1
|
Jin S, Ren Y, Peng C, Cheng Y, Liu W, Fu Y, Lv C, Cai H. A sustainable and Integrated Microbial Biocatalysis of Resveratrol from Polygonum cuspidatum Siebold & Zucc Using Cellulose-Based Immobilised Aspergillus niger with Deep Eutectic Solvent-Assisted Microreactors. Appl Biochem Biotechnol 2025; 197:1726-1742. [PMID: 39607469 DOI: 10.1007/s12010-024-05118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
An efficient and green method was developed using deep eutectic solvent assistance to enhance the biotransformation method of producing resveratrol from Polygonum cuspidatum Siebold & Zucc, using cellulose-based immobilised Aspergillus niger in the process. Various deep eutectic solvents (DES) were screened to obtain a superior biocatalytic effect. The increase in DES concentration aggravated the degree of cell membrane damage. Natural deep eutectic solvents (NADES) exhibited a more favourable catalytic effect than DES due to their excellent biocompatibility. This enhancement is associated with the hydrogen bonding donor components present in NADES, with catalytic ability ranking as alcohol-based > sugar-based > organic acid. CHCL/EG exhibited the maximum catalytic effect at 1.0 wt%. Under optimal conditions (pH 6.5; temperature, 29.5 °C; ratio of liquid to solid 20:1 (mL/g), and time 47 h), the resveratrol yield reached 32.79 mg/g, which was 13.06-fold to that of the untreated sample (2.51 mg/g). The residual activity of the cellulose-based microreactor was 81.46% after ten trials. The proposed method was successfully employed, demonstrating higher biocatalysis efficiencies and superior environmental protection compared to conventional solvents for resveratrol biocatalysis.
Collapse
Affiliation(s)
- Shuang Jin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China.
| | - Yubin Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China.
| | - Cailiang Peng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Yupeng Cheng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China.
| | - Weili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chen Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Hongyao Cai
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Miao Q, Pan C, Yin J, Wang L, Qu L, Yin Y, Wei Y. Research advances in probiotic fermentation of Chinese herbal medicines. IMETA 2023; 2:e93. [PMID: 38868438 PMCID: PMC10989925 DOI: 10.1002/imt2.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Qin Miao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
3
|
Chen Y, Yu D, Huo J, Huang N, Zhang M, Du X. Studies on biotransformation mechanism of Fusarium sp. C39 to enhance saponin content of Paridis Rhizoma. Front Microbiol 2022; 13:992318. [PMID: 36590423 PMCID: PMC9800501 DOI: 10.3389/fmicb.2022.992318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Paridis Rhizoma is a natural medicine with strong anti-tumor and anti-inflammatory activities. Our previous research have found that Fusarium sp. C39, an endophytic fungus isolated from Dioscorea nipponica which contains the similar chemical components, significantly increased the steroidal saponins content of Paridis Rhizoma by fermentation. In this study, the inhibitory effects of fermentated Paridis Rhizoma extract (PRE) on liver cancer cells (Hepal-6), cervical cancer cells (Hela), and lung cancer cells (A549) were determined to be stronger than that of the unfermented extract. For discovering the fermentation mechanism of PRE with Fusarium sp. C39, 36 components with obviously quantitative variations were screened out by UPLC-Q/TOF-MS and 53 key genes involved in the metabolic pathways of steroidal saponins were identified by transcriptome. On the basis of comprehensively analyzing information from the metabonomics and transcriptome, it can be speculated that the increase of spirostanol saponins and nuatigenin-type saponins enhanced the inhibitory effect of fermented PRE on cancer cell proliferation. Under the action of glycosidase, glycosyltransferase, oxidoreductases, and genes involved in sterol synthesis, strain C39 achieved the synthesis of diosgenin and the alteration of configurations, sugar chain and substituent of steroidal saponins. The research suggested a microbial transformation approach to increase the resource utilization and activity of Paris polyphylla.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Nannan Huang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Zhang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Xiaowei Du,
| |
Collapse
|
4
|
Anticancer Secondary Metabolites: From Ethnopharmacology and Identification in Native Complexes to Biotechnological Studies in Species of Genus Astragalus L. and Gloriosa L. Curr Issues Mol Biol 2022; 44:3884-3904. [PMID: 36135179 PMCID: PMC9498292 DOI: 10.3390/cimb44090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Some of the most effective anticancer compounds are still derived from plants since the chemical synthesis of chiral molecules is not economically efficient. Rapid discovery of lead compounds with pronounced biological activity is essential for the successful development of novel drug candidates. This work aims to present the chemical diversity of antitumor bioactive compounds and biotechnological approaches as alternative production and sustainable plant biodiversity conservation. Astragalus spp., (Fabaceae) and Gloriosa spp. (Liliaceae) are selected as research objects within this review because they are known for their anticancer activity, because they represent two of the largest families respectively in dicots and monocots, and also because many of the medicinally important plants are rare and endangered. We summarized the ethnobotanical data concerning their anticancer application, highlighted the diversity of their secondary metabolites possessing anticancer properties such as saponins, flavonoids, and alkaloids, and revealed the potential of the in vitro cultures as an alternative way of their production. Since the natural supply is limited, it is important to explore the possibility of employing plant cell or organ in vitro cultures for the biotechnological production of these compounds as an alternative.
