) using ecological footprint methodology. Heliyon 2021; 7:e07337. [PMID: 34195438 PMCID: PMC8237297 DOI: 10.1016/j.heliyon.2021.e07337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Fish production worldwide has increased over the years due to increased populations and interest from consumers. This has led to an increase in the waste produced by this industry, with viscera being particularly notable as one of the main sources of negative environmental impact. This study will determine the environmental impact created when obtaining dry chemical silage from the viscera of red tilapia (Oreochromis spp.), using ecological footprint methodology as an indicator of sustainability. This process allows approximately 30% of CO2 emissions to be mitigated compared to those generated when fresh viscera are dumped into shallow landfills, while implementing actions that improve the process such as biogas production from waste and solar drying of the final product can mitigate approximately 86% of its environmental impact, when compared to the disposal of fresh viscera. It was concluded that the production of dry chemical silage using alternative drying energy is environmentally sustainable.
Collapse
Affiliation(s)
- Yhoan Sebastian Gaviria Gaviria
- Grupo de Investigación en Nutrición y Tecnología de Alimentos, NUTEC, Universidad de Antioquia, Av. Ferrocarril, 050010, Medellín, Colombia
| | - Jairo Andrés Camaño Echavarría
- Grupo de Investigación en Nutrición y Tecnología de Alimentos, NUTEC, Universidad de Antioquia, Av. Ferrocarril, 050010, Medellín, Colombia
| | - José Edgar Zapata Montoya
- Grupo de Investigación en Nutrición y Tecnología de Alimentos, NUTEC, Universidad de Antioquia, Av. Ferrocarril, 050010, Medellín, Colombia
| |
Collapse
|
25
|
Batch Anaerobic Co-Digestion and Biochemical Methane Potential Analysis of Goat Manure and Food Waste. ENERGIES 2021. [DOI: 10.3390/en14071952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The improper management of goat manure from concentrated goat feeding operations and food waste leads to the emission of greenhouse gasses and water pollution in the US. The wastes were collected from the International Goat Research Center and a dining facility at Prairie View A&M University. The biochemical methane potential of these two substrates in mono and co-digestion at varied proportions was determined in triplicates and processes were evaluated using two nonlinear regression models. The experiments were conducted at 36 ± 1 °C with an inoculum to substrate ratio of 2.0. The biomethane was measured by water displacement method (pH 10:30), absorbing carbon dioxide. The cumulative yields in goat manure and food waste mono-digestions were 169.7 and 206.0 mL/gVS, respectively. Among co-digestion, 60% goat manure achieved the highest biomethane yields of 380.5 mL/gVS. The biodegradabilities of 33.5 and 65.7% were observed in goat manure and food waste mono-digestions, while 97.4% were observed in the co-digestion having 60% goat manure. The modified Gompertz model is an excellent fit in simulating the anaerobic digestion of food waste and goat manure substrates. These findings provide useful insights into the co-digestion of these substrates.
Collapse
|
26
|
Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario. ENTROPY 2021; 23:e23020145. [PMID: 33503933 PMCID: PMC7912667 DOI: 10.3390/e23020145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022]
Abstract
Anaerobic digestion is a well-known technology with wide application in the treatment of high-strength organic wastes. The economic feasibility of this type of installation is usually attained thanks to the availability of fiscal incentives. In this review, an analysis of the different factors associated with this biological treatment and a description of alternatives available in literature for increasing performance of the process were provided. The possible integration of this process into a biorefinery as a way for producing energy and chemical products from the conversion of wastes and biomass also analyzed. The future outlook of anaerobic digestion will be closely linked to circular economy principles. Therefore, this technology should be properly integrated into any production system where energy can be recovered from organics. Digestion can play a major role in any transformation process where by-products need further stabilization or it can be the central core of any waste treatment process, modifying the current scheme by a concatenation of several activities with the aim of increasing the efficiency of the conversion. Thus, current plants dedicated to the treatment of wastewaters, animal manures, or food wastes can become specialized centers for producing bio-energy and green chemicals. However, high installation costs, feedstock dispersion and market distortions were recognized as the main parameters negatively affecting these alternatives.
