1
|
Li W, Yuan H, Hu Y, Dou S, Zhang E, Wu Q, Sun F. Construction of new thermostable MtLPMO9V in synergism with cellulases for efficient lignocellulosic hydrolysis. BIORESOURCE TECHNOLOGY 2025; 430:132594. [PMID: 40306337 DOI: 10.1016/j.biortech.2025.132594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can promote cellulose hydrolysis by disrupting its crystalline zone. This study focused on an uncharacterized thermophilic Myceliophthora thermophila LPMO (MtLPMO9V) in synergism with cellulases for efficient ligocellulosic hydrolysis. After MtLPMO9V was successfully expressed in P. pastoris GS115, the oxidative depolymerization of it was characterized by HPLC, HPAEC-PAD, and MALDI-TOF MS, indicating C4 oxidative cleavage activity. With combination of computer-aided design and MD simulation, MtLPMO9V was improved for a higher catalytic activity and thermostability by introduction of disulfide bonds, followed by point mutation. The mutant, A170C/A175C/Q120Y (M3), exhibited a remarkable enzymatic activity, increasing by 88 % as compared to the wild-type MtLPMO9V (WT), in which the catalytic efficiency (kcat/Km) was roughly 1.90 folds that of the WT. The M3 demonstrated broad applicability, not only showing synergism with the thermostable endoglucanase DtCelA for efficient high-temperature saccharification of cellulosic substrates, but also enhancing the saccharification of lignocellulosic substrates when combined with the commercial cellulase blend Celluclast 1.5L, where LPMO accounts for only 2-4 % of the cellulase mixture. This study provides valuable insights into engineering of new extreme LPMOs and also exhibits their potential applicability in development of cellulase-mediated lignocellulosic biorefinery industry.
Collapse
Affiliation(s)
- Weimeng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hang Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Shaohua Dou
- School of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Qun Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
de Melo VS, Gomes BM, Gaziri T, Tamarozzi ER, Chambergo FS. Biochemical characterization and molecular dynamics study of a thermostable endo-1,5-α-arabinanase. Protein Expr Purif 2025; 231:106720. [PMID: 40258537 DOI: 10.1016/j.pep.2025.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Arabinan, a crucial constituent of plant biomass, undergoes hydrolysis through the enzymes endo-1,5-α-L-arabinanases and α-L-arabinofuranosidases, resulting in the release of L-arabinose. This monosaccharide holds diverse applications in the biofuel, food, and pharmaceutical industries. In this study, we characterized GeoARA, a recombinant enzyme of endo-1,5-α-L-arabinanase from Geobacillus sp. JS12, previously undescribed in this organism. GeoARA, expressed in E. coli BL21 and purified via affinity chromatography, displayed optimal activity at pH 7.0 and temperature of 70 °C on the specific substrate debranched arabinan. In the presence of metallic ions and EDTA as additives, the enzyme demonstrated high stability. Notably, the enzyme maintained high thermal stability at 70°C for up to 48 h, with enhanced performance in the presence of Co2+. GeoARA demonstrated a specific activity on debranched arabinan of 226.7 U mg-1, with Km, Vmax, kcat, and kcat/Km values of 12.1 mg mL-1, 1284.7 μmol min-1 mg-1, 642.3 s-1, and 53 mL mg-1 s-1, respectively. Furthermore, the three-dimensional structure of GeoARA was determined using homology-based molecular modeling, and the predicted model quality was validated through molecular dynamics simulations. The integration of computational and biochemical analyses confirmed that the enhanced thermostability observed experimentally, particularly in the presence of the cobalt ion, is associated with reduced atomic fluctuations and increased structural rigidity near the catalytic site. Together, these biochemical features position the endo-1,5-α-L-arabinanase GeoARA as a promising candidate for efficiently extracting L-arabinose in industrial applications.
Collapse
Affiliation(s)
- Vandierly Sampaio de Melo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Brisa Moreira Gomes
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Tarcillo Gaziri
- Laboratory of Biomimetic Systems, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Elvira Regina Tamarozzi
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Felipe Santiago Chambergo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Wu S, Zhang N, Wan Q. Disulfide bonds enhance thermal stability and thumb region drives activity of the glycoside hydrolase 11 xylanase rMxyl cd. J Struct Biol 2025; 217:108209. [PMID: 40368259 DOI: 10.1016/j.jsb.2025.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Thermostable enzymes have significant advantages in industries, yet uncovering novel candidates with superior properties remains a scientific pursuit. This study identified rMxylcd, a glycoside hydrolase 11 family thermophilic xylanase from compost-soil metagenome, which exhibited a high specific activity of 5954 U·mg-1 at pH 5.5 and 80°C. rMxylcd was crystallized and diffracted to 1.5 Å resolution. Compared to the mesophilic xylanase Xyn II, rMxylcd exhibits a more compact architecture. Notably, B-factor analysis reveals a uniquely flexible thumb region, hinting at its critical role in the enzyme's catalytic mechanism. rMxylcd contains two disulfide bonds in the thumb and the N-terminal regions. Breaking these disulfide bonds by mutagenesis has dramatically decreased activities and thermostability. Conversely, introducing an extra disulfide bond at the N-terminal region of its α-helix extended its half-life for more than five folds at 80°C. Our studies firmly establish that the disulfide bonds are essential for its high thermal stability and the flexibility of the thumb region is crucial for its activity. Comparing the rMxylcd crystal structure with the AlphaFold2-predicted model shows overall similarity, but the crystal structure offers higher local accuracy, especially in key functional regions. These findings not only deepen our understanding of the structure-function relationship of thermophilic xylanases but also inform a rational design of industrial enzymes.
Collapse
Affiliation(s)
- Songna Wu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Organic-Based Fertilizers of China, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, China; Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China; College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianying Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Wan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Organic-Based Fertilizers of China, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, China; Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Ding N, Jiang Y, Lee S, Cheng Z, Ran X, Ding Y, Ge R, Zhang Y, Yang ZJ. Enzyme miniaturization: Revolutionizing future biocatalysts. Biotechnol Adv 2025; 82:108598. [PMID: 40354901 DOI: 10.1016/j.biotechadv.2025.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/05/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Enzyme miniaturization offers a transformative approach to overcome limitations posed by the large size of conventional enzymes in industrial, therapeutic, and diagnostic applications. However, the evolutionary optimization of enzymes for activity has not inherently favored compact structures, creating challenges for modern applications requiring smaller catalysts. In this review, we surveyed the advantages of miniature enzymes, including enhanced expressivity, folding efficiency, thermostability, and resistance to proteolysis. We described the applications of miniature enzymes as industrial catalysts, therapeutic agents, and diagnostic elements. We highlighted strategies such as genome mining, rational design, random deletion, and de novo design for achieving enzyme miniaturization, integrating both computational and experimental techniques. By investigating these approaches, we aim to provide a framework for advancing enzyme engineering, emphasizing the unique potential of miniature enzymes to revolutionize biocatalysis, gene therapy, and biosensing technologies.
Collapse
Affiliation(s)
- Ning Ding
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, United States.
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, United States
| | - Sangsin Lee
- Department of Genetics, Stanford University, Stanford, CA 94305, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Yujing Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Robbie Ge
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
5
|
Le Y, Zhang M, Wu P, Wang H, Ni J. Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing. ENGINEERING MICROBIOLOGY 2024; 4:100174. [PMID: 39628591 PMCID: PMC11610967 DOI: 10.1016/j.engmic.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024]
Abstract
The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengqi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Pengju Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huilei Wang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
7
|
Covington JK, Torosian N, Cook AM, Palmer M, Bryan SG, Nou NO, Mewalal R, Harmon-Smith M, Blaby IK, Cheng JF, Hess M, Brumm PJ, Singh NK, Venkateswaran K, Hedlund BP. Biochemical characterization of Fsa16295Glu from "Fervidibacter sacchari," the first hyperthermophilic GH50 with β-1,3-endoglucanase activity and founding member of the subfamily GH50_3. Front Microbiol 2024; 15:1355444. [PMID: 38725686 PMCID: PMC11079163 DOI: 10.3389/fmicb.2024.1355444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The aerobic hyperthermophile "Fervidibacter sacchari" catabolizes diverse polysaccharides and is the only cultivated member of the class "Fervidibacteria" within the phylum Armatimonadota. It encodes 117 putative glycoside hydrolases (GHs), including two from GH family 50 (GH50). In this study, we expressed, purified, and functionally characterized one of these GH50 enzymes, Fsa16295Glu. We show that Fsa16295Glu is a β-1,3-endoglucanase with optimal activity on carboxymethyl curdlan (CM-curdlan) and only weak agarase activity, despite most GH50 enzymes being described as β-agarases. The purified enzyme has a wide temperature range of 4-95°C (optimal 80°C), making it the first characterized hyperthermophilic representative of GH50. The enzyme is also active at a broad pH range of at least 5.5-11 (optimal 6.5-10). Fsa16295Glu possesses a relatively high kcat/KM of 1.82 × 107 s-1 M-1 with CM-curdlan and degrades CM-curdlan nearly completely to sugar monomers, indicating preferential hydrolysis of glucans containing β-1,3 linkages. Finally, a phylogenetic analysis of Fsa16295Glu and all other GH50 enzymes revealed that Fsa16295Glu is distant from other characterized enzymes but phylogenetically related to enzymes from thermophilic archaea that were likely acquired horizontally from "Fervidibacteria." Given its functional and phylogenetic novelty, we propose that Fsa16295Glu represents a new enzyme subfamily, GH50_3.
