1
|
Esteves MV, Marques DMC, de Almeida JD, Faria NT, Ferreira FC. Marine Microalgae-Microorganism Co-Cultures: An Insight into Nannochloropsis sp. Use and Biotechnological Applications. Foods 2025; 14:1522. [PMID: 40361605 PMCID: PMC12071580 DOI: 10.3390/foods14091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/02/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The increasing demand for sustainable, economical, and environmentally friendly solutions has positioned microalgae as promising candidates in biotechnology, particularly in food, feed, nutraceutical, pharmaceutical, biofuel, and bioremediation applications. This review explores the role of the Nannochloropsis genus and other marine oleaginous microalgae in co-cultivation systems, highlighting their mechanisms of interaction with various microorganisms and their potential for various biotechnological purposes. Case studies of Nannochloropsis sp. co-cultures with other microalgae, bacteria, and fungi are presented. The different types of associations are described as alternative strategies to enhance biomass productivity, lipid accumulation, and nutrient recycling. A key focus of this review is the potential of Nannochloropsis microalgae co-cultivation in food, as it is part of the list of microalgae to be approved for consumption in the European Union, discussing their rich nutritional value, safety, and regulatory status. Additionally, the role of microalgae in the alternative protein sector is explored, with particular emphasis on their integration in cultivated meat products as nutrient suppliers and metabolic partners for animal cells. Despite their potential, several challenges, such as scale-up, contamination risk, and strain selection, remain key obstacles to the widespread adoption of microalgal biotechnology. Future research should focus on optimizing microalgae-based co-cultures for food applications, addressing safety concerns, and further investigating their integration into functional foods and cellular agriculture products.
Collapse
Affiliation(s)
- Marta Vala Esteves
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joana D. de Almeida
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno Torres Faria
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.V.E.); (D.M.C.M.); (J.D.d.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Lakshmikandan M, Li M. Advancements and hurdles in symbiotic microalgal co-cultivation strategies for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125018. [PMID: 40106994 DOI: 10.1016/j.jenvman.2025.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microalgae offer significant potential in various industrial applications, such as biofuel production and wastewater treatment, but the economic barriers to their cultivation and harvesting have been a major obstacle. However, a promising strategy involving co-cultivating microalgae in wastewater treatment could overcome the limitations of monocultivation and open the possibility for increased integration of microalgae into various industrial processes. This symbiotic relationship between microalgae and other microbes can enhance nutrient removal efficiency, increase value-added bioproduct production, promote carbon capture, and decrease energy consumption. However, unresolved challenges, such as the competition between microalgae and other microbes within the wastewater treatment system, may result in imbalances and reduced efficiency. The complexity of managing multiple microbes in a co-cultivation system poses difficulties in achieving stability and consistency in bioproduct production. In response to these challenges, strategies such as optimizing nutrient ratios, manipulating environmental conditions, understanding the dynamics of microbial relationships, and employing genetic modification to enhance the metabolic capabilities of microalgae and improve their competitiveness are critical in transitioning to a more sustainable path. Hence, this review will provide an in-depth analysis of recent advancements in symbiotic microalgal co-cultivation for applications in wastewater treatment and CO2 utilization, as well as discuss approaches for improving microalgal strains through genetic modification. Furthermore, the review will explore the use of efficient bioreactors, advanced control systems, and advancements in biorefinery processes.
Collapse
Affiliation(s)
- Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Sánchez Novoa JG, Domínguez FG, Pajot H, de Cabo LI, Navarro Llorens JM, Marconi PL. Isolation and assessment of highly sucrose-tolerant yeast strains for honey processing factory's effluent treatment. AMB Express 2024; 14:125. [PMID: 39537951 PMCID: PMC11561205 DOI: 10.1186/s13568-024-01771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Wastewater from many food and beverage manufacturers is enriched in organic content, and it must therefore be treated before being discharged to comply with the strict environmental regulations to protect the final water quality. Concretely, the honey processing wastewater, that remains in holding tanks until is disposal, is a rich source of sugars and this high level of organic material will degrade the water quality if not treated properly provoking an imbalance in the ecosystem. There are different strategies for an adequate treatment of this wastewater effluent to obtain a sustainable usage. One of the techniques that is more cost-effective and environmental friendlier than chemical procedures used for water remediation, is the use of microorganisms (including algae, fungi, yeasts, or bacteria). Given that they are fast-growing, robust, and metabolically diverse, yeast strains are often used for wastewater treatment. In this work, we have studied the potential for bioremediation of non Saccharomyces yeast isolated from a honey processing wastewater generated by an Argentine exporting company. The inoculation of these yeast strains to the existing flora in the honey wastewater yielded a better improvement in the treatment yield. These results suggest that these strains display a promising role could for optimizing bioremediation strategies in industrial wastewater treatment processes.