Collapse
|
27
|
Song S, Jiang M, Yao J, Liu H, Dai X, Wang G. Alkaline-thermal pretreatment of spectinomycin mycelial residues: Insights on anaerobic biodegradability and the fate of antibiotic resistance genes. CHEMOSPHERE 2020; 261:127821. [PMID: 32750621 DOI: 10.1016/j.chemosphere.2020.127821] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Alkaline-thermal (AT) pretreatment is an economical and efficient pretreatment method to improve anaerobic biodegradability of biowaste. This study investigated the effect of AT pretreatment of spectinomycin mycelial residues (SMRs) for promoting anaerobic biodegradability along with the reduction of antibiotic resistance genes (ARGs), and thus obtained the optimal conditions of AT pretreatment. Biomethane potential (BMP) test was conducted to evaluate the anaerobic biodegradability of untreated and pretreated SMRs, and the fate of ARGs was tracked by quantitative polymerase chain reaction. Results showed that the modified Gompertz model fitted the results of BMP tests satisfactorily. Furthermore, AT pretreatment promoted BMP (B0) and reduced lag phase (λ) effectively. These were attributed to the solubilization of SMRs. The analyses of the changes in dissolved organic matter indicated that AT pretreatment could facilitate the solubilization of both biodegradable (e.g. protein) and recalcitrant matter (e.g. humic-like, analyzing by EEMs-PARAFAC), which had a significant corresponding positive (Person correlation, p < 0.01) and negative (Partial correlation, p < 0.01) influences on anaerobic biodegradability. However, the positive effects surpassed the negative effects, promoting the overall anaerobic biodegradability of SMRs. In addition, a considerable reduction of ARGs (by 0.62-1.36 log units) was observed at pH ≥ 12, attributed to the hydrolysis of phosphodiester bond of DNA in strong alkaline solution. Considering both anaerobic biodegradability and ARGs, the optimal AT condition was concluded as pH 12, temperature 90 °C and time 120 min.
Collapse
Affiliation(s)
- Siqi Song
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mingye Jiang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Yao
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Center of Urban Water Resources, 202 Haihe Road, Harbin, 150090, China.
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Gang Wang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
28
|
Bio-Methane Production via Anaerobic Co-Digestion by Optimizing the Mixing Ratios of River Tamarind (Leucaena leucocephala) and Dolphin Fish (Coryphaena hippurus) Offal. Processes (Basel) 2020. [DOI: 10.3390/pr8080934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fish offal and other high protein substrates are generally not suitable for anaerobic digestion because of the high levels of ammonia produced as a result of their biodegradation. In order to efficiently use these types of substrates to produce methane, co-digestion is used to balance the amounts of carbon and nitrogen in the feedstock. In this experiment an optimization procedure for maximizing the methane potential of fish offal, using river tamarind as the co-substrates was developed. Our experimental design tested the effects of substrate to substrate mixtures, as well as overall substrate to inoculum combinations, on the methane potentials. This was performed using batch style biochemical methane potential assays, which employed a methodology developed in our laboratory. The optimum of the 25 combinations tested was 50% fish offal to 50% river tamarind at a substrate to inoculum ratio of 0.03, with a specific methane yield of 144 ± 6 NmL/gFM (330 ± 14 NmL/goDM). This gave much improvement when compared with the fish offal alone, which reached 63 ± 4 NmL/gFM (317 ± 20 NmL/goDM) at maximum. These results indicate that with the correct mixture, rivertamarind is a suitable co-substrate for anaerobic co-digestion of fish offal.
Collapse
|
29
|
Conversion of fish processing wastewater into fish feed ingredients through submerged cultivation of Aspergillus oryzae. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00009-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Fish processing towards production of fillet gives rise to wastewater streams that are ultimately directed to biogas production and/or wastewater treatment. However, these wastewater streams are rich in minerals, fat, and proteins that can be converted to protein-rich feed ingredients through submerged cultivation of edible filamentous fungi. In this study, the origin of wastewater stream, initial pH, cultivation time, and extent of washing during sieving, were found to influence the amount of recovered material from the wastewater streams and its protein content, following cultivation with Aspergillus oryzae. Through cultivation of the filamentous fungus in sludge, 330 kg of material per ton of COD were recovered by sieving, corresponding to 121 kg protein per ton of COD, while through its cultivation in salt brine, 210 kg of material were recovered per ton of COD, corresponding to 128 kg protein per ton of COD. Removal ranges of 12–43%, 39–92%, and 32–66% for COD, total solids, and nitrogen, respectively, were obtained after A. oryzae growth and harvesting in the wastewater streams. Therefore, the present study shows the versatility that the integration of fungal cultivation provides to fish processing industries, and should be complemented by economic, environmental, and feeding studies, in order to reveal the most promising valorization strategy.