Collapse
|
5
|
Zhang Y, Qi G, Yao L, Huang L, Wang J, Gao W. Effects of Metal Nanoparticles and Other Preparative Materials in the Environment on Plants: From the Perspective of Improving Secondary Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:916-933. [PMID: 35073067 DOI: 10.1021/acs.jafc.1c05152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The influence of preparation material residues in wastewater and soil on plants has been paid more and more attention by researchers. Secondary metabolites play an important role in the application of plants. It was found that nanomaterials can increase the content of plant secondary metabolites in addition to their role in pharmaceutical preparations. For example, 800 mg/kg copper oxide nanoparticles (NPs) increased the content of p-coumaric acid in cucumber by 225 times. Nanoparticles can cause oxidative stress in plants, increase signal molecule, and upregulate the synthase gene expression, increasing the content of secondary metabolites. The increase of components such as polyphenols and total flavonoids may be related to oxidative stress. This paper reviews the application and mechanism of metal nanomaterials (Ag-NP, ZnO-NP, CeO2-NP, Cds-NP, Mn-NP, CuO-NP) in promoting the synthesis of secondary metabolites from plants. In addition, the effects of some other preparative materials (cyclodextrins and immobilized molds) on plant secondary metabolites are also involved. Finally, possible future research is discussed.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - GeYuan Qi
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Zada NS, Belduz AO, Güler HI, Sahinkaya M, Khan SI, Saba M, Bektas KI, Kara Y, Kolaylı S, Badshah M, Shah AA, Khan S. Cloning, biochemical characterization and molecular docking of novel thermostable β-glucosidase BglA9 from Anoxybacillus ayderensis A9 and its application in de-glycosylation of Polydatin. Int J Biol Macromol 2021; 193:1898-1909. [PMID: 34793813 DOI: 10.1016/j.ijbiomac.2021.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
This study reports a novel BglA9 gene of 1345 bp encoding β-glucosidase from Anoxybacillus ayderensis A9, which was amplified and expressed in E. coli BL21 (DE3): pLysS cells, purified with Ni-NTA column having molecular weight of 52.6 kDa and was used in the bioconversion of polydatin to resveratrol. The kinetic parameters values using pNPG as substrate were Km (0.28 mM), Vmax (43.8 μmol/min/mg), kcat (38.43 s-1) and kcat/Km (135.5 s-1 mM-1). The BglA9 was active in a broad pH range and had an activity half-life around 24 h at 50 °C. The de-glycosylation efficiency of BglA9 for polydatin was determined by estimating the amount of glucose released after enzymatic reaction by a dinitrosalicylic acid (DNS) assay. The kinetic parameters of BglA9 for polydatin were 5.5 mM, 20.84 μmol/min/mg, 18.28 s-1and 3.27 s-1 mM-1 for Km, Vmax, kcat, and kcat/Km values, respectively. The Ki value for glucose was determined to be 1.7 M. The residues Gln19, His120, Glu355, Glu409, Glu178, Asn222 may play a crucial role in the deglycosylation as revealed by the 3D structure of enzyme docked with polydatin.
Collapse
Affiliation(s)
- Numan Saleh Zada
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Halil Ibrahim Güler
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Miray Sahinkaya
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Sanam Islam Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Marium Saba
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Kadriye Inan Bektas
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yakup Kara
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Sevgi Kolaylı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
7
|
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2021; 342:125978. [PMID: 34598073 DOI: 10.1016/j.biortech.2021.125978] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Acetyl-CoA is a kind of important cofactor that is involved in many metabolic pathways. It serves as the precursor for many interesting commercial products, such as terpenes, flavonoids and anthraquinones. However, the insufficient supply of acetyl-CoA limits biosynthesis of its derived compounds in the intracellular. In this review, we outlined metabolic pathways involved in the catabolism and anabolism of acetyl-CoA, as well as some important derived products. We examined several strategies for the enhanced supply of acetyl-CoA, and provided insight into pathways that generate acetyl-CoA to balance metabolism, which can be harnessed to improve the titer, yield and productivities of interesting products in Saccharomyces cerevisiae and other eukaryotic microorganisms. We believe that peroxisomal fatty acid β-oxidation could be an attractive strategy for enhancing the supply of acetyl-CoA.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Xu XD, Liang WX, Yao L, Paek KY, Wang J, Gao WY. Production of ginsenoside by Chaetomium sp. and its effect on enhancing the contents of ginsenosides in Panax ginseng adventitious roots. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Discovering the Protective Effects of Resveratrol on Aflatoxin B1-Induced Toxicity: A Whole Transcriptomic Study in a Bovine Hepatocyte Cell Line. Antioxidants (Basel) 2021; 10:antiox10081225. [PMID: 34439473 PMCID: PMC8388899 DOI: 10.3390/antiox10081225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.