Collapse
Affiliation(s)
| | - Nicole Torosian
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Allison M. Cook
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Scott G. Bryan
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Nancy O. Nou
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Ritesh Mewalal
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Miranda Harmon-Smith
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ian K. Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | | | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
8
|
Lau MH, Madika A, Zhang Y, Minton NP. Parageobacillus thermoglucosidasius Strain Engineering Using a Theophylline Responsive RiboCas for Controlled Gene Expression. ACS Synth Biol 2024; 13:1237-1245. [PMID: 38517011 PMCID: PMC11036489 DOI: 10.1021/acssynbio.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
The relentless increase in atmospheric greenhouse gas concentrations as a consequence of the exploitation of fossil resources compels the adoption of sustainable routes to chemical and fuel manufacture based on biological fermentation processes. The use of thermophilic chassis in such processes is an attractive proposition; however, their effective exploitation will require improved genome editing tools. In the case of the industrially relevant chassis Parageobacillus thermoglucosidasius, CRISPR/Cas9-based gene editing has been demonstrated. The constitutive promoter used, however, accentuates the deleterious nature of Cas9, causing decreased transformation and low editing efficiencies, together with an increased likelihood of off-target effects or alternative mutations. Here, we rectify this issue by controlling the expression of Cas9 through the use of a synthetic riboswitch that is dependent on the nonmetabolized, nontoxic, and cheap inducer, theophylline. We demonstrate that the riboswitches are dose-dependent, allowing for controlled expression of the target gene. Through their use, we were then able to address the deleterious nature of Cas9 and produce an inducible system, RiboCas93. The benefits of RiboCas93 were demonstrated by increased transformation efficiency of the editing vectors, improved efficiency in mutant generation (100%), and a reduction of Cas9 toxicity, as indicated by a reduction in the number of single nucleotide polymorphisms (SNPs) observed. This new system provides a quick and efficient way to produce mutants in P. thermoglucosidasius.
Collapse
Affiliation(s)
- Matthew
S. H. Lau
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Abubakar Madika
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Department
of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ying Zhang
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, Nottingham
University Hospitals NHS Trust and The University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
9
|
Akram F, Fatima T, Ibrar R, Shabbir I, Shah FI, Haq IU. Trends in the development and current perspective of thermostable bacterial hemicellulases with their industrial endeavors: A review. Int J Biol Macromol 2024; 265:130993. [PMID: 38508567 DOI: 10.1016/j.ijbiomac.2024.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | | | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
10
|
Castañeda-Barreto A, Olivera-Gonzales P, Tamariz-Angeles C. A natural consortium of thermophilic bacteria from Huancarhuaz hot spring (Ancash-Peru) for promising lignocellulose bioconversion. Heliyon 2024; 10:e27272. [PMID: 38486736 PMCID: PMC10937689 DOI: 10.1016/j.heliyon.2024.e27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The lignocellulose bioconversion process is an eco-friendly and green-economy alternative technology that allows the reduction of pollution and global warming, so it is necessary for thermophilic and thermostable hydrolytic enzymes from natural sources. This research aimed to isolate cellulolytic and xylanolytic microbial consortia from Huancarhuaz hot spring (Peru) from sludge or in situ baiting cultured with or without sugarcane bagasse. According to the hydrolytic activities consortium T4 from in situ baiting was selected. It was cultivated in submerged fermentation at 65 °C, pH 6.5 for eight days using LB supplemented with sugar cane bagasse (SCB), pine wood sawdust (PWS), CMC, xylan of birchwood, or micro granular cellulose. Crude extract of culture supplemented with SCB (T4B) showed better endoglucanase and xylanase activities with higher activities at 75 °C and pH 6. In these conditions, cellulase activity was kept up to 57% after 1 h of incubation, while xylanase activity was up to 63% after 72 h. Furthermore, this crude extract released reduced sugars from pretreated SCB and PWS. According to metagenomic analysis of 16S rDNA, Geobacillus was the predominant genus. It was found thermostable genes: a type of endoglucanase (GH5), an endo-xylanase (GH10), and alkali xylanase (GH10) previously reported in Geobacillus sp. strains. Finally, Huancarhuaz hot spring harbors a genetic microbial diversity for lignocellulosic waste bioconversion in high temperatures, and the T4B consortium will be a promising source of novel extreme condition stable enzymes for the saccharification process.
Collapse
Affiliation(s)
- Alberto Castañeda-Barreto
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| |
Collapse
|
11
|
Guta M, Abebe G, Bacha K, Cools P. Screening and characterization of thermostable enzyme-producing bacteria from selected hot springs of Ethiopia. Microbiol Spectr 2024; 12:e0371023. [PMID: 38294247 PMCID: PMC10913744 DOI: 10.1128/spectrum.03710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Hot springs are potential sources of diverse arrays of microbes and their thermostable hydrolytic enzymes. Water and sediment samples were collected from three hot springs of Ethiopia and enriched on nutrient and thermus agar media to isolate pure cultures of potential microbes. A total of 252 bacterial isolates were screened and evaluated for the production of amylase, protease, cellulase, and lipase. About 95.23%, 84.12%, 76.58%, and 65.07% of the isolates displayed promising amylase, proteases, cellulase, and lipase activities, respectively. Based on the diameter of the clear zone formed, 45 isolates were further screened and identified to species level using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. Five of the 45 isolates showed significantly high (P < 0.05) clear zone ratios as compared to others. The identified isolates were categorized under five bacterial species, namely, Bacillus licheniformis, Bacillus cereus, Paenibacillus thiaminolyticus, Paenibacillus dendritiformis, and Brevibacillus borstelensis. The most dominant species (66.7%) was B. licheniformis. It could be concluded that hot springs of Ethiopia are potential sources of thermostable extracellular hydrolytic enzymes for various industrial applications. Further optimization of the growth conditions and evaluation for better productivity of the desired products is recommended before attempting for large-scale production of the hydrolytic enzymes. IMPORTANCE Thermostable microbial enzymes play an important role in industries due to their stability under harsh environmental conditions, including extreme temperatures. Despite their huge application in different industries, however, the thermostable enzymes of thermophilic microorganism origin have not yet been fully explored in Ethiopia. Here, we explored thermophilic bacteria and their enzymes from selected hot spring water and sediment samples. Accordingly, thermophilic bacteria were isolated and screened for the production of extracellular hydrolytic enzymes. Promising numbers of isolates were found as producers of the enzymes. The potent enzyme producers were further identified using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. The findings revealed the presence of potential hydrolytic enzyme-producing thermophilic bacteria in hot springs of Ethiopia and necessitate further comprehensive study involving other extreme environments. Our findings also revealed the potential of Ethiopian hot springs in the production of thermostable enzymes of significant application in different industries, including food industries.
