1
|
Ngo T, Khudur LS, Krohn C, Hassan S, Jansriphibul K, Hakeem IG, Shah K, Surapaneni A, Ball AS. Wood biochar enhances methanogenesis in the anaerobic digestion of chicken manure under ammonia inhibition conditions. Heliyon 2023; 9:e21100. [PMID: 37920507 PMCID: PMC10618790 DOI: 10.1016/j.heliyon.2023.e21100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.
Collapse
Affiliation(s)
- Tien Ngo
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Krohn
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Soulayma Hassan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Kraiwut Jansriphibul
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Andrew S. Ball
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
2
|
Zhang N, Wu C, Zhang J, Han S, Peng Y, Song X. Impacts of lipids on the performance of anaerobic membrane bioreactors for food wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Abu Hanifa Jannat M, Hyeok Park S, Chairattanawat C, Yulisa A, Hwang S. Effect of different microbial seeds on batch anaerobic digestion of fish waste. BIORESOURCE TECHNOLOGY 2022; 349:126834. [PMID: 35149182 DOI: 10.1016/j.biortech.2022.126834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Initial microbial compositions would be the precursor for the efficient anaerobic digestion (AD) of fish waste (FW). A mesophilic batch test was conducted using four seeds collected from different digesters treating various combinations of substrates to investigate their effects on FW degradation. Key microbial groups were identified by 16s rRNA gene-based metagenomics analysis. Among four, the seed from the digester co-digesting livestock manure, food waste, and food wastewater showed the best performance and obtained the highest methane yield (350.5 ± 5.2 mL/gVSadded) and lowest lag phase (0.6 ± 0.1 d). Proteiniphilum, Aminobacterium, dgA-11 gut group, and Syntrophomonas were dominant bacterial genera identified in FW degradation. Methanosaeta was the dominant methanogen in the best performing seed and microbial network analysis revealed its contribution to achieving the highest CH4 yield. Obtained results could be useful in selecting microbial seed sources to avoid system imbalance in full-scale digesters that treat FW.
Collapse
Affiliation(s)
- Md Abu Hanifa Jannat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Sang Hyeok Park
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Chayanee Chairattanawat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Arma Yulisa
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea; Yonsei University Institute for Convergence Research and Education in Advanced Technology (I-CREATE), 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
4
|
Rakmak N, Promraksa A. The influence of longitudinal dispersion on the capacity and stability of UASB operation with substrate inhibition. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Kim SI, Chairattanawat C, Kim E, Hwang S. Shift in methanogenic community in protein degradation using different inocula. BIORESOURCE TECHNOLOGY 2021; 333:125145. [PMID: 33906017 DOI: 10.1016/j.biortech.2021.125145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) of protein-rich wastes is problematic due to production of ammonia and hydrogen sulfide. In this work, eight inocula were used in batch AD of solutions of gelatin and gluten at 3 g COD substrate/1g VSS inoculum. AD plants from which inocula originated were treating food waste or food wastewater, wastewater sludge, or a combination of them. Inocula were evaluated by fitting methane production data using the modified Gompertz model. Sequencing of 16 s rRNA of microorganisms showed that Methanoculleus was dominant in inocula from plants that were treating food waste, and Methanosaeta was dominant in the others. The maximum methane production rate varied by a factor of three for each substrate: 2.734-7.438 mLCH4 gCOD-1 d-1 for gelatin, and 1.950 to 5.532 mLCH4 gCOD-1 d-1 for gluten. This study demonstrates that inoculum must be chosen appropriately when treating proteinaceous waste by AD.
Collapse
Affiliation(s)
- Su In Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chayanee Chairattanawat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunji Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
6
|
Lee J, Kim E, Hwang S. Effects of inhibitions by sodium ion and ammonia and different inocula on acetate-utilizing methanogenesis: Methanogenic activity and succession of methanogens. BIORESOURCE TECHNOLOGY 2021; 334:125202. [PMID: 33957457 DOI: 10.1016/j.biortech.2021.125202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Acetate-fed anaerobic sequential batch experiments with four different inhibitory conditions (non-inhibitory (Lo), sodium-ion inhibitory (Na), ammonia inhibitory (Am), combined inhibitory (Hi)) were conducted using thirteen different inocula to investigate the inhibition effects by sodium-ion and ammonia and different inocula on acetate-utilizing methanogenesis and succession of methanogens. Sodium-ion and ammonia significantly extended lag-time λ and reduced specific-methanogenic-activity RCH4, and caused synergistic inhibition. The inhibition differed according to the initial methanogen community structures: the inhibition effects on λ and RCH4 were strongest ininocula with Methanosaeta concilii dominant and weakest in inocula with Methanoculleus bourgensis dominant. These inhibitory conditions determined the succession of methanogens: the most competitive methanogens were Methanosaeta concilii in Lo, Methanosarcina sp. in Na, Methanosarcina sp. and Methanoculleus bourgensis in Am, Methanoculleus bourgensis in Hi. This study provides valuable information for microbial management and optimization for AD processes treating wastewater that is rich in protein and/or salt.
Collapse
Affiliation(s)
- Joonyeob Lee
- Department of Environmental Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Eunji Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
7
|
Mechanism of cell proliferation during starvation in a continuous stirred tank anaerobic reactor treating food waste. Bioprocess Biosyst Eng 2021; 44:1659-1669. [PMID: 34019152 DOI: 10.1007/s00449-021-02548-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Anaerobic digestion is a mature technology; however, the mechanism of cell proliferation during starvation has not yet been clarified. In this study, a continuous stirred tank reactor (CSTR) treating food waste was exposed to deliberate starvation for 12 days. The cell density and the variability of digestate characteristics during starvation were monitored. Starvation increased cell density from 2.8 × 1010 to 7.9 × 1010 cells mL-1 within 2 days and reduced the residual substrate. This increase in cell density was suggested owing to a switch of the anaerobic digester microorganisms' substrate preference to the complex fractions because the easily digestible fractions were exhausted. The prolonged starvation of more than approximately 3-6 days induced an increase in the free ammonia concentration to an inhibitive level of more than 0.10 g-N L-1 for anaerobic digestion microorganisms due to the excessive ammonification of residual nitrogen, thereby resulting in a drastic decrease in cell density. Our results demonstrated that a deliberate starvation operation in an appropriate timeframe applied to a CSTR treating food waste is beneficial to proliferate cells and, at the same time, reduce residual substrate.
Collapse
|
8
|
Aigle A, Bourgeois E, Marjolet L, Houot S, Patureau D, Doelsch E, Cournoyer B, Galia W. Relative Weight of Organic Waste Origin on Compost and Digestate 16S rRNA Gene Bacterial Profilings and Related Functional Inferences. Front Microbiol 2021; 12:667043. [PMID: 34054773 PMCID: PMC8160089 DOI: 10.3389/fmicb.2021.667043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Even though organic waste (OW) recycling via anaerobic digestion (AD) and composting are increasingly used, little is known about the impact of OW origin (fecal matters and food and vegetable wastes) on the end products' bacterial contents. The hypothesis of a predictable bacterial community structure in the end products according to the OW origin was tested. Nine OW treatment plants were selected to assess the genetic structure of bacterial communities found in raw OW according to their content in agricultural and urban wastes and to estimate their modifications through AD and composting. Two main bacterial community structures among raw OWs were observed and matched a differentiation according to the occurrences of urban chemical pollutants. Composting led to similar 16S rRNA gene OTU profiles whatever the OW origin. With a significant shift of about 140 genera (representing 50% of the bacteria), composting was confirmed to largely shape bacterial communities toward similar structures. The enriched taxa were found to be involved in detoxification and bioremediation activities. This process was found to be highly selective and favorable for bacterial specialists. Digestates showed that OTU profiles differentiated into two groups according to their relative content in agricultural (manure) and urban wastes (mainly activated sludge). About one third of the bacterial taxa was significantly affected by AD. In digestates of urban OW, this sorting led to an enrichment of 32 out of the 50 impacted genera, while for those produced from agricultural or mixed urban/agricultural OW (called central OW), a decay of 54 genera over 60 was observed. Bacteria from activated sludge appeared more fit for AD than those of other origins. Functional inferences showed AD enriched genera from all origins to share similar functional traits, e.g., chemoheterotrophy and fermentation, while being often taxonomically distinct. The main functional traits among the dominant genera in activated sludge supported a role in AD. Raw OW content in activated sludge was found to be a critical factor for predicting digestate bacterial contents. Composting generated highly predictable and specialized community patterns whatever the OW origin. AD and composting bacterial changes were driven by functional traits selected by physicochemical factors such as temperature and chemical pollutants.