Graphic abstract
Collapse
|
30
|
Thermophilic Methane Production from Hydrothermally Pretreated Norway Spruce (Picea abies). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Norway spruce (Picea abies) is an industrially important softwood species available in northern Europe and can be used to produce bio-methane after proper pretreatment to overcome its recalcitrant complex structure. Hot water extraction (HWE) pretreatment at two different conditions (170 °C for 90 min (severity 4.02) and 140 °C for 300 min (severity 3.65)) was applied to extract hemicellulosic sugars from Norway spruce for thermophilic anaerobic digestion (AD) of the hydrolysate. The methane yield of hydrolysate prepared at the lower pretreatment severity was found to be 189 NmL/gCOD compared to 162 NmL/gCOD after the higher pretreatment severity suggesting higher pretreatment severity hampers the methane yield due to the presence of inhibitors formed due to sugars and lignin degradation and soluble lignin, extracted partially along with hemicellulosic sugars. Synthetic hydrolysates simulating real hydrolysates (H170syn and H140syn) had improved methane yield of 285 NmL/gCOD and 295 NmL/gCOD, respectively in the absence of both the inhibitors and soluble lignin. An effect of organic loadings (OLs) on the methane yield was observed with a negative correlation between OL and methane yield. The maximum methane yield was 290 NmL/gCOD for hydrolysate pretreated at 140 °C compared to 195 NmL/gCOD for hydrolyate pretreated at 170 °C, both at the lowest OL of 6 gCOD/L. Therefore, both pretreatment conditions and OL need to be considered for efficient methane production from extracted hydrolysate. Such substrates can be utilized in continuous flow industrial AD with well-adapted cultures with stable organic loading rates.
Collapse
|
31
|
Zhang W, Yin F, Dong H, Cao Q, Wang S, Xu J, Zhu Z. Bioconversion of swine manure into high-value products of medium chain fatty acids. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:478-487. [PMID: 32615515 DOI: 10.1016/j.wasman.2020.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
This research proposes and demonstrates, for the first time, the utilization of swine manure as a complex feedstock to produce high-value medium chain fatty acids (MCFA). The two-stage anaerobic digestion (AD) carboxylates platform was adopted for the conversion of swine manure to short chain fatty acids (SCFAs) and then SCFAs to MCFA (n-caproate, n-heptanoate, and n-caprylate) with ethanol supplementation. We defined the appropriate initial pH of 10.0 for SCFAs production with a carbon conversion rate of 71.2%, and acetate, propionate were the main products, which accounted for around 72.9% of the total SCFAs in the primary stage (I). Through the addition of ethanol, 61.3% of the converted carbon in the complex SCFAs solution was converted into MCFA (C6-C8) in the chain elongation stage (II), while only 6.7% was attributed to methane formation. The concentrations of n-caproate, n-heptanoate, and n-caprylate reached 8.6 g COD/L (3.9 g/L), 6.4 g COD/L (2.7 g/L), and 2.6 g COD/L (1.07 g/L), respectively. This study achieved a relatively higher concentration of n-heptanoate compared with past studies of MCFA from other feedstock. These findings demonstrated a new route for resource recovery and the operating parameters for producing MCFA from swine manure.
Collapse
Affiliation(s)
- Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China.
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| | - Jiajie Xu
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
32
|
Blasius JP, Contrera RC, Maintinguer SI, Alves de Castro MCA. Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. ACTA ACUST UNITED AC 2020; 27:e00503. [PMID: 32714853 PMCID: PMC7369326 DOI: 10.1016/j.btre.2020.e00503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
Food waste mixtures were digested under different temperatures and organic loads. The optimal ratio of pre-prepared waste (PPW)/leftover (LW) were 100/0 and 75/25 %. The mesophilic reactor showed greater efficiency generating methane. The CH4 yield and TVS removal efficiency were decreased as OLR gradually increased.