Collapse
Affiliation(s)
- Meseret Guta
- Department of Biology, Jimma University, Jimma, Ethiopia
| | - Genet Abebe
- Department of Biology, Jimma University, Jimma, Ethiopia
| | - Ketema Bacha
- Department of Biology, Jimma University, Jimma, Ethiopia
| | - Piet Cools
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Rajeswari G, Kumar V, Jacob S. A concerted enzymatic de-structuring of lignocellulosic materials using a compost-derived microbial consortia favoring the consolidated pretreatment and bio-saccharification. Enzyme Microb Technol 2024; 174:110393. [PMID: 38219439 DOI: 10.1016/j.enzmictec.2023.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The robustness of microbial consortia isolated from compost habitat encompasses the complementary metabolism that aids in consolidated bioprocessing (CBP) of lignocellulosic biomass (LCB) by division of labor across the symbionts. Composting of organic waste is deemed to be an efficient way of carbon recycling, where the syntrophic microbial population exerts a concerted action of lignin and polysaccharide (hemicellulose and cellulose) component of plant biomass. The potential of this interrelated microorganism could be enhanced through adaptive laboratory evolution (ALE) with LCB for its desired functional capabilities. Therefore, in this study, microbial symbionts derived from organic compost was enriched on saw dust (SD) (woody biomass), aloe vera leaf rind (AVLR) (agro-industrial waste) and commercial filter paper (FP) (pure cellulose) through ALE under different conditions. Later, the efficacy of enriched consortium (EC) on consolidated pretreatment and bio-saccharification was determined based on substrate degradation, endo-enzymes profiling and fermentable sugar yield. Among the treatment sets, AVLR biomass treated with EC-5 has resulted in the higher degradation rate of lignin (47.01 ± 0.66%, w/w) and polysaccharides (45.87 ± 1.82%, w/w) with a total sugar yield of about 60.01 ± 4.24 mg/g. In addition, the extent of structural disintegration of substrate after EC-treatment was clearly deciphered by FTIR and XRD analysis. And the factors of Pearson correlation matrix reinforces the potency of EC-5 by exhibiting a strong positive correlation between AVLR degradation and the sugar release. Thus, a consortium based CBP could promote the feasibility of establishing a sustainable second generation biorefinery framework.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
13
|
Liu J, Han X, Tao F, Xu P. Metabolic engineering of Geobacillus thermoglucosidasius for polymer-grade lactic acid production at high temperature. BIORESOURCE TECHNOLOGY 2024; 393:130164. [PMID: 38072074 DOI: 10.1016/j.biortech.2023.130164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The production and application of biodegradable polylactic acid are still severely hindered by the cost of its polymer-grade lactic acid monomers. High-temperature biomanufacturing has emerged as an increasingly attractive approach to enable low-cost and high-efficiency bulk chemical production. In this study, thermophilic Geobacillus thermoglucosidasius was reprogrammed to obtain optically pure l-lactic acid- and d-lactic acid-producing strains, G. thermoglucosidasius GTD17 and GTD7, by using rational metabolic engineering strategies including pathway construction, by-product elimination, and production enhancing. Moreover, semi-rational adaptive evolution was carried out to further improve their lactic acid synthesis performance. The final strains GTD17-55 and GTD7-144 produce 151.1 g/L of l-lactic acid and 153.1 g/L of d-lactic acid at 60 °C, respectively. In consideration of the high temperature, productive performance of these strains is superior compared to the state-of-the-art industrial strains. This study lays the foundation for the low-cost and efficient production of biodegradable plastic polylactic acid.
Collapse
Affiliation(s)
- Jiongqin Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Melo VSD, Gomes BM, Chambergo FS. Biochemical characterization of a xylose-tolerant GH43 β-xylosidase from Geobacillus thermodenitrificans. Carbohydr Res 2023; 532:108901. [PMID: 37487384 DOI: 10.1016/j.carres.2023.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially β-xylosidases. In this study, β-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of β-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-β-d-xylopyranoside. The specific activity on p-nitrophenyl-β-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other β-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.
Collapse
Affiliation(s)
- Vandierly Sampaio de Melo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil
| | - Brisa Moreira Gomes
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil
| | - Felipe Santiago Chambergo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil.
| |
Collapse
|
15
|
Millgaard M, Bidart GN, Pogrebnyakov I, Nielsen AT, Welner DH. An improved integrative GFP-based vector for genetic engineering of Parageobacillus thermoglucosidasius facilitates the identification of a key sporulation regulator. AMB Express 2023; 13:44. [PMID: 37154828 PMCID: PMC10167077 DOI: 10.1186/s13568-023-01544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Parageobacillus thermoglucosidasius is a thermophilic Gram-positive bacterium, which is a promising host organism for sustainable bio-based production processes. However, to take full advantage of the potential of P. thermoglucosidasius, more efficient tools for genetic engineering are required. The present study describes an improved shuttle vector, which speeds up recombination-based genomic modification by incorporating a thermostable sfGFP variant into the vector backbone. This additional selection marker allows for easier identification of recombinants, thereby removing the need for several culturing steps. The novel GFP-based shuttle is therefore capable of facilitating faster metabolic engineering of P. thermoglucosidasius through genomic deletion, integration, or exchange. To demonstrate the efficiency of the new system, the GFP-based vector was utilised for deletion of the spo0A gene in P. thermoglucosidasius DSM2542. This gene is known to be a key regulator of sporulation in Bacillus subtilis, and it was therefore hypothesised that the deletion of spo0A in P. thermoglucosiadius would produce an analogous sporulation-inhibited phenotype. Subsequent analyses of cell morphology and culture heat resistance suggests that the P. thermoglucosidasius ∆spo0A strain is sporulation-deficient. This strain may be an excellent starting point for future cell factory engineering of P. thermoglucosidasius, as the formation of endospores is normally not a desired trait in large-scale production.
Collapse
Affiliation(s)
- Marie Millgaard
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Gonzalo Nahuel Bidart
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Wang Y, Sun J, Zhang M, Pan K, Liu T, Zhang T, Luo X, Zhao J, Li Z. Detoxification of Fumonisins by Three Novel Transaminases with Diverse Enzymatic Characteristics Coupled with Carboxylesterase. Foods 2023; 12:foods12020416. [PMID: 36673508 PMCID: PMC9858248 DOI: 10.3390/foods12020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Fumonisin (FB) is one of the most common mycotoxins contaminating feed and food, causing severe public health threat to human and animals worldwide. Until now, only several transaminases were found to reduce FB toxicity, thus, more fumonisin detoxification transaminases with excellent catalytic properties required urgent exploration for complex application conditions. Herein, through gene mining and enzymatic characterization, three novel fumonisin detoxification transaminases-FumTSTA, FumUPTA, FumPHTA-were identified, sharing only 61-74% sequence identity with reported fumonisin detoxification transaminases. Moreover, the recombinant proteins shared diverse pH reaction ranges, good pH stability and thermostability, and the recombinant protein yields were also improved by condition optimum. Furthermore, the final products were analyzed by liquid chromatography-mass spectrometry. This study provides ideal candidates for fumonisin detoxification and meets diverse required demands in food and feed industries.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junhao Sun
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengwei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kungang Pan
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianhui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junqi Zhao
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
- Correspondence: (J.Z.); (Z.L.)
| | - Zhongyuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (J.Z.); (Z.L.)
| |
Collapse
|
17
|
Tan S, Tao X, Zheng P, Chen P, Yu X, Li N, Gao T, Wu D. Thermostability modification of β-mannanase from Aspergillus niger via flexibility modification engineering. Front Microbiol 2023; 14:1119232. [PMID: 36891394 PMCID: PMC9986629 DOI: 10.3389/fmicb.2023.1119232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction β-Mannanases can hydrolyze mannans, which are widely available in nature. However, the optimum temperature of most β-mannanases is too low to be directly utilized in industry. Methods To further improve the thermostability of Anman (mannanase from Aspergillus niger CBS513.88), B-factor and Gibbs unfolding free energy change were used to modify the flexible of Anman, and then combined with multiple sequence alignment and consensus mutation to generate an excellent mutant. At last, we analyzed the intermolecular forces between Anman and the mutant by molecular dynamics simulation. Results The thermostability of combined mutant mut5 (E15C/S65P/A84P/A195P/T298P) was increased by 70% than the wild-type Amman at 70°C, and the melting temperature (Tm) and half-life (t1/2) values were increased by 2°C and 7.8-folds, respectively. Molecular dynamics simulation showed reduced flexibility and additional chemical bonds in the region near the mutation site. Discussion These results indicate that we obtained a Anman mutant that is more suitable for industrial application, and they also confirm that a combination of rational and semi-rational techniques is helpful for screening mutant sites.
Collapse
Affiliation(s)
- Shundong Tan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaowei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ning Li
- Guangzhou Puratos Food Co., Ltd., Guangzhou, China
| | - Tiecheng Gao
- Guangzhou Puratos Food Co., Ltd., Guangzhou, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Isolation and Characterization of Thermophilic Bacteria from Hot Springs in Republic of Korea. Microorganisms 2022; 10:microorganisms10122375. [PMID: 36557626 PMCID: PMC9781657 DOI: 10.3390/microorganisms10122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Thermophiles that produce extracellular hydrolases are of great importance due to their applications in various industries. Thermophilic enzymes are of interest for industrial applications due to their compatibility with industrial processes, and the availability of the organisms is essential to develop their full potential. In this study, a culture-dependent approach was used to identify thermophilic bacteria from five hot springs in Republic of Korea. Characterization, taxonomic identification, and extracellular hydrolase (amylase, lipase, and protease) activity of 29 thermophilic bacterial isolates from the Neungam carbonate, Mungang sulfur, Deokgu, Baegam, and Dongnae hot springs were investigated. Identification based on the full-length 16S rRNA gene sequence revealed that strains belonged to the phylum Bacillota and were classified as Aeribacillus, Bacillus, Caldibacillus, Geobacillus, and Thermoactinomyces genera. It was found that 22 isolates could produce at least one extracellular enzyme. Geobacillus, representing 41.4% of the isolates, was the most abundant. The highest amount of proteolytic and lipolytic enzymes was secreted by strains of the genus Geobacillus, whereas Caldibacillus species produced the highest amount of amylolytic enzyme. The Geobacillus species producing hydrolytic extracellular enzymes appeared to be the most promising.