Collapse
Affiliation(s)
- Axel Aigle
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Emilie Bourgeois
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Laurence Marjolet
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Sabine Houot
- UMR ECOSYS, INRAE, AgroParisTech, Thiverval-Grignon, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, Montpellier, France.,Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Benoit Cournoyer
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Wessam Galia
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| |
Collapse
|
9
|
Choi G, Kim H, Lee C. Long-term monitoring of a thermal hydrolysis-anaerobic co-digestion plant treating high-strength organic wastes: Process performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2021; 319:124138. [PMID: 32980668 DOI: 10.1016/j.biortech.2020.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Two parallel anaerobic digesters (8500 m3 capacity each), combined with thermal hydrolysis (TH) pretreatment, co-digesting dewatered sewage sludge, dewatered human feces, and food wastewater were monitored over a 12-month period from start-up to explore the feasibility of field application of the combined process. The waste mixtures before and after pretreatment and the feed and digestate of each digester were taken semimonthly (i.e., 48 samples in total) for analysis of the feed characteristics, process parameters, and digester microbial community structure. The TH pretreatment proved effective in improving the bioavailability of the waste mixture. The solubilization efficiency tended to increase with the particulate organic fraction in the raw mixture. Although fluctuations in the feed characteristics and loading significantly influenced the process and microbial behaviors, the digesters maintained stable performance during the study period. Our results demonstrate that the TH-anaerobic digestion process can achieve an effective and robust treatment of the waste mixture.
Collapse
Affiliation(s)
- Gyucheol Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hanwoong Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Park JG, Jiang D, Lee B, Jun HB. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): Insights into electrode materials, reactor configurations, and process designs. WATER RESEARCH 2020; 184:116214. [PMID: 32726737 DOI: 10.1016/j.watres.2020.116214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is one of the most widely adopted bioenergy recovery technologies globally. Despite the wide adoption, AD has been challenged by the unstable performances caused by imbalanced substrate and/or electron availability among different reaction steps. Bioelectrochemical anaerobic digestion (BEAD) is a promising concept that has demonstrated potential for balancing the electron transfer rates and enhancing the methane yield in AD during shocks. While great progress has been made, a wide range of, and sometimes inconsistent engineering and technical strategies were attempted to improve BEAD. To consolidate past efforts and guide future development, a comprehensive review of the fundamental bioprocesses in BEAD is provided herein, followed by a critical evaluation of the engineering and technical optimizations attempted thus far. Further, a few novel directions and strategies that can enhance the performance and practicality of BEAD are proposed for future research to consider. This review and outlook aim to provide a fundamental understanding of BEAD and inspire new research ideas in AD and BEAD in a mechanism-informed fashion.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Daqian Jiang
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Nature Engineering Co., LTD., 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
11
|
Shamurad B, Gray N, Petropoulos E, Dolfing J, Quintela-Baluja M, Bashiri R, Tabraiz S, Sallis P. Low-Temperature Pretreatment of Organic Feedstocks with Selected Mineral Wastes Sustains Anaerobic Digestion Stability through Trace Metal Release. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9095-9105. [PMID: 32551555 DOI: 10.1021/acs.est.0c01732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A low-cost approach for enhancing mesophilic (37 °C) anaerobic digestion (AD) of organic waste using a low-temperature (37 °C) pretreatment with different mineral wastes (MW) was investigated. A higher and stable methane production rate, in comparison to MW-free controls, was achieved for 80 days at organic loading rates of 1-2 g VS/L·d, using a feed substrate pretreated with incinerator bottom ash (IBA). The boiler ash and cement-based waste pretreatments also produced high methane production rates but with some process instability. In contrast, an incinerator fly ash pretreatment showed a progressive decrease in methane production rates and poor process stability, leading to reactor failure after 40 days. To avoid process instability and/or reactor failure, two metrics had to be met: (a) a methanogenesis to fermentation ratio higher than 0.6 and (b) a cell-specific methanogenic activity to cell-specific fermentation activity ratio of >1000. The prevalence of Methanofastidiosum together with a mixed community of acetoclastic (Methanosaeta) and hydrogenotrophic (Methanobacterium) methanogens in the stable IBA treatment indicated the importance of Methanofastidiosum as a potential indicator of a healthy and stable reactor.
Collapse
Affiliation(s)
- Burhan Shamurad
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Neil Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | | | - Jan Dolfing
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | | | - Reihaneh Bashiri
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Shamas Tabraiz
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Paul Sallis
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
12
|
Ahmed W, Rodríguez J. A model predictive optimal control system for the practical automatic start-up of anaerobic digesters. WATER RESEARCH 2020; 174:115599. [PMID: 32086134 DOI: 10.1016/j.watres.2020.115599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The optimal automatic start-up of anaerobic digesters has remained an elusive problem over the years to be solved at the lowest possible costs, including that of process monitoring. In this work, a non-linear model predictive control (NMPC) system was developed, under two proposed configurations, for the optimal start-up of anaerobic digesters treating soluble non-recalcitrant substrates. The minimum set of low cost practical control variables (CVs) selected for process start-up include (i) the effluent quality as acetate COD, (ii) the level of aceticlastic methanogenic biomass in the reactor, and (iii) the methane production rate (only for one of the NMPC configurations). The manipulated variables (MVs) consist of the volumetric inflow rates of the organic substrate, dilution water, and of a possible concentrated alkali addition. To be able to apply the above selected CVs (technically and economically feasible to measure/estimate), a simplified tailored AD model was specifically designed as the prediction model, integral part of the NMPC system. The NMPC system developed was evaluated for a case scenario consisting of the automatic start-up of a high rate AD reactor treating a readily biodegradable carbohydrate based substrate. The AD plant was virtually represented by the complex Anaerobic Digestion Model No. 1. Compared to other manual start-up strategies, the two configurations of the NMPC developed appeared to reach the target methane production rate faster (39 and 18 days for the NMPC versus 70-75 days for the manual strategies) together with an overall superior CV set-point tracking error performance. Interestingly, the two configurations of the NMPC developed appear to propose two very different, almost opposite, start-up feeding strategies to both eventually start-up the reactor successfully with no process destabilizations throughout. A number of practical scenarios were also considered to evaluate the NMPC configurations for robustness and any possible improvements. These tests indicate that the NMPC objective function formulation is a key factor of the success and robustness exhibited during start-up.
Collapse
Affiliation(s)
- Wasim Ahmed
- Department of Chemical Engineering, Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Jorge Rodríguez
- Department of Chemical Engineering, Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Sun H, Ni P, Angelidaki I, Dong R, Wu S. Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 91:139-146. [PMID: 31203935 DOI: 10.1016/j.wasman.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Monitoring of anaerobic digestion process is essential for achieving efficient and stable performance, thus requiring identification of effective stability indicators. The response of two experimental, continuously stirred tank reactors under mesophilic condition (fed with pig manure) was investigated to analyze the perturbation of organic and hydraulic overloading, and low-temperature shock. The pH was stably maintained in the range of 7.2-7.7, regardless of the presence of most simulated perturbation situations. Monitoring of biogas production and composition is important to reflect the current state of biogas process, but cannot predict the imbalance in the system. Accumulation of total VFAs up to 21,718 mg/L was observed under the organic overloading condition (rapid increase of the organic loading rate of pig manure from 3 g VS/L/d to 9 g VS/L/d), but not for other perturbations. The ratio of propionate to acetate and that of intermediate alkalinity to partial alkalinity are rapidly altered in response to all perturbations, indicating their potential to function as stability indicators. However, the determination of the ratio of intermediate alkalinity to partial alkalinity can be performed by simple titration methods and be easily applied to actual projects without significant investment in advanced equipment and skilled operators.