In Brazil, a significant amount of organic waste is produced in households and restaurants. This study thus aimed to determine the ideal conditions for generating methane from the treatment of household waste by anaerobic digestion, under mesophilic (37 °C) and thermophilic (55 °C) conditions, to determine the maximum organic loading rate (OLR) in the reactors, and to evaluate kinetic parameters by statistical models: Modified Gompertz, First-Order, Logistic and Transference functions. The experiments were conducted in anaerobic batch reactors. Different proportions of pre-prepared waste (PPW)/leftover waste (LW) were used: 100/0, 75/25, 50/50, 25/75, and 0/100 and different ORL: 0.15; 0.30; 0.45; 0.60; and 0.90 g TVS (Total Volatile Solids).L−1.d−1. For both conditions, the optimal proportions of PPW/LW were 100/0 and 75/25 %. Under mesophilic condition, the best results were observed (869 mL of CH4.g TVS−1). The maximum organic load was 0.30 g TVS.L−1.d−1. The best data adjustment was performed by the Transference function.
Collapse
Affiliation(s)
- Jandir Pereira Blasius
- Graduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences, São Paulo State University, Júio de Mesquita Filho (UNESP), Av. 24-A, Bela Vista, CEP: 13506-900, Rio Claro, SP, Brazil
| | - Ronan Cleber Contrera
- Hydraulic and Environmental Engineering Department (PhD), Escola Politécnica/ School of Engineering (EP), Universidade de São Paulo (USP), Av. Prof. Almeida Prado, 83 trav. 2, Cidade Universitária, CEP: 05508-900, São Paulo, SP, Brazil
| | - Sandra Imaculada Maintinguer
- Bioenergy Department, Bioenergy Research Institute - Central Laboratory (IPBEN) - São Paulo State University: Júlio de Mesquita Filho (UNESP) (PhD), R. 10, 2527 - Estádio, 13500-230, Rio Claro, SP, Brazil.,University of Araraquara, R. Voluntarios da Patria, 1309, 14801-320, Araraquara, SP, Brazil
| | - Marcus Cesar Avezum Alves de Castro
- Graduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences, São Paulo State University, Júio de Mesquita Filho (UNESP), Av. 24-A, Bela Vista, CEP: 13506-900, Rio Claro, SP, Brazil.,University of Araraquara, R. Voluntarios da Patria, 1309, 14801-320, Araraquara, SP, Brazil
| |
Collapse
|
33
|
Existing Empirical Kinetic Models in Biochemical Methane Potential (BMP) Testing, Their Selection and Numerical Solution. WATER 2020. [DOI: 10.3390/w12061831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biochemical Methane Potential (BMP) tests are a crucial part of feasibility studies to estimate energy recovery opportunities from organic wastes and wastewater. Despite the large number of publications dedicated to BMP testing and numerous attempts to standardize procedures, there is no “one size fits all” mathematical model to describe biomethane formation kinetic precisely. Importantly, the kinetics models are utilized for treatability estimation and modeling processes for the purpose of scale-up. A numerical computation approach is a widely used method to determine model coefficients, as a replacement for the previously used linearization approach. However, it requires more information for each model and some range of coefficients to iterate through. This study considers existing empirical models used to describe biomethane formation process in BMP testing, clarifies model nomenclature, presents equations usable for numerical computation of kinetic parameters as piece-wise defined functions, defines the limits for model coefficients, and collects and analyzes criteria to evaluate and compare model goodness of fit.
Collapse
|
34
|
Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Deep Neural Modeling Methods. ENERGIES 2020. [DOI: 10.3390/en13113014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In relation to the situation caused by the pandemic, which may also take place in the future, there is a need to find effective solutions to improve the economic situation of the floristry industry. The production and sale of flowers is time-consuming and long-term. Therefore, any information that causes the impossibility of selling the plants will result in a reduction of profitability or bankruptcy of such companies. Research on rationally utilizing biowaste from plant cultivation as well as unsold flowers for environmental protection and effective use of their potential as a raw material for bioenergy production were examined in this article. The aim of this study was to analyze the energetic potential of the biodegradable fraction of waste from floriculture. The trials included floricultural waste containing the stems, leaves and flowers of different species and hybrid tulips (Tulipa L.), roses (Rosa L.), sunflowers (Helianthus L.) and chrysanthemums (Dendranthema Des Moul.). Their biogas and methane production as well as heat of combustion were determined experimentally. The calorific value was calculated on the basis of results from selected floricultural waste and its chemical composition. The biogas production was tested on different levels of plant material fragmentation (chaff, macerate) in fermentation processes with two ranges of temperature (meso- and thermophilic fermentation). The presented results show that the highest calorific values were determined for dry stems of roses (18,520 kJ/kg) and sunflowers (18,030 kJ/kg). In turn, the lowest were obtained for dried chrysanthemums and tulips, for which the heating value reached 15,560 kJ/kg and 15,210 kJ/kg. In addition, based on one ton of the fresh mass of biowaste from floriculture, the largest biogas production including the control was obtained from the chrysanthemum chaff by mesophilic anaerobic digestion. Moreover, the largest volume of methane was received by thermophilic anaerobic digestion of roses. The highest content of biomethane (56.68%) was reached by thermophilic fermentation of roses. The energy production of the analyzed substrates was also calculated, based on the amount of biogas produced in the containers for anaerobic digestion. Additionally, a deep neural network model, which predicted the production of methane gas, was created. Owing to the properties of the network, the level of significance of variables used for modelling and prediction of biogas production was determined. The neural modelling process was carried out with the use of the H2O program.
