1
|
Yue X, Yin F, Tan H, Liu J, Chang L, Yang X, Wang S, Zhao Y, Shi H, Zhang W, Liu H. Modeling electron competition and pH factor interactions improve cognitions of nitrite accumulation during denitrification. ENVIRONMENTAL RESEARCH 2025; 274:121264. [PMID: 40023382 DOI: 10.1016/j.envres.2025.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Electron competition (EC) and pH stress are two key factors influencing NO2- production during denitrification, but their dominance and interactions in the full pH range are poorly understood. In this study, we propose a concise Electron Competition Inhibition (ECI) model to clarify the contribution of EC and pH stress to NO2- production by characterizing the denitrifying kinetics in batch tests. The model exhibits good fitting results on NO2- accumulation across a wide NO3-/NO2- ratio range from 0 to 9, demonstrating its excellent ability in describing the EC effect and determining rate constants for NO3- and NO2- reductions. Therefore, accurate pH-dependent relationships of NO3- and NO2- reduction rates in a pH range of 5.0-10.6 are demonstrated using this model. The results show that EC dominates NO2- production in a near-neutral pH range from 6.6-9.0, while pH stress plays a dominant role at pH 5.8-6.8 and 9.1-10.1. Within near-neutral range, maintaining a NO3-/NO2- ratio greater than 0.1 or a COD/NO3- ratio smaller than 3 favors NO2- production due to the preferential supply of electrons to NO3- reduction. This provides a kinetics kinetic strategy to shorten reaction time and a stoichiometric strategy to control the addition of carbon sources for maintaining partial denitrification in biological nitrogen removal processes.
Collapse
Affiliation(s)
- Xuehai Yue
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Hao Tan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Ying Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Haofei Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Chongqing School, Chongqing, 400714, China
| |
Collapse
|
2
|
Chen S, Zhang C, Liu X, Shi Y, Lyu L, Gao G, Yang T, Fan K, Zhang L, Li J, Song L, Yan S, Chu H. Trophic transfer efficiency of microbial food webs differs in water and sediment in alpine wetlands across the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2025; 274:121291. [PMID: 40049352 DOI: 10.1016/j.envres.2025.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
The Tibetan Plateau contains the world's largest area of alpine wetlands, where coexisting water and sediment environments provide habitats for multitrophic microbial communities. However, the microbial food web (MFW) of coexisting water and sediment in wetland ecosystems and their responses to environmental changes remain unclear. In this study, we investigated MFWs (including archaea, bacteria, and eukaryotes) across 21 paired samples from alpine wetlands on the Tibetan Plateau along a salinity gradient. In both water and sediment, the MFWs exhibited enhanced predation and decreased mutualism with increasing salinity, with the total trophic transfer efficiency (TTE) community of bacteria, protists and metazoa increasing. The TTE of MFWs in sediment was higher than that in water, and the competition associations among species decreased while the cooperation associations increased. Compared to sediment, the MFWs in water were more complex and vulnerable. Salinity exerted top-down control on MFWs by directly influencing higher trophic levels (e.g., metazoa) in water. In contrast, salinity affected the MFWs through bottom-up effects by impacting lower trophic levels (heterotrophic archaea, heterotrophic bacteria) in sediment. Overall, this study provides new insights into understanding the trophic cycle and interactions of multi-trophic biological communities in coexisting water and sediment, and how MFWs adapt to environmental change.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lihui Lyu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Luyao Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Subo Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Xu L, Xin B, Liu W, Liu H, Yang G, Hao G. Biogeochemical Mechanisms of HCO 3-Ca Water and NO 3- Pollution in a Typical Piedmont Agricultural Area: Insights from Nitrification and Carbonate Weathering. TOXICS 2025; 13:394. [PMID: 40423473 DOI: 10.3390/toxics13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Water hardening and NO3- pollution have affected water quality globally. These environmental problems threaten social sustainability and human health, especially in piedmont agricultural areas. The aim of this study is to determine the biogeochemical mechanisms of HCO3-Ca water and NO3- pollution in a typical piedmont agricultural area (Qingshui River, Zhangjiakou, China). Here, an extensive biogeochemical investigation was conducted in a typical piedmont agricultural area (Qingshui River, China) using multiple hydrochemical, isotopic (δ2H-H2O, δ18O-H2O and δ13C-DIC) and molecular-biological proxies in combination with a forward model. In the region upstream of the Qingshui River, riverine hydrochemistry was dominated by HCO3-Ca water, with only NO3- concentrations (3.08-52.8 mg/L) exceeding the acceptable limit (10 mg/L as N) for drinking water quality. The riverine hydrochemistry responsible for the formation of HCO3-Ca water was mainly driven by carbonate dissolution, with a contribution rate of 49.8 ± 3.96%. Riverine NO3- was mainly derived from agricultural NH4+ emissions rather than NO3- emissions, originating from sources such as manure, domestic sewage, soil nitrogen and NH4+-synthetic fertilizer. Under the rapid hydrodynamic conditions and aerobic water environment of the piedmont area, NH4+-containing pollutants were converted to HNO3 by nitrifying bacteria (e.g., Flavobacterium and Fluviimonas). Carbonate (especially calcite) was preferentially and rapidly dissolved by the produced HNO3, which was attributed to the strong acidity of HNO3. Therefore, higher levels of Ca2+, Mg2+, HCO3- and NO3- were simultaneously released into river water, causing riverine HCO3-Ca water and NO3- pollution in the A-RW. In contrast, these biogeochemical mechanisms did not occur significantly in the downstream region of the river due to the cement-hardened river channels and strict discharge management. These findings highlight the influence of agricultural HNO3 on HCO3-Ca water and NO3- pollution in the Qingshui River and further improve the understanding of riverine hydrochemical evolution and water pollution in piedmont agricultural areas.
Collapse
Affiliation(s)
- Li Xu
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Bo Xin
- Zhangcheng Ecological Environmental Protection and Restoration Technology Innovation Center, No. 3 Geological Brigade of Hebei Geology and Mineral Exploration Bureau, Zhangjiakou 075000, China
| | - Wei Liu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Haoyang Liu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Guoli Yang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Guizhen Hao
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| |
Collapse
|
4
|
Chen YH, Li SL, Hung CY, Wu PC, Hong YX, Chen WJ, Chang SY, Hsu YY, Chao WY, Tsai KJ, Chen YC, Chen JT, Hsu CL, Lu YJ, Fang LM, Yang MH, Tan IT, Hsu YC, Yang HY, Jiang RH. Developing a plant microbial fuel cell by planting water spinach in a hanging-submerged plant pot system. J Biosci Bioeng 2024; 138:533-540. [PMID: 39294018 DOI: 10.1016/j.jbiosc.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
To plant crops (especially dry crops such as water spinach) with concomitant electricity recovery, a hanging-submerged-plant-pot system (HSPP) is developed. The HSPP consists of a soil pot (anodic) partially submerged under the water surface of a cathode tank. The microbial communities changed with conditions were also investigated. It was found that with chemical fertilizers the closed-circuit voltage (CCV, with 1 kΩ) was stable (approximately 250 mV) within 28 d; however, without fertilizer, the water spinach could adjust to the environment to obtain a better power output (approximately 3 mW m-2) at day 28. The microbial-community analyses revealed that the Pseudomonas sp. was the only exoeletrogens found in the anode pots. Using a secondary design of HSPP, for a better water-level adjustment, the maximum power output of each plant was found to be approximately 27.1 mW m-2. During operation, high temperature resulted in low oxygen solubility, and low CCV as well. At this time, it is yet to be concluded whether the submerged water level significantly affects electricity generation.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Shiue-Lin Li
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan.
| | - Ching-Ya Hung
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Pei-Ching Wu
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Yue-Xiang Hong
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Wen-Jing Chen
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Shu-Yi Chang
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Yu-Ya Hsu
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Wei-Yi Chao
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Kai-Jhih Tsai
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - You-Chen Chen
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Ji-Teng Chen
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Chia-Le Hsu
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Yun-Ju Lu
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Li-Ming Fang
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Ming-Han Yang
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - I-Ting Tan
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Ying-Chuan Hsu
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Hong-Yu Yang
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| | - Rui-Hong Jiang
- Department of Environmental Engineering Science and Engineering, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung City 407224, Taiwan
| |
Collapse
|
5
|
Yan S, Wang J, Zhang J, Ning J, Chen S, Xie S. Bacterial community composition and function vary with farmland type and soil depth around a mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124510. [PMID: 39002750 DOI: 10.1016/j.envpol.2024.124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Heavy metal pollution can have adverse impacts on microorganisms, plants and even human health. To date, the impact of heavy metals on bacteria in farmland has yielded poor attention, and there is a paucity of knowledge on the impact of land type on bacteria in mining area with heavy metal pollution. Around a metal-contaminated mining area, two soil depths in three types of farmlands were selected to explore the composition and function of bacteria and their correlations with the types and contents of heavy metals. The compositions and functions of bacterial communities at the three different agricultural sites were disparate to a certain extent. Some metabolic functions of bacterial community in the paddy field were up-regulated compared with those at other site. These results observed around mining area were different from those previously reported in conventional farmlands. In addition, bacterial community composition in the top soils was relatively complex, while in the deep soils it became more unitary and extracellular functional genes got enriched. Meanwhile, heavy metal pollution may stimulate the enrichment of certain bacteria to protect plants from damage. This finding may aid in understanding the indirect effect of metal contamination on plants and thus putting forward feasible strategies for the remediation of metal-contaminated sites. MAIN FINDINGS OF THE WORK: This was the first study to comprehensively explore the influence of heavy metal pollution on the soil bacterial communities and metabolic potentials in different agricultural land types and soil depths around a mining area.
Collapse
Affiliation(s)
- Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ji Wang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Jianqiang Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Jialian Ning
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Li J, Liu H, Pei H, Liu W, Yang G, Xie Y, Cao S, Wang J, Ma L, Zhang H. Coupled processes involving ammonium inputs, microbial nitrification, and calcite dissolution control riverine nitrate pollution in the piedmont zone (Qingshui River, China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172970. [PMID: 38705293 DOI: 10.1016/j.scitotenv.2024.172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.