Collapse
Affiliation(s)
| | - Facundo G Domínguez
- PROIMI - CCT - Tucumán Avenida Belgrano y Pasaje Caseros San Miguel de Tucumán, CP 4000, Tucumán, Argentina
| | - Hipólito Pajot
- PROIMI - CCT - Tucumán Avenida Belgrano y Pasaje Caseros San Miguel de Tucumán, CP 4000, Tucumán, Argentina
| | | | - Juana María Navarro Llorens
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
4
|
Abdalla SB, Moghazy RM, Hamed AA, Abdel-Monem MO, El-Khateeb MA, Hassan MG. Strain selection and adaptation of a fungal-yeast-microalgae consortium for sustainable bioethanol production and wastewater treatment from livestock wastewater. Microb Cell Fact 2024; 23:288. [PMID: 39438859 PMCID: PMC11495080 DOI: 10.1186/s12934-024-02537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
This study explores the potential of strain selection and adaptation for developing a fungi-yeast-microalgae consortium capable of integrated bioethanol production and livestock wastewater treatment. We employed a multi-stage approach involving isolation and strain selection/adaptation of these consortiums. The study started with screening some isolated fungi to grow on the cellulosic biomass of the livestock wastewater (saccharification) followed by a fermentation process using yeast for bioethanol production. The results revealed that Penicillium chrysogenum (Cla) and Saccharomyces cerevisiae (Sc) produced a remarkable 99.32 ppm of bioethanol and a concentration of glucose measuring 0.56 mg ml- 1. Following the impact of fungi and yeast, we diluted the livestock wastewater using distilled water and subsequently inoculated Nile River microalgae into the wastewater. The findings demonstrated that Chlorella vulgaris emerged as the dominant species in the microalgal community. Particularly, the growth rate reached its peak at a 5% organic load (0.105385), indicating that this concentration provided the most favorable conditions for the flourishing of microalgae. The results demonstrated the effectiveness of the microalgal treatment in removing the remaining nutrients and organic load, achieving a 92.5% reduction in ammonia, a 94.1% reduction in nitrate, and complete removal of phosphate (100%). The algal treatment also showed remarkable reductions in COD (96.5%) and BOD (96.1%). These findings underscore the potential of fungi, yeast, and Nile River microalgae in the growth and impact on livestock wastewater, with the additional benefit of bioethanol production.
Collapse
Affiliation(s)
- Salma B Abdalla
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Reda M Moghazy
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
| | - Mohamed O Abdel-Monem
- Faculty of Science, Botany and Microbiology Department, Benha University, Benha, Egypt
| | - Mohamad A El-Khateeb
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Mervat G Hassan
- Faculty of Science, Botany and Microbiology Department, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Wankhede L, Bhardwaj G, Saini R, Osorio-Gonzalez CS, Brar SK. Technological modes and processes to enhance the Rhodosporidium toruloides based lipid accumulation. Microbiol Res 2024; 287:127840. [PMID: 39032267 DOI: 10.1016/j.micres.2024.127840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Rhodosporidium toruloides has emerged as an excellent option for microbial lipid production due to its ability to accumulate up to 70 % of lipids per cell dry weight, consume multiple substrates such as glucose and xylose, and tolerate toxic compounds. Despite the potential of Rhodosporidium toruloides for high lipid yields, achieving these remains is a significant hurdle. A comprehensive review is essential to thoroughly evaluate the advancements in processes and technologies to enhance lipid production in R. toruloides. The review covers various strategies for enhancing lipid production like co-culture, adaptive evolution, carbon flux analysis, as well as different modes of fermentation. This review will help researchers to better understand the recent developments in technologies for sustainable and scalable lipid production from R. toruloides and simultaneously emphasize the need for developing an efficient and sustainable bioprocess.
Collapse
Affiliation(s)
- Lachi Wankhede
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Gaurav Bhardwaj
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos S Osorio-Gonzalez
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
6
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
7
|
Li X, Yu X, Liu Q, Zhang Y, Wang Q. Lipid Production of Schizochytrium sp. HBW10 Isolated from Coastal Waters of Northern China Cultivated in Food Waste Hydrolysate. Microorganisms 2023; 11:2714. [PMID: 38004726 PMCID: PMC10672807 DOI: 10.3390/microorganisms11112714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Marine oleaginous thraustochytrids have attracted increasing attention for their great potential in producing high-value active metabolites using various industrial and agricultural waste. Food waste containing abundant nutrients is considered as an excellent feedstock for microbial fermentation. In this study, a thraustochytrid strain Schizochytrium sp. HBW10 was isolated from a water column in Bohai Bay in Northern China for the first time. Further lipid production characteristics of S. sp. HBW10 were investigated utilizing sulfuric acid hydrolysate of food waste (FWH) from two different restaurants (FWH1 and FWH2) with the initial pH value adjusted by NaOH or NaHCO3. Results showed that the highest concentration of total fatty acids (TFAs) was observed in FWH2 medium with the 50% content level on the fifth day, reaching up to 0.34 g/L. A higher initial pH promoted the growth and saturated fatty acid (SFA) accumulation of S. sp. HBW10, achieving nearly 100% of the sum of saturated and monounsaturated fatty acids (SMUFAs) in TFAs with initial pH7 and pH8 in FWH1 medium. This work demonstrates a possible way for lipid production by thraustochytrids using food waste hydrolysate with a higher initial pH (pH7~pH8) adjusted by NaHCO3.