Collapse
|
35
|
Bai X, Chen YC. Synergistic effect and supernatant nitrogen reduction from anaerobic co-digestion of sewage sludge and pig manure. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Increasing the Bio Gas Release During the Cattle Manure Fermentation by Means the Rational Addition of Substandard Flour as a Cosubstrate. SCIENCE AND INNOVATION 2020. [DOI: 10.15407/scine16.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Liu Y, Nilsen PJ, Maulidiany ND. Thermal pretreatment to enhance biogas production of waste aerobic granular sludge with and without calcium phosphate precipitates. CHEMOSPHERE 2019; 234:725-732. [PMID: 31234089 DOI: 10.1016/j.chemosphere.2019.06.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
To develop aerobic granules based sustainable wastewater treatment, it is necessary to view wastewater treatment process and excess sludge treatment as a whole to evaluate resource recovery and sustainability. We thus investigated in this study how mineral characteristics of aerobic granules with/without calcium phosphate precipitates for phosphorus removal in treatment process affect the excess sludge digestion for energy recovery. Steam explosion at 170 °C as an effective thermal sludge treatment approach was studied in parallel with normal thermal treatment in an autoclave at 70, 100 and 125 °C, respectively. A liner relationship was found between the thermal treatment temperature in the autoclave and biogas production of aerobic granules. The untreated granules with only 10% mineral content (G1) generated 30% more biogas than the untreated granules with 39% mineral content (G2), but steam explosion is more effective to G2 with high mineral content and relatively poor methane yield potential. In addition, steam explosion improved methane production from G2 more compared with activated sludge although both untreated activated sludge and G2 had comparable methane production, i.e. around 0.235 L CH4/g VS. Therefore, steam explosion is potential to be used to increase methane production especially when the untreated granular sludge has low methane yield due to high mineral content. This work provides a good basis for a holistic evaluation of resource recovery based on aerobic granular sludge, i.e. combined energy recovery and phosphorus removal and recovery via CaP precipitates, and trade-off between different factors with steam explosion.
Collapse
Affiliation(s)
- Yongqiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| | | | - Nopa Dwi Maulidiany
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
38
|
Rahman M, Saha CK, Feng L, Møller HB, Alam M. Anaerobic digestion of agro-industrial wastes of Bangladesh: Influence of total solids content. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.eaef.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Zhang Y, Li H. Energy recovery from wastewater treatment plants through sludge anaerobic digestion: effect of low-organic-content sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30544-30553. [PMID: 28921257 DOI: 10.1007/s11356-017-0184-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
During anaerobic digestion, low-organic-content sludge sometimes is used as feedstock, resulting in deteriorated digestion performance. The operational experience of conventional anaerobic digestion cannot be applied to this situation. To investigate the feature of low-organic-content sludge digestion and explain its intrinsic mechanism, batch experiments were conducted using designed feedstock having volatile solids (VS) contents that were 30-64% of total solids (TS). The results showed that the accumulative biogas yield declined proportionally from 173.7 to 64.8 ml/g VS added and organic removal rate decreased from 34.8 to 11.8% with decreasing VS/TS in the substrate. The oligotrophic environment resulting from low-organic-content substrates led to decreased microbial activity and a switch from butyric fermentation to propionic fermentation. A first-order model described the biogas production from the batch experiments very well, and the degradation coefficient decreased from 0.159 to 0.069 day-1, exhibiting a positive relation with organic content in substrate. The results observed here corroborated with data from published literature on anaerobic digestion of low-organic-content sludge and showed that it may not be feasible to recover energy from sludge with an organic content lower than 50% through mono digestion.