Collapse
|
10
|
Labois C, Stempien E, Schneider J, Schaeffer-Reiss C, Bertsch C, Goddard ML, Chong J. Comparative Study of Secreted Proteins, Enzymatic Activities of Wood Degradation and Stilbene Metabolization in Grapevine Botryosphaeria Dieback Fungi. J Fungi (Basel) 2021; 7:568. [PMID: 34356948 PMCID: PMC8303417 DOI: 10.3390/jof7070568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023] Open
Abstract
Botryosphaeriaceae fungi are plant pathogens associated with Botryosphaeria dieback. To better understand the virulence factors of these fungi, we investigated the diversity of secreted proteins and extracellular enzyme activities involved in wood degradation and stilbene metabolization in Neofusicoccumparvum and Diplodiaseriata, which are two major fungi associated with grapevine B. dieback. Regarding the analysis of proteins secreted by the two fungi, our study revealed that N. parvum, known to be more aggressive than D. seriata, was characterized by a higher quantity and diversity of secreted proteins, especially hydrolases and oxidoreductases that are likely involved in cell wall and lignin degradation. In addition, when fungi were grown with wood powder, the extracellular laccase and Mn peroxidase enzyme activities were significantly higher in D. seriata compared to N.parvum. Importantly, our work also showed that secreted Botryosphaeriaceae proteins produced after grapevine wood addition are able to rapidly metabolize the grapevine stilbenes. Overall, a higher diversity of resveratrol and piceatannol metabolization products was found with enzymes of N. parvum compared to D. seriata. This study emphasizes the diversity of secreted virulence factors found in B. dieback fungi and suggests that some resveratrol oligomers produced in grapevine wood after pathogen attack could be formed via pathogenic fungal oxidases.
Collapse
Affiliation(s)
- Clément Labois
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
- Laboratoire d’Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, CEDEX, 68093 Mulhouse, France
| | - Elodie Stempien
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
| | - Justine Schneider
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France; (J.S.); (C.S.-R.)
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France; (J.S.); (C.S.-R.)
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
| | - Mary-Lorène Goddard
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
- Laboratoire d’Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, CEDEX, 68093 Mulhouse, France
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
| |
Collapse
|
11
|
One-pot method based on deep eutectic solvent for extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum. Food Chem 2020; 343:128498. [PMID: 33229156 DOI: 10.1016/j.foodchem.2020.128498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
The acquisition of resveratrol from Polygonum cuspidatum is complicated and costs organic solvents due to extraction and hydrolysis of its corresponding glycoside (polydatin). In this work, a novel one-pot method based on deep eutectic solvent (DES) was developed for simultaneous extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum for the first time. The extraction yield of resveratrol by DES-based one-pot method were significantly higher than that of water, methanol and ethanol. After optimization by One-Variable-at-a-Time and response surface methodology, the extraction yield of resveratrol reached 12.26 ± 0.14 mg/g within 80 min. The conversation efficiency of polydatin to resveratrol in Polygonum cuspidatum from five different origins was more than 96.3%. Scanning electron microscope results indicated the selected DES disrupted plant cell walls to enhance the yield of resveratrol. The results indicated that one green method was successfully established for efficient extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum.
Collapse
|
12
|
Li L, Wang L, Fan W, Jiang Y, Zhang C, Li J, Peng W, Wu C. The Application of Fermentation Technology in Traditional Chinese Medicine: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:899-921. [PMID: 32431179 DOI: 10.1142/s0192415x20500433] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In Chinese medicine, fermentation is a highly important processing technology whereby medicinal herbs are fermented under appropriate temperature, humidity, and moisture conditions by means of the action of microorganisms to enhance their original characteristics and/or produce new effects. This expands the scope of such medicines and helps them to meet the stringent demands of clinical application. Since ancient times, Chinese medicine has been made into Yaoqu to reduce its toxicity and increase its efficiency. Modern fermentation technologies have been developed on the basis of traditional fermentation techniques and modern biological technology, and they can be divided into solid fermentation, liquid fermentation, and two-way fermentation technologies according to the fermentation form employed. This review serves as an introduction to traditional fermentation technology and its related products, modern fermentation technologies, and the application of fermentation technology in the field of Chinese medicine. Several problems and challenges facing the field are also briefly discussed.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wenxiang Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yun Jiang
- Sichuan Neautus Traditional Chinese Herb Limited Company, Chengdu 611731, P. R. China
| | - Chao Zhang