Collapse
Affiliation(s)
- Xiaofang Li
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Qian Liu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Yong Zhang
- Marine Environment Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China
| | - Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| |
Collapse
|
8
|
Amara NI, Chukwuemeka ES, Obiajulu NO, Chukwuma OJ. Yeast-driven valorization of agro-industrial wastewater: an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1252. [PMID: 37768404 DOI: 10.1007/s10661-023-11863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The intensive industrial and agricultural activities currently on-going worldwide to feed the growing human population have led to significant increase in the amount of wastewater produced. These effluents are high in phosphorus (P), nitrogen (N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and heavy metals. These compounds can provoke imbalance in the ecosystem with grievous consequences to both the environment and humans. Adequate treatment of these wastewaters is therefore of utmost importance to humanity. This can be achieved through valorization of these waste streams, which is based on biorefinery idea and concept of reduce, reuse, and recycle for sustainable circular economy. This concept uses innovative processes to produce value-added products from waste such as wastewater. Yeast-based wastewater treatment is currently on the rise given to the many characteristics of yeast cells. Yeasts are generally fast growing, and they are robust in terms of tolerance to stress and inhibitory compounds, in addition to their ability to metabolize a diverse range of substrates and create a diverse range of metabolites. Therefore, yeast cells possess the capacity to recover and transform agro-industrial wastewater nutrients into highly valuable metabolites. In addition to remediating the wastewater, numerous value-added products such as single cell oil (SCO), single cell proteins (SCPs), biofuels, organic acid, and aromatic compounds amongst others can be produced through fermentation of wastewater by yeast cells. This work thus brings to limelight the potential roles of yeast cells in reducing, reusing, and recycling of agro-industrial wastewaters while proffering solutions to some of the factors that limit yeast-mediated wastewater valorization.
Collapse
|
9
|
Naseema Rasheed R, Pourbakhtiar A, Mehdizadeh Allaf M, Baharlooeian M, Rafiei N, Alishah Aratboni H, Morones-Ramirez JR, Winck FV. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Front Bioeng Biotechnol 2023; 11:1193424. [PMID: 37799812 PMCID: PMC10548143 DOI: 10.3389/fbioe.2023.1193424] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods.
Collapse
Affiliation(s)
| | - Asma Pourbakhtiar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nahid Rafiei
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Hossein Alishah Aratboni
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Jose Ruben Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Universidad Autonoma de Nuevo Leon (UANL), Av Universidad s/n, CD. Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Flavia Vischi Winck
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
10
|
Bisht B, Verma M, Sharma R, Chauhan P, Pant K, Kim H, Vlaskin MS, Kumar V. Development of yeast and microalgae consortium biofilm growth system for biofuel production. Heliyon 2023; 9:e19353. [PMID: 37662773 PMCID: PMC10472003 DOI: 10.1016/j.heliyon.2023.e19353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The current study aimed to develop a laboratory-scale biofilm photobioreactor system for biofuel production. Scope & Approach During the investigation, Jute was discovered to be the best, cheap, hairy, open-pored supporting material for biofilm formation. Microalgae & yeast consortium was used in this study for biofilm formation. Conclusion The study identified microalgae and yeast consortium as a promising choice and ideal partners for biofilm formation with the highest biomass yield (47.63 ± 0.93 g/m2), biomass productivity (4.39 ± 0.29 to 7.77 ± 0.05 g/m2/day) and lipid content (36%) over 28 days cultivation period, resulting in a more sustainable and environmentally benign fuel that could become a reality in the near future.
Collapse
Affiliation(s)
- Bhawna Bisht
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Monu Verma
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Rohit Sharma
- Department of Biotechnology Engineering, University Institute of Engineering, Chandigarh University, Chandigarh, India
| | - P.K. Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mikhail S. Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
- Peoples’ Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation
- Graphic Era Hill University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
11
|
Mittermeier F, Bäumler M, Arulrajah P, García Lima JDJ, Hauke S, Stock A, Weuster‐Botz D. Artificial microbial consortia for bioproduction processes. Eng Life Sci 2023; 23:e2100152. [PMID: 36619879 PMCID: PMC9815086 DOI: 10.1002/elsc.202100152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.