Collapse
|
19
|
Kataoka M, Kim HW, Ishikawa K. Recognition mechanism of endocellulase for β-glucan containing β(1 → 3),(1 → 4) mixed-linkages. Carbohydr Res 2022; 522:108682. [DOI: 10.1016/j.carres.2022.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
20
|
Marchisio F, Di Nardo L, Val DS, Cerminati S, Espariz M, Rasia RM, Menzella HG, Castelli ME. Characterization of a novel thermostable phospholipase C from T. kodakarensis suitable for oil degumming. Appl Microbiol Biotechnol 2022; 106:5081-5091. [PMID: 35854045 DOI: 10.1007/s00253-022-12081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
The implementation of cleaner technologies that minimize environmental pollution caused by conventional industrial processes is an increasing global trend. Hence, traditionally used chemicals have been replaced by novel enzymatic alternatives in a wide variety of industrial-scale processes. Enzymatic oil degumming, the first step of the oil refining process, exploits the conversion catalyzed by phospholipases to remove vegetable crude oils' phospholipids. This enzymatic method reduces the gums' volume and increases the overall oil yield. A thermostable phospholipase would be highly advantageous for industrial oil degumming as oil treatment at higher temperatures would save energy and increase the recovery of oil by facilitating the mixing and gums removal. A thermostable phosphatidylcholine (PC) (and phosphatidylethanolamine (PE))-specific phospholipase C from Thermococcus kodakarensis (TkPLC) was studied and completely removed PC and PE from crude soybean oil at 80 °C. Due to these characteristics, TkPLC is an interesting promising candidate for industrial-scale enzymatic oil degumming at high temperatures. KEY POINTS: • A thermostable phospholipase C from T. kodakarensis (TkPLC) has been identified. • TkPLC was recombinantly produced in Pichia pastoris and successfully purified. • TkPLC completely hydrolyzed PC and PE in soybean oil degumming assays at 80 °C.
Collapse
Affiliation(s)
- Fiorela Marchisio
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET. Mitre 1998, S2000FWF, Rosario, Argentina
| | - Luisina Di Nardo
- Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Instituto de Biología Celular Y Molecular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET. Ocampo Y Esmeralda S/N, 2000, Rosario, Argentina
| | - Diego Sebastián Val
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET. Mitre 1998, S2000FWF, Rosario, Argentina
| | - Sebastián Cerminati
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET. Mitre 1998, S2000FWF, Rosario, Argentina
| | - Martín Espariz
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET. Mitre 1998, S2000FWF, Rosario, Argentina.,Área Estadística Y Procesamiento de Datos, Departamento de Matemática Y Estadística, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rodolfo Maximiliano Rasia
- Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Instituto de Biología Celular Y Molecular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET. Ocampo Y Esmeralda S/N, 2000, Rosario, Argentina.,Plataforma Argentina de Biología Estructural Y Metabolómica (PLABEM - CONICET), Ocampo y Esmeralda s/n, 2000, Rosario, Argentina
| | - Hugo Gabriel Menzella
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET. Mitre 1998, S2000FWF, Rosario, Argentina
| | - María Eugenia Castelli
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET. Mitre 1998, S2000FWF, Rosario, Argentina.
| |
Collapse
|
21
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
22
|
Areeshi MY. Microbial cellulase production using fruit wastes and its applications in biofuels production. Int J Food Microbiol 2022; 378:109814. [DOI: 10.1016/j.ijfoodmicro.2022.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
|
23
|
Xu F, Ma Z, Wang X, Wang Q, Han Y, Li Y, Sun G. From liquid hot water pretreatment solution to lignin-based hydrophobic deep eutectic solvent for highly efficient extraction of Cr (VI). Int J Biol Macromol 2022; 208:883-889. [PMID: 35367274 DOI: 10.1016/j.ijbiomac.2022.03.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
Liquid hot water (LHW) pretreatment has been widely investigated attributed to its advantages, such as environmental friendliness, the potential application of dissolved hemicellulose, and no chemical addition. Expanding the portfolio of products that can be made from LHW pretreatment solutions will be critical to enabling a viable LHW-based economy. We provide a one-step method to separate and functionalize lignin from the LHW pretreatment solution. A hydrophobic deep eutectic solvent (hDES) was prepared by using methyltrioctylammonium chloride (MTAC) and the LHW pretreatment solution and directly applied to the extraction of Cr (VI) in an aqueous solution. In the process of forming hDES, the removal rate of liquid hot water lignin (LHWL) was reached 99%. The new LHW-hDES exhibited excellent extraction performance for Cr (VI), the extraction capacity was as high as 198.402 mg g-1, optimum extraction conditions at the mass of hDES 0.10 g, vortex time 90 s, room temperature, and natural pH. Notably, we have shown that the method of combining the separation and functionalization of lignin in the LHW pretreatment solution, which can provide a way of thinking for the application of the LHW pretreatment solution.
Collapse
Affiliation(s)
- Fuqiong Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Laboratory of Pulp and Papermaking Engineering, Yueyang Forest & Paper Co., Ltd., Hunan 414002, China.
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-Ku, Sapporo 001-0021, Japan
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
24
|
Bhalla A, Arce J, Ubanwa B, Singh G, Sani RK, Balan V. Thermophilic Geobacillus WSUCF1 Secretome for Saccharification of Ammonia Fiber Expansion and Extractive Ammonia Pretreated Corn Stover. Front Microbiol 2022; 13:844287. [PMID: 35694290 PMCID: PMC9176393 DOI: 10.3389/fmicb.2022.844287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
A thermophilic Geobacillus bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions. The enzyme activity of secretomes also changed depending on the substrate used. The secretomes were used in combination with commercial and purified enzymes to carry out saccharification of ammonia fiber expansion (AFEX)-pretreated corn stover and extractive ammonia (EA)-pretreated corn stover. When WSUCF1 bacterial secretome produced at different conditions was combined with a small percentage of commercial enzymes, we observed efficient saccharification of EA-CS, and the results were comparable to using a commercial enzyme cocktail (87% glucan and 70% xylan conversion). It also opens the possibility of producing CAZymes in a biorefinery using inexpensive substrates, such as AFEX-pretreated corn stover and Avicel, and eliminates expensive enzyme processing steps that are used in enzyme manufacturing. Implementing in-house enzyme production is expected to significantly reduce the cost of enzymes and biofuel processing cost.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Science, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
| | - Jessie Arce
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Science, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkatesh Balan
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
- *Correspondence: Venkatesh Balan,
| |
Collapse
|
25
|
Yang F, Jin Z, Nawaz M, Xiao Y, Jiang Y, Hu J, Li J, Gao MT. Oligosaccharides in straw hydrolysate could improve the production of single-cell protein with Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2928-2936. [PMID: 34762318 DOI: 10.1002/jsfa.11633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Using agricultural wastes to produce single-cell proteins (SCP) can reduce production costs effectively. The aims of this study were to investigate the effects of enzyme loading on the components of rice straw (RS) hydrolysate and their effects on the growth of yeast. RESULTS At the same glucose concentration, the dry weight of cells produced in the hydrolysate was 2.89 times higher than that in 2 g L-1 yeast extract (YE) medium, indicating that the hydrolysate was a suitable substrate for yeast growth. Ethanol precipitation followed by analysis showed that there were many oligosaccharides in the hydrolysate. The amount of cellulase had an important effect on the production of monosaccharides but had a smaller effect on the amounts and compositions of oligosaccharides. Adding oligosaccharides to the medium had no effect on ethanol production, but it promoted yeast growth and increased SCP production effectively. The results indicate that oligosaccharides were an important growth factor for yeast in the hydrolysate. Compared with YE medium, the cost of the medium with the hydrolysate was reduced by 68.47% when the same dry cell weight was obtained. CONCLUSION Oligosaccharides in the hydrolysate can improve SCP production with low nutrient cost. This finding could reduce the amounts of cellulase required during saccharification and nutrients during culture, providing a new low-cost method for SCP production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheng Jin
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Muhammad Nawaz
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Xiao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yipeng Jiang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- Shandong Yunqing Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
26
|
Mesbah NM. Industrial Biotechnology Based on Enzymes From Extreme Environments. Front Bioeng Biotechnol 2022; 10:870083. [PMID: 35480975 PMCID: PMC9036996 DOI: 10.3389/fbioe.2022.870083] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Biocatalysis is crucial for a green, sustainable, biobased economy, and this has driven major advances in biotechnology and biocatalysis over the past 2 decades. There are numerous benefits to biocatalysis, including increased selectivity and specificity, reduced operating costs and lower toxicity, all of which result in lower environmental impact of industrial processes. Most enzymes available commercially are active and stable under a narrow range of conditions, and quickly lose activity at extremes of ion concentration, temperature, pH, pressure, and solvent concentrations. Extremophilic microorganisms thrive under extreme conditions and produce robust enzymes with higher activity and stability under unconventional circumstances. The number of extremophilic enzymes, or extremozymes, currently available are insufficient to meet growing industrial demand. This is in part due to difficulty in cultivation of extremophiles in a laboratory setting. This review will present an overview of extremozymes and their biotechnological applications. Culture-independent and genomic-based methods for study of extremozymes will be presented.