Collapse
Affiliation(s)
- Jun Li
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Haoyang Liu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Hongwei Pei
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Wei Liu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Guoli Yang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Yincai Xie
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Shengwei Cao
- Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Jiawei Wang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Lishan Ma
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Hengxing Zhang
- Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China.
| |
Collapse
|
7
|
Bin X, Wang P, Shen Y, Xiang X, Jafir M, Wan X. Investigation of Fungal Community Structure in the Gut of the Stag Beetle Dorcus hopei (Coleoptera; Lucanidae): Comparisons Among Developmental Stages. MICROBIAL ECOLOGY 2024; 87:70. [PMID: 38740585 PMCID: PMC11090938 DOI: 10.1007/s00248-024-02379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Stag beetles, recognized as common saproxylic insects, are valued for their vibrant coloration and distinctive morphology. These beetles play a crucial ecological role in decomposition and nutrient cycling, serving as a vital functional component in ecosystem functioning. Although previous studies have confirmed that stag beetles are predominantly fungivores, the fluctuations in their intestinal fungal communities at different developmental stages remain poorly understood. In the current study, high-throughput sequencing was employed to investigate the dynamic changes within intestinal fungal communities at various developmental stages in the stag beetle Dorcus hopei. Results showed that microbial diversity was higher during the larval stage than during the pupal and adult stages. Furthermore, significant differences were identified in the composition of the intestinal fungal communities across the larval, pupal, and adult stages, suggesting that developmental transitions may be crucial factors contributing to variations in fungal community composition and diversity. Dominant genera included Candida, Scheffersomyces, Phaeoacremonium, and Trichosporon. Functional predictions indicated a greater diversity and relative abundance of endosymbiotic fungi in the larval gut, suggesting a potential dependency of larvae on beneficial gut fungi for nutrient acquisition. Additionally, the application of abundance-based β-null deviation and niche width analyses revealed that the adult gut exerted a stronger selection pressure on its fungal community, favoring certain taxa. This selection process culminates in a more robust co-occurrence network of fungal communities within the adult gut, thereby enhancing their adaptability to environmental fluctuations. This study advances our understanding of the intestinal fungal community structure in stag beetles, providing a crucial theoretical foundation for the development of saproxylic beetle resources, biomass energy utilization, plastic degradation strategies, and beetle conservation efforts.
Collapse
Affiliation(s)
- Xiaoyan Bin
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Pan Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Yagang Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Muhammad Jafir
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China
| | - Xia Wan
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, China.
| |
Collapse
|
8
|
Durna Pişkin E, Genç N. Multi response optimization of waste activated sludge oxidation and azo dye reduction in microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2024; 45:2599-2611. [PMID: 36762521 DOI: 10.1080/09593330.2023.2179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Microbial fuel cell technology draws attention with its ability to directly recover electrical energy from various organic materials. In this study, the operating conditions affecting the oxidation-reduction and electricity generation efficiency of MFC were optimized using the Taguchi Experimental Design model. Optimization was carried out for maximum power density, coulombic efficiency, azo dye removal, and COD removal. With the determined optimum conditions (cathode pH of 3.0, cathode oxygen status of anaerobic, anode substrate of pre-treated, external resistance of 100 Ω, cathode electrode type of plain carbon, cathode electrode surface of 22 cm2, cathode conductivity of 20 µs/cm), 177.03 mW/m2 power density, 7.50% coulombic efficiency, 91.26% azo dye removal efficiency and 21.61% COD removal efficiency were obtained. By Pareto analysis, it was determined that the power density, coulombic efficiency and COD removal efficiency were most affected by the substrate type at the anode, and the azo dye removal was most affected by the catholyte pH. The maximum power density and internal resistance of the MFC operated under optimum conditions were determined as 145.11 mW/m2 and 243.30 Ω, respectively by the polarization curve. Cyclic voltammetry was also performed for the electrochemical characterization of MFC operated under optimum conditions. An anodic peak at -183.2 mV and a cathodic peak at -181.2 mV was visible in the CV curve.
Collapse
Affiliation(s)
- Elif Durna Pişkin
- Department of Environmental Engineering, Faculty of Engineering, Kocaeli University, Kocaeli, Turkey
| | - Nevim Genç
- Department of Environmental Engineering, Faculty of Engineering, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
9
|
Song Z, Zuo X, Zhao X, Qiao J, Ya H, Li X, Yue P, Chen M, Wang S, Medina-Roldán E. Plant functional traits mediate the response magnitude of plant-litter-soil microbial C: N: P stoichiometry to nitrogen addition in a desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169915. [PMID: 38190901 DOI: 10.1016/j.scitotenv.2024.169915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Global nitrogen deposition is significantly altering the carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in terrestrial ecosystems, yet how N deposition simultaneously affects plant-litter-soil-soil microbial stoichiometry in arid grassland is still unclear. In a five-year experimental study conducted in a desert steppe in Northern China, we investigated the effects of N addition on the C:N:P stoichiometry of plants, litter, soil, and soil microbes. We also used structural equation modelling (SEM) exploring the direct or indirect effects of N addition, plant species diversity, functional traits and diversity, soil microbial diversity, soil pH, soil electrical conductivity (EC) and moisture on the stoichiometry in plant-soil system. The results showed that N addition increased the N, P concentrations and N:P in plants, the N concentration and N:P in litter, and the C, N concentrations, C:P and N:P in microbes. Conversely, it decreased the C:N and C:P in plants, and litter C:N. Functional traits, functional dispersion (FDis), soil pH and EC accounted for a substantial proportion of the observed variations in elemental concentrations (from 42 % to 69 %) and stoichiometry (from 9 % to 73 %) across different components. SEM results showed that N addition decreased C:N and C:P in plants and litter by increasing FDis and leaf N content, while increased plant and litter N:P by decreasing leaf C content and increasing specific leaf area, respectively. Furthermore, N addition increased microbial C:P by increasing leaf thickness. We also found the mediating effects of soil pH and EC on C:N, C:P of litter and microbial N:P. Overall, our research suggests that plant functional traits as key predictors of nutrient cycling responses in desert steppes under N addition. This study extends the application of plant functional traits, enhances our understanding of C and nutrient cycling and facilitates predicting the response of desert steppes to N deposition.
Collapse
Affiliation(s)
- Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China.
| | - Xueyong Zhao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Hu Ya
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Lanzhou 730000, China
| | - Eduardo Medina-Roldán
- Institute of BioEconomy-National Research Council (IBE-CNR), Sesto Fiorentino 50019, Italy
| |
Collapse
|
10
|
Xie C, Ouyang H, Zheng H, Wang M, Gu J, Wang Z, Tang Y, Xiao L. Community structure and association network of prokaryotic community in surface sediments from the Bering-Chukchi shelf and adjacent sea areas. Front Microbiol 2024; 14:1312419. [PMID: 38264483 PMCID: PMC10803617 DOI: 10.3389/fmicb.2023.1312419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The Bering-Chukchi shelf is one of the world's most productive areas and characterized by high benthic biomass. Sedimentary microbial communities play a crucial role in the remineralization of organic matter and associated biogeochemical cycles, reflecting both short-term changes in the environment and more consistent long-term environmental characteristics in a given habitat. In order to get a better understanding of the community structure of sediment-associated prokaryotes, surface sediments were collected from 26 stations in the Bering-Chukchi shelf and adjacent northern deep seas in this study. Prokaryote community structures were analyzed by metabarcoding of the 16S rRNA gene, and potential interactions among prokaryotic groups were analyzed by co-occurrence networks. Relationships between the prokaryote community and environmental factors were assessed. Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the dominant bacterial classes, contributing 35.0, 18.9, and 17.3% of the bacterial reads, respectively. The phototrophic cyanobacteria accounted for 2.7% of the DNA reads and occurred more abundantly in the Bering-Chukchi shelf. Prokaryotic community assemblages were different in the northern deep seas compared to the Bering-Chukchi shelf, represented by the lowered diversity and the increased abundant operational Taxonomic Units (OTU), suggesting that the abundant taxa may play more important roles in the northern deep seas. Correlation analysis showed that latitude, water depth, and nutrients were important factors affecting the prokaryote community structure. Abundant OTUs were distributed widely in the study area. The complex association networks indicated a stable microbial community structure in the study area. The high positive interactions (81.8-97.7%) in this study suggested that symbiotic and/or cooperative relationships accounted for a dominant proportion of the microbial networks. However, the dominant taxa were generally located at the edge of the co-occurrence networks rather than in the major modules. Most of the keystone OTUs were intermediately abundant OTUs with relative reads between 0.01 and 1%, suggesting that taxa with moderate biomass might have considerable impacts on the structure and function of the microbial community. This study enriched the understanding of prokaryotic community in surface sediments from the Bering-Chukchi shelf and adjacent sea areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yali Tang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Tian J, Dungait JAJ, Hou R, Deng Y, Hartley IP, Yang Y, Kuzyakov Y, Zhang F, Cotrufo MF, Zhou J. Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming. Nat Commun 2024; 15:377. [PMID: 38191568 PMCID: PMC10774409 DOI: 10.1038/s41467-023-44647-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Increasing soil organic carbon (SOC) in croplands by switching from conventional to conservation management may be hampered by stimulated microbial decomposition under warming. Here, we test the interactive effects of agricultural management and warming on SOC persistence and underlying microbial mechanisms in a decade-long controlled experiment on a wheat-maize cropping system. Warming increased SOC content and accelerated fungal community temporal turnover under conservation agriculture (no tillage, chopped crop residue), but not under conventional agriculture (annual tillage, crop residue removed). Microbial carbon use efficiency (CUE) and growth increased linearly over time, with stronger positive warming effects after 5 years under conservation agriculture. According to structural equation models, these increases arose from greater carbon inputs from the crops, which indirectly controlled microbial CUE via changes in fungal communities. As a result, fungal necromass increased from 28 to 53%, emerging as the strongest predictor of SOC content. Collectively, our results demonstrate how management and climatic factors can interact to alter microbial community composition, physiology and functions and, in turn, SOC formation and accrual in croplands.