Collapse
Affiliation(s)
- Fabian Mittermeier
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Miriam Bäumler
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Prasika Arulrajah
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | | | - Sebastian Hauke
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Anna Stock
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Dirk Weuster‐Botz
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
12
|
Dias C, Nobre B, Santos JA, da Silva TL, Reis A. Direct lipid and carotenoid extraction from Rhodosporidium toruloides broth culture after high pressure homogenization cell disruption: strategies, methodologies, and yields. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Gong G, Wu B, Liu L, Li J, He M, Hu G. Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source. BIORESOURCE TECHNOLOGY 2022; 364:128139. [PMID: 36252765 DOI: 10.1016/j.biortech.2022.128139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Microbial biomass and lipid production with mixed-culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source was investigated. Synergistic effect of mixed-culture using 20 g/L acetate significantly promoted cell growth and acetate utilization efficiency. Increasing the proportion of algae in co-culture was beneficial for biomass and lipid accumulation and the optimal ratio of yeast/algae was 1:2. Light exposure further enhanced biomass and lipid titer with 6.9 g/L biomass and 2.6 g/L lipid (38.3 % lipid content) obtained in a 5L bioreactor. The results of lipid classes and fatty acid profiles moreover indicated that more neutral lipids and linolenic acid were synthesized in mixed-culture under light exposure condition, suggesting the great potential in applications of biofuels production. This study provided new insight and strategy for economical microbial biomass and lipid production by light-exposed mixed-culture using inexpensive acetate as carbon source.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
14
|
Li X, Feng C, Lei M, Luo K, Wang L, Liu R, Li Y, Hu Y. Bioremediation of organic/heavy metal contaminants by mixed cultures of microorganisms: A review. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Although microbial remediation has been widely used in the bioremediation of various contaminants, in practical applications of biological remediation, pure cultures of microorganisms are seriously limited by their adaptability, efficiency, and capacity to handle multiple contaminants. Mixed cultures of microorganisms involve the symbiosis of two or more microorganisms. Such cultures exhibit a collection of the characteristics of each microorganism species or strain, showing enormous potential in the bioremediation of organic or heavy metal pollutants. The present review focuses on the mixed cultures of microorganisms, demonstrating its importance and summarizing the advantages of mixed cultures of microorganisms in bioremediation. Furthermore, the internal and external relations of mixed culture microorganisms were analyzed with respect to their involvement in the removal process to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xue Li
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Chongling Feng
- Department of Environmental Engineering, Institute of Environmental Science and Engineering Research, Central South University of Forestry & Technology , Changsha , Hunan, 410004 , China
| | - Min Lei
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Kun Luo
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Lingyu Wang
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Renguo Liu
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Yuanyuan Li
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Yining Hu
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| |
Collapse
|
15
|
Lipid and Carotenoid Production by a Rhodosporidium toruloides and Tetradesmus obliquus Mixed Culture Using Primary Brewery Wastewater Supplemented with Sugarcane Molasses and Urea. Appl Biochem Biotechnol 2022; 194:5556-5579. [DOI: 10.1007/s12010-022-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
16
|
Osman ME, Abdel-Razik AB, Zaki KI, Mamdouh N, El-Sayed H. Isolation, molecular identification of lipid-producing Rhodotorula diobovata: optimization of lipid accumulation for biodiesel production. J Genet Eng Biotechnol 2022; 20:32. [PMID: 35190920 PMCID: PMC8861238 DOI: 10.1186/s43141-022-00304-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/18/2022] [Indexed: 01/29/2023]
Abstract
Background The increased demand for oil and fats to satisfy the ever-increasing human needs has enhanced the research in this field. Single-cell oils or microbial lipids produced by oleaginous microorganisms are being utilized as an alternative to traditional oil sources. Oleaginous yeasts can accumulate lipids above 20% of their biomass when they are grown under controlled conditions. Results In the present study, sixty-five yeasts were isolated from different sources. Using Sudan Black B staining technique, five yeast isolates were selected. Under nitrogen-limited cultivation conditions, the Co1 isolate was the best lipid accumulation potential of 39.79%. Isolate (Co1) was characterized morphologically and identified using the ribosomal DNA internal transcribed spacers regions (rDNA-ITS) from their genomic DNA. The sequence alignment revealed a 99.2% similarity with Rhodotorula diobovata. Under the optimized conditions, Rhodotorula diobovata accumulated lipids up to 45.85% on a dry biomass basis. R. diobovata, when grown on different raw materials, accumulated lipid up to 46.68% on sugar beet molasses medium, and the lipid had a high degree of monounsaturated fatty acids which gives biodiesel better quality. Conclusions The data suggest that the potent oleaginous yeast, R. diobovata, together with the use of cheap feedstock raw materials such as sugar beet molasses, can be considered as a promising feedstock for biodiesel production.