- Sichuan Neautus Traditional Chinese Herb Limited Company, Chengdu 611731, P. R. China
| | - Jianghua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
13
|
Jeandet P, Sobarzo-Sánchez E, Silva AS, Clément C, Nabavi SF, Battino M, Rasekhian M, Belwal T, Habtemariam S, Koffas M, Nabavi SM. Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnol Adv 2019; 39:107461. [PMID: 31678221 DOI: 10.1016/j.biotechadv.2019.107461] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Resveratrol and the biosynthetically related stilbenes are plant secondary metabolites with diverse pharmacological effects. The versatile functions of these compounds in plant defense mechanisms as phytoalexins on one hand, and in human health as potential pharmaceutical agents on the other, have attracted lots of interest in recent years to understand their biosynthetic pathways and their biological properties. Because of difficulties in obtaining resveratrol and its glucosylated derivatives as well as oligomeric forms in sufficient amounts for evaluation of their activity by plant sourcing or total synthesis, biotechnology may provide a competitive approach for the large-scale and low cost production of biologically active stilbenes. Additionally, one major limitation in the use of resveratrol and related aglycone derivatives as therapeutic agents is associated with their inherent poor aqueous solubility and low bioavailability. This article examines approaches for the synthesis of potential pharmacologically resveratrol derivatives in vivo by exploiting whole microorganisms, enzymatic and biocatalytic approaches allowing their full utilization for medicine, food and cosmetic applications. These methods also have the advantage of enabling the one-step production of stilbene compounds, compared to the time-consuming and environmentally unfriendly procedures used for their total synthesis or their extraction from plants. Increasing the desired products yield and biological activity through glucosylation (β-D-glucosides versus α-D-glucosides) and oligomerization methodologies of resveratrol including green chemistry methods in organic solvent-free media are discussed as well.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Ana Sanches Silva
- Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain; Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, United States
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| |
Collapse
|
14
|
Ultrasound-assisted aqueous two-phase extraction of resveratrol from the enzymatic hydrolysates of Polygonum cuspidatum. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Averilla JN, Oh J, Wu Z, Liu KH, Jang CH, Kim HJ, Kim JS, Kim JS. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4043-4053. [PMID: 30737796 DOI: 10.1002/jsfa.9632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Resveratrol, an extensively recognized phytochemical that belongs to the stilbene family, is abundant in grape peel which is discarded as a by-product during grape juice processing. RESULTS In this study, we established that pre-heating grape peel above 75 °C significantly improved the extractability of resveratrol and its glucoside piceid. In particular, thermal heating of grape peel at 95 °C for 10 min, followed by treatment with a mixture of exo-1,3-β-glucanase and pectinases at 50 °C for 60 min, dramatically increased the conversion of piceid into resveratrol and the overall extractability of this phytochemical by 50%. Furthermore, thermal pre-treatment promoted a substantial increase in the total phenol, flavonoid, and anthocyanin concentrations in the grape peel extract. Ultimately, resveratrol-enriched grape peel extract significantly augmented the antioxidant response in vitro, possibly by attenuating the accumulation of intracellular reactive oxygen species via the Nrf2 signaling pathway. CONCLUSION The method developed in this study for preparing grape peel extract introduces a potential low-cost green processing for the industrial fortification of food products with resveratrol and other health-beneficial antioxidants. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Janice N Averilla
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| | - Zhexue Wu
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Chan Ho Jang
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Jung Kim
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jae-Sik Kim
- Dr. Kim's Health Food Corp., Yeongcheon, Republic of Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Hu X, Liu Y, Li D, Feng W, Ni H, Cao S, Lu F, Li Y. An innovative biotransformation to produce resveratrol by Bacillus safensis. RSC Adv 2019; 9:15448-15456. [PMID: 35514846 PMCID: PMC9064255 DOI: 10.1039/c9ra01338e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is considered as a potential food supplement, cosmetic ingredient and nutraceutical. In this study, resveratrol was produced by biotransformation successfully. In detail, a β-glucosidase producing strain was isolated and identified as Bacillus safensis, and it could convert polydatin to resveratrol efficiently and rapidly. Further research showed that the conversion rate to resveratrol reached 93.1% in 8 h at 37 °C. The production of resveratrol was confirmed by HPLC, LC-MS and 1H-NMR to identify its structure and it was verified to possess antibacterial properties especially against Escherchia coli. To illustrate the resveratrol transformation mechanism, several glucosidases from B. safensis CGMCC 13129 were expressed and analyzed. The results showed that BGL4 and BGL5 had higher transformation activity compared with other tested glucosidases. This research provides a novel approach to produce resveratrol, and would promote the application of resveratrol in health-promoting pharmaceutical and food products. The transformation ability of Bacillus safensis and the antimicrobial activity of resveratrol.![]()