Collapse
Affiliation(s)
- Jing Tian
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, PR China.
| | - Jennifer A J Dungait
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UK
- Carbon Management Centre, SRUC-Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Ruixing Hou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), 100101, Beijing, PR China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, PR China
| | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UK
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, 37077, Göttingen, Germany
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, PR China.
| | - M Francesca Cotrufo
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA.
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
12
|
Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW. Biotransformation of food waste into biogas and hydrogen fuel – A review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 52:46-60. [DOI: 10.1016/j.ijhydene.2022.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
13
|
Ahmad A, Senaidi AS, Al-Rahbi AS, Al-dawery SK. Biodegradation of petroleum wastewater for the production of bioelectricity using activated sludge biomass. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:133-142. [PMID: 37159729 PMCID: PMC10163198 DOI: 10.1007/s40201-022-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/18/2022] [Indexed: 05/11/2023]
Abstract
Objective This research is based on the treatment of petroleum wastewater (PWW) with pretreated activated sludge for the production of electricity and removal of chemical oxygen demand (COD) using microbial fuel cell (MFC). Methods The application of the MFC system which uses activated sludge biomass (ASB) as a substrate resulted in the reduction of COD by 89.5% of the original value. It generated electricity equivalent to 8.18 mA/m2 which can be reused again. This would solve the majority of environmental crises which we are facing today. Results This study discusses the application of ASB to enhance the degradation of PWW for the production of a power density of 1012.95 mW/m2 when a voltage of 0.75 V (voltage) is applied at 30:70% of ASB when MFC is operated in a continuous mode. Microbial biomass growth was catalyzed using activated sludge biomass. The growth of microbes was observed by scanning through an electron microscope. Through oxidation in the MFC system, bioelectricity is generated which is used in the cathode chamber. Furthermore, the MFC operated using ASB in a ratio of 35 with the current density, which decreased to 494.76 mW/m2 at 10% ASB. Application Our experiments demonstrate that the efficiency of the MFC system can generate bioelectricity and treat petroleum wastewater by using activated sludge biomass.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, 616 Nizwa, Sultanate of Oman
| | - Alaya Said Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, 616 Nizwa, Sultanate of Oman
| | - Amal S. Al-Rahbi
- Chemistry Section-Applied Sciences, Higher College of Technology, University Technology and Applied Sciences, Muscat, Sultanate of Oman
| | - Salam K. Al-dawery
- Chemical Petroleum Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, 616 Nizwa, Sultanate of Oman
| |
Collapse
|
14
|
Bei E, Ye Z, Chen X, Li X, Wang J, Qiu Y, Xie S, Chen C. Study on characteristic and mechanism involved in the formation of N-nitrosodimethylamine precursors during microbial metabolism of amino acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162469. [PMID: 36858218 DOI: 10.1016/j.scitotenv.2023.162469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Amino acid metabolism by microorganisms is a new but important pathway for the formation of NDMA precursors in water. We investigated the properties of nitrosamine precursors produced through microbial metabolism of amino acids by polarity rapid assessment method and molecular weight fractionation by ultrafiltration method. The PRAM results showed that the positively charged fraction and the non-polar fraction accounted for most (45 %-79 % and 6 %-82 %, respectively) of the NDMA precursors. The MW fractionation results also indicate the dominant precursors had MWs <1 kDa or over 10 kDa. NDMA precursors produced through amino acid metabolism were identified and quantified. Dimethylamine, N-methyl-alanine and alanine methyl ester were produced during the metabolism of alanine and peptone. Together, N-methyl-alanine and dimethylamine averagely contributed 24 % (12 %-44 %) of the NDMA precursors in the alanine medium. The NDMA precursor formation pathway during alanine metabolism involves the methylation of alanine to form N-methyl-alanine and the decomposition of alanine anabolism products to form dimethylamine. Nitrosamine precursors are generally formed through anabolism or methylation, but biogenic amines or NH3 can be produced through catabolism before nitrosamine precursor synthesis. Microbial community analysis was performed and Ralstonia was found to be a likely key genus contributing to NDMA precursor formation during alanine metabolism.
Collapse
Affiliation(s)
- Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiwei Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Xiao Li
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China.
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
15
|
Naderi A, Kakavandi B, Giannakis S, Angelidaki I, Rezaei Kalantary R. Putting the electro-bugs to work: A systematic review of 22 years of advances in bio-electrochemical systems and the parameters governing their performance. ENVIRONMENTAL RESEARCH 2023; 229:115843. [PMID: 37068722 DOI: 10.1016/j.envres.2023.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Wastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs). We focus on the effect of various parameters, such as electroactive microbial community structure, electrode material, configuration of bioreactors, anode unit volume, membrane type, initial COD, co-substrates and the nature of the input wastewater in treatment process and the amount of energy and fuel production, with the purpose of showcasing the modes of operation as a guide for future studies. The results of this review show that the BES have great potential in reducing environmental pollution, purifying saltwater, and producing energy and fuel. At a larger scale, it aspires to facilitate the path of achieving sustainable development and practical application of BES in real-world scenarios.
Collapse
Affiliation(s)
- Azra Naderi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), C/Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yue X, Liu H, Wei H, Chang L, Gong Z, Zheng L, Yin F. Reactive and microbial inhibitory mechanisms depicting the panoramic view of pH stress effect on common biological nitrification. WATER RESEARCH 2023; 231:119660. [PMID: 36716566 DOI: 10.1016/j.watres.2023.119660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/03/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
pH is a crucial factor of microbial nitrification, which often combines with high-strength ammonium to influence nitrogen removal pathway in wastewater treatment. However, the detailed inhibitory mechanisms of pH stress are not sufficiently disclosed yet. In this study, the pH stress effect on nitrification was comprehensively studied by a set of experiments which identified the reactivity of nitrification processes and activity of nitrifiers, the time dependence of inhibition effect and the hybrid pH stress effect with ammonium. The results revealed two distinct inhibitory mechanisms dominating in alkaline and acid ranges. In alkaline range (pH > 8), pH stress causes physiological damages on microorganisms which is named as microbial inhibition. It has the features of less recoverability of nitrifiers, time-dependent inhibition effect and low pH-tolerance of nitrite oxidation bacteria. Free ammonia enhanced microbial inhibition and greatly promoted nitrite accumulation. A novel reactive inhibition mechanism dominated in acid range (pH < 7) was disclosed. It only impedes ammonia oxidation process (AOP) but not impair microbial activity obviously and the effect is time-independent. The mechanism was clarified from H+ transport because AOP involved H+ production. The H+ transport was impeded under acid stress owing to the decrease of pH gradient across cell membrane. The two mechanisms formed a panoramic view of pH stress effect on nitrification advancing the understanding of nitrifier adaptability and nitritation regulation in wastewater treatment processes.
Collapse
Affiliation(s)
- Xuehai Yue
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Haotian Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
17
|
Zuo X, Sun S, Wang S, Yue P, Hu Y, Zhao S, Guo X, Li X, Chen M, Ma X, Qu H, Hu W, Zhao X, Allington GRH. Contrasting relationships between plant-soil microbial diversity are driven by geographic and experimental precipitation changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160654. [PMID: 36473666 DOI: 10.1016/j.scitotenv.2022.160654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Soil microbe diversity plays a key role in dryland ecosystem function under global climate change, yet little is known about how plant-soil microbe relationships respond to climate change. Altered precipitation patterns strongly shape plant community composition in deserts and steppes, but little research has demonstrated whether plant biodiversity attributes mediate the response of soil microbial diversity to long- and short-term precipitation changes. Here we used a comparative study to explore how altered precipitation along the natural and experimental gradients affected associations of soil bacterial and fungal diversity with plant biodiversity attributes (species, functional and phylogenetic diversity) and soil properties in desert-shrub and steppe-grass communities. We found that along both gradients, increasing precipitation increased soil bacterial and fungal richness in the desert and soil fungal richness in the steppe. Soil bacterial richness in the steppe was also increased by increasing precipitation in the experiment but was decreased along the natural gradient. Plant biodiversity and soil properties explained the variations in soil bacterial and fungal richness from 43 % to 96 % along the natural gradient and from 19 to 46 % in the experiment. Overall, precipitation effects on soil bacterial or fungal richness were mediated by plant biodiversity attributes (species richness and plant height) or soil properties (soil water content) along the natural gradient but were mediated by plant biodiversity attributes (functional or phylogenetic diversity) in the experiment. These results suggest that different mechanisms are responsible for the responses of soil bacterial and fungal diversity to long- and short-term precipitation changes. Long- and short-term precipitation changes may modify plant biodiversity attribute effects on soil microbial diversity in deserts and steppes, highlighting the importance of precipitation changes in shaping relationships between plant and soil microbial diversity in water-limited areas.