Collapse
Affiliation(s)
- Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
27
|
Draft Genome Sequence of the Lignocellulolytic and Thermophilic Bacterium Thermobacillus xylanilyticus XE. Microbiol Resour Announc 2022; 11:e0093421. [PMID: 35258325 PMCID: PMC9022518 DOI: 10.1128/mra.00934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium able to use several lignocelluloses as its main carbon source. This draft genome sequence gives insight into the genomic potential of this bacterium and provides new resources to understand the enzymatic mechanisms used by the bacterium during lignocellulose degradation and will allow the identification of robust lignocellulolytic enzymes.
Collapse
|
28
|
Wang Y, Wang J, Zhang Z, Yang J, Turunen O, Xiong H. High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations. Appl Microbiol Biotechnol 2022; 106:2017-2027. [PMID: 35171339 DOI: 10.1007/s00253-022-11823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
A hyperthermostable xylanase XYN10B from Thermotoga maritima (PDB code 1VBR, GenBank accession number KR078269) was subjected to site-directed and error-prone PCR mutagenesis. From the selected five mutants, the two site-directed mutants (F806H and F806V) showed a 3.3-3.5-fold improved enzyme half-life at 100 °C. The mutant XYNA generated by error-prone PCR showed slightly improved stability at 100 °C and a lower Km. In XYNB and XYNC, the additional mutations over XYNA decreased the thermostability and temperature optimum, while elevating the Km. In XYNC, two large side-chains were introduced into the protein's interior. Micro-differential scanning calorimetry (DSC) showed that the melting temperature (Tm) dropped in XYNB and XYNC from 104.9 °C to 93.7 °C and 78.6 °C, respectively. The detrimental mutations showed that extremely thermostable enzymes can tolerate quite radical mutations in the protein's interior and still retain high thermostability. The analysis of mutations (F806H and F806V) in a hydrophobic area lining the substrate-binding region indicated that active site hydrophobicity is important for high activity at extreme temperatures. Although polar His at 806 provided higher stability, the hydrophobic Phe at 806 provided higher activity than His. This study generates an understanding of how extreme thermostability and high activity are formed in GH10 xylanases. KEY POINTS: • Characterization and molecular dynamics simulations of TmXYN10B and its mutants • Explanation of structural stability of GH10 xylanase.
Collapse
Affiliation(s)
- Yawei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Jing Wang
- College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Zhongqiang Zhang
- College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, FI-80101, Joensuu, Finland.
| | - Hairong Xiong
- College of Life Science, South-central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
29
|
Mustafa M, Ali L, Islam W, Noman A, Zhou C, Shen L, Zhu T, Can L, Nasif O, Gasparovic K, latif F, Gao J. Heterologous expression and characterization of glycoside hydrolase with its potential applications in hyperthermic environment. Saudi J Biol Sci 2022; 29:751-757. [PMID: 35197741 PMCID: PMC8847942 DOI: 10.1016/j.sjbs.2021.09.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
With the progressive focus on renewable energy via biofuels production from lignocellulosic biomass, cellulases are the key enzymes that play a fundamental role in this regard. This study aims to unravel the characteristics of Thermotoga maritima MSB8 (Tma) (a hyperthermophile from hot springs) thermostable glycoside hydrolase enzyme. Here, a glycoside hydrolase gene of Thermotoga maritima (Tma) was heterologously expressed and characterized. The gene was placed in the pQE-30 expression vector under the T5 promotor, and the construct pQE-30-Gh was then successfully integrated into Escherichia coli BL21 (DH5α) genome by transformation. Sequence of the glycoside hydrolase contained an open reading frame of 2.124 kbp, encoded a polypeptide of 721 amino acid residues. The molecular weight of the recombinant protein estimated was 79 kDa. The glycoside hydrolase was purified by Ni+2-NTA affinity chromatography and its enzymatic activity was investigated. The recombinant enzyme is highly stable within an extreme pH range (2.0–7.0) and highly thermostable at 80 °C for 72 h indicating its viability in hyperthermic environment and acidic nature. Moreover, the Ca2+ and Mn2+ introduction stimulated the residual activity of recombinant enzyme. Conclusively, the thermostable glycoside hydrolase possesses potential to be exploited for industrial applications at hyperthermic environment.
Collapse
Affiliation(s)
- Muhammad Mustafa
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Liaqat Ali
- Kansas State University, Manhattan, KS 66506, United States
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Chengzeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linsong Shen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoting Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liu Can
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Kristina Gasparovic
- Department of Plant Physiology, Slovak University of Agriculture, A.Hlinku 2, 94976, Slovakia
| | - Farooq latif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Jiangtao Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Corresponding author at: Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
30
|
An X, Zong Z, Zhang Q, Li Z, Zhong M, Long H, Cai C, Tan X. Novel thermo-alkali-stable cellulase-producing Serratia sp. AXJ-M cooperates with Arthrobacter sp. AXJ-M1 to improve degradation of cellulose in papermaking black liquor. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126811. [PMID: 34388933 DOI: 10.1016/j.jhazmat.2021.126811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/26/2023]
Abstract
There is an urgent requirement to treat cellulose present in papermaking black liquor since it induces severe economic wastes and causes environmental pollution. We characterized cellulase activity at different temperatures and pH to seek thermo-alkali-stable cellulase-producing bacteria, a natural consortium of Serratia sp. AXJ-M and Arthrobacter sp. AXJ-M1 was used to improve the degradation of cellulose. Notably, the enzyme activities and the degradation rate of cellulose were increased by 30%-70% and 30% after co-culture, respectively. In addition, the addition of cosubstrates increased the degradation rate of cellulose beyond 30%. The thermo-alkali-stable endoglucanase (bcsZ) gene was derived from the strain AXJ-M and was cloned and expressed. The purified bcsZ displayed the maximum activity at 70 °C and pH 9. Mn2+, Ca2+, Mg2+ and Tween-20 had beneficial effects on the enzyme activity. Structurally, bcsZ potentially catalyzed the degradation of cellulose. The co-culture with ligninolytic activities significantly decreased target the parameters (cellulose 45% and COD 95%) while using the immobilized fluidized bed reactors (FBRs). Finally, toxicological tests and antioxidant enzyme activities indicated that the co-culture had a detoxifying effect on black liquor. Our study showed that Serratia sp. AXJ-M acts synergistically with Arthrobacter sp. AXJ-M1 may be potentially useful for bioremediation for black liquor.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Zhengbin Zong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China.