Collapse
Affiliation(s)
- Hao Sun
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Ping Ni
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Renjie Dong
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Shubiao Wu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark; Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark.
| |
Collapse
|
14
|
Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Higgins MJ, Beightol S, DeBarbidillo C, De Clippeleir H, Pathak B, Al-Omari A, Murthy SN. Impacts of feed dilution and lower solids retention time on performance of thermal hydrolysis/anaerobic digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:386-398. [PMID: 30756447 DOI: 10.1002/wer.1028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
The goal of this study was to evaluate using feed dilution/solids retention time (SRT) control to manage potential ammonia inhibition in highly loaded anaerobic digesters after thermal hydrolysis. The study compared three digesters operated at the same target volatile solids (VS) loading rate of 5.5 kg VS/d-m3 , but at different feed concentrations resulting in SRTs of 10, 15, and 18 days. Lowering the feed concentration decreased the digester total ammonia nitrogen concentrations which averaged 1,580, 2,610, and 3,080 mg NH 4 + -N/L for the 10-, 15-, and 18-day digesters. The VS reduction and methane yields were equivalent for the 15- and 18-day digesters and about 4% lower for the 10-day digester. Ammonia inhibition of the 18-day digester occurred early in the study, but the system acclimated over time. Feed dilution reduced the viscosity and the potential for volume expansion due to gas holdup and foaming. PRACTIONER POINTS: Feed dilution reduces digester ammonia concentrations and inhibition potential without sacrificing digester performance at lower SRTs. Feed dilution greatly reduces digester viscosity and associated issues with digester volume expansion due to gas holdup and foaming. Operating at the lower SRT does not impact cake solids after dewatering and substantially decreases polymer demand for conditioning.
Collapse
|
16
|
Yu D, Meng X, Liu J, Dian L, Sui Q, Zhang J, Zhong H, Wei Y. Formation and characteristics of a ternary pH buffer system for in-situ biogas upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater. BIORESOURCE TECHNOLOGY 2018; 269:57-66. [PMID: 30149255 DOI: 10.1016/j.biortech.2018.08.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/27/2023]
Abstract
Biochemical biogas upgrading retaining more CO2 from biogas to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, maintaining sustain pH for CO2·H2O is fundamental. This study proposes an innovative control strategy for in-situ biogas upgrading retaining and converting the CO2 in the biogas into CH4, via hydrogenotrophic methanogenesis without external agent. The Biogas-pH strategy limited pH drop over 7.4 by stop feeding and maintained the methanogenesis activity by biogas flow rate over 98 ml·h-1. Low pH (7.37-7.80) decrease CO2·H2O as a substrate in stage-I, higher pH (7.40-8.41) enhances CO2 to CO2·H2O transfer by 6.29 ± 2.20% in stage-II. Because of that 95% CO2·H2O converts to HCO3- and CO32- when pH > 7.9, higher pH > 7.9 did not further upgrading the biogas. The carbonate buffer system shown open and close system characteristics in gas and liquid phase. The biogas CH4 was upgraded from 67.27 ± 5.21% to 73.56 ± 5.01%.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoshan Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jibao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liu Dian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Zhong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Stiles WAV, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Fuentes Grünewald C, Lovitt R, Chaloner T, Bull A, Morris C, Llewellyn CA. Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. BIORESOURCE TECHNOLOGY 2018; 267:732-742. [PMID: 30076074 DOI: 10.1016/j.biortech.2018.07.100] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Managing organic waste streams is a major challenge for the agricultural industry. Anaerobic digestion (AD) of organicwastes is a preferred option in the waste management hierarchy, as this processcangenerate renewableenergy, reduce emissions from wastestorage, andproduce fertiliser material.However, Nitrate Vulnerable Zone legislation and seasonal restrictions can limit the use of digestate on agricultural land. In this paper we demonstrate the potential of cultivating microalgae on digestate as a feedstock, either directlyafter dilution, or indirectlyfromeffluent remaining after biofertiliser extraction. Resultant microalgal biomass can then be used to produce livestock feed, biofuel or for higher value bio-products. The approach could mitigate for possible regional excesses, and substitute conventional high-impactproducts with bio-resources, enhancing sustainability withinacircular economy. Recycling nutrients from digestate with algal technology is at an early stage. We present and discuss challenges and opportunities associated with developing this new technology.
Collapse
Affiliation(s)
- William A V Stiles
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, UK.
| | - David Styles
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, UK
| | - Stephen P Chapman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, UK
| | - Sandra Esteves
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Angela Bywater
- University of Southampton, University Road, Southampton, UK
| | - Lynsey Melville
- Centre for Low Carbon Research, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, City Centre Campus, Millennium Point, Birmingham, UK
| | - Alla Silkina
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Ingrid Lupatsch
- AB Agri Ltd, 64 Innovation Way, Peterborough Business Park, Lynchwood, Peterborough, UK
| | | | - Robert Lovitt
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | | | - Andy Bull
- Severn Wye Energy Agency, Unit 15, Highnam Business Centre, Highnam, Gloucester, UK
| | - Chris Morris
- Fre-energy Ltd, Lodge Farm, Commonwood, Holt, Wrexham, UK
| | - Carole A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
18
|
Khan MA, Patel PG, Ganesh AG, Rais N, Faheem SM, Khan ST. Assessing Methanogenic Archaeal Community in Full Scale Anaerobic Sludge Digester Systems in Dubai, United Arab Emirates. Open Microbiol J 2018; 12:123-134. [PMID: 29785219 PMCID: PMC5960743 DOI: 10.2174/1874285801812010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/22/2022] Open
Abstract
Introduction: Anaerobic digestion for methane production comprises of an exceptionally diverse microbial consortium, a profound understanding about which is still constrained. In this study, the methanogenic archaeal communities in three full-scale anaerobic digesters of a Municipal Wastewater Treatment Plant were analyzed by Fluorescence in situ hybridization and quantitative real-time Polymerase Chain Reaction (qPCR) technique. Methods & Materials: Fluorescence in situ hybridization (FISH) was performed to detect and quantify the methanogenic Archaea in the sludge samples whereas qPCR was carried out to support the FISH analysis. Multiple probes targeting domain archaea, different orders and families of Archaea were used for the studies. Results and Discussion: In general, the aceticlastic organisms (Methanosarcinaceae & Methanosaetaceae) were more abundant than the hydrogenotrophic organisms (Methanobacteriales, Methanomicrobiales, Methanobacteriaceae & Methanococcales). Both FISH and qPCR indicated that family Methanosaetaceae was the most abundant suggesting that aceticlastic methanogenesis is probably the dominant methane production pathway in these digesters. Conclusion: Future work involving high-throughput sequencing methods and correlating archaeal communities with the main operational parameters of anaerobic digesters will help to obtain a better understanding of the dynamics of the methanogenic archaeal community in wastewater treatment plants in United Arab Emirates (UAE) which in turn would lead to improved performance of anaerobic sludge digesters.