Collapse
Affiliation(s)
- Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Stress Physiology and Ecology, Gansu Province, Lanzhou, China.
| | - Shanshan Sun
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ya Hu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Shengnlong Zhao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xinxin Guo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xujun Ma
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Hao Qu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xueyong Zhao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | | |
Collapse
|
18
|
Mao Z, Wang Y, Li Q, Li W, Wang H, Li Y, Yue M. Deep mowing rather than fire restrains grassland Miscanthus growth via affecting soil nutrient loss and microbial community redistribution. FRONTIERS IN PLANT SCIENCE 2023; 13:1105718. [PMID: 36714760 PMCID: PMC9880543 DOI: 10.3389/fpls.2022.1105718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Fire and mowing are crucial drivers of grass growth. However, their effects on soil properties, microbial communities, and plant productivity in dry-alkaline grasslands have not been well investigated. This study evaluated the effects of mowing (slightly and deeply) and fire on vegetation traits (Tiller number per cluster and plant height) and biomass (plant dry weight), and soil availability of N, P, and K, as well as soil microorganism abundance in a Miscanthus system. We designed one control and three experimental grass plots (slightly and deeply mowed, and burned) in 2020-2021 in the Xi'an Botanical Garden of Shaanxi Province, Xi'an, China. Tiller number, plant height per cluster, and soil N, P, and K availability during Miscanthus growth decreased significantly (p < 0.05) in all treatments compared to the control. However, this effect was much greater in the deep-mowing plot than in the other plots. After harvest, deep mowing induced the greatest effect on biomass among all treatments, as it induced a 5.2-fold decrease in dry biomass relative to the control. In addition, both fire and mowing slightly redistributed the community and diversity of the soil bacteria and fungi. This redistribution was significantly greater in the deep-mowing plot than in other plots. In particular, relative to the control, deep mowing increased the abundance of Firmicutes and especially Proteobacteria among soil bacterial communities, but significantly (p < 0.05) decreased Basidiomycota and increased Ascomycota abundance among soil fungal communities. We conclude that nutrient limitation (N, P, and K) is crucial for Miscanthus growth in both mowing and fire grasslands, whereas deep mowing can induce soil nutrient loss and microorganism redistribution, further restraining grass sustainability in dry-alkaline grasslands.
Collapse
Affiliation(s)
- Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yuchao Wang
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Qian Li
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Weimin Li
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Hong Wang
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| |
Collapse
|
19
|
Wang S, Jiang X, Li J, Zhao X, Han E, Qu H, Ma X, Lian J. Increasing precipitation weakened the negative effects of simulated warming on soil microbial community composition in a semi-arid sandy grassland. Front Microbiol 2023; 13:1074841. [PMID: 36704553 PMCID: PMC9872155 DOI: 10.3389/fmicb.2022.1074841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Soil microbial diversity, composition, and function are sensitive to global change factors. It has been predicted that the temperature and precipitation will increase in northern China. Although many studies have been carried out to reveal how global change factors affect soil microbial biomass and composition in terrestrial ecosystems, it is still unexplored how soil microbial diversity and composition, especially in microbial functional genes, respond to increasing precipitation and warming in a semiarid grassland of northern China. A field experiment was established to simulate warming and increasing precipitation in a temperate semiarid grassland of the Horqin region. Soil bacterial (16S) and fungal (ITS1) diversity, composition, and functional genes were analyzed after two growing seasons. The result showed that warming exerted negative effects on soil microbial diversity, composition, and predicted functional genes associated with carbon and nitrogen cycles. Increasing precipitation did not change soil microbial diversity, but it weakened the negative effects of simulated warming on soil microbial diversity. Bacterial and fungal diversities respond consistently to the global change scenario in semiarid sandy grassland, but the reasons were different for bacteria and fungi. The co-occurrence of warming and increasing precipitation will alleviate the negative effects of global change on biodiversity loss and ecosystem degradation under a predicted climate change scenario in a semiarid grassland. Our results provide evidence that soil microbial diversity, composition, and function changed under climate change conditions, and it will improve the predictive models of the ecological changes of temperate grassland in future climate change scenarios.
Collapse
Affiliation(s)
- Shaokun Wang
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China,*Correspondence: Shaokun Wang,
| | - Xingchi Jiang
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Li
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Erniu Han
- Urat National Nature Reserve Management Bureau of Bayannur, Bayannur, China
| | - Hao Qu
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Xujun Ma
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Jie Lian
- Urat Desert-Grassland Research Station, Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
20
|
Zhang M, Sayer EJ, Zhang W, Ye J, Yuan Z, Lin F, Hao Z, Fang S, Mao Z, Ren J, Wang X. Seasonal Influence of Biodiversity on Soil Respiration in a Temperate Forest. PLANTS (BASEL, SWITZERLAND) 2022; 11:3391. [PMID: 36501430 PMCID: PMC9738006 DOI: 10.3390/plants11233391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Soil respiration in forests contributes to significant carbon dioxide emissions from terrestrial ecosystems but it varies both spatially and seasonally. Both abiotic and biotic factors influence soil respiration but their relative contribution to spatial and seasonal variability remains poorly understood, which leads to uncertainty in models of global C cycling and predictions of future climate change. Here, we hypothesize that tree diversity, soil diversity, and soil properties contribute to local-scale variability of soil respiration but their relative importance changes in different seasons. To test our hypothesis, we conducted seasonal soil respiration measurements along a local-scale environmental gradient in a temperate forest in Northeast China, analyzed spatial variability of soil respiration and tested the relationships between soil respiration and a variety of abiotic and biotic factors including topography, soil chemical properties, and plant and soil diversity. We found that soil respiration varied substantially across the study site, with spatial coefficients of variation (CV) of 29.1%, 27.3% and 30.8% in spring, summer, and autumn, respectively. Soil respiration was consistently lower at high soil water content, but the influence of other factors was seasonal. In spring, soil respiration increased with tree diversity and biomass but decreased with soil fungal diversity. In summer, soil respiration increased with soil temperature, whereas in autumn, soil respiration increased with tree diversity but decreased with increasing soil nutrient content. However, soil nutrient content indirectly enhanced soil respiration via its effect on tree diversity across seasons, and forest stand structure indirectly enhanced soil respiration via tree diversity in spring. Our results highlight that substantial differences in soil respiration at local scales was jointly explained by soil properties (soil water content and soil nutrients), tree diversity, and soil fungal diversity but the relative importance of these drivers varied seasonally in our temperate forest.
Collapse
Affiliation(s)
- Mengxu Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Emma J. Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Smithsonian Tropical Research Institute, Panama City 32402, Panama
| | - Weidong Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Zuoqiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Zhanqing Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Jing Ren
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
| |
Collapse
|
21
|
Yang D, Tang L, Cui Y, Chen J, Liu L, Guo C. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1356-1368. [PMID: 36208367 DOI: 10.1007/s10646-022-02595-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Saline-alkalisation of the soil environment and microorganism is a global challenge. However, relevant studies on the effects of saline-alkali stress on soil bacterial communities are limited. In this study, we investigated the effects of saline-alkali stress on the carbon source metabolic utilisation of the microbial community, bacterial diversity, and composition in soil using Biolog Ecoplate and 16S rRNA gene amplicon sequencing. Biolog Ecoplate results showed that saline-alkali stress decreased the metabolic activity and functional diversity, and changed the utilisation characteristics of carbon sources in soil microorganisms. Particularly, high level of saline-alkali stress significantly decreased the utilisation of carbohydrates and amino acids carbon sources. The results of 16S rRNA gene amplicon sequencing showed that high level of saline-alkali stress significantly reduced the diversity of soil bacterial communities. In addition, high level of saline-alkali stress significantly decreased the relative abundances of some key bacterial taxa, such as Gemmatimonas, Sphingomonas, and Bradyrhizobium. Furthermore, as saline-alkali content increased, the soil catalase, protease, urease, and sucrase activities also significantly decreased. Collectively, these results provide new insight for studies on the changes in the soil bacterial community and soil enzyme activity under saline-alkali stress.
Collapse
Affiliation(s)
- Dihe Yang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Ying Cui
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
22
|
Moisture Controls the Suppression of Panax notoginseng Root Rot Disease by Indigenous Bacterial Communities. mSystems 2022; 7:e0041822. [PMID: 36000725 PMCID: PMC9600642 DOI: 10.1128/msystems.00418-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Harnessing indigenous soil microbial suppression is an emerging strategy for managing soilborne plant diseases. Soil moisture is a vital factor in soil microbiomes, but its role in the regulation of microbial suppression is poorly understood. Here, we investigated the correlation of root rot disease of Panax notoginseng with rhizosphere microbial communities mediated by soil moisture gradients from 55% to 100% field capacity (FC); then, we captured the disease-suppressive and disease-inductive microbiomes and validated their functions by a culture experiment with synthetic microbiotas containing keystone species. We found that proper soil moisture at 75% to 95% FC could maintain a disease-suppressive microbiome to alleviate root rot disease. However, extremely low or high soil moistures (>95% FC or <75% FC) could aggravate root rot disease by depleting the disease-suppressive microbiome while enriching the disease-inductive microbiome. Both the low-soil-moisture-enriched pathogen Monographella cucumerina and the high-soil-moisture-enriched pathogen Ilyonectria destructans could synergize with different disease-inductive microbiomes to aggravate disease. Metagenomic data confirmed that low- and high-moisture conditions suppressed antibiotic biosynthesis genes but enriched pathogenicity-related genes, resulting in a change in the soil state from disease suppressive to inductive. This study highlights the importance of soil moisture when indigenous microbial suppression is harnessed for disease control. IMPORTANCE Soilborne diseases pose a major problem in high-intensity agricultural systems due to the imbalance of microbial communities in soil, resulting in the buildup of soilborne pathogens. Harnessing indigenous soil microbial suppression is an emerging strategy for overcoming soilborne plant diseases. In this study, we showed that soil moisture is a key factor in balancing microbiome effects on root rot disease. Proper soil moisture management represent an effective approach to maintain microbial disease resistance by enriching disease-suppressive microbiomes. Conversely, moisture stresses may enrich for a disease-inductive microbiome and aid accumulation of host-specific soilborne pathogens threatening crop production. This work could provide a new strategy for sustainable control of soilborne diseases by enriching the indigenous disease-suppressive microbiome through soil moisture management.