Collapse
Affiliation(s)
- Xiaoyan Hu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China
| | - Yexue Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China
| | - Wei Feng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China
| | - Hanmeng Ni
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China
| | - Shan Cao
- College of Leather Chemistry and Engineering, Qilu University of Technology Shandong China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology Tianjin 300457 China .,College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control China
| |
Collapse
|
17
|
Xue Y, Zhang Z, Hou J, Cao Z, Zhang L, Lou F, Xu P. Resveratrol and arctigenin production from polydatin and arctiin respectively by a thermostable β-glucosidase from Thermotoga maritima. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1541996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yemin Xue
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Zonghui Zhang
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Jingjing Hou
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Zhigang Cao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Lingxian Zhang
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Fen Lou
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Puxu Xu
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
18
|
Jiao J, Gai QY, Wang W, Zang YP, Niu LL, Fu YJ, Wang X. Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger. INDUSTRIAL CROPS AND PRODUCTS 2018; 112:252-261. [PMID: 32288265 PMCID: PMC7125528 DOI: 10.1016/j.indcrop.2017.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 05/08/2023]
Abstract
The dried roots of Isatis tinctoria L. are highly traded in the pharmaceutical industry due to their notable anti-influenza efficacy. For the first time, I. tinctoria hairy root cultures (ITHRCs) were co-cultured with two immobilized live GRAS (Generally Recognized as Safe) fungi, i.e. Aspergillus niger and Aspergillus niger, for the elevated production of pharmacologically active flavonoids. Immobilized A. niger (IAN) was exhibited as the superior elicitor in the plant-fungus co-cultivation system. The highest flavonoid production (3018.31 ± 48.66 μg/g DW) were achieved in IAN-treated ITHRCs under the optimal conditions of IAN spore concentration ca.104 spores/mL, temperature 30 °C, initial pH value of media 7.0 and time 72 h, which remarkably increased 6.83-fold relative to non-treated control (441.91 ± 7.35 μg/g DW). Also, this study revealed that IAN elicitation could trigger the sequentially transient accumulation of signal molecules and intensify the oxidative stress in ITHRCs, which both contributed to the up-regulated expression of associated genes involved in flavonoid biosynthetic pathway. Moreover, IAN could be reused at least five cycles with satisfactory performance. Overall, the coupled culture of IAN and ITHRCs is a promising and effective approach for the enhanced production of flavonoids, which allows for the improved applicability of these valuable compounds in pharmaceutical fields.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Ping Zang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Li-Li Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
19
|
Kuo HP, Wang R, Lin YS, Lai JT, Lo YC, Huang ST. Pilot scale repeated fed-batch fermentation processes of the wine yeast Dekkera bruxellensis for mass production of resveratrol from Polygonum cuspidatum. BIORESOURCE TECHNOLOGY 2017; 243:986-993. [PMID: 28747009 DOI: 10.1016/j.biortech.2017.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Resveratrol has long been used as an ingredient in functional foods. Currently, Polygonum cuspidatum extract is the greatest natural source for resveratrol because of high concentrations of glycosidic-linked resveratrol. Thus, developing a cost-effective procedure to hydrolyze glucoside could substantially enhance resveratrol production from P. cuspidatum. This study selected Dekkera bruxellensis from several microorganisms based on its bioconversion and enzyme-specific activities. We demonstrated that the cells could be reused at least nine times while maintaining an average of 180.67U/L β-glucosidase activity. The average resveratrol bioconversion efficiency within five rounds of repeated usage was 108.77±0.88%. This process worked effectively when the volume was increased to 1200L, a volume at which approximately 35mgL-1h-1 resveratrol per round was produced. This repeated fed-batch bioconversion process for resveratrol production is comparable to enzyme or cell immobilization strategies in terms of reusing cycles, but without incurring additional costs for immobilization.
Collapse
Affiliation(s)
- Hsiao-Ping Kuo
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Reuben Wang
- Department of Food Science, Tunghai University, Taiwan No. 1727, Sec. 4 Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Yi-Sheng Lin
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Jinn-Tsyy Lai
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Yi-Chen Lo
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4 Roosevelt Rd., Taipei 10617, Taiwan
| | - Shyue-Tsong Huang
- Bioresources Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan.