Collapse
Affiliation(s)
- Munawwar A Khan
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, P.O.Box: 19282, Dubai, UAE
| | - Poojabahen G Patel
- School of Life Sciences, Manipal University, Dubai International Academic City, P.O.Box 345050, Dubai, UAE
| | - Arpitha G Ganesh
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, P.O.Box: 19282, Dubai, UAE
| | - Naushad Rais
- School of Life Sciences, Manipal University, Dubai International Academic City, P.O.Box 345050, Dubai, UAE
| | - Sultan M Faheem
- School of Life Sciences, Manipal University, Dubai International Academic City, P.O.Box 345050, Dubai, UAE
| | - Shams T Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 2002002, UP. India
| |
Collapse
|
19
|
Ziels RM, Svensson BH, Sundberg C, Larsson M, Karlsson A, Yekta SS. Microbial rRNA gene expression and co-occurrence profiles associate with biokinetics and elemental composition in full-scale anaerobic digesters. Microb Biotechnol 2018; 11:694-709. [PMID: 29633555 PMCID: PMC6011980 DOI: 10.1111/1751-7915.13264] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/29/2022] Open
Abstract
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full-scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3 -N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse-transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3 -N, Fe, S, Mo and Ni. A co-occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy-sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Bo H Svensson
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden.,Biogas Research Center, Linköping University, Linköping, Sweden
| | - Carina Sundberg
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden
| | - Madeleine Larsson
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden.,Biogas Research Center, Linköping University, Linköping, Sweden
| | | | - Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, Linköping, Sweden.,Biogas Research Center, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Ren Y, Yu M, Wu C, Wang Q, Gao M, Huang Q, Liu Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. BIORESOURCE TECHNOLOGY 2018; 247:1069-1076. [PMID: 28965913 DOI: 10.1016/j.biortech.2017.09.109] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield. With the promotion of resource recovery, more attention should be paid to biorefinery technologies which can produce more useful products toward zero emissions. Furthermore, a technological route for food waste conversion based on anaerobic digestion was proposed.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Miao Yu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qiqi Huang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
21
|
Free A, McDonald MA, Pagaling E. Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:131-189. [PMID: 30342721 DOI: 10.1016/bs.aambs.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The connection between ecosystem function and taxonomic diversity has been of interest and relevance to macroecologists for decades. After many years of lagging behind due to the difficulty of assigning both taxonomy and function to poorly distinguishable microscopic cells, microbial ecology now has access to a suite of powerful molecular tools which allow its practitioners to generate data relating to diversity and function of a microbial community on an unprecedented scale. Instead, the problem facing today's microbial ecologists is coupling the ease of generation of these datasets with the formulation and testing of workable hypotheses relating the diversity and function of environmental, host-associated, and engineered microbial communities. Here, we review the current state of knowledge regarding the links between taxonomic alpha- and beta-diversity and ecosystem function, comparing our knowledge in this area to that obtained by macroecologists who use more traditional techniques. We consider the methodologies that can be applied to study these properties and how successful they are at linking function to diversity, using examples from the study of model microbial ecosystems, methanogenic bioreactors (anaerobic digesters), and host-associated microbiota. Finally, we assess ways in which our newly acquired understanding might be used to manipulate diversity in ecosystems of interest in order to improve function for the benefit of us or the environment in general through the provision of ecosystem services.
Collapse
Affiliation(s)
- Andrew Free
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A McDonald
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Eulyn Pagaling
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
| |
Collapse
|
22
|
Wang P, Wang H, Qiu Y, Ren L, Jiang B. Microbial characteristics in anaerobic digestion process of food waste for methane production-A review. BIORESOURCE TECHNOLOGY 2018; 248:29-36. [PMID: 28779951 DOI: 10.1016/j.biortech.2017.06.152] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Food waste (FW) is rich in starch, fat, protein and cellulose. It is easy to decay and brings environmental pollution and other social problems. FW shows a high potential to produce methane by anaerobic digestion (AD) due to its high organic content. However, many inhibitors, such as accumulation of ammonia and volatile fatty acids (VFAs), usually result in inefficient performances and even process failure. Microorganisms play an important role in the process of hydrolysis, acidogenesis, acetogenesis and methanogenesis. This review provided a critical summary of microbial characteristics to obtain connects of microbial community structure with operational conditions at various states of AD, such as mesophilic and thermophilic, wet and dry, success and failure, pretreated or not, lab-scale and full-scale. This article emphasizes that it is necessary to analyze changes and mechanisms of microbial communities in unbalanced system and seek efficiency dynamic succession rules of the dominant microorganisms.
Collapse
Affiliation(s)
- Pan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yinquan Qiu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Bin Jiang
- China Cleaner Production Center of Light Industry, Beijing 100012, China
| |
Collapse
|
23
|
Li L, Peng X, Wang X, Wu D. Anaerobic digestion of food waste: A review focusing on process stability. BIORESOURCE TECHNOLOGY 2018; 248:20-28. [PMID: 28711296 DOI: 10.1016/j.biortech.2017.07.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
24
|
André L, Pauss A, Ribeiro T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. BIORESOURCE TECHNOLOGY 2018; 247:1027-1037. [PMID: 28912079 DOI: 10.1016/j.biortech.2017.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a state-of-art about solid anaerobic digestion (AD), focused on recent progress and trends of research is proposed. Solid anaerobic digestion should be the most appropriate process for degradation of by-products with high total solid (TS) content, especially lignocellulosic materials like agricultural waste (straw, manure), household waste and food waste. Solid AD is already widely used in waste water treatment plant for treating plant for sewage sludge but could be more developed for lignocellulosic materials with high TS content. Many research works were carried out in Europe on solid AD, focused on current hurdles (BMP, codigestion, inhibition, microbial population, rheology, water transfers, inoculum, etc.) in order to optimize the solid AD process. In conclusion, hurdles of solid AD process should and must be solved in order to propose better productivity and profitability of such system operating with high TS content (>15%), favouring reliable industrial processes.
Collapse
Affiliation(s)
- Laura André
- Institut Polytechnique UniLaSalle, UR Transformations & Agroressources, Département STAI, rue Pierre Waguet, BP 30313, 60026 Beauvais Cedex, France
| | - André Pauss
- Sorbonne Universités, EA 4297 TIMR UTC/ESCOM, UTC, CS 60319, 60203 Compiègne cedex, France
| | - Thierry Ribeiro
- Institut Polytechnique UniLaSalle, UR Transformations & Agroressources, Département STAI, rue Pierre Waguet, BP 30313, 60026 Beauvais Cedex, France.
| |
Collapse
|
25
|
Jung H, Kim J, Lee C. Effect of enhanced biomass retention by sequencing batch operation on biomethanation of sulfur-rich macroalgal biomass: Process performance and microbial ecology. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Sun H, Guo J, Wu S, Liu F, Dong R. Development and validation of a simplified titration method for monitoring volatile fatty acids in anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:43-50. [PMID: 28522166 DOI: 10.1016/j.wasman.2017.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 05/16/2023]
Abstract
The volatile fatty acids (VFAs) concentration has been considered as one of the most sensitive process performance indicators in anaerobic digestion (AD) process. However, the accurate determination of VFAs concentration in AD processes normally requires advanced equipment and complex pretreatment procedures. A simplified method with fewer sample pretreatment procedures and improved accuracy is greatly needed, particularly for on-site application. This report outlines improvements to the Nordmann method, one of the most popular titrations used for VFA monitoring. The influence of ion and solid interfering subsystems in titrated samples on results accuracy was discussed. The total solid content in titrated samples was the main factor affecting accuracy in VFA monitoring. Moreover, a high linear correlation was established between the total solids contents and VFA measurement differences between the traditional Nordmann equation and gas chromatography (GC). Accordingly, a simplified titration method was developed and validated using a semi-continuous experiment of chicken manure anaerobic digestion with various organic loading rates. The good fitting of the results obtained by this method in comparison with GC results strongly supported the potential application of this method to VFA monitoring.