Collapse
|
23
|
Peng B, Zhao S, Banerjee S, Mai W, Tian C. Contrasting effect of irrigation practices on the cotton rhizosphere microbiota and soil functionality in fields. FRONTIERS IN PLANT SCIENCE 2022; 13:973919. [PMID: 36330236 PMCID: PMC9623166 DOI: 10.3389/fpls.2022.973919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Drip irrigation under plastic film mulch is a common agricultural practice used to conserve water. However, compared to traditional flood irrigation with film mulch, this practice limit cotton root development from early flowering stage and may cause premature senescence in cotton. Changes of root will consequently shape the composition and activity of rhizosphere microbial communities, however, the effect of this farming practice on cotton rhizosphere microbiota remains poorly understood. This study investigated rhizosphere bacteria and soil functionality in response to different irrigation practices -including how changes in rhizosphere bacterial diversity alter soil nutrient cycling. Drip irrigation under plastic film mulch was shown to enhance bacterial diversity by lowering the salinity and increasing the soil moisture. However, the reduced root biomass and soluble sugar content of roots decreased potential copiotrophic taxa, such as Bacteroidetes, Firmicutes, and Gamma-proteobacteria, and increased potential oligotrophic taxa, such as Actinobacteria, Acidobacteria, and Armatimonadetes. A core network module was strongly correlated with the functional potential of soil. This module not only contained most of the keystone taxa but also comprised taxa belonging to Planctomycetaceae, Gemmatimonadaceae, Nitrosomonadaceae, and Rhodospirillaceae that were positively associated with functional genes involved in nutrient cycling. Drip irrigation significantly decreased the richness of the core module and reduced the functional potential of soil in the rhizosphere. Overall, this study provides evidence that drip irrigation under plastic film mulch alters the core bacterial network module and suppresses soil nutrient cycling.
Collapse
Affiliation(s)
- Bin Peng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
24
|
Wang L, Hu Z, Hu M, Zhao J, Zhou P, Zhang Y, Zheng X, Zhang Y, Hu ZT, Pan Z. Cometabolic biodegradation system employed subculturing photosynthetic bacteria: A new degradation pathway of 4-chlorophenol in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127670. [PMID: 35878775 DOI: 10.1016/j.biortech.2022.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
4-chlorophenol (4-CP) as a toxic persistent pollutant is quite difficult treatment by using traditional biological processes. Herein, photosynthetic bacteria (PSB) driven cometabolic biodegradation system associated with exogeneous carbon sources (e.g., sodium acetate) has been demonstrated as an effective microbial technique. The biodegradation rate (ri) can be at 0.041 d-1 with degradation efficiency of 93% in 3094 lx. Through the study of subculturing PSB in absence of NaCl, it was found that 50% inoculation time can be saved but keeping a similar 4-CP biodegradation efficiency in scale-up salinity system. A new plausible biodegradation pathway for 4-CP in 4th G PSB cometabolic system is proposed based on the detected cyclohexanone generation followed by ring opening. It is probably ascribed to the increasement of Firmicutes and Bacteroidetes at phyla level classified based on microbial community. This study contributes to a new insight into cometabolic technology for chlorophenol treatment in industrial hypersaline wastewater.
Collapse
Affiliation(s)
- Liang Wang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhongce Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Peijie Zhou
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yongjie Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
25
|
Wang L, Wang M, Li Q, Zhang J, Li C, Yuan Y, Tan P, Liu H. Dynamics of soil properties and bacterial community structure by mulched fertigation system in semi-arid area of Northeast China. PeerJ 2022; 10:e14044. [PMID: 36168430 PMCID: PMC9509672 DOI: 10.7717/peerj.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/21/2022] [Indexed: 01/19/2023] Open
Abstract
The agricultural irrigation and fertigation systems have a non-negligible impact on the soil microenvironment in arid and semi-arid areas. Therefore, studying the processes and changes of soil microenvironment under different plastic mulch drip irrigation systems can reveal the "soil-microbe" mechanism and provide a theoretical support for the optimal irrigation and nutrition management of maize in the semi-arid area of Northeast China. Three treatments were used for this study in the semi-arid area of northeast China, namely; mulched fertigation system (MF), drip irrigation system (DI), and farmers' practices system (FP). We used high-throughput sequencing to study the soil bacterial community structure targeting the 16S rRNA gene. The agricultural irrigation and fertigation systems significantly affected soil properties. MF significantly increased bacterial abundance and bacterial diversity and richness. Moreover, MF and DI markedly increased some relative abundance of beneficial bacterial. The bacterial network in MF was more conducive to the health and stability of the agroecosystem and the relationships among species in MF bacterial network were more complex. The agricultural irrigation and fertigation systems had indirect effects on community composition and bacterial diversity through soil organic carbon (SOC), ammonium nitrogen ( NH 4 + -N), nitrate nitrogen ( NO 3 - -N), pH, moisture, NH 4 + -N and NO 3 - -N had indirect effects on yield through bacterial community composition, bacterial diversity and bacterial abundance. These findings suggested that MF was the most effective treatment to improve soil bacterial abundance and diversity, and stabilize the functional quality of soil biological processes.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Meng Wang
- Institute of Agricultural Environment and Resources Research, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Qian Li
- Institute of Agricultural Environment and Resources Research, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jinjing Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Cuilan Li
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuhan Yuan
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Pan Tan
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Hang Liu
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
26
|
Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review. ENERGIES 2022. [DOI: 10.3390/en15155616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
High-energy consumption globally has raised questions about the low environmentally friendly and high-cost processes used until now for energy production. Microbial fuel cells (MFCs) may support alternative more economically and environmentally favorable ways of bioenergy production based on their advantage of using waste. MFCs work as bio-electrochemical devices that consume organic substrates in order for the electrogenic bacteria and/or enzyme cultures to produce electricity and simultaneously lower the environmental hazardous value of waste such as COD. The utilization of organic waste as fuels in MFCs has opened a new research path for testing a variety of by-products from several industry sectors. This review presents several organic waste substrates that can be employed as fuels in MFCs for bioenergy generation and the effect of their usage on power density, COD (chemical oxygen demand) removal, and Coulombic efficiency enhancement. Moreover, a demonstration and comparison of the different types of mixed waste regarding their efficiency for energy generation via MFCs are presented. Future perspectives for manufacturing and cost analysis plans can support scale-up processes fulfilling waste-treatment efficiency and energy-output densities.
Collapse
|
27
|
Varjani S, Shahbeig H, Popat K, Patel Z, Vyas S, Shah AV, Barceló D, Hao Ngo H, Sonne C, Shiung Lam S, Aghbashlo M, Tabatabaei M. Sustainable management of municipal solid waste through waste-to-energy technologies. BIORESOURCE TECHNOLOGY 2022; 355:127247. [PMID: 35490955 DOI: 10.1016/j.biortech.2022.127247] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Increasing municipal solid waste (MSW) generation and environmental concerns have sparked global interest in waste valorization through various waste-to-energy (WtE) to generate renewable energy sources and reduce dependency on fossil-derived fuels and chemicals. These technologies are vital for implementing the envisioned global "bioeconomy" through biorefineries. In light of that, a detailed overview of WtE technologies with their benefits and drawbacks is provided in this paper. Additionally, the biorefinery concept for waste management and sustainable energy generation is discussed. The identification of appropriate WtE technology for energy recovery continues to be a significant challenge. So, in order to effectively apply WtE technologies in the burgeoning bioeconomy, this review provides a comprehensive overview of the existing scenario for sustainable MSW management along with the bottlenecks and perspectives.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| | - Hossein Shahbeig
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Kartik Popat
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar 382007, Gujarat, India
| | - Zeel Patel
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Anil V Shah
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Catalan Institute for Water Research (ICRA-CERCA), Girona, Catalonia, Spain
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christian Sonne
- Arhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
28
|
Wang F, Li Z, Fu B, Lü Y, Liu G, Wang D, Wu X. Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands. Front Microbiol 2022; 13:824192. [PMID: 35422777 PMCID: PMC9005194 DOI: 10.3389/fmicb.2022.824192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Grazing exclusion is one of the most common practices for degraded grassland restoration worldwide. Soil microorganisms are critical components in soil and play important roles in maintaining grassland ecosystem functions. However, the changes of soil bacterial community characteristics during grazing exclusion for different types of grassland remain unclear. In this study, the soil bacterial community diversity and composition as well as the co-occurrence patterns were investigated and compared between grazing exclusion (4 years) and the paired adjacent grazing sites for three types of temperate grasslands (desert steppe, typical steppe, and meadow steppe) in the Hulunbuir grassland of Inner Mongolia. Our results showed that short-term grazing exclusion decreased the complexity and connectivity of bacterial co-occurrence patterns while increasing the network modules in three types of temperate grasslands. The effects of grazing exclusion on soil bacterial α-diversity and composition were not significant in typical steppe and meadow steppe. However, short-term grazing exclusion significantly altered the community composition in desert steppe, indicating that the soil bacteria communities in desert steppe could respond faster than those in other two types of steppes. In addition, the composition of bacterial community is predominantly affected by soil chemical properties, such as soil total carbon and pH, instead of spatial distance. These results indicated that short-term grazing exclusion altered the soil bacterial co-occurrence patterns rather than community diversity or composition in three types of temperate grasslands. Moreover, our study suggested that soil bacterial co-occurrence patterns were more sensitive to grazing exclusion, and the restoration of soil bacterial community might need a long term (>4 years) in our study area.