Collapse
|
17
|
Dias C, Reis A, Santos JA, Gouveia L, Lopes da Silva T. Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
19
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
20
|
Scognamiglio V, Giardi MT, Zappi D, Touloupakis E, Antonacci A. Photoautotrophs-Bacteria Co-Cultures: Advances, Challenges and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3027. [PMID: 34199583 PMCID: PMC8199690 DOI: 10.3390/ma14113027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023]
Abstract
Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
- Biosensor S.r.l., Via Olmetti 44, 00060 Formello, Italy
| | - Daniele Zappi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| |
Collapse
|
21
|
Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofuels from micro-organisms represents a possible response to the carbon dioxide mitigation. One open problem is to improve their productivity, in terms of biofuels production. To do so, an improvement of the present model of growth and production is required. However, this implies an understanding of the growth spontaneous conditions of the bacteria. In this paper, a thermodynamic approach is developed in order to highlight the fundamental role of the electrochemical potential in bacteria proliferation. Temperature effect on the biosystem behaviour has been pointed out. The results link together the electrochemical potential, the membrane electric potential, the pH gradient through the membrane, and the temperature, with the result of improving the thermodynamic approaches, usually introduced in this topic of research.
Collapse
|
22
|
Biorefinery-Based Approach to Exploit Mixed Cultures of Lipomyces starkeyi and Chloroidium saccharophilum for Single Cell Oil Production. ENERGIES 2021. [DOI: 10.3390/en14051340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mutualistic interactions between the oleaginous yeast Lipomyces starkeyi and the green microalga Chloroidium saccharophilum in mixed cultures were investigated to exploit possible synergistic effects. In fact, microalga could act as an oxygen generator for the yeast, while the yeast could provide carbon dioxide to microalga. The behavior of the two microorganisms alone and in mixed culture was studied in two synthetic media (YEG and BBM + G) before moving on to a real model represented by the hydrolysate of Arundo donax, used as low-cost feedstock, and previously subjected to steam explosion and enzymatic hydrolysis. The overall lipid content and lipid productivity obtained in the mixed culture of YEG, BBM + G and for the hydrolysate of Arundo donax were equal to 0.064, 0.064 and 0.081 glipid·gbiomass−1 and 30.14, 35.56 and 37.22 mglipid·L−1·day−1, respectively. The mixed cultures, in all cases, proved to be the most performing compared to the individual ones. In addition, this study provided new input for the integration of Single Cell Oil (SCO) production with agro-industrial feedstock, and the fatty acid distribution mainly consisting of stearic (C18:0) and oleic acid (C18:1) allows promising applications in biofuels, cosmetics, food additives and other products of industrial interest.
Collapse
|
23
|
Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J. Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123575. [PMID: 32791477 DOI: 10.1016/j.jhazmat.2020.123575] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/07/2023]
Abstract
Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.56 g/L/day) and lipase activity (170.3 U/mL) exhibited in xylose. The total saturated fatty acid content was 36.09 %, while the mono-unsaturated and poly-unsaturated fatty acids were 45.44 and 18.30 %, respectively, making OYC-Y.BC.SH valuable for biodiesel production. The OYC-Y.BC.SH showed its highest decolorization efficiency of Red HE3B dye (above 82 %) in presence of sorghum husk as agricultural co-substrate, suggesting its feasibility for simultaneous lignin valorization. The significant higher performance of OYC-Y.BC.SH on decolorizing the real dyeing effluent sample at pH 8.0 suggests its potential and suitability for degrading most of the wastewater textile effluents. Clearly, toxicological studies underline the additional advantage of using OYC-Y.BC.SH for bioremediation of industrial dyeing effluents in terms of decolorization and detoxification. A possible mechanism of Red HE3B biodegradation and ATP synthesis was also proposed.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Amal H El-Naggar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
24
|
Zhang L, Loh KC, Kuroki A, Dai Y, Tong YW. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123543. [PMID: 32739727 DOI: 10.1016/j.jhazmat.2020.123543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This review aims to encourage the technical development of microbial biodiesel production from industrial-organic-wastes-derived volatile fatty acids (VFAs). To this end, this article summarizes the current status of several key technical steps during microbial biodiesel production, including (1) acidogenic fermentation of bio-wastes for VFA collection, (2) lipid accumulation in oleaginous microorganisms, (3) microbial lipid extraction, (4) transesterification of microbial lipids into crude biodiesel, and (5) crude biodiesel purification. The emerging membrane-based bioprocesses such as electrodialysis, forward osmosis and membrane distillation, are promising approaches as they could help tackle technical challenges related to the separation and recovery of VFAs from the fermentation broth. The genetic engineering and metabolic engineering approaches could be applied to design microbial species with higher lipid productivity and rapid growth rate for enhanced fatty acids synthesis. The enhanced in situ transesterification technologies aided by microwave, ultrasound and supercritical solvents are also recommended for future research. Technical limitations and cost-effectiveness of microbial biodiesel production from bio-wastes are also discussed, in regard to its potential industrial development. Based on the overview on microbial biodiesel technologies, an integrated biodiesel production line incorporating all the critical technical steps is proposed for unified management and continuous optimization for highly efficient biodiesel production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
25
|
Changmai B, Vanlalveni C, Ingle AP, Bhagat R, Rokhum SL. Widely used catalysts in biodiesel production: a review. RSC Adv 2020; 10:41625-41679. [PMID: 35516564 PMCID: PMC9058015 DOI: 10.1039/d0ra07931f] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023] Open
Abstract
An ever-increasing energy demand and environmental problems associated with exhaustible fossil fuels have led to the search for an alternative renewable source of energy. In this context, biodiesel has attracted attention worldwide as an eco-friendly alternative to fossil fuel for being renewable, non-toxic, biodegradable, and carbon-neutral. Although the homogeneous catalyst has its own merits, much attention is currently paid toward the chemical synthesis of heterogeneous catalysts for biodiesel production as it can be tuned as per specific requirement and easily recovered, thus enhancing reusability. Recently, biomass-derived heterogeneous catalysts have risen to the forefront of biodiesel productions because of their sustainable, economical and eco-friendly nature. Furthermore, nano and bifunctional catalysts have emerged as a powerful catalyst largely due to their high surface area, and potential to convert free fatty acids and triglycerides to biodiesel, respectively. This review highlights the latest synthesis routes of various types of catalysts (including acidic, basic, bifunctional and nanocatalysts) derived from different chemicals, as well as biomass. In addition, the impacts of different methods of preparation of catalysts on the yield of biodiesel are also discussed in details.