Collapse
Affiliation(s)
- Hao Sun
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Shubiao Wu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China.
| | - Fang Liu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| |
Collapse
|
27
|
Zhao Y, Wu J, Yuan X, Zhu W, Wang X, Cheng X, Cui Z. The effect of mixing intensity on the performance and microbial dynamics of a single vertical reactor integrating acidogenic and methanogenic phases in lignocellulosic biomass digestion. BIORESOURCE TECHNOLOGY 2017; 238:542-551. [PMID: 28477516 DOI: 10.1016/j.biortech.2017.04.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The ready formation of scum in vertical reactors has been a bottleneck in the digestion of lignocellulosic materials for biogas production. This study describes a single vertical reactor that integrates the acidogenic and methanogenic phases of this process. The effects of two types of maize stover feedstock (fresh and silage) and two mixing intensities (20 and 70rpm) on methane yield were orthogonally determined. Fresh maize stover yielded approximately 14% more methane than silage maize stover. Mixing at 20rpm contributed to methane yield, while mixing at 70rpm blurred the phase boundary, resulting in accumulation of volatile fatty acids and loss of methanogens. The upper and lower phases clearly constituted a two-phase fermentation system. Clostridiales occupied the acidogenic phase, while the predominant bacteria in the methanogenic phase were Bacteroidetes, Chloroflexi, and Synergistetes. The absolute predominance of Methanosaetaceae clearly demonstrated that aceticlastic methanogenesis was the main route of methane production.
Collapse
Affiliation(s)
- Ye Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingwei Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wanbin Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Cheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Tao B, Donnelly J, Oliveira I, Anthony R, Wilson V, Esteves SR. Enhancement of microbial density and methane production in advanced anaerobic digestion of secondary sewage sludge by continuous removal of ammonia. BIORESOURCE TECHNOLOGY 2017; 232:380-388. [PMID: 28259068 DOI: 10.1016/j.biortech.2017.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Ammonia inhibition mitigation in anaerobic digestion of high solids content of thermally hydrolysed secondary sewage sludge by the NH4+ affinitive clinoptilolite and a strong acid type ion-exchange resin S957 was investigated. Continuous NH4+-N removal was achieved through ion-exchanging at both temperatures with average removals of 50 and 70% for the clinoptilolite and resin dosed reactors, respectively. Approximate 0.2-0.5unit of pH reduction was also observed in the dosed reactors. The synergy of NH4+-N removal and pH reduction exponentially decreased free NH3 concentration, from 600 to 90mg/L at 43°C, which mitigated ammonia inhibition and improved methane yields by approximately 54%. Microbial community profiling suggested that facilitated by ammonia removal, the improvement in methane production was mainly achieved through the doubling in bacterial density and a 6-fold increase in population of the Methanosarcinaceae family, which in turn improved the degradation of residual volatile fatty acids, proteins and carbohydrates.
Collapse
Affiliation(s)
- Bing Tao
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
| | - Joanne Donnelly
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
| | - Ivo Oliveira
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
| | - Ruth Anthony
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK; Welsh Water, Nelson, Treharris CF46 6LY, UK
| | | | - Sandra R Esteves
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK.
| |
Collapse
|
29
|
De Vrieze J, Christiaens MER, Walraedt D, Devooght A, Ijaz UZ, Boon N. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. WATER RESEARCH 2017; 111:109-117. [PMID: 28063283 DOI: 10.1016/j.watres.2016.12.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 05/08/2023]
Abstract
Anaerobic digestion of high-salinity wastewaters often results in process inhibition due to the susceptibility of the methanogenic archaea. The ability of the microbial community to deal with increased salinity levels is of high importance to ensure process perseverance or recovery after failure. The exact strategy of the microbial community to ensure process endurance is, however, often unknown. In this study, we investigated how the microbial community is able to recover process performance following a disturbance through the application of high-salinity molasses wastewater. After a stable start-up, methane production quickly decreased from 625 ± 17 to 232 ± 35 mL CH4 L-1 d-1 with a simultaneous accumulation in volatile fatty acids up to 20.5 ± 1.4 g COD L-1, indicating severe process disturbance. A shift in feedstock from molasses wastewater to waste activated sludge resulted in complete process recovery. However, the bacterial and archaeal communities did not return to their original composition as before the disturbance, despite similar process conditions. Microbial community diversity was recovered to similar levels as before disturbance, which indicates that the metabolic potential of the community was maintained. A mild increase in ammonia concentration after process recovery did not influence methane production, indicating a well-balanced microbial community. Hence, given the change in community composition following recovery after salinity disturbance, it can be assumed that microbial community redundancy was the major strategy to ensure the continuation of methane production, without loss of functionality or metabolic flexibility.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Marlies E R Christiaens
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Diego Walraedt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Arno Devooght
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Umer Zeeshan Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, UK
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
30
|
Koo T, Shin SG, Lee J, Han G, Kim W, Cho K, Hwang S. Identifying methanogen community structures and their correlations with performance parameters in four full-scale anaerobic sludge digesters. BIORESOURCE TECHNOLOGY 2017; 228:368-373. [PMID: 28087103 DOI: 10.1016/j.biortech.2016.12.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
Four full-scale mesophilic anaerobic digesters treating waste sludge were monitored to characterize methanogen communities and their relationship with process parameters. The performance of the four digesters were dissimilar with the average chemical oxygen demand removal efficiencies between 24 and 45% and differing pH. Real-time quantitative PCR showed that archaeal 16S rRNA gene concentration ([ARC]) and, more pronouncedly, its ratio to bacterial counterpart ([ARC]/[BAC]) correlated positively with the performance parameters, including the lipid removal efficiency. Pyrosequencing identified 12 methanogen genera, of which Methanolinea, Methansaeta, and Methanospirillum collectively accounted for 79.2% of total archaeal reads. However, Methanoculleus, a numerically minor (1.9±2.6%) taxa, was the most promising biomarker for positive performance, while Methanoregula was abundant in samples with poor performance. These results could be useful for the control and management of anaerobic sludge digestion.
Collapse
Affiliation(s)
- Taewoan Koo
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Seung Gu Shin
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Joonyeob Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Gyuseong Han
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Kyungjin Cho
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seokhwan Hwang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
31
|
Weithmann N, Weig AR, Freitag R. Process parameters and changes in the microbial community patterns during the first 240 days of an agricultural energy crop digester. AMB Express 2016; 6:53. [PMID: 27485518 PMCID: PMC4970986 DOI: 10.1186/s13568-016-0219-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 12/27/2022] Open
Abstract
Commercial biogas production takes place by complex microbial communities enclosed in controlled "technical ecosystems". Once established, the communities tend to be resilient towards disturbances, although the relative abundance of their members may vary. The start-up phase, during which the community establishes itself, is therefore decisive for the later performance of the reactor. In this study, we followed the first 240 days of a standard agricultural energy crop digester consisting of a 400 m(3) plug flow fermenter and a 1000 m(3) agitated post digester, operated at 40-45 °C. The feed consisted of corn and later grass silage augmented by ground wheat. Changes in both the eubacterial and methanogenic archaeal communities were followed by automated ribosomal intergenic spacer analysis (ARISA). In addition the copy number of the methyl-coenzyme reductase A (mcrA)-genes found in all known methanogens were followed by quantitative PCR, while selected samples from two phases-one early, one late-of the community structure development were subjected to high throughput sequencing. Biogas volume and composition (CH4, CO2, H2, H2S, O2), pH, ammonia-N, and volatile fatty acids (VFA), were measured as part of the routine process control. VFA/TIC values were calculated on this basis. Whereas the total gas production of the plant established itself at about 2500 m(3) biogas per day within the first months, the composition of the microbial communities showed distinct spatial and temporal differences over the investigated time period. Absolute values for DNA isolation procedures are difficult to certify, hence comparative results on community structures obtained using standardized ARISA with identical primers are of value. Moreover, ARISA patterns can be statistically analyzed to identify distinct subgroups and transitions between them as well as serial correlations. Thereby the microbial community and its structural development can be correlated with statistical relevance to changes in operational (feed) and process parameters (pH-value, biogas composition). In particular when augmented by deep sequencing data of judiciously chosen samples, this allows a hitherto unknown level of insight into the performance of technical biogas plants.