Collapse
Affiliation(s)
- Fangfang Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zongming Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yihe Lü
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Dongbo Wang
- Hulunbuir Eco-environmental Monitoring Center of Inner Mongolia, Hulunbuir, China
| | - Xing Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Tian Y, Tian Z, He Y, Sun G, Zhang Y, Yang M. Removal of denatured protein particles enhanced UASB treatment of oxytetracycline production wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151549. [PMID: 34774634 DOI: 10.1016/j.scitotenv.2021.151549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Enhanced hydrolysis, which can selectively destroy antibiotic potency, has been previously demonstrated to be an effective pretreatment technology for the biological treatment of antibiotic production wastewater. However, full-scale application of enhanced hydrolysis to the treatment of real oxytetracycline production wastewater showed that the up-flow anaerobic sludge blanket (UASB) reactors treating the pretreated wastewater could only be stable under a low organic loading rate (OLR) of 1.8 ± 0.4 g·COD/L/d. Deterioration of UASB was also confirmed in treating the same wastewater using a bench-scale reactor (R1) at an OLR of 4.4 ± 0.3 g·COD/L/d. Assuming that the particles formed due to the denaturation of soluble proteins under the hydrolysis temperature (110 °C), resulting in the significant increase of suspended solids (SS) in oxytetracycline production wastewater from less than 200 mg/L to 1200 ± 500 mg/L, were responsible for the deterioration of UASB, the pretreated wastewater was filtered using polypropylene cotton fiber and ultrafiltration membrane, and then fed into two parallel bench-scale UASB reactors (R2 and R3). Both reactors maintained a stable COD removal (53.2% ~ 61.1%) even at an OLR as high as 8.0 g·COD/L/d. When the feed of R3 was switched to unfiltered wastewater, however, deterioration of the reactor occurred again. Microscopic observation showed that the granules in R3 were fully covered by protein particles after the switch of the feed. It was possible that the tight layer of the denatured protein particles blocked the inner pores of the granules, resulting in the obstruction of substrate transfer and biogas emission, while removing the protein particles could abate such blockage problem. This study provides a scientific basis for the efficient treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yupeng He
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxi Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Wang JL, Liu KL, Zhao XQ, Gao GF, Wu YH, Shen RF. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152342. [PMID: 34919922 DOI: 10.1016/j.scitotenv.2021.152342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Unbalanced fertilization of nutritional elements is a potential threat to environmental quality and agricultural productivity in acid soil. Harnessing keystone taxa in soil microbiome represents a promising strategy to enhance crop productivity as well as reducing the adverse environmental effects of fertilizers, with the goal of agricultural sustainability. However, there is a lack of information on which and how soil microbial keystone taxa contribute to sustainable crop productivity in acid soil. Here, we examined soil microbial communities (including bacteria, fungi, and archaea) and soil nutrients, and the mineral nutrition and yield of maize subjected to different inorganic and organic fertilization treatments over 35 years in acid soil. The application of organic fertilizer alone or in combination with inorganic fertilizers sustained high maize yield when compared with the other fertilization treatments. Microbial abundances and community structures rather than their alpha diversities explained the main variation in maize yield among different treatments. Sixteen soil keystone taxa (a fungal operational taxonomic unit and 15 bacterial operational taxonomic units) were identified from the microbial co-occurrence network. Among them, five keystone taxa (in Hypocreales, Bryobacter, Solirubrobacterales, Thermomicrobiales, and Roseiflexaceae) contributed to high maize yield through increasing phosphorus flow and inhibiting toxic aluminum and manganese flow from soils to plants. However, the remaining eleven keystone taxa (in Conexibacter, Acidothermus, Ktedonobacteraceae, Deltaproteobacteria, Actinobacteria, Elsterales, Ktedonobacterales, and WPS-2) exerted the opposite effects. As a result, maize productivity varied among different fertilization treatments because of the altered maize mineral element flows by microbial keystone taxa. We conclude that microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows in acid soil. This study highlights the importance of microbial keystone taxa for sustainable crop productivity in acid soil and provides deep insights into the relationships between soil microbial keystone taxa, crop mineral nutrition, and productivity.
Collapse
Affiliation(s)
- Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Lou Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil, Nanchang 331717, China.
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Hong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Chen X, Feng L, Zheng W, Chen S, Yang Y, Xie S. Shifts in structure and function of bacterial community in river and fish pond sediments after a phenol spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14987-14998. [PMID: 34622407 DOI: 10.1007/s11356-021-16514-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phenol is widely used in industrial processes and has microbial toxicity. However, the effects of a phenol spill on the microbial community are not clear. The present study explored the changes of bacterial communities in river and fish pond sediments after a phenol spill. The bacterial richness and diversity in river sediments were lower on day 30 (36 days after the spill) than on day 0, while they increased in fish pond sediments. The structures and functions of bacterial communities in both river and fish pond sediments were changed, and a more dramatical variation was detected in fish pond sediments. In river sediments, Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Nitrospirae were the major bacterial phyla, and Chloroflexi was enriched. In fish pond sediments, genera Brevibacillus dominated bacterial communities initially, and bacterial composition showed a dramatic change on day 30. Most predicted metabolism functions, as well as genetic information processing functions of translation, replication, and repair, were enhanced in both river and fish pond sediments, while they showed an opposite change trend for xenobiotic degradation function. This work could strengthen our understanding of the effects of phenol spills on sediment bacterial communities in both lotic and lentic ecosystems.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China.
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
33
|
Autotoxin Rg 1 Induces Degradation of Root Cell Walls and Aggravates Root Rot by Modifying the Rhizospheric Microbiome. Microbiol Spectr 2021; 9:e0167921. [PMID: 34908454 PMCID: PMC8672892 DOI: 10.1128/spectrum.01679-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Management of crop root rot disease is one of the key factors in ensuring sustainable development in agricultural production. The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot diseases; however, less is known about the correlation of plants, their associated pathogens and microbiome mediated by autotoxins as well as the contributions autotoxins make to the occurrence of root rot disease. Here, we integrated metabolomic, transcriptomic, and rhizosphere microbiome analyses to identify the root cell wall degradants cellobiose and d-galacturonic acid as being induced by the autotoxic ginsenoside Rg1 of Panax notoginseng, and we found that exogenous cellobiose and d-galacturonic acid in addition to Rg1 could aggravate root rot disease by modifying the rhizosphere microbiome. Microorganisms that correlated positively with root rot disease were enriched and those that correlated negatively were suppressed by exogenous cellobiose, d-galacturonic acid, and Rg1. In particular, they promoted the growth and infection of the soilborne pathogen Ilyonectria destructans by upregulating pathogenicity-related genes. Cellobiose showed the highest ability to modify the microbiome and enhance pathogenicity, followed by Rg1 and then d-galacturonic acid. Collectively, autotoxins damaged root systems to release a series of cell wall degradants, some of which modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease. IMPORTANCE The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot disease and one of the key factors limiting sustainable development in agricultural production. However, less is known about the correlation of plants, their associated pathogens, and the microbiome mediated by autotoxins, as well as the contributions autotoxins make to the occurrence of root rot disease. In our study, we found that autotoxins can damage root systems, thus releasing a series of cell wall degradants, and both autotoxins and the cell wall degradants they induce could aggravate root rot disease by reassembling the rhizosphere microbiome, resulting in the enrichment of pathogens and microorganisms positively related to the disease but the suppression of beneficial microorganisms. Deciphering this mechanism among plants, their associated pathogens, and the microbiome mediated by autotoxins will advance our fundamental knowledge of and ability to degrade autotoxins or employ microbiome to alleviate root rot disease in agricultural systems.
Collapse
|
34
|
Labile organic carbon fractions drive soil microbial communities after long-term fertilization. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Synthesizing developments in the usage of solid organic matter in microbial fuel cells: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
Daud NNM, Ahmad A, Yaqoob AA, Ibrahim MNM. Application of rotten rice as a substrate for bacterial species to generate energy and the removal of toxic metals from wastewater through microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62816-62827. [PMID: 34215989 DOI: 10.1007/s11356-021-15104-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are the efficient and sustainable approach for the removal of toxic metals and generate energy concurrently. This article highlighted the effective use of rotten rice as an organic source for bacterial species to generate electricity and decrease the metal concentrations from wastewater. The obtained results were corresponding to the unique MFCs operation where the 510 mV voltage was produced within 14-day operation with 1000 Ω external resistance. The maximum power density and current density were found to be 2.9 mW/m2 and 168.42 mA/m2 with 363.6 Ω internal resistance. Similarly, the maximum metal removal efficiency was found to be 82.2% (Cd), 95.71% (Pb), 96.13% (Cr), 89.50% (Ni), 89.82 (Co), 99.50% (Ag), and 99.88% (Cu). In the biological test, it was found that Lysinibacillus strains, Chryseobacterium strains, Escherichia strains, Bacillus strains are responsible for energy generation and metal removal. Furthermore, a multiparameter optimization revealed that MFCs are the best approach for a natural environment with no special requirements. Lastly, the working mechanism of MFCs and future recommendations are enclosed.