Collapse
Affiliation(s)
- Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Chhangte Vanlalveni
- Department of Botany, Mizoram University Tanhril Aizawl Mizoram 796001 India
| | - Avinash Prabhakar Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo Lorena SP Brazil
| | - Rahul Bhagat
- Department of Biotechnology, Government Institute of Science Aurangabad Maharashtra India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
26
|
Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217698] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microorganisms capable of accumulating lipids in high percentages, known as oleaginous microorganisms, have been widely studied as an alternative for producing oleochemicals and biofuels. Microbial lipid, so-called Single Cell Oil (SCO), production depends on several growth parameters, including the nature of the carbon substrate, which must be efficiently taken up and converted into storage lipid. On the other hand, substrates considered for large scale applications must be abundant and of low acquisition cost. Among others, lignocellulosic biomass is a promising renewable substrate containing high percentages of assimilable sugars (hexoses and pentoses). However, it is also highly recalcitrant, and therefore it requires specific pretreatments in order to release its assimilable components. The main drawback of lignocellulose pretreatment is the generation of several by-products that can inhibit the microbial metabolism. In this review, we discuss the main aspects related to the cultivation of oleaginous microorganisms using lignocellulosic biomass as substrate, hoping to contribute to the development of a sustainable process for SCO production in the near future.
Collapse
|
27
|
Concomitant wastewater treatment with lipid and carotenoid production by the oleaginous yeast Rhodosporidium toruloides grown on brewery effluent enriched with sugarcane molasses and urea. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Dourou M, Dritsas P, Baeshen MN, Elazzazy A, Al-Farga A, Aggelis G. High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiol Lett 2020; 367:fnaa081. [PMID: 32407478 DOI: 10.1093/femsle/fnaa081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaculture plays an important role in human nutrition and economic development but is often expanded to the detriment of the natural environment. Several research projects, aimed at cultivating microalgae in aquaculture wastewaters (AWWs) to reduce organic loads and minerals, along with the production of microalgal cell mass and metabolic products, are underway. Microalgal cell mass is of high nutritional value and is regarded as a candidate to replace, partially at least, the fish meal in the fish feed. Also, microalgal cell mass is considered as a feedstock in the bio-fuel manufacture, as well as a source of high-added value metabolic products. The production of these valuable products can be combined with the reuse of AWWs in the light of environmental concerns related with the aquaculture sector. Many research papers published in the last decade demonstrate that plenty of microalgae species are able to efficiently grow in AWWs, mainly derived from fish and shrimp farms, and produce valuable metabolites reducing the AWW pollutant load. We conclude that bio-remediation of AWWs combining with the production of microalgae cell mass and specific metabolites is probably the most convenient and economical solution for AWWs management and can contribute to the sustainable growth of the aquaculture.
Collapse
Affiliation(s)
- Marianna Dourou
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Panagiotis Dritsas
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabia
| | - Ahmed Elazzazy
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabia
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Ammar Al-Farga
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabia
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Meghana M, Shastri Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. BIORESOURCE TECHNOLOGY 2020; 303:122929. [PMID: 32037190 DOI: 10.1016/j.biortech.2020.122929] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Sugarcane processing in sugar industry results in generation of vast amounts of wastes, which can be valorized to biofuels and value-added chemicals based on the concept of circular bioeconomy. For successful commercialization, economic and technological bottlenecks must be clearly identified. In this review, the state of the art of various valorization routes are discussed for each waste stream. Subsequently, studies quantifying the environmental impacts and performing techno-economic assessment are reviewed. The scope and bottlenecks involved in the commercialization of these routes are identified and discussed. The review shows that electricity production from bagasse has matured as a technology but the production of value-added chemicals is still lagging. Here, downstream separation and purification are the major hurdles needing technological innovation. Moreover, indirect environmental and human health benefits due to waste valorization are not adequately accounted for. Further, strong trade-offs between economic and environmental performance exist, necessitating systematic and region-specific decision-making framework.