| |
Collapse
|
20
|
Jiao J, Gai QY, Niu LL, Wang XQ, Guo N, Zang YP, Fu YJ. Enhanced Production of Two Bioactive Isoflavone Aglycones in Astragalus membranaceus Hairy Root Cultures by Combining Deglycosylation and Elicitation of Immobilized Edible Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9078-9086. [PMID: 28950698 DOI: 10.1021/acs.jafc.7b03148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A cocultivation system of Astragalus membranaceus hairy root cultures (AMHRCs) and immobilized food-grade fungi was established for the enhanced production of calycosin (CA) and formononetin (FO). The highest accumulations of CA (730.88 ± 63.72 μg/g DW) and FO (1119.42 ± 95.85 μg/g DW) were achieved in 34 day-old AMHRCs cocultured with immobilized A. niger (IAN) for 54 h, which were 7.72- and 18.78-fold higher than CA and FO in nontreated control, respectively. IAN deglycosylation could promote the formation of CA and FO by conversion of their glycoside precursors. IAN elicitation could intensify the generation of endogenous signal molecules involved in plant defense response, which contributed to the significantly up-regulated expression of genes in CA and FO biosynthetic pathway. Overall, the coupled culture of IAN and AMHRCs offered a promising and effective in vitro approach to enhance the production of two health-promoting isoflavone aglycones for possible nutraceutical and pharmaceutical uses.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Li-Li Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Xi-Qing Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yu-Ping Zang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yu-Jie Fu
- Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University , Beijing 100083, People's Republic of China
| |
Collapse
|
21
|
Zang Y, Guo N, Jiao J, Wang X, Gai Q, Xu W, Fu Y. Application of magnetically immobilized edible fungus for the biotransformation of panax notoginseng saponin Rb1 to Rd and Rg3. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:306-313. [DOI: 10.1016/j.jchromb.2017.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 11/15/2022]
|
22
|
Jin S, Yang B, Cheng Y, Tan J, Kuang H, Fu Y, Bai X, Xie H, Gao Y, Lv C, Efferth T. Improvement of resveratrol production from waste residue of grape seed by biotransformation of edible immobilized Aspergillus oryzae cells and negative pressure cavitation bioreactor using biphasic ionic liquid aqueous system pretreatment. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Gai Q, Jiao J, Luo M, Wang W, Yao L, Fu Y. Deacetylation biocatalysis and elicitation by immobilized Penicillium canescens in Astragalus membranaceus hairy root cultures: towards the enhanced and sustainable production of astragaloside IV. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:297-305. [PMID: 27518481 PMCID: PMC5316919 DOI: 10.1111/pbi.12612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 05/24/2023]
Abstract
A novel biotechnology approach by combining deacetylation biocatalysis with elicitation of immobilized Penicillium canescens (IPC) in Astragalus membranaceus hairy root cultures (AMHRCs) was proposed for the elevated production of astragaloside IV (AG IV). The highest AG IV accumulation was achieved in 36-day-old AMHRCs co-cultured with IPC for 60 h, which resulted in the enhanced production of AG IV by 14.59-fold in comparison with that in control (0.193 ± 0.007 mg/g DW). Meanwhile, AG IV precursors were almost transformed to AG IV by IPC deacetylation. Moreover, expression of genes involved in AG IV biosynthetic pathway was significantly up-regulated in response to IPC elicitation. Also, FTIR and SEM showed that cell wall lignification was enhanced following IPC treatment and root surface was likely to be IPC deacetylation site. Overall, dual roles of IPC (biocatalyst and elicitor) offered an effective and sustainable way for the mass production of AG IV in AMHRCs.
Collapse
Affiliation(s)
- Qing‐Yan Gai
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Meng Luo
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Wei Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Li‐Ping Yao
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Yu‐Jie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| |
Collapse
|
24
|
Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess Biosyst Eng 2016; 39:1879-1885. [PMID: 27497981 PMCID: PMC5050249 DOI: 10.1007/s00449-016-1662-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
Resveratrol exerts several pharmacological activities, including anti-cancer, anti-inflammatory, cardioprotective, or antioxidant effects. However, due to its occurrence in plants more in glycosidic form as piceid, the bioavailability and bioactivity are limited. The enzymatic potential of probiotics for the transformation of piceid to resveratrol was elucidated. Cell extract from Bifidobacteria (B.) infantis, B. bifidum, Lactobacillus (L.) casei, L. plantarum, and L. acidophilus was evaluated for their effect in this bioconversion using high-performance liquid chromatography (HPLC) as analytical tool. Cell extract of B. infantis showed the highest effect on the deglycosylation of piceid to resveratrol, already after 30 min. Cell extracts of all other tested strains showed a significant biotransformation with no further metabolization of resveratrol. The conversion of piceid to resveratrol is of importance to increase bioavailability and bioactivity as shown for anti-inflammation in this study. Cell extracts from probiotics, especially from B. infantis, may be added to piceid containing products, for achieving higher biological effects caused by the bioactivity of resveratrol or by health promoting of the probiotics. These findings open a new perspective of novel combination of cell extracts from probiotics and piceid, in health-promoting pharmaceutical and food products.
Collapse
|
25
|
Weiskirchen S, Weiskirchen R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv Nutr 2016; 7:706-18. [PMID: 27422505 PMCID: PMC4942868 DOI: 10.3945/an.115.011627] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene endowed with multiple health-promoting effects. It is produced by certain plants including several dietary sources such as grapes, apples, raspberries, blueberries, plums, peanuts, and products derived therefrom (e.g., wine). Resveratrol can be isolated and purified from these biological sources or synthesized in a few steps with an overall high yield. This compound and its glucoside, the trans-polydatin piceid, have received worldwide attention for their beneficial effects on cardiovascular, inflammatory, neurodegenerative, metabolic, and age-related diseases. These health-promoting effects are particularly attractive given the prevalence of resveratrol-based nutraceuticals and the paradoxical epidemiologic observation that wine consumption is inversely correlated to the incidence of coronary heart disease. However, the notion of resveratrol as a "magic bullet" was recently challenged by clinical trials showing that this polyphenol does not have a substantial influence on health status and mortality risk. In the present review, we discuss the proposed therapeutic attributes and the mode of molecular actions of resveratrol. We also cover recent pharmacologic efforts to improve the poor bioavailability of resveratrol and influence the transition between body systems in humans. We conclude with some thoughts about future research directions that might be meaningful for resolving controversies surrounding resveratrol.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Rheinisch-Westfaelische Technische Hochschule University Hospital Aachen, Aachen, Germany
| |
Collapse
|
26
|
Effect of Polygoni Cuspidati Rhizoma et Radix and Its Ingredient Resveratrol on Experimental Autoimmune Myasthenia Gravis by Suppressing Immune Response. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.04.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Characterization of a Metagenome-Derived β-Glucosidase and Its Application in Conversion of Polydatin to Resveratrol. Catalysts 2016. [DOI: 10.3390/catal6030035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Chen H, Deng Q, Ji X, Zhou X, Kelly G, Zhang J. Glucose oxidase-assisted extraction of resveratrol from Japanese knotweed (Fallopia japonica). NEW J CHEM 2016. [DOI: 10.1039/c6nj01294a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose oxidase can completely convert resveratrol glycoside into resveratrol, and significantly increase the extraction yield of resveratrol in Japanese knotweed.