| | - Zhimin Li
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Min Zhong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Haozhi Long
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Changzhi Cai
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Xiaoming Tan
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, PR China
| |
Collapse
|
31
|
Anisha GS. Microbial α-galactosidases: Efficient biocatalysts for bioprocess technology. BIORESOURCE TECHNOLOGY 2022; 344:126293. [PMID: 34752888 DOI: 10.1016/j.biortech.2021.126293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Galactomannans, abundantly present in plant biomass, can be used as renewable fermentation feedstock for biorefineries working for the production of bioethanol and other value-added products. The complete and efficient bioconversion of biomass to fermentable sugars for the generation of biofuels and other value-added products require the concerted action of accessory enzymes like α-galactosidases, which can work in cohesion with other carbohydrases in an enzyme cocktail. In the paper industry, α-galactosidases enhance the bleaching effect of endo-β-1,4-mannanases on softwood kraft pulp. Microbial α-galactosidases also find applications in the treatment of legume foods, recovery of sucrose from sugar beet syrup, improving the rheological properties of galactomannans, and synthesis of α-galactooligosaccharides to be used as functional food ingredients. Owing to their industrial applications, there is a surge in the research focused on α-galactosidases. The current review illustrates the diverse industrial applications of microbial α-galactosidases and their challenges and prospects.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
32
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
33
|
Makowski K, Leszczewicz M, Broncel N, Lipińska-Zubrycka L, Głębski A, Komorowski P, Walkowiak B. Isolation, Biochemical Characterisation and Identification of Thermotolerant and Cellulolytic Paenibacillus lactis and Bacillus licheniformis. Food Technol Biotechnol 2021; 59:325-336. [PMID: 34759764 PMCID: PMC8542176 DOI: 10.17113/ftb.59.03.21.7096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
Research background Cellulose is an ingredient of waste materials that can be converted to other valuable substances. This is possible provided that the polymer molecule is degraded to smaller particles and used as a carbon source by microorganisms. Because of the frequently applied methods of pretreatment of lignocellulosic materials, the cellulases derived from thermophilic microorganisms are particularly desirable. Experimental approach We were looking for cellulolytic microorganisms able to grow at 50 °C and we described their morphological features and biochemical characteristics based on carboxymethyl cellulase (CMCase) activity and the API® ZYM system. The growth curves during incubation at 50 °C were examined using the BioLector® microbioreactor. Results and conclusions Forty bacterial strains were isolated from fermenting hay, geothermal karst spring, hot spring and geothermal pond at 50 °C. The vast majority of the bacteria were Gram-positive and rod-shaped with the maximum growth temperature of at least 50 °C. We also demonstrated a large diversity of biochemical characteristics among the microorganisms. The CMCase activity was confirmed in 27 strains. Hydrolysis capacities were significant in bacterial strains: BBLN1, BSO6, BSO10, BSO13 and BSO14, and reached 2.74, 1.62, 1.30, 1.38 and 8.02 respectively. Rapid and stable growth was observed, among others, for BBLN1, BSO10, BSO13 and BSO14. The strains fulfilled the selection conditions and were identified based on the 16S rDNA sequences. BBLN1, BSO10, BSO13 were classified as Bacillus licheniformis, whereas BSO14 as Paenibacillus lactis. Novelty and scientific contribution We described cellulolytic activity and biochemical characteristics of many bacteria isolated from hot environments. We are also the first to report the cellulolytic activity of thermotolerant P. lactis. Described strains can be a source of new thermostable cellulases, which are extremely desirable in various branches of circular bioeconomy.
Collapse
Affiliation(s)
- Krzysztof Makowski
- Industrial Biotechnology Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland.,Biotechnika, Tymienieckiego 25, 90-350 Lodz, Poland
| | - Martyna Leszczewicz
- Industrial Biotechnology Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland
| | - Natalia Broncel
- Industrial Biotechnology Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland
| | - Lidia Lipińska-Zubrycka
- Industrial Biotechnology Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrian Głębski
- Industrial Biotechnology Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland.,Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Bogdan Walkowiak
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Dubois 114/116, 93-465 Lodz, Poland.,Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| |
Collapse
|
34
|
Wu Y, Guo H, Rahman MS, Chen X, Zhang J, Liu Y, Qin W. Biological pretreatment of corn stover for enhancing enzymatic hydrolysis using Bacillus sp. P3. BIORESOUR BIOPROCESS 2021; 8:92. [PMID: 34722121 PMCID: PMC8550775 DOI: 10.1186/s40643-021-00445-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/18/2021] [Indexed: 12/04/2022] Open
Abstract
The biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36–9.68. However, after a 20-day pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions. ![]()
Collapse
Affiliation(s)
- Yanwen Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China.,Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada.,Present Address: Learning Support Team, St Margaret's School, Victoria, BC V8X 3P7 Canada
| | - Haipeng Guo
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada.,School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Md Shafiqur Rahman
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada.,Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
35
|
Isolation, identification, and characterization of lignocellulose-degrading Geobacillus thermoleovorans from Yellowstone National Park. Appl Environ Microbiol 2021; 88:e0095821. [PMID: 34669438 DOI: 10.1128/aem.00958-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial degradation of lignocellulose in natural ecosystems presents numerous biotechnological opportunities, including biofuel production from agricultural waste and feedstock biomass. To explore the degradation potential of specific thermophiles, we have identified and characterized extremophilic microorganisms isolated from hot springs environments that are capable of biodegrading lignin and cellulose substrates under thermoalkaline conditions, using a combination of culturing, genomics and metabolomics techniques. Organisms that can use lignin and cellulose as a sole carbon source at 60-75°C were isolated from sediment slurry of thermoalkaline hot springs (71-81°C and pH 8-9) of Yellowstone National Park. Full-length 16S rRNA gene sequencing indicated that these isolates were closely related to Geobacillus thermoleovorans. Interestingly, most of these isolates demonstrated biofilm formation on lignin, a phenotype that is correlated with increased bioconversion. Assessment of metabolite level changes in two Geobacillus isolates from two representative springs were undertaken to characterize the metabolic responses associated with growth on glucose versus lignin carbon source as a function of pH and temperature. Overall, results from this study support that thermoalkaline springs harbor G. thermoleovorans microorganisms with lignocellulosic biomass degradation capabilities and potential downstream biotechnological applications. IMPORTANCE As lignocellulosic biomass represents a major agro-industrial waste and renewable resource, its potential to replace non-renewable petroleum-based products for energy production is considerable. Microbial ligninolytic and cellulolytic enzymes are of high interest in bio-refineries for the valorization of lignocellulosic biomass, as they can withstand the extreme conditions (e.g., high temperature, high pH) required for processing. Of high interest is the ligninolytic potential of specific Geobacillus thermoleovorans isolates to function at a broad range of pH and temperatures, as lignin is the bottleneck in the bioprocessing of lignocellulose. In this study, results obtain from G. thermolerovorans isolates originating from YNP springs are significant as very few microorganisms from alkaline thermal environments have been discovered to have lignin and cellulose biodegrading capabilities, and this work opens new avenues for the biotechnological valorization of lignocellulosic biomass at an industrial scale.
Collapse
|
36
|
Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production. Processes (Basel) 2021. [DOI: 10.3390/pr9091583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To mitigate the current global energy and the environmental crisis, biofuels such as bioethanol have progressively gained attention from both scientific and industrial perspectives. However, at present, commercialized bioethanol is mainly derived from edible crops, thus raising serious concerns given its competition with feed production. For this reason, lignocellulosic biomasses (LCBs) have been recognized as important alternatives for bioethanol production. Because LCBs supply is sustainable, abundant, widespread, and cheap, LCBs-derived bioethanol currently represents one of the most viable solutions to meet the global demand for liquid fuel. However, the cost-effective conversion of LCBs into ethanol remains a challenge and its implementation has been hampered by several bottlenecks that must still be tackled. Among other factors related to the challenging and variable nature of LCBs, we highlight: (i) energy-demanding pretreatments, (ii) expensive hydrolytic enzyme blends, and (iii) the need for microorganisms that can ferment mixed sugars. In this regard, thermophiles represent valuable tools to overcome some of these limitations. Thus, the aim of this review is to provide an overview of the state-of-the-art technologies involved, such as the use of thermophilic enzymes and microorganisms in industrial-relevant conditions, and to propose possible means to implement thermophiles into second-generation ethanol biorefineries that are already in operation.