Collapse
Affiliation(s)
- Najwa Najihah Mohamad Daud
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM, 81310, Skudai, Johor, Malaysia
| | - Asim Ali Yaqoob
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
37
|
Chen X, Zhang Z, Han X, Hao X, Lu X, Yan J, Biswas A, Dunfield K, Zou W. Impacts of land-use changes on the variability of microbiomes in soil profiles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5056-5066. [PMID: 33570760 DOI: 10.1002/jsfa.11150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The conversion of arable land to grassland and/or forested land is a common strategy of restoration because the development of plant communities can inhibit the erosion of soil, increase biodiversity and improve associated ecosystem services. The vertical profiles of microbial communities, however, have not been well characterized and their variability after land conversion is not well understood. We assessed the effects of the conversion of arable land (AL) to grassland (GL) and forested land (FL) on bacterial communities as old as 29 years in 0-200-cm profiles of a Chinese Mollisol. RESULTS The soil in AL has been a stable ecosystem and changes in the assembly of soil microbiomes tended to be larger in the topsoil. The soil properties and microbial biodiversity of arable land were larger following revegetation and reforestation. The conversion caused a more complex coupling among microbes, and negative interactions and average connectivity were stronger in the 0-20-cm layers in GL and in the 20-60-cm layers in FL. The land use dramatically influenced the assembly of the microbial communities more in GL than AL and FL. The bacterial diversity was an important component of soil multinutrient cycling in the profiles and microbial functions were not as affected by changes in land use. CONCLUSION The spatial variation of the microbiomes provided critical information on below-ground soil ecology and the ability of the soil to provide crucial ecosystem services. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhiming Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaozeng Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiangxiang Hao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xinchun Lu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jun Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Asim Biswas
- School of Environmental Sciences, University of Gulph, Ottawa, Canada
| | - Kari Dunfield
- School of Environmental Sciences, University of Gulph, Ottawa, Canada
| | - Wenxiu Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
38
|
Sanaei A, Sayer EJ, Yuan Z, Lin F, Fang S, Ye J, Liu S, Hao Z, Wang X. Soil Stoichiometry Mediates Links Between Tree Functional Diversity and Soil Microbial Diversity in a Temperate Forest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Intestinal Microbes of Hooded Cranes ( Grus monacha) Wintering in Three Lakes of the Middle and Lower Yangtze River Floodplain. Animals (Basel) 2021; 11:ani11051390. [PMID: 34068189 PMCID: PMC8153004 DOI: 10.3390/ani11051390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Intestinal microbes are critical to host health, and are affected by environmental factors. In this study, we investigated the intestinal microbes of Hooded Cranes wintering at three lakes with different environmental characteristics in the middle and lower Yangtze River floodplain in China, aiming to provide insights into the effects of habitat size and protection status of birds on their intestinal microbes. We found that the Hooded Cranes at the smaller lake had higher intestinal bacterial and fungal diversity than those at the larger lake. In addition, more diverse and abundant pathogens were found in the gut of Hooded Cranes that lived in the relatively poorly protected habitat than those that lived in well-protected habitat. This study contributes a new perspective for understanding the intestinal microbes of wintering migratory waterbirds at different habitats, and will help to understand the survival status of the vulnerable waterbirds at different habitats for their better conservation. Abstract Intestinal microbes participate in life activities of the host, and are affected by external environmental factors. Different habitat sizes and protection status provide different external environmental selection pressures for the same wintering waterbirds, which may be reflected in their intestinal microbes. Hooded Cranes are vulnerable migratory waterbirds with similar numbers wintering at three different lakes in the middle and lower Yangtze River floodplain, Poyang, Caizi, and Shengjin Lakes. Here, we analyzed the characteristics of intestinal bacterial and fungal communities of Hooded Cranes wintering at the three lakes to clarify the effect of habitat size and protection status on intestinal microbes, using high-throughput sequencing technology. Our results showed that community composition and diversity of intestinal microbes were significantly different among lakes with different habitat size and protection status. The Hooded Cranes at Shengjin Lake (small) had higher intestinal microbial alpha-diversity (for both bacteria and fungi) than those at Poyang Lake (large), which might be induced by social behavior of more waterbirds per unit area. The Hooded Cranes at Caizi Lake (relatively poorly protected habitat) had more diverse and abundant intestinal potential pathogens than Shengjin Lake (well-protected habitat). Our results indicated that the environmental pressure of a habitat might affect intestinal microorganisms and more attention might be needed for the vulnerable waterbirds at the habitat of poor protection status.
Collapse
|
40
|
Tian J, Zong N, Hartley IP, He N, Zhang J, Powlson D, Zhou J, Kuzyakov Y, Zhang F, Yu G, Dungait JAJ. Microbial metabolic response to winter warming stabilizes soil carbon. GLOBAL CHANGE BIOLOGY 2021; 27:2011-2028. [PMID: 33528058 DOI: 10.1111/gcb.15538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Current consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon-cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%-38% under winter warming compared with year-round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year-round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra-aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial "necromass" (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl-C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year-round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.
Collapse
Affiliation(s)
- Jing Tian
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, PR China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Iain P Hartley
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Jinjing Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases of Jilin Province, College of Resource and Environmental Science, Jilin Agricultural University, Changchun, China
| | - David Powlson
- Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Jennifer A J Dungait
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Carbon Management Centre, SRUC-Scotland's Rural College, Edinburgh, UK
| |
Collapse
|
41
|
Jin Y, Zhang B, Chen J, Mao W, Lou L, Shen C, Lin Q. Biofertilizer-induced response to cadmium accumulation in Oryza sativa L. grains involving exogenous organic matter and soil bacterial community structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111952. [PMID: 33513523 DOI: 10.1016/j.ecoenv.2021.111952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of cadmium (Cd) in Oryza sativa L., the world's most significant staple crop, is a health threat to millions of people. The objective of this study was to evaluate the effectiveness of commercially available biofertilizers (with high (BF2) and low organic matter (OM) content (BF1)) on Cd accumulation in two types of soils and to determine the bacterial community responses by high-throughput sequencing. The study was conducted in the form of pot experiment in greenhouse in 2018. Four treatments were set: BF1, BF2, organic fertilizer (OF), and control (CK) and the amendments were applied before the rice cultivation. The results showed that the addition of biofertilizers immobilized or mobilized Cd in soils, depending on the soil type and the OM content in biofertilizers. The exogenous OM in biofertilizers was the driving factor for the difference in pH and Cd accumulation in rice grains. The application of biofertilizers with high OM content was effective in reducing Cd accumulation in the rice grains (19.7% lower than CK) by significantly increasing soil pH (from 6.02 to 6.67) in acid silt loam soil (TZ). The consumption of acid fermentation products by soil chemoorganotrophs and the complexation of organic anions in the biofertilizer treatment tended to buffer the pH drop in the drainage and decrease the Cd availability. However, in the weak acid silty clay loam soil (SX), the addition of biofertilizer with high OM significantly increased Cd accumulation in rice grains (21.9% higher than CK), probably owing to the release of acid substances, resulting from the significant increase of the predominant bacteria Chloroflexi. The addition of biofertilizer with low OM content did not significantly change Cd accumulation in rice grains or affect the soil microbial structures in both soils. In conclusion, the effects of biofertilizer on rice Cd accumulation were related to the OM content and soil bacterial community. Biofertilizers with high organic matter may not be suitable for amendments in the paddy soils with high clay content to reduce Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Yu Jin
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Baofeng Zhang
- Hangzhou Environmental Monitoring Central Station, 310007 Hangzhou, China
| | - Junqiao Chen
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Weihua Mao
- The Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310058 Hangzhou, China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310058 Hangzhou, China
| | - Qi Lin
- Department of Environmental Engineering, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310058 Hangzhou, China.
| |
Collapse
|
42
|
Zhang P, Sun Z, Zhang J, Pan B, Feng Y. A microbial electrochemical hybrid system for simultaneous sludge treatment, acid production, and desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144153. [PMID: 33352332 DOI: 10.1016/j.scitotenv.2020.144153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Excess sludge production from wastewater treatment plants has significantly increased, and sludge disposal has become a serious social and environmental problem. In this study, we constructed a microbial electrochemical hybrid system (MEHS) for simultaneous electricity generation, acid and alkali production, desalination, alkali pretreatment, and degradation of sludge. The alkaline solution generated in the MEHS was used for in situ sludge pretreatment. Owing to the efficiency in alkali pretreatment, a higher sludge degradation efficiency was obtained by the MEHS (Total chemical oxygen demand (TCOD) removal efficiency of 57.2%) than by the SMFC (TCOD removal efficiency of 51.7%). Moreover, the MEHS (0.165C) could recover more electricity from the sludge than a traditional single-chamber microbial fuel cell (SMFC, 0.133C). Additionally, the MEHS exhibited excellent performance in desalination (> 50%) and acid production. The system developed in this study provides a new solution for sludge degradation and multifunctional utilization.
Collapse
Affiliation(s)
- Peng Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhengyi Sun
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China
| | - Jinshuo Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
43
|
Ma K, Ma A, Zheng G, Ren G, Xie F, Zhou H, Yin J, Liang Y, Zhuang X, Zhuang G. Mineralosphere Microbiome Leading to Changed Geochemical Properties of Sedimentary Rocks from Aiqigou Mud Volcano, Northwest China. Microorganisms 2021; 9:560. [PMID: 33803112 PMCID: PMC7998385 DOI: 10.3390/microorganisms9030560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
The properties of rocks can be greatly affected by seepage hydrocarbons in petroleum-related mud volcanoes. Among them, the color of sedimentary rocks can reflect the changes of sedimentary environment and weathering history. However, little is known about the microbial communities and their biogeochemical significance in these environments. In this study, contrasting rock samples were collected from the Aiqigou mud volcano on the southern margin of the Junggar Basin in Northwest China as guided by rock colors indicative of redox conditions. The physicochemical properties and mineral composition are similar under the same redox conditions. For example, the content of chlorite, muscovite, quartz, and total carbon were higher, and the total iron was lower under reduced conditions compared with oxidized environments. High-throughput sequencing of 16S rRNA gene amplicons revealed that different functional microorganisms may exist under different redox conditions; microbes in oxidized conditions have higher diversity. Statistical analysis and incubation experiments indicated that the microbial community structure is closely related to the content of iron which may be an important factor for color stratification of continental sedimentary rocks in the Aiqigou mud volcano. The interactions between organics and iron-bearing minerals mediated by microorganisms have also been hypothesized.
Collapse
Affiliation(s)
- Ke Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
- Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Zheng
- Key Laboratory of Petroleum Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Ge Ren
- National Institute of Metrology, Beijing 100029, China;
| | - Fei Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (K.M.); (F.X.); (H.Z.); (J.Y.); (Y.L.); (X.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Li Y, Li Q, Chen S. Diazotroph Paenibacillus triticisoli BJ-18 Drives the Variation in Bacterial, Diazotrophic and Fungal Communities in the Rhizosphere and Root/Shoot Endosphere of Maize. Int J Mol Sci 2021; 22:1460. [PMID: 33540521 PMCID: PMC7867140 DOI: 10.3390/ijms22031460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Application of diazotrophs (N2-fixing microorganisms) can decrease the overuse of nitrogen (N) fertilizer. Until now, there are few studies on the effects of diazotroph application on microbial communities of major crops. In this study, the diazotrophic and endospore-forming Paenibacillus triticisoli BJ-18 was inoculated into maize soils containing different N levels. The effects of inoculation on the composition and abundance of the bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize were evaluated by sequencing the 16S rRNA, nifH gene and ITS (Inter Transcribed Spacer) region. P. triticisoli BJ-18 survived and propagated in all the compartments of the maize rhizosphere, root and shoot. The abundances and diversities of the bacterial and diazotrophic communities in the rhizosphere were significantly higher than in both root and shoot endospheres. Each compartment of the rhizosphere, root and shoot had its specific bacterial and diazotrophic communities. Our results showed that inoculation reshaped the structures of the bacterial, diazotrophic and fungal communities in the maize rhizosphere and endosphere. Inoculation reduced the interactions of the bacteria and diazotrophs in the rhizosphere and endosphere, while it increased the fungal interactions. After inoculation, the abundances of Pseudomonas, Bacillus and Paenibacillus in all three compartments, Klebsiella in the rhizosphere and Paenibacillus in the root and shoot were significantly increased, while the abundances of Fusarium and Giberella were greatly reduced. Paenibacillus was significantly correlated with plant dry weight, nitrogenase, N2-fixing rate, P solubilization and other properties of the soil and plant.