Collapse
Affiliation(s)
- Huaguo Chen
- Natural Health Products Program
- Aquatic and Crop Resource Development
- National Research Council Canada
- Charlottetown
- Canada
| | - Qingfang Deng
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine
- Guizhou Normal University
- Guiyang
- P. R. China
| | - Xiuhong Ji
- Natural Health Products Program
- Aquatic and Crop Resource Development
- National Research Council Canada
- Charlottetown
- Canada
| | - Xin Zhou
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine
- Guizhou Normal University
- Guiyang
- P. R. China
| | - Glen Kelly
- Northeast Biological Processors Ltd
- Charlottetown
- Canada
| | - Junzeng Zhang
- Natural Health Products Program
- Aquatic and Crop Resource Development
- National Research Council Canada
- Charlottetown
- Canada
| |
Collapse
|
30
|
Parshikov IA, Woodling KA, Sutherland JB. Biotransformations of organic compounds mediated by cultures of Aspergillus niger. Appl Microbiol Biotechnol 2015; 99:6971-86. [DOI: 10.1007/s00253-015-6765-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
|
31
|
Gavezzotti P, Bertacchi F, Fronza G, Křen V, Monti D, Riva S. Laccase-Catalyzed Dimerization of Piceid, a Resveratrol Glucoside, and its Further Enzymatic Elaboration. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Liu B, Li Y, Xiao H, Liu Y, Mo H, Ma H, Liang G. Characterization of the Supermolecular Structure of Polydatin/6-O-α-Maltosyl-β-cyclodextrin Inclusion Complex. J Food Sci 2015; 80:C1156-61. [PMID: 25916244 DOI: 10.1111/1750-3841.12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Abstract
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu-zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6-O-α-Maltosyl-β-cyclodextrin (Malt-β-CD), a new kind of β-CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt-β-CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt-β-CD complex was characterized by ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance ((1) H-NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt-β-CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt-β-CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt-β-CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.
Collapse
Affiliation(s)
- Benguo Liu
- School of Food Science, Henan Inst. of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Yun Li
- School of Food Science, Henan Inst. of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Huizhi Xiao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing Univ, 400044, People's Republic of China
| | - Yonglan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing Univ, 400044, People's Republic of China
| | - Haizhen Mo
- School of Food Science, Henan Inst. of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Hanjun Ma
- School of Food Science, Henan Inst. of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing Univ, 400044, People's Republic of China
| |
Collapse
|
33
|
Wang RF, Zheng MM, Cao YD, Li H, Li CX, Xu JH, Wang ZT. Enzymatic transformation of vina-ginsenoside R₇ to rare notoginsenoside ST-4 using a new recombinant glycoside hydrolase from Herpetosiphon aurantiacus. Appl Microbiol Biotechnol 2015; 99:3433-42. [PMID: 25676336 DOI: 10.1007/s00253-015-6446-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 11/25/2022]
Abstract
An eco-friendly and convenient preparation method for notoginsenoside ST-4 has been established by completely transforming vina-ginsenoside R7 using a recombinant glycosidase hydrolyzing enzyme (HaGH03) from Herpetosiphon aurantiacus. This enzyme specifically hydrolyzed the glucose at the C-20 position but not the external xylose or two inner glucoses at position C-3. Protein sequence BLAST revealed that HaGH03, composed of 749 amino acids and presumptively listed as a member of the family 3 glycoside hydrolases, has highest identity (48 %) identity with a thermostable β-glucosidase B, which was not known of any functions for ginsenoside transformation. The steady state kinetic parameters for purified HaGH03 measured against p-nitrophenyl β-D-glucopyranoside and vina-ginsenoside R7 were K M = 5.67 ± 0.24 μM and 0.59 ± 0.23 mM, and k cat = 69.2 ± 0.31/s and 2.15 ± 0.46/min, respectively. HaGH03 converted 2.5 mg/mL of vina-ginsenoside R7 to ST-4 with a molar yield of 100 % and a space-time yield of 104 mg/L/h in optimized conditions. These results underscore that HaGH03 has much potential for the effective preparation of target ginsenosides possessing valuable pharmacological activities. This is the first report identifying an enzyme that has the ability to transform vina-ginsenoside R7 and provides an approach to preparing rare notoginsenoside ST-4.