Collapse
Affiliation(s)
- Nicolas Weithmann
- Process Biotechnology, Center for Energy Technology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Alfons Rupert Weig
- Genomics and Bioinformatics, University of Bayreuth, 95440 Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, Center for Energy Technology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
32
|
Steinmetz RLR, Mezzari MP, da Silva MLB, Kunz A, do Amaral AC, Tápparo DC, Soares HM. Enrichment and acclimation of an anaerobic mesophilic microorganism's inoculum for standardization of BMP assays. BIORESOURCE TECHNOLOGY 2016; 219:21-28. [PMID: 27474854 DOI: 10.1016/j.biortech.2016.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 05/23/2023]
Abstract
Appropriate enrichment of anaerobic microorganism's consortium is crucial for accurate biochemical methane potential (BMP) assays. An alternative method to produce and maintain a mesophilic methanogenic inoculum was demonstrated. Three sources of inoculum were mixed and acclimated for 857days in order to reach steady conditions (pH=7.90±0.46; VS/TS>50%; VFA/alkalinity=0.16±0.04gAcetic Acid/ [Formula: see text] ). Biogas yield >80% was obtained after 70days of inoculum acclimation in comparison to standard cellulose (>600mLN/gVS). Methanogen community analysis based on 16S rDNA of the inoculum revealed Archaea concentration of 3×10(12) gene copies/g (Methanobacteriales 8×10(10); Methanomicrobiales 8×10(10); and Methanosarcinales 4×10(11) gene copies/g). The proposed method for development and maintenance of microorganism enrichment inoculum demonstrates consistent BMP data which is a requirement for dependable prediction of biogas production at field scale operations.
Collapse
Affiliation(s)
| | | | | | - Airton Kunz
- Embrapa Suínos e Aves, BR 153 km 110, 89700-000 Concórdia, SC, Brazil; Universidade Estadual do Oeste do Paraná - UNIOESTE/CCET/PGEAGRI, 85819110, Cascavel, PR, Brazil.
| | | | - Deisi Cristina Tápparo
- Universidade Estadual do Oeste do Paraná - UNIOESTE/CCET/PGEAGRI, 85819110, Cascavel, PR, Brazil.
| | - Hugo Moreira Soares
- Universidade Federal de Santa Catarina - UFSC, Departamento de Engenharia Química, 88034001 Florianópolis, SC, Brazil.
| |
Collapse
|
33
|
De Vrieze J, Raport L, Roume H, Vilchez-Vargas R, Jáuregui R, Pieper DH, Boon N. The full-scale anaerobic digestion microbiome is represented by specific marker populations. WATER RESEARCH 2016; 104:101-110. [PMID: 27522020 DOI: 10.1016/j.watres.2016.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 05/20/2023]
Abstract
Anaerobic digestion is a well-established microbial-based technology for the treatment of organic waste streams and subsequent biogas recovery. A robust and versatile microbial community to ensure overall stability of the process is essential. Four full-scale anaerobic digestion plants were followed for one year to link operational characteristics with microbial community composition and structure. Similarities between digesters, community dynamics and co-occurrence between bacteria and archaea within each digester were analysed. Free ammonia concentration (>200 mg N L-1) and conductivity (>30 mS cm-1) hindered acetoclastic methanogenesis by Methanosaetaceae. Thus, methanogenesis was pushed to the hydrogenotrophic pathway carried out by Methanobacteriales and Methanomicrobiales. Firmicutes dominated the overall bacterial community in each of the digesters (>50%), however, principal coordinate analysis of Bray-Curtis indices showed that each of the four digesters hosted a unique microbial community. The uniqueness of this community was related to two phylotypes belonging to the Syntrophomonas genus (Phy32 and Phy34) and to one unclassified bacterium (Phy2), which could both be considered marker populations in the community. A clear differentiation in co-occurrence of methanogens with several bacteria was observed between the different digesters. Our results demonstrated that full-scale anaerobic digestion plants show constant dynamics and co-occurrence patterns in function of time, but are unique in terms of composition, related to the presence of marker populations.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Linde Raport
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium; Innolab, Derbystraat 223, 9051, Sint-Denijs-Westrem, Belgium
| | - Hugo Roume
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Ramiro Vilchez-Vargas
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
34
|
Fontana A, Patrone V, Puglisi E, Morelli L, Bassi D, Garuti M, Rossi L, Cappa F. Effects of geographic area, feedstock, temperature, and operating time on microbial communities of six full-scale biogas plants. BIORESOURCE TECHNOLOGY 2016; 218:980-90. [PMID: 27450128 DOI: 10.1016/j.biortech.2016.07.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 05/07/2023]
Abstract
The objective of this study was to investigate the effect of different animal feedings operated in two distinct PDO (protected designation of origin) cheese production areas (Parmigiano Reggiano and Grana Padano) on the microbiome of six full-scale biogas plants, by means of Illumina sequencing and qPCR techniques. The effects of feedstock (cattle slurry manure, energy crops, agro-industrial by-products), temperature (mesophilic/thermophilic), and operating time were also examined, as were the relationships between the predominant bacterial and archaeal taxa and process parameters. The different feedstocks and temperatures strongly affected the microbiomes. A more biodiverse archaeal population was highlighted in Parmigiano Reggiano area plants, suggesting an influence of the different animal feedings. Methanosarcina and Methanosaeta showed an opposite distribution among anaerobic plants, with the former found to be related to ammonium concentration. The Methanoculleus genus was more abundant in the thermophilic digester whereas representation of the Thermotogales order correlated with hydraulic retention time.
Collapse
Affiliation(s)
- Alessandra Fontana
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Vania Patrone
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Daniela Bassi
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano, 24, 26100 Cremona, Italy
| | - Mirco Garuti
- Centro Ricerche Produzioni Animali, C.R.P.A. S.p.A., Viale Timavo, 43/2, 42121 Reggio Emilia, Italy
| | - Lorella Rossi
- Centro Ricerche Produzioni Animali, C.R.P.A. S.p.A., Viale Timavo, 43/2, 42121 Reggio Emilia, Italy
| | - Fabrizio Cappa
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano, 24, 26100 Cremona, Italy.
| |
Collapse
|
35
|
Kumi PJ, Henley A, Shana A, Wilson V, Esteves SR. Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. WATER RESEARCH 2016; 100:267-276. [PMID: 27206055 DOI: 10.1016/j.watres.2016.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
The extracellular polymeric substances and microbial cytoplasmic contents seem to hold inorganic ions and organic products, such as proteins and carbohydrates that are of critical importance for the metabolism of hydrolytic and acidogenic anaerobic microorganisms. The addition of soluble microbially recovered nutrients from thermally treated digestate sludge, for the fermentation of thermally hydrolysed waste activated sludge, resulted in higher volatile fatty acids yields (VFAs). The yield of VFAs obtained from the recovered microbial nutrients was 27% higher than the no micronutrients control, and comparable to the yield obtained using a micronutrients commercial recipe. In addition, the use of a low pH resulting from a high sucrose dose to select spore forming acidogenic bacteria was effective for VFA production, and yielded 20% higher VFAs than without the pH shock and this associated with the addition of recovered microbial nutrients would overcome the need to thermally pre-treat the inoculum.