Collapse
Affiliation(s)
- Yuyao Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Nguyen DD, Jeon BH, Jeung JH, Rene ER, Banu JR, Ravindran B, Vu CM, Ngo HH, Guo W, Chang SW. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. BIORESOURCE TECHNOLOGY 2019; 280:269-276. [PMID: 30776653 DOI: 10.1016/j.biortech.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The main aim of this work was to test various organic wastes, i.e. from a livestock farm, a cattle slaughterhouse and agricultural waste streams, for its ability to produce methane under thermophilic anaerobic digestion (AD) conditions. The stability of the digestion, potential biomethane production and biomethane production rate for each waste were assessed. The highest methane yield (110.83 mL CH4/g VSadded day) was found in the AD of crushed animal carcasses on day 4. The experimental results were analyzed using four kinetic models and it was observed that the Cone model described the biomethane yield as well as the methane production rate of each substrate. The results from this study showed the good potential of model organic wastes to produce biomethane.
Collapse
Affiliation(s)
- Dinh Duc Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Hoon Jeung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli Region, Tamil Nadu 627007, India
| | | | - Cuong Manh Vu
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea.
| |
Collapse
|
41
|
Ning Z, Zhang H, Li W, Zhang R, Liu G, Chen C. Anaerobic digestion of lipid-rich swine slaughterhouse waste: Methane production performance, long-chain fatty acids profile and predominant microorganisms. BIORESOURCE TECHNOLOGY 2018; 269:426-433. [PMID: 30268045 DOI: 10.1016/j.biortech.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 05/25/2023]
Abstract
This study investigated methane production, long-chain fatty acids (LCFAs) profile, and predominant microorganisms in anaerobic digestion (AD) of lipid-rich swine slaughterhouse waste (SSW). The maximum methane yield was 999.2 mL/g VS. LCFAs, as inhibitory hydrolysis products, accumulated first to 1165 mg/L on day 3, and then decreased sharply to 125.7 mg/L on day 9, and finally were degraded to 20 mg/L on day 27. Linoleic acid (C18:2), oleic acid (C18:1) and palmitic acid (C16:0) were the dominant LCFAs. The easy conversion of C18:1 to C16:0 compared with difficult degradation of C16:0 resulted in an increase of C16:0 on day 4-6. Predominant microorganisms were Clostridium, Syntrophomonas and Methanospirillum. This study proved the high methane potential of lipid-rich SSW and gained insights into the degradation process by analysis of intermediates of LCFAs and predominant microorganisms. The results can provide valuable guidance for efficient utilization of this waste to produce methane in future.
Collapse
Affiliation(s)
- Zhifang Ning
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Han Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wanwu Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruihong Zhang
- Department of Biological & Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
42
|
Effect of initial pH on anaerobic co-digestion of Salvinia molesta and rice straw for biogas production and kinetics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Yu M, Gao M, Wang L, Ren Y, Wu C, Ma H, Wang Q. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers' grains and food waste by ethanol pre-fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30281-30291. [PMID: 30155637 DOI: 10.1007/s11356-018-3027-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
The anaerobic digestion of food waste (FW) often leads to acidification inhibition owing to rapid biodegradation, resulting in system instability. In this study, distillers' grains (DG) and food waste were mixed in accordance with volatile solid (VS) ratios of 0.9:0.1, 0.85:0.15, 0.8:0.2, and 0.7:0.3. The experimental groups adopted yeast to conduct ethanol pre-fermentation and then inoculated sludge to perform anaerobic digestion, while the control groups conducted anaerobic digestion without pre-treatment. Results showed that the experimental groups had lower propionic acid concentrations; higher alkalinities, pH values and methane production rates and shorter stagnation periods than the control groups regardless of the mixing ratio. Specifically, at the DG/FW ratio of 0.7:0.3, compared with the control group, the propionic acid concentration was reduced by 59.6%, the alkalinity was increased by 41.7%. Even under high organic loading, the propionic acid and VFA did not accumulate in the system after ethanol pre-fermentation, and the anaerobic digestion system remained stable. At DG/FW ratios of 0.9:0.1 and 0.85:0.15, a synergistic effect was observed during the co-digestion of DG and FW. And, the synergistic effect of EP was relatively high, especially when the DG/FW ratio was 0.9:0.1, and methane yield increased by 26.8%.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lihong Wang