Collapse
Affiliation(s)
- Ru-Feng Wang
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Purification and functional characterization of the first stilbene glucoside-specific β-glucosidase isolated from Lactobacillus kimchi. Enzyme Microb Technol 2014; 67:59-66. [DOI: 10.1016/j.enzmictec.2014.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/04/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
|
35
|
Effective bioconversion of sophoricoside to genistein from Fructus sophorae using immobilized Aspergillus niger and Yeast. World J Microbiol Biotechnol 2014; 31:187-97. [PMID: 25392205 DOI: 10.1007/s11274-014-1777-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
In this study, sophoricoside from Fructus sophorae was highly bioconversed to genistein by co-immobilized Aspergillus niger and Yeast. Bioconversion conditions for genistein were optimized with single-factor experiments. The optimal conditions were as follows: microbial concentration 1.5 × 10(7) cells/mL, wet weight of microorganisms beads 10.0 g/g material, pH 5, ratio of liquid to solid 25:1 (mL/g), temperature 32 °C and time 24 h. Under these conditions, a 34.45-fold increase in production of genistein was observed with a bioreactor. Moreover, the antioxidant activities of the extracts from the fermented and untreated F. sophorae were 0.287 ± 0.11, 0.384 ± 0.08 mg/mL (IC50) and 1.84 ± 0.13, 1.28 ± 0.25 mmol Fe(II)/g, according to the DPPH test and FRAP assay, respectively. The results indicated that the method described in the current work were valuable procedure for the production of genistein, which is of most importance for industrial scale applications as well as food industry.
Collapse
|
36
|
Mei YZ, Liu RX, Wang DP, Wang X, Dai CC. Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 2014; 37:9-18. [PMID: 25179823 DOI: 10.1007/s10529-014-1651-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022]
Abstract
Resveratrol, a major stilbene phytoalexin, is a valuable polyphenol that has been recognized for its benefits to human health. Resveratrol has antioxidant and antitumor effects and promotes longevity. It is used in medicine, health care products, cosmetics, and other industries. Therefore, a sustainable source for resveratrol production is required. This review describes the metabolic engineering of microorganisms, the biotransformation and biosynthesis of endophytes and the oxidation or degradation of resveratrol. We compare various available methods for resveratrol production, and summarize the practical challenges facing the microbial production of resveratrol. The future research direction for resveratrol is also discussed.
Collapse
Affiliation(s)
- Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
37
|
Yoon SR, Yang SH, Suh JW, Shim SM. Fermentation of Smilax china root by Aspergillus usami and Saccharomyces cerevisiae promoted concentration of resveratrol and oxyresveratrol and the free-radical scavenging activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1822-1826. [PMID: 24919869 DOI: 10.1002/jsfa.6499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/05/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND Smilax china root, which is rich in resveratrol and oxyresveratrol, has been used as emergency foods as well as folk medicine. This study investigated changes in concentration of bioactive components and the free-radical scavenging capacity of Smilax china root during fermentation by Aspergillus usami and Saccharomyces cerevisiae. RESULTS Resveratrol, oxyresveratrol and piceid were quantified as major constituents in Smilax china root by using UPLC-ESI-MS. The concentration of oxyresveratrol and resveratrol remarkably increased through fermentation and the transformation of piceid to resveratrol. Its concentration in 4% Smilax china root was 1.16-2.95 times higher than that of a 2% preparation throughout fermentation. The vitamin C equivalent antioxidant capacity of 2% Smilax china root was 1.51-1.91 times higher than that of 4% Smilax china root during fermentation. Meanwhile, ABTS free-radical scavenging capacity was enhanced up to 95.07 and 99.35% for 2% and 4% Smilax china root, respectively. CONCLUSION Results from our study propose that bioactive components in Smilax China root were highly extracted by fermentation followed by saccharification and ethanol production, resulting in enhanced free-radical scavenging capacity. © 2013 Society of Chemical Industry.
Collapse
Affiliation(s)
- So-Ra Yoon
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Seoul, 143-747, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Yao ML, Liu JZ, Jin S, Jiao J, Gai QY, Wei ZF, Fu YJ, Zhao JT. A novel biotransformation of astragalosides to astragaloside IV with the deacetylation of fungal endophyte Penicillium canescens. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Chen M, Li D, Gao Z, Zhang C. Enzymatic transformation of polydatin to resveratrol by piceid-β-d-glucosidase from Aspergillus oryzae. Bioprocess Biosyst Eng 2013; 37:1411-6. [DOI: 10.1007/s00449-013-1113-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
|