Collapse
Affiliation(s)
- Philemon J Kumi
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, Mid-Glamorgan, CF37 1DL, UK.
| | - Adam Henley
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, Mid-Glamorgan, CF37 1DL, UK
| | - Achame Shana
- Thames Water Limited, Reading, Berkshire, RG1 8DB, UK
| | - Victoria Wilson
- Dŵr Cymru Welsh Water, Nelson, Treharris, Mid-Glamorgan, CF46 6LY, UK
| | - Sandra R Esteves
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre (SERC), University of South Wales, Pontypridd, Mid-Glamorgan, CF37 1DL, UK.
| |
Collapse
|
36
|
Yang ZH, Xu R, Zheng Y, Chen T, Zhao LJ, Li M. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. BIORESOURCE TECHNOLOGY 2016; 212:164-173. [PMID: 27099941 DOI: 10.1016/j.biortech.2016.04.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/03/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Performance of co-digesters, treated of sewage sludge (SS) with fat, oil and grease (FOG), were conducted semi-continuously in two mesophilic reactors over 180days. Compared with SS mono-digestion, biogas production and TS removal efficiency of co-digestion were significantly enhanced up to 35% and 26% by adding upper limit FOG (60% on VS). Enhancement in co-digestion performance was also stimulated by the release of extracellular polymeric substances (EPS), which was increased 40% in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) than that of mono-digester. Based on high-throughput sequencing (HTS), analysis of microbial 16S rRNA gene comprehensively revealed the dynamic change of microbial community. Results showed that both bacterial and archaeal undergone an apparent succession with FOG addition, and large amount of consortium like Methanosaeta and N09 were involved in the process. Redundancy analysis showed the acetoclastic genera Methanosaeta distinctly related with biogas production and EPS degradation.
Collapse
Affiliation(s)
- Zhao-Hui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Zheng
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ting Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li-Jun Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
37
|
André L, Ndiaye M, Pernier M, Lespinard O, Pauss A, Lamy E, Ribeiro T. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations. BIORESOURCE TECHNOLOGY 2016; 207:353-360. [PMID: 26897414 DOI: 10.1016/j.biortech.2016.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Several 60L dry batch anaerobic digestion (AD) reactors were implemented with or without liquid reserve on cattle manure. The immersed part modulation of cattle manure increased the methane flow of about 13%. The quantitative real time PCR and the optimized DNA extraction were implemented and validated to characterize and quantify the methanogen dynamic in dry batch AD process. Final quantities of methanogens converged toward the same level in several inocula at the end of AD. Methanogen dynamic was shown by dominance of Methanosarcinaceae for acetotrophic methanogens and Methanobacteriales for the hydrogenotrophic methanogens. Overall, methanogens populations were stabilized in liquid phase, except Methanosaetaceae. Solid phase was colonized by Methanomicrobiales and Methanosarcinaceae populations giving a support to biofilm development. The methane increase could be explained by a raise of Methanosarcinaceae population in presence of a total contact between solid and liquid phases. Methanosarcinaceae was a bio-indicator of the methane production.
Collapse
Affiliation(s)
- L André
- Sorbonne Universités, EA 4297 TIMR UTC/ESCOM, UTC, CS 60 319, 60 203 Compiègne Cédex, France; Institut Polytechnique LaSalle Beauvais, Département des Sciences et Techniques Agro-Industrielles, rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - M Ndiaye
- Institut Polytechnique LaSalle Beauvais, Département des Sciences et Techniques Agro-Industrielles, rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - M Pernier
- Institut Polytechnique LaSalle Beauvais, Département des Sciences et Techniques Agro-Industrielles, rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - O Lespinard
- ERigène, 19 rue Pierre Waguet, 60000 Beauvais, France
| | - A Pauss
- Sorbonne Universités, EA 4297 TIMR UTC/ESCOM, UTC, CS 60 319, 60 203 Compiègne Cédex, France
| | - E Lamy
- Sorbonne Universités, EA 4297 TIMR UTC/ESCOM, UTC, CS 60 319, 60 203 Compiègne Cédex, France
| | - T Ribeiro
- Institut Polytechnique LaSalle Beauvais, Département des Sciences et Techniques Agro-Industrielles, rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France.
| |
Collapse
|
38
|
Li L, He Q, Ma Y, Wang X, Peng X. A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing. Microb Cell Fact 2016; 15:65. [PMID: 27112950 PMCID: PMC4845381 DOI: 10.1186/s12934-016-0466-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
Background Anaerobic digesters become unstable when operated at a high organi c loading rate (OLR). Investigating the microbial community response to OLR disturbance is helpful for achieving efficient and stable process operation. However, previous studies have only focused on community succession during different process stages. How does community succession influence process stability? Is this kind of succession resilient? Are any key microbial indicator closely related to process stability? Such relationships between microbial communities and process stability are poorly understood. Results In this study, a mesophilic anaerobic digester for treating food waste (FW) was operated to study the microbial diversity and dynamicity due to OLR disturbance. Overloading resulted in proliferation of acidogenic bacteria, and the resulting high volatile fatty acid (VFA) yield triggered an abundance of acetogenic bacteria. However, the abundance and metabolic efficiency of hydrogenotrophic methanogens decreased after disturbance, and as a consequence, methanogens and acetogenic bacteria could not efficiently complete the syntrophy. This stress induced the proliferation of homoacetogens as alternative hydrogenotrophs for converting excessive H2 to acetate. However, the susceptible Methanothrix species also failed to degrade the excessive acetate. This metabolic imbalance finally led to process deterioration. After process recovery, the digester gradually returned to its original operational conditions, reached close to its original performance, and the microbial community profile achieved a new steady-state. Interestingly, the abundance of Syntrophomonas and Treponema increased during the deteriorative stage and rebounded after disturbance, suggesting they were resilient groups. Conclusions Acidogenic bacteria showed high functional redundancy, rapidly adapted to the increased OLR, and shaped new microbial community profiles. The genera Syntrophomonas and Treponema were resilient groups. This observation provides insight into the key microbial indicator that are closely related to process stability. Moreover, the succession of methanogens during the disturbance phase was unsuitable for the metabolic function needed at high OLR. This contradiction resulted in process deterioration. Thus, methanogenesis is the main step that interferes with the stable operation of digesters at high OLR. Further studies on identifying and breeding high-efficiency methanogens may be helpful for breaking the technical bottleneck of process instability and achieving stable operation under high OLR.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Qin He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yao Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
39
|
Theiss J, Rother M, Röske K. Influence of DNA isolation method on the investigation of archaeal diversity and abundance in biogas plants. Arch Microbiol 2016; 198:619-28. [PMID: 27089887 DOI: 10.1007/s00203-016-1221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 11/26/2022]
Abstract
Various methods are available for DNA isolation from environmental samples. Because the chemical and biological composition of samples such as soil, sludge, or plant material is different, the effectiveness of DNA isolation can vary depending on the method applied and thus, have a substantial effect on the results of downstream analysis of the microbial community. Although the process of biogas formation is being intensely investigated, a systematic evaluation of kits for DNA isolation from material of biogas plants is still lacking. Since no DNA isolation kit specifically tailored for DNA isolation from sludge of biogas plants is available, this study compares five commercially available kits regarding their influence on downstream analyses such denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR). The results show that not all kits are equally suited for the DNA isolation from samples of different biogas plants, but highly reproducible DGGE fingerprints as well as qPCR results across the tested samples from biogas reactors using different substrate compositions could be produced using selected kits.
Collapse
Affiliation(s)
- Juliane Theiss
- Sächsische Akademie der Wissenschaften zu Leipzig, Karl-Tauchnitz-Straße 1, 04107, Leipzig, Germany
| | - Michael Rother
- Technische Universität Dresden, Professur für Mikrobielle Diversität, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Kerstin Röske
- Sächsische Akademie der Wissenschaften zu Leipzig, Karl-Tauchnitz-Straße 1, 04107, Leipzig, Germany.
| |
Collapse
|
40
|
Sun H, Wu S, Dong R. Monitoring Volatile Fatty Acids and Carbonate Alkalinity in Anaerobic Digestion: Titration Methodologies. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Ghasimi DSM, Tao Y, de Kreuk M, Abbas B, Zandvoort MH, van Lier JB. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage. WATER RESEARCH 2015; 87:483-493. [PMID: 25976021 DOI: 10.1016/j.watres.2015.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature.