Collapse
Affiliation(s)
| | | | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100094, China; (Y.L.); (Q.L.)
| |
Collapse
|
45
|
Wang B, Luo Y, Wang Y, Wang D, Hou Y, Yao D, Tian J, Jin Y. Rumen bacteria and meat fatty acid composition of Sunit sheep reared under different feeding regimens in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1100-1110. [PMID: 32767556 DOI: 10.1002/jsfa.10720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rumen bacteria play a critical role in feed degradation and productivity. This study evaluated the impact of feeding regimen on the rumen microbial populations and fatty acid composition of the meat of sheep. Twenty-four Sunit sheep were raised on a grass pasture from birth to 9 months of age, at which time they were randomly divided into two feeding groups: pasture feeding (PF) and barn feeding (BF). Sheep in the PF group were allowed to graze freely on wild grassland for 3 months. Sheep in the BF group were confined for 3 months to a dry barn, in which they roamed freely with corn straw and corn. RESULTS Sheep in the PF group had greater rumen bacteria diversity. The relative abundances of the genera Butyrivibrio_2, Saccharofermentans and Succiniclasticum were increased, and that of the genus RC9_gut_group was decreased, in the PF compared to the BF sheep. The n-3 polyunsaturated fatty acid contents were greater in meat from PF sheep than from BF sheep. In addition, the α-linolenic acid (C18:3 n-3, ALA) and conjugated linoleic acid (CLA) contents were positively correlated with the abundance of Butyrivibrio_2. CONCLUSION Grazing may improve the diversity of rumen bacteria and increase the proportion of ALA and CLA in sheep meat. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bohui Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Ordos City Food Inspection and Testing Center, Ordos, China
| | - Yulong Luo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Debao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
46
|
Soil Bacterial and Fungal Richness and Network Exhibit Different Responses to Long-Term Throughfall Reduction in a Warm-Temperate Oak Forest. FORESTS 2021. [DOI: 10.3390/f12020165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prolonged drought results in serious ecological consequences in forest ecosystems, particularly for soil microbial communities. However, much is unknown about soil microbial communities in their response to long-term consecutive droughts in warm-temperate forests. Here, we conducted a 7-year manipulated throughfall reduction experiment (TFR) to examine the responses of bacterial and fungal communities in terms of richness and networks. Our results show that long-term TFR reduced bacterial, but not fungal, richness, with rare bacterial taxa being more sensitive to TFR than dominant taxa. The bacterial network under the TFR treatment featured a simpler network structure and fewer competitive links compared to the control, implying weakened interactions among bacterial species. Bacterial genes involved in xenobiotic biodegradation and metabolism, and lignin-degrading enzymes were enhanced under TFR treatment, which may be attributed to TFR-induced increases in fine root biomass and turnover. Our results indicate that soil bacterial communities are more responsive than fungi to long-term TFR in a warm-temperate oak forest, leading to potential consequences such as the degradation of recalcitrant organics in soil.
Collapse
|
47
|
Wang G, Bei S, Li J, Bao X, Zhang J, Schultz PA, Li H, Li L, Zhang F, Bever JD, Zhang J. Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Guangzhou Wang
- College of Resources and Environmental Sciences China Agricultural University Beijing China
- Kansas Biological Survey University of Kansas Lawrence KS USA
| | - Shuikuan Bei
- College of Resources and Environmental Sciences China Agricultural University Beijing China
| | - Jianpeng Li
- College of Resources and Environmental Sciences China Agricultural University Beijing China
| | - Xingguo Bao
- Institute of Soils and Fertilizers Gansu Academy of Agricultural Sciences Lanzhou China
| | - Jiudong Zhang
- Institute of Soils and Fertilizers Gansu Academy of Agricultural Sciences Lanzhou China
| | | | - Haigang Li
- College of Grassland, Resources and Environment Inner Mongolia Agricultural University Hohhot China
| | - Long Li
- College of Resources and Environmental Sciences China Agricultural University Beijing China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences China Agricultural University Beijing China
| | - James D. Bever
- Kansas Biological Survey University of Kansas Lawrence KS USA
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
| | - Junling Zhang
- College of Resources and Environmental Sciences China Agricultural University Beijing China
| |
Collapse
|
48
|
Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus muelleri (Coleoptera: Lucanidae). INSECTS 2020; 11:insects11100719. [PMID: 33096611 PMCID: PMC7589407 DOI: 10.3390/insects11100719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Although stag beetles are popular saprophytic insects, there are few studies about their gut bacterial community. This study focused on the gut bacterial community structure of the rainbow stag beetle (i.e., Phalacrognathus muelleri) in its larvae (three instars) and adult stages, using high throughput sequencing (Illumina Miseq). Our aim was to compare the gut bacterial community structure among different life stages. The results revealed that bacterial alpha diversity increased from the 1st instar to the 3rd instar larvae. Adults showed the lowest gut bacterial alpha diversity. Bacterial community composition was significantly different between larvae and adults (p = 0.001), and 1st instar larvae (early instar) had significant differences with the 2nd (p= 0.007) and 3rd (p = 0.001) instar larvae (final instar). However, there was little difference in the bacterial community composition between the 2nd and 3rd instar larvae (p = 0.059). Our study demonstrated dramatic shifts in gut bacterial community structure between larvae and adults. Larvae fed on decaying wood and adults fed on beetle jelly, suggesting that diet is a crucial factor shaping the gut bacterial community structure. There were significant differences in bacterial community structure between early instar and final instars larvae, suggesting that certain life stages are associated with a defined gut bacterial community.
Collapse
|
49
|
Sharma P, Gaur VK, Kim SH, Pandey A. Microbial strategies for bio-transforming food waste into resources. BIORESOURCE TECHNOLOGY 2020; 299:122580. [PMID: 31877479 DOI: 10.1016/j.biortech.2019.122580] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 05/27/2023]
Abstract
With the changing life-style and rapid urbanization of global population, there is increased generation of food waste from various industrial, agricultural, and household sources. According to Food and Agriculture Organization (FAO), almost one-third of the total food produced annually is wasted. This poses serious concern as not only there is loss of rich resources; their disposal in environment causes concern too. Food waste is rich in organic, thus traditional approaches of land-filling and incineration could cause severe environmental and human health hazard by generating toxic gases. Thus, employing biological methods for the treatment of such waste offers a sustainable way for valorization. This review comprehensively discusses state-of-art knowledge about various sources of food waste generation, their utilization, and valorization by exploiting microorganisms. The use of microorganisms either aerobically or anaerobically could be a sustainable and eco-friendly solution for food waste management by generating biofuels, electrical energy, biosurfactants, bioplastics, biofertilizers, etc.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Frontier Research Lab, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Wu X, Gu Y, Wu X, Zhou X, Zhou H, Amanze C, Shen L, Zeng W. Construction of a Tetracycline Degrading Bacterial Consortium and Its Application Evaluation in Laboratory-Scale Soil Remediation. Microorganisms 2020; 8:microorganisms8020292. [PMID: 32093355 PMCID: PMC7074960 DOI: 10.3390/microorganisms8020292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
As an environmental pollutant, tetracycline (TC) can persist in the soil for years and damage the ecosystem. So far, many methods have been developed to handle the TC contamination. Microbial remediation, which involves the use of microbes to biodegrade the pollutant, is considered cost-efficient and more suitable for practical application in soil. This study isolated several strains from TC-contaminated soil and constructed a TC-degrading bacterial consortium containing Raoultella sp. XY-1 and Pandoraea sp. XY-2, which exhibited better growth and improved TC degradation efficiency compared with single strain (81.72% TC was biodegraded within 12 days in Lysogeny broth (LB) medium). Subsequently, lab-scale soil remediation was conducted to evaluate its effectiveness in different soils and the environmental effects it brought. Results indicated that the most efficient TC degradation was recorded at 30 °C and in soil sample Y which had relatively low initial TC concentration (around 35 mg/kg): TC concentration decreased by 43.72% within 65 days. Soil properties were affected, for instance, at 30 °C, the pH value of soil sample Y increased to near neutral, and soil moisture content (SMC) of both soils declined. Analysis of bacterial communities at the phylum level showed that Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi were the four dominant phyla, and the relative abundance of Proteobacteria significantly increased in both soils after bioremediation. Further analysis of bacterial communities at the genus level revealed that Raoultella sp. XY-1 successfully proliferated in soil, while Pandoraea sp. XY-2 was undetectable. Moreover, bacteria associated with nitrogen cycling, biodegradation of organic pollutants, soil biochemical reactions, and plant growth were affected, causing the decline in soil bacterial diversity. Variations in the relative abundance of tetracycline resistance genes (TRGs) and mobile gene elements (MGEs) were investigated, the results obtained indicated that tetD, tetG, tetX,intI1, tnpA-04, and tnpA-05 had higher relative abundance in original soils, and the relative abundance of most TRGs and MGEs declined after the microbial remediation. Network analysis indicated that tnpA may dominate the transfer of TRGs, and Massilia, Alkanibacter, Rhizomicrobium, Xanthomonadales, Acidobacteriaceae, and Xanthomonadaceae were possible hosts of TRGs or MGEs. This study comprehensively evaluated the effectiveness and the ecological effects of the TC-degrading bacterial consortium in soil environment.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yichao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Xiangyu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Han Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (Y.G.); (X.W.); (X.Z.); (H.Z.); (C.A.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
- Correspondence: ; Tel.: +86-0731-88877472
| |
Collapse
|