Collapse
Affiliation(s)
- Munagala Meghana
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Yogendra Shastri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
30
|
Wang X, Balamurugan S, Liu SF, Zhang MM, Yang WD, Liu JS, Li HY, Lin CSK. Enhanced polyunsaturated fatty acid production using food wastes and biofuels byproducts by an evolved strain of Phaeodactylum tricornutum. BIORESOURCE TECHNOLOGY 2020; 296:122351. [PMID: 31708386 DOI: 10.1016/j.biortech.2019.122351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the prospective of utilizing kitchen wastewater and food wastes, biofuels industry byproducts as alternative water and carbon sources. Kitchen wastewater did not impede cellular growth rate of the evolved Phaeodactylum strain E70, which indicates its potential as an alternative to freshwater resources. Among the organic wastes assessed, food waste hydrolysate significantly increased cell growth. Supplement of crude glycerol in cultivation medium enhances the total fatty acid content. Mixed food waste hydrolysate and crude glycerol remarkably increased both the cell density and total fatty acid content. Also, the supplement of butylated hydroxytoluene alleviated the oxidative stress induced by impurities in organic wastes and concomitantly increased microalgal total fatty acids and polyunsaturated fatty acids content. The experimental results reported in this study show that a waste-based biorefinery could lead to utilization of organic waste resources for the efficient production of value-added products.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Man-Man Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Llamas M, Magdalena JA, González-Fernández C, Tomás-Pejó E. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation. Biotechnol Bioeng 2019; 117:238-250. [PMID: 31544974 DOI: 10.1002/bit.27180] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts. VFAs can be generated from a wide variety of organic wastes through anaerobic digestion and further converted into lipids by oleaginous yeasts (OYs) in a fermentation process. These microorganisms can accumulate in the form of lipid bodies, lipids of up to 60% wt/wt of their biomass. In this context, OY is a promising biotechnological tool for biofuel and bioproduct generation using low-cost VFA media as substrates. This review covers recent advances in microbial oil production from VFAs. Production of VFAs via anaerobic digestion processes and the involved metabolic pathways are reviewed. The main challenges as well as recent approaches for lipid overproduction are also discussed.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| | | | | | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| |
Collapse
|
32
|
Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1107-1126. [PMID: 31412448 DOI: 10.1016/j.scitotenv.2019.06.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 05/20/2023]
Abstract
Considerable research activities are underway involving microalgae species in order to treat industrial wastewater to address the waste-to-bioenergy economy. Several studies of wastewater treatment using microalgae have been primarily focused on removal of key nutrients such as nitrogen and phosphorus. Although the use of wastewater would provide nutrients and water for microalgae growth, the whole process is even more complex than the conventional microalgae cultivation on freshwater media. The former one adds several gridlocks to the system. These gridlocks are surplus organic and inorganic nutrients concentration, pH of wastewater, wastewater color, total dissolved solids (TDS), microbial contaminants, the scale of photobioreactor, batch versus continuous system, harvesting of microalgae biomass etc. The present review discusses, analyses, and summarizes key aspects involved in the treatment of wastewaters from distillery, food/snacks product processing, and dairy processing industry using microalgae along with sustainable production of its biomass. This review further evaluates the bottlenecks for individual steps involved in the process such as pretreatment of wastewater for contaminants removal, concentration tolerance/dilutions, harvesting of microalgae biomass, and outdoor scale-up. The review also describes various strategies to optimize algal biomass and lipid productivities for various wastewater and photobioreactor type. Moreover, the review emphasizes the potential of co-cultivation of microorganism such as yeast and bacteria along with microalgae in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Suvidha Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sanjay B Pawar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - R A Pandey
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
33
|
Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. WATER 2019. [DOI: 10.3390/w11081526] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study investigates distillery wastewater, commonly known as vinasse, as a potential culture medium for the production of Chlorella vulgaris and its most relevant metabolites. The effect of vinasse concentration on the composition of the biomass (proteins, carbohydrates, and lipids) was evaluated in treatments performed in 6-L tubular air-lift reactors. The reactors were operated at 25 °C for 18 days, in total darkness, under a continuous flow of air. Results showed a rapid growth of microalgae in the first ten days, when an average production of 0.87 g/L was reached. Then, the daily biomass productivity began to decrease, up to an average value of 11.8 g/L at the 16th day. For all treatments, there was a significant reduction in the concentration of most metabolites in the first eight days. This was likely due to the adaptation of the biomass to the new conditions, with a transition from autotrophic to heterotrophic metabolism. From the 10th day, the concentration of metabolites in the biomass began to increase, reaching a nearly constant value at the 16th day. The observed maximum concentrations (%w/w) were: 48.95% proteins, 2.88% xylose, 7.82% glucose, 4.54% arabinose, 8.28% fructose, and 4.82% lipids. These values were only marginally affected by the type of treatment. Overall, the results obtained suggest that vinasse is a promising and sustainable medium for the growth of C. vulgaris and the production of valuable metabolites.