- Department of Architectural Engineering, Handan Polytechnic College, Handan, Hebei, 056001, People's Republic of China
| | - Yuanyuan Ren
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
44
|
Łochyńska M, Frankowski J. The biogas production potential from silkworm waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:564-570. [PMID: 30343788 DOI: 10.1016/j.wasman.2018.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In view of the increasing demand of organic agriculture, utilization of waste and environmental protection, sericulture focuses not only on the cocoon production, but also on other ways that can benefit the farm's economy. It is necessary to find new sources of income for small-scale farmers not only through cocoon selling, but also by the multiple uses of by-products. Insect farming technology provides a cheap source of biomass, which may be a good material in biogas production. Studies showed that the examined substrates, both silkworm breeding waste and caterpillar excreta, generate a biogas yield comparable to other substrates of agricultural origin, such as cattle, pig and chicken manures. Fermentation of silkworm excreta under mesophilic conditions produces 167.32 m3/Mg TS of methane and 331.97 m3/Mg TS of biogas, while fermentation of silkworm breeding waste yields 256.59 m3/Mg TS of methane and 489.24 m3/Mg TS of biogas. Moreover, the chemical composition of these raw materials was analyzed.
Collapse
Affiliation(s)
- Małgorzata Łochyńska
- Institute of Natural Fibers and Medicinal Plants, Silkworms Breeding and Mulberry Cultivation Laboratory, Wojska Polskiego 71B, 60-630 Poznań, Poland.
| | - Jakub Frankowski
- Institute of Natural Fibers and Medicinal Plants, Energy Plant Research Laboratory, Wojska Polskiego 71B, 60-630 Poznań, Poland.
| |
Collapse
|
45
|
Greggio N, Carlini C, Contin A, Soldano M, Marazza D. Exploitable fish waste and stranded beach debris in the Emilia-Romagna Region (Italy). WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:566-575. [PMID: 32559946 DOI: 10.1016/j.wasman.2018.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/30/2018] [Accepted: 06/17/2018] [Indexed: 06/11/2023]
Abstract
Within Circular Economy principles, this paper analyses and estimates exploitable marine residues, such as fish waste and stranded debris in beaches and their potential valorisation scenarios. The Emilia-Romagna Region (Italy) has been chosen as a case study. Based on the sold fish, about 200 Mg/year of fish waste are produced at the five major fish markets of the Region. Including all regional fish processing plants and retail trade, the estimated availability of fish waste increases up to 30,000 Mg/year. Stranded beach debris collected by mechanical cleaning operations are currently deposited in landfill. About 63,000 Mg/year of sieved debris are collected each year, out of which the recoverable fractions consist of 19,000 Mg/year of organic material, 8,000 Mg/year of shells and 5,200 Mg/year of stones. Classification and valorisation routes for these residual biomasses are proposed and their applicability to other regions discussed. In order to investigate the possible use in anaerobic digestion plants and the effects on biogas production, Biochemical Methane Potential (BMP) assays have been carried out with fish waste samples and with organic material found in marine debris. Salt content in driftwood has been quantified to assess its potential use in Combined Heat and Power (CHP) plants. Proposed valorisation routes for shells and stones include the production of calcium carbonate (cement industry, wastewater treatment and mulching) and the application in building industry, respectively.
Collapse
Affiliation(s)
- Nicolas Greggio
- CIRSA Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Via S. Alberto 163, 48123 Ravenna, Italy.