Collapse
|
37
|
López MJ, Jurado MM, López-González JA, Estrella-González MJ, Martínez-Gallardo MR, Toribio A, Suárez-Estrella F. Characterization of Thermophilic Lignocellulolytic Microorganisms in Composting. Front Microbiol 2021; 12:697480. [PMID: 34456885 PMCID: PMC8385673 DOI: 10.3389/fmicb.2021.697480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Composting involves the selection of a microbiota capable of resisting the high temperatures generated during the process and degrading the lignocellulose. A deep understanding of the thermophilic microbial community involved in such biotransformation is valuable to improve composting efficiency and to provide thermostable biomass-degrading enzymes for biorefinery. This study investigated the lignocellulose-degrading thermophilic microbial culturome at all the stages of plant waste composting, focusing on the dynamics, enzymes, and thermotolerance of each member of such a community. The results revealed that 58% of holocellulose (cellulose plus hemicellulose) and 7% of lignin were degraded at the end of composting. The whole fungal thermophilic population exhibited lignocellulose-degrading activity, whereas roughly 8-10% of thermophilic bacteria had this trait, although exclusively for hemicellulose degradation (xylan-degrading). Because of the prevalence of both groups, their enzymatic activity, and the wide spectrum of thermotolerance, they play a key role in the breakdown of hemicellulose during the entire process, whereas the degradation of cellulose and lignin is restricted to the activity of a few thermophilic fungi that persists at the end of the process. The xylanolytic bacterial isolates (159 strains) included mostly members of Firmicutes (96%) as well as a few representatives of Actinobacteria (2%) and Proteobacteria (2%). The most prevalent species were Bacillus licheniformis and Aeribacillus pallidus. Thermophilic fungi (27 strains) comprised only four species, namely Thermomyces lanuginosus, Talaromyces thermophilus, Aspergillus fumigatus, and Gibellulopsis nigrescens, of whom A. fumigatus and T. lanuginosus dominated. Several strains of the same species evolved distinctly at the stages of composting showing phenotypes with different thermotolerance and new enzyme expression, even not previously described for the species, as a response to the changing composting environment. Strains of Bacillus thermoamylovorans, Geobacillus thermodenitrificans, T. lanuginosus, and A. fumigatus exhibiting considerable enzyme activities were selected as potential candidates for the production of thermozymes. This study lays a foundation to further investigate the mechanisms of adaptation and acquisition of new traits among thermophilic lignocellulolytic microorganisms during composting as well as their potential utility in biotechnological processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francisca Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CIAIMBITAL Research Center, ceiA3, University of Almería, Almeria, Spain
| |
Collapse
|
38
|
Wu M, Jiang Y, Liu Y, Mou L, Zhang W, Xin F, Jiang M. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Appl Microbiol Biotechnol 2021; 105:5739-5749. [PMID: 34283269 DOI: 10.1007/s00253-021-11450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Recently, thermophilic Thermoanaerobacterium species have attracted increasing attentions in consolidated bioprocessing (CBP), which can directly utilize lignocellulosic materials for biofuels production. Compared to the mesophilic process, thermophilic process shows greater prospects in CBP due to its relatively highly efficiency of lignocellulose degradation. In addition, thermophilic conditions can avoid microbial contamination, reduce the cooling costs, and further facilitate the downstream product recovery. However, only few reviews specifically focused on the microbial applications of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Accordingly, this review will comprehensively summarize the recent advances of Thermoanaerobacterium species in lignocellulosic biorefinery, including their secreted xylanases and bioenergy production. Furthermore, the co-culture can significantly reduce the metabolic burden and achieve the more complex work, which will be discussed as the further perspectives. KEY POINTS: • Thermoanaerobacterium species, promising chassis for lignocellulosic biorefinery. • Potential capability of hemicellulose degradation for Thermoanaerobacterium species. • Efficient bioenergy production by Thermoanaerobacterium species through metabolic engineering.
Collapse
Affiliation(s)
- Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
39
|
Lau MSH, Sheng L, Zhang Y, Minton NP. Development of a Suite of Tools for Genome Editing in Parageobacillus thermoglucosidasius and Their Use to Identify the Potential of a Native Plasmid in the Generation of Stable Engineered Strains. ACS Synth Biol 2021; 10:1739-1749. [PMID: 34197093 DOI: 10.1021/acssynbio.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The relentless rise in the levels of atmospheric greenhouse gases caused by the exploitation of fossil fuel necessitates the development of more environmentally friendly routes to the manufacture of chemicals and fuels. The exploitation of a fermentative process that uses a thermophilic chassis represents an attractive option. Its use, however, is hindered by a dearth of genetic tools. Here we expand on those available for the engineering of the industrial chassis Parageobacillus thermoglucosidasius through the assembly and testing of a range of promoters, ribosome binding sites, reporter genes, and the implementation of CRISPR/Cas9 genome editing based on two different thermostable Cas9 nucleases. The latter were used to demonstrate that the deletion of the two native plasmids carried by P. thermoglucosidasius, pNCI001 and pNCI002, either singly or in combination, had no discernible effects on the overall phenotypic characteristics of the organism. Through the CRISPR/Cas9-mediated insertion of the gene encoding a novel fluorescent reporter, eCGP123, we showed that pNCI001 exhibited a high degree of segregational stability. As the relatively higher copy number of pNCI001 led to higher levels of eCGP123 expression than when the same gene was integrated into the chromosome, we propose that pNCI001 represents the preferred option for the integration of metabolic operons when stable commercial strains are required.
Collapse
Affiliation(s)
- Matthew S. H. Lau
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Lili Sheng
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
40
|
Yang G, Yang D, Wang X, Cao W. A novel thermostable cellulase-producing Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of Chinese distillers' grains. BIORESOURCE TECHNOLOGY 2021; 325:124729. [PMID: 33493746 DOI: 10.1016/j.biortech.2021.124729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Lack of effective degradation approaches of Chinese distillers' grains (CDGs) produced by Chinese liquor industry results in environmental pollution and economic waste. Cellulase activity was characterized at different temperatures to find thermostable cellulase-producing bacteria, and microbial co-culture method was used to improve the degradation of CDGs. Incubation of endoglucanase produced by Bacillus licheniformis A5 at 80 °C for 120 min showed 82% residual enzyme activity. Notably, enzyme activity increased by 30%-70% after co-culturing Bacillus licheniformis A5 and Bacillus subtilis B2. The two strains increased degradation rate of CDGs by 70% compared with optimized results of Bacillus subtilis B2 culture alone, and increased the reducing sugar content to 16.6 mg/mL. In addition, 2% ethanol increased degradation rate of CDGs by 15% in co-culture. The findings of this study imply that Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of CDGs.
Collapse
Affiliation(s)
- Gang Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Diqin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaodan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Cao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
41
|
Choure K, Parsai S, Kotoky R, Srivastava A, Tilwari A, Rai PK, Sharma A, Pandey P. Comparative Metagenomic Analysis of Two Alkaline Hot Springs of Madhya Pradesh, India and Deciphering the Extremophiles for Industrial Enzymes. Front Genet 2021; 12:643423. [PMID: 33763123 PMCID: PMC7982539 DOI: 10.3389/fgene.2021.643423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Hot springs are considered to be a unique environment with extremophiles, that are sources of industrially important enzymes, and other biotechnological products. The objective of this study was to undertake, analyze, and characterize the microbiome of two major hot springs located in the state of Madhya Pradesh explicitly, Chhoti Anhoni (Hotspring 1), and Badi Anhoni (Hotspring 2) to find out the inhabitant microbial population, and their functional characteristics. The taxonomic analysis of the microbiome of the hot springs revealed the phylum Proteobacteria was the most abundant taxa in both the hot-springs, however, its abundance in hot-spring 1 (~88%) was more than the hot-spring 2 (~52%). The phylum Bacteroides (~10–22%) was found to be the second most abundant group in the hot-springs followed by Spirocheates (~2–11%), Firmicutes (~6–8%), Chloroflexi (1–5%), etc. The functional analysis of the microbiome revealed different features related to several functions including metabolism of organics and degradation of xenobiotic compounds. The functional analysis showed that most of the attributes of the microbiome was related to metabolism, followed by cellular processes and environmental information processing functions. The functional annotation of the microbiomes at KEGG level 3 annotated the sequences into 279 active features that showed variation in abundance between the hot spring samples, where hot-spring 1 was functionally more diverse. Interestingly, the abundance of functional genes from methanogenic bacteria, was higher in the hot-spring 2, which may be related to the relatively higher pH and temperature than Hotspring 1. The study showed the presence of different unassigned bacterial taxa with high abundance which indicates the potential of novel genera or phylotypes. Culturable isolates (28) were bio-prospected for industrially important enzymes including amylase, protease, lipase, gelatinase, pectinase, cellulase, lecithinase, and xylanase. Seven isolates (25%) had shown positive results for all the enzyme activities whereas 23 isolates (82%) produced Protease, 27 isolates (96%) produced lipase, 27 isolates produced amylase, 26 isolates (92%) produced cellulase, 19 isolates (67%) produced pectinase, 19 isolates (67%) could produce lecithinase, and 13 isolates (46%) produced gelatinase. The seven isolates, positive for all the enzymes were analyzed further for quantitative analysis and identified through molecular characterization.