Collapse
Affiliation(s)
- Dara S M Ghasimi
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Yu Tao
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Harbin, 150090, China
| | - Merle de Kreuk
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Ben Abbas
- Environmental Biotechnology Section, Department of Biotechnology, Faculty of Applied Science, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Marcel H Zandvoort
- Waternet, Korte Ouderkerkerdijk 7, P.O. Box 94370, 1090 GJ, Amsterdam, The Netherlands
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
42
|
Regueiro L, Lema JM, Carballa M. Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. BIORESOURCE TECHNOLOGY 2015; 197:208-16. [PMID: 26340029 DOI: 10.1016/j.biortech.2015.08.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/05/2015] [Accepted: 08/15/2015] [Indexed: 05/16/2023]
Abstract
Overloading is one of the most typical process disturbance in anaerobic digesters, resulting in volatile fatty acids (VFAs) accumulation. This work aimed to study the microbial community dynamics during hydraulic (decreasing the hydraulic retention time (HRT)) and organic (increasing the organic loading rate maintaining the HRT constant) overload shocks in anaerobic reactors treating agro-industrial wastes, as well as during the recovery period. In both cases, the organic loading rate increased from 2 to 10gCODL(-1)d(-1), resulting in VFAs accumulation up to 9gL(-1). Both overloads were correlated to an increase in Bacteroidetes and Actinobacteria phyla and with a drop in Syntrophomonadaceae and Pseudomonadaceae families. In contrast, Tissierellaceae family only increased during the organic shock. Active Archaea decreased in both overloads, going from Methanosaeta dominance to Methanosarcina prevalence. During the recovery period, Porphyromonadaceae family increased its presence and Clostridium genus recovered values prior to perturbation.
Collapse
Affiliation(s)
- Leticia Regueiro
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marta Carballa
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
43
|
FitzGerald JA, Allen E, Wall DM, Jackson SA, Murphy JD, Dobson ADW. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities. PLoS One 2015; 10:e0142603. [PMID: 26555136 PMCID: PMC4640829 DOI: 10.1371/journal.pone.0142603] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/24/2015] [Indexed: 01/22/2023] Open
Abstract
Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.
Collapse
Affiliation(s)
- Jamie A. FitzGerald
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - Eoin Allen
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Engineering, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - David M. Wall
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Engineering, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jerry D. Murphy
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Engineering, University College Cork, Cork, Ireland
- Science Foundation Ireland, Marine Renewable Energy Ireland (MaREI) Centre, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Carballa M, Regueiro L, Lema JM. Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 2015; 33:103-11. [DOI: 10.1016/j.copbio.2015.01.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 02/04/2023]
|
45
|
De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. WATER RESEARCH 2015; 75:312-23. [PMID: 25819618 DOI: 10.1016/j.watres.2015.02.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 05/07/2023]
Abstract
Anaerobic digestion is regarded as a key environmental technology in the present and future bio-based economy. The microbial community completing the anaerobic digestion process is considered complex, and several attempts already have been carried out to determine the key microbial populations. However, the key differences in the anaerobic digestion microbiomes, and the environmental/process parameters that drive these differences, remain poorly understood. In this research, we hypothesized that differences in operational parameters lead to a particular composition and organization of microbial communities in full-scale installations. A total of 38 samples were collected from 29 different full-scale anaerobic digestion installations, showing constant biogas production in function of time. Microbial community analysis was carried out by means of amplicon sequencing and real-time PCR. The bacterial community in all samples was dominated by representatives of the Firmicutes, Bacteroidetes and Proteobacteria, covering 86.1 ± 10.7% of the total bacterial community. Acetoclastic methanogenesis was dominated by Methanosaetaceae, yet, only the hydrogenotrophic Methanobacteriales correlated with biogas production, confirming their importance in high-rate anaerobic digestion systems. In-depth analysis of operational and environmental parameters and bacterial community structure indicated the presence of three potential clusters in anaerobic digestion. These clusters were determined by total ammonia concentration, free ammonia concentration and temperature, and characterized by an increased relative abundance of Bacteroidales, Clostridiales and Lactobacillales, respectively. None of the methanogenic populations, however, could be significantly attributed to any of the three clusters. Nonetheless, further experimental research will be required to validate the existence of these different clusters, and to which extent the presence of these clusters relates to stable or sub-optimal anaerobic digestion.
Collapse
Affiliation(s)
- Jo De Vrieze
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Aaron Marc Saunders
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngårdsholmsvej 49, 9000 Aalborg, Denmark
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Per Halkjaer Nielsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngårdsholmsvej 49, 9000 Aalborg, Denmark
| | - Willy Verstraete
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
46
|
Li L, He Q, Ma Y, Wang X, Peng X. Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: Relationship between community structure and process stability. BIORESOURCE TECHNOLOGY 2015; 189:113-120. [PMID: 25879178 DOI: 10.1016/j.biortech.2015.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 05/20/2023]
Abstract
Organic loading rate (OLR) disturbances were introduced into a mesophilic anaerobic digester treating food waste (FW) to induce stable and deteriorative phases. The microbial community of each phase was investigated using 454-pyrosequencing. Results show that the relative abundance of acid-producing bacteria and syntrophic volatile fatty acid (VFA) oxidizers increased dramatically at deteriorative phase, while the dominant methanogens did not shift from acetoclastic to hydrogenotrophic groups. The mismatching between bacteria and methanogens may partially be responsible for the process deterioration. Moreover, the succession of predominant hydrogenotrophic methanogens reduced the consumption efficiency of hydrogen; meanwhile, the dominant Methanosaeta with low acetate degradation rate, and the increase of inhibitors concentrations further decreased its activity, which may be the other causes for the process failure. These results improve the understanding of the microbial mechanisms of process instability, and provide theoretical basis for the efficient and stable operation of anaerobic digester treating FW.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qin He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yao Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
47
|
Primers: Functional Genes and 16S rRNA Genes for Methanogens. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
48
|
Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 2014; 99:189-99. [DOI: 10.1007/s00253-014-6046-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/19/2014] [Accepted: 08/24/2014] [Indexed: 01/24/2023]
|
49
|
Purser BJJ, Thai SM, Fritz T, Esteves SR, Dinsdale RM, Guwy AJ. An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste. WATER RESEARCH 2014; 61:162-170. [PMID: 24911562 DOI: 10.1016/j.watres.2014.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Titration methodologies have been used for the many years for low cost routine monitoring of full scale anaerobic digestion plants. These methodologies have been correlated to indicate the carbonate alkalinity and the volatile fatty acids (VFA) content within digesters. Two commonly used two end-point titration methods were compared using a dataset of 154 samples from energy crop and animal slurry digestates and were shown to be inaccurate in the estimation of tVFA. Using this dataset correlated with HPLC VFA analysis, two empirical bivariate linear regression equations were derived, where the validation dataset showed an absolute tVFA mean error improvement from ±3386 and ±3324 mg kg(-1) tVFA to ±410 and ±286 mg kg(-1) tVFA, respectively. The same equation was then applied to a food waste dataset where an absolute tVFA mean error was improved from ±3828 to ±576 mg kg(-1) tVFA. The newly derived titration equations can provide greater confidence in digester performance monitoring and are tools that can improve digester management.
Collapse
Affiliation(s)
- B J Jobling Purser
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK.
| | - S-M Thai
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - T Fritz
- ISF GmbH (Schaumann Research & Development), An der Mühlenau 4, D-25421 Pinneberg, Germany
| | - S R Esteves
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - R M Dinsdale
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - A J Guwy
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| |
Collapse
|
50
|
Lauterböck B, Nikolausz M, Lv Z, Baumgartner M, Liebhard G, Fuchs W. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide. BIORESOURCE TECHNOLOGY 2014; 158:209-216. [PMID: 24607456 DOI: 10.1016/j.biortech.2014.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane.
Collapse
Affiliation(s)
- B Lauterböck
- University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, Austria.
| | - M Nikolausz
- Department of Bioenergy, UFZ-Helmholtz, Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Z Lv
- Department of Bioenergy, UFZ-Helmholtz, Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - M Baumgartner
- University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - G Liebhard
- University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - W Fuchs
- University of Natural Resources and Applied Life Sciences-Vienna, Department of IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| |
Collapse
|