| | - Carlotta Carlini
- CIRSA Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Andrea Contin
- CIRSA Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Via S. Alberto 163, 48123 Ravenna, Italy; Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna, Italy
| | - Mariangela Soldano
- CRPA Lab Centro Ricerche Produzioni Animali S.p.A., Viale Timavo 43/2, 42121 Reggio Emilia, Italy
| | - Diego Marazza
- CIRSA Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Via S. Alberto 163, 48123 Ravenna, Italy; Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna, Italy
| |
Collapse
|
46
|
|
47
|
Deng Y, Qiu L, Yao Y, Qin M. A technology for strongly improving methane production from rice straw: freeze-thaw pretreatment. RSC Adv 2018; 8:22643-22651. [PMID: 35539703 PMCID: PMC9081385 DOI: 10.1039/c8ra03692f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/14/2018] [Indexed: 12/05/2022] Open
Abstract
Overcoming the complex three dimensional structure of biomass is a major challenge in enhancing anaerobic digestion (AD) efficacy. Freeze-thaw pretreatment was proposed herein in order to improve methane production from rice straw. The effect was notable: average methane content for group-A (-4 °C) and -B (-20 °C) were A1 (-4 °C, 12 h): 40.0%, A2 (-4 °C, 24 h): 40.5%, A3 (-4 °C, 48 h): 42.2%; B1 (-20 °C, 12 h): 44.2%, B2 (-20 °C, 24 h): 45.7%, B3 (-20 °C, 48 h): 46.0%, the increases were 88.8-99.1% and 108.8-117.2%, respectively, compared with control (CK) (21.2%). Total methane production for group-A and -B were A1: 22.8 mL g-1 TS, A2: 24.7 mL g-1 TS, A3: 27.8 mL g-1 TS; B1: 29.9 mL g-1 TS, B2: 31.3 mL g-1 TS, B3: 32.0 mL g-1 TS, compared with CK (7.6 mL g-1 TS), the increases were 200.0-265.8%, 293.4-321.1%, respectively. The technical digestion time (T 80) was shortened by 8 days. Therefore, the maximum methane production was obtained under conditions of -20 °C and 48 h. This study proposed an efficient pretreatment method that broadens the horizon of improving biomass conversion into bioenergy.
Collapse
Affiliation(s)
- Yuanfang Deng
- College of Mechanical and Electronic Engineering, Northwest A&F University Yangling Shaanxi 712100 China +86 13992873650
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University Yangling Shaanxi 712100 China +86 509 339 4927
| | - Ling Qiu
- College of Mechanical and Electronic Engineering, Northwest A&F University Yangling Shaanxi 712100 China +86 13992873650
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University Yangling Shaanxi 712100 China +86 509 339 4927
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University Yangling Shaanxi 712100 China +86 13992873650
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University Yangling Shaanxi 712100 China +86 509 339 4927
| | - Mengyao Qin
- School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 China
| |
Collapse
|
48
|
Methodical Aspects of Biogas Production in Small-Volume Bioreactors in Laboratory Investigations. ENERGIES 2018. [DOI: 10.3390/en11061378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Li L, He Q, Zhao X, Wu D, Wang X, Peng X. Anaerobic digestion of food waste: Correlation of kinetic parameters with operational conditions and process performance. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Barrena R, Traub JE, Gil CR, Goodwin JAS, Harper AJ, Willoughby NA, Sánchez A, Aspray TJ. Batch anaerobic digestion of deproteinated malt whisky pot ale using different source inocula. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018. [PMID: 28648745 DOI: 10.1016/j.wasman.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A novel process has been developed for the selective removal of protein from pot ale with recovered protein holding potential as a value-added by-product for the whisky industry. The purpose of this work was to assess the effect of deproteination on pot ale physicochemical characterisation and anaerobic digestion (AD) treatment. Pot ales were taken from five malt whisky distilleries and tested untreated, after centrifugation/filtration and after deproteination at laboratory or pilot scale. At laboratory scale, the deproteination process removed around 20% of total chemical oxygen demand (tCOD) from untreated pot ale and at least 30% dissolved copper from centrifuged pot ale. Biochemical methane potential of untreated, filtered and deproteinated pot ale obtained at pilot scale has been determined using two types of inocula from different source. Average methane yield values of 554±67, 586±24 and 501±23 Nl CH4 kg-1 VS were obtained for untreated, filtered and deproteinated pot ale respectively. A significant difference in methane yield was only observed for untreated pot ale using the two types of inocula. Specifically, when using a non-adapted inoculum untreated pot ale biogas yield was significant lower suggesting inhibition of the AD process. As no significant differences were found for treated pot ale (filtered and deproteinated) with the two inocula it suggests, deproteination may have a positive effect on AD start-up. The results present a clear case for continuation of this work and evaluating the effect on continuous AD.
Collapse
Affiliation(s)
- Raquel Barrena
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK; Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Julio E Traub
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Cristina Rodriguez Gil
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Julian A S Goodwin
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Alan J Harper
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Nik A Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Thomas J Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
| |
Collapse
|