Collapse
Affiliation(s)
- Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, India
| | | | - Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, India
| | | | - Anita Tilwari
- Centre of Excellence in Biotechnology, Madhya Pradesh Council of Science and Technology, Bhopal, India
| | | | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
42
|
Zhang B, Sun L, Song X, Huang D, Li M, Peng C, Wang W. Genetically engineered thermotolerant facultative anaerobes for high-efficient degradation of multiple hazardous nitroalkanes. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124253. [PMID: 33144004 DOI: 10.1016/j.jhazmat.2020.124253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Nitroalkanes are important industrial raw materials but also toxic pollutants, which are difficult to degrade once released into the environment. In this study, to significantly improve the degradation-efficiency of multiple nitroalkanes, a facultative anaerobe was genetically engineered, possible influencing factors and simulated application experiments of bioreactor were tested and evaluated. Among all engineered recombinants, the most effective strains NG-S1 (anaerobic) and NG-S2 (aerobic) displayed 2-fold and 2.8-fold final degradation rates higher than the wild type, respectively. Exogenous components, particularly those that enhance coenzyme synthesis, helped to increase the degradation rate, as the level of coenzymes affected full function of overexpressed nitroalkane oxidase. Importantly, simulated mixed-nitroalkane-wastewater bioreactor experiments proved excellent and sustainable degradation performance of the engineered strains for potential industrial applications. Collectively, these findings provide a promising thermophilic biological engineering platform and a new perspective for high-efficient and continuous environmental bioremediation of hazardous pollutants under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Xiaoru Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
43
|
Suresh A, Shravan Ramgopal D, Panchamoorthy Gopinath K, Arun J, SundarRajan P, Bhatnagar A. Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes. BIORESOURCE TECHNOLOGY 2021; 323:124558. [PMID: 33383359 DOI: 10.1016/j.biortech.2020.124558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Thermostable enzymes are a field of growing interest in bioremediation, pharmaceuticals, food industry etc., due to their ability to catalyze bio reactions at high temperatures. This review aims to provide an overview on extremophiles with a special focus on thermophiles and enzymes produced from extremophilic bacteria. Novel thermostable catalysts, used in producing commercially important chemicals, are discussed in this review. Various classes of enzymes produced by microbes, synthesis of thermozymes and comparison with enzymes produced at optimal conditions are critically discussed. A detailed discussion on immobilized enzymes in comparisons with free enzymes, produced by extremozymes, is included. Different parameters which affect enzyme production are also discussed. The current industrial trends along with the future of biocatalysts in the production of chemicals using efficient methods are also discussed.
Collapse
Affiliation(s)
- Aravind Suresh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dhakshin Shravan Ramgopal
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Panneerselvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|
44
|
Pabbathi NPP, Velidandi A, Tavarna T, Gupta S, Raj RS, Gandam PK, Baadhe RR. Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1371-1398. [PMID: 33437563 PMCID: PMC7790359 DOI: 10.1007/s13399-020-01186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
As the fossil fuel reserves are depleting rapidly, there is a need for alternate fuels to meet the day to day mounting energy demands. As fossil fuel started depleting, a quest for alternate forms of fuel was initiated and biofuel is one of its promising outcomes. First-generation biofuels are made from edible sources like vegetable oils, starch, and sugars. Second-generation biofuels (SGB) are derived from lignocellulosic crops and the third-generation involves algae for biofuel production. Technical challenges in the production of SGB are hampering its commercialization. Advanced molecular technologies like metagenomics can help in the discovery of novel lignocellulosic biomass-degrading enzymes for commercialization and industrial production of SGB. This review discusses the metagenomic outcomes to enlighten the importance of unexplored habitats for novel cellulolytic gene mining. It also emphasizes the potential of different metagenomic approaches to explore the uncultivable cellulose-degrading microbiome as well as cellulolytic enzymes associated with them. This review also includes effective pre-treatment technology and consolidated bioprocessing for efficient biofuel production.
Collapse
Affiliation(s)
- Ninian Prem Prashanth Pabbathi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Aditya Velidandi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Tanvi Tavarna
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Shreyash Gupta
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Ram Sarvesh Raj
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Pradeep Kumar Gandam
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Rama Raju Baadhe
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| |
Collapse
|
45
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
46
|
Biological detoxification of fumonisin by a novel carboxylesterase from Sphingomonadales bacterium and its biochemical characterization. Int J Biol Macromol 2020; 169:18-27. [PMID: 33309671 DOI: 10.1016/j.ijbiomac.2020.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
Fumonisins have posed hazardous threat to human and animal health worldwide. Enzymatic degradation is a desirable detoxification approach but is severely hindered by serious shortage of detoxification enzymes. After mining enzymes by bioinformatics analysis, a novel carboxylesterase FumDSB from Sphingomonadales bacterium was expressed in Escherichia coli, and confirmed to catalyze fumonisin B1 to produce hydrolyzed fumonisin B1 by liquid chromatography mass spectrometry for the first time. FumDSB showed high sequence novelty, sharing only ~34% sequence identity with three reported fumonisin detoxification carboxylesterases. Besides, FumDSB displayed its high degrading activity at 30-40 °C within a broad pH range from 6.0 to 9.0, which is perfectly suitable to be used in animal physiological condition. It also exhibited excellent pH stability and moderate thermostability. This study provides a FB1 detoxification carboxylesterase which could be further used as a potential food and feed additive.
Collapse
|
47
|
Wang J, Salem DR, Sani RK. Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: Characterization and bioactivities. N Biotechnol 2020; 61:29-39. [PMID: 33188978 DOI: 10.1016/j.nbt.2020.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
The production, characterization and bioactivities of exopolysaccharides (EPSs) from a thermophilic bacterium Geobacillus sp. strain WSUCF1 were investigated. Using glucose as a carbon source 525.7 mg/L of exoproduct were produced in a 40-L bioreactor at 60 °C. Two purified EPSs were obtained: EPS-1 was a glucomannan containing mannose and glucose in a molar ratio of 1:0.21, while EPS-2 was composed of mannan only. The molecular weights of both EPSs were estimated to be approximately 1000 kDa, their FTIR and NMR spectra indicated the presence of α-type glycosidic bonds in a linear structure, and XRD analysis indicated a low degree of crystallinity of 0.11 (EPS-1) and 0.27 (EPS-2). EPS-1 and EPS-2 demonstrated high degradation temperatures of 319 °C and 314 °C, respectively, and non-cytotoxicity to HEK-293 cells at 2 and 3 mg/mL, respectively. In addition, both showed antioxidant activities. EPSs from strain WSUCF1 may expand the applications of microorganisms isolated from extreme environments and provide a valuable resource for exploitation in biomedical fields such as drug delivery carriers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM-Bio Center), Rapid City, SD, 57701, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
48
|
Shrestha N, Tripathi AK, Govil T, Sani RK, Urgun-Demirtas M, Kasthuri V, Gadhamshetty V. Electricity from lignocellulosic substrates by thermophilic Geobacillus species. Sci Rep 2020; 10:17047. [PMID: 33046790 PMCID: PMC7552438 DOI: 10.1038/s41598-020-72866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Given our vast lignocellulosic biomass reserves and the difficulty in bioprocessing them without expensive pretreatment and fuel separation steps, the conversion of lignocellulosic biomass directly into electricity would be beneficial. Here we report the previously unexplored capabilities of thermophilic Geobacillus sp. strain WSUCF1 to generate electricity directly from such complex substrates in microbial fuel cells. This process obviates the need for exogenous enzymes and redox mediator supplements. Cyclic voltammetry and chromatography studies revealed the electrochemical signatures of riboflavin molecules that reflect mediated electron transfer capabilities of strain WSUCF1. Proteomics and genomics analysis corroborated that WSUCF1 biofilms uses type-II NADH dehydrogenase and demethylmenaquinone methyltransferase to transfer the electrons to conducting anode via the redox active pheromone lipoproteins localized at the cell membrane.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,Department of Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, USA.
| | - Abhilash Kumar Tripathi
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Tanvi Govil
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Rajesh Kumar Sani
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| | - Meltem Urgun-Demirtas
- Energy Global Security Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Venkateswaran Kasthuri
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
49
|
Evaluation of efficacy of indigenous acidophile- bacterial consortia for removal of pollutants from coffee cherry pulping wastewater. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Han C, Liu Y, Liu M, Wang S, Wang Q. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol 2020; 164:3361-3368. [PMID: 32888988 DOI: 10.1016/j.ijbiomac.2020.08.225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Endoglucanases provide an attractive avenue for the bioconversion of lignocellulosic materials into fermentable sugars to supply cellulosic feedstock for biofuels and other value-added chemicals. Thermostable endoglucanases with high catalytic activity are preferred in practical processes. To improve the thermostability and activity of the thermostable β-1,4-endoglucanase CTendo45 isolated from the thermophilic fungus Chaetomium thermophilum, structure-based rational design was performed by using site-directed mutagenesis. When inactivated mutation of the unique N-glycosylation sequon (N88-E89-T90) was implemented and the conserved Y173 residue was substituted with phenylalanine, a double mutant T90A/Y173F demonstrated enzymatic activity that dramatically increased 2.12- and 1.82-fold towards CMC-Na and β-D-glucan, respectively. Additionally, T90A/Y173F exhibited extraordinary heat endurance after 300 min of incubation at elevated temperatures. This study provides a valid approach to the improvement of enzyme redesign protocols and the properties of this endoglucanase mutant distinguish it as an excellent candidate enzyme for industrial biomass conversion.
Collapse
Affiliation(s)
- Chao Han
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yifan Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengyu Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Siqi Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qunqing Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|