Collapse
|
34
|
Qin L, Liu L, Wang Z, Chen W, Wei D. The mixed culture of microalgae Chlorella pyrenoidosa and yeast Yarrowia lipolytica for microbial biomass production. Bioprocess Biosyst Eng 2019; 42:1409-1419. [DOI: 10.1007/s00449-019-02138-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022]
|
35
|
Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16952-16973. [PMID: 31030399 DOI: 10.1007/s11356-019-05138-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Oleaginous microalgae and yeast are the two major propitious factories which are sustainable sources for biodiesel production, as they can accumulate high quantities of lipids inside their bodies. To date, various microalgal and yeast species have been exploited singly for biodiesel production. However, despite the ongoing efforts, their low lipid productivity and the high cost of cultivation are still the major bottlenecks hindering their large-scale deployment. Co-culturing of microalgae and yeast has the potential to increase the overall lipid productivity by minimizing its production cost as both these organisms can utilize each other's by-products. Microalgae act as an O2 generator for yeast while consuming the CO2 and organic acids released by the yeast cells. Further, yeast can break complex sugars in the medium, which can then be utilized by microalgae thereby opening new options for copious and low-cost feedstocks such as agricultural residues. The current review provides a historical and technical overview of the existing studies on co-culturing of yeast and microalgae and elucidates the crucial factors that affect the symbiotic relationship between these two organisms. Furthermore, the review also highlighted the advantages and the future perspectives for paving a path towards a sustainable biodiesel product.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Alok Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Juhi Mehtani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Parul A Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
36
|
Improved Carotenoid Productivity and COD Removal Efficiency by Co-culture of Rhodotorula glutinis and Chlorella vulgaris Using Starch Wastewaters as Raw Material. Appl Biochem Biotechnol 2019; 189:193-205. [DOI: 10.1007/s12010-019-03016-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
|
37
|
Daneshvar E, Zarrinmehr MJ, Koutra E, Kornaros M, Farhadian O, Bhatnagar A. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. BIORESOURCE TECHNOLOGY 2019; 273:556-564. [PMID: 30476864 DOI: 10.1016/j.biortech.2018.11.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
In this study, two cycles of mixotrophic and one cycle of heterotrophic cultivation of Scenedesmus quadricauda (freshwater) and Tetraselmis suecica (marine water) microalgae in dairy wastewater (DWW) were investigated. Dry weights of S. quadricauda and T. suecica were found to be 0.43 and 0.58 g/L after the first cycle and 0.36, and 0.65 g/L after the second cycle of mixotrophic cultivation, respectively. Chlorophyll a content of both microalgae in the first cycle was significantly higher than the second cycle. S. quadricauda removed 92.15% of total nitrogen, 100% of phosphate, 100% of sulfate and 76.77% of total organic carbon, after two cycles of cultivation. The dominant fatty acids during the first and second cycle of S. quadricauda and T. suecica cultivation were C18:1 and C18:3n-3, respectively. The results suggest that by reusing DWW in two consecutive cycles of microalgal cultivation, higher pollutants removal efficiency and microalgal biomass production can be achieved.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Mohammad Javad Zarrinmehr
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, 1 Karatheodori Str., University Campus, 26504 Patras, Greece
| | - Omidvar Farhadian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
38
|
Ghosh Ray S, Ghangrekar MM. Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 16:527-546. [DOI: 10.1007/s13762-018-1786-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 02/05/2023]
|
39
|
Tamilalagan A, Singaram J. Oxidation stability of yeast biodiesel using Rancimat analysis: validation using infrared spectroscopy and gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3075-3090. [PMID: 30506440 DOI: 10.1007/s11356-018-3619-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left.
Collapse
Affiliation(s)
| | - Jayanthi Singaram
- Government College of Engineering, Bodinayakkanur, Tamil Nadu, India
| |
Collapse
|
40
|
Zhang X, Liu M, Zhang X, Tan T. Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method. BIORESOURCE TECHNOLOGY 2018; 267:395-400. [PMID: 30031278 DOI: 10.1016/j.biortech.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a novel strategy for lipid production through coupling oleaginous yeasts and activated sludge biological methods by cultivation of Rhodotorula glutinis in cellulosic ethanol wastewater was studied. Under optimal conditions in wastewater medium (dilution ratio of 1:2 and glucose supplement of 40 g/L), the maximum biomass and lipid content as well as the lipid yield reached 11.31 g/L, 18.35% and 2.08 g/L, with the associated removal rates of COD, TOC, NH4+-N, TN and TP reaching 83.15%, 81.81%, 85.49%, 70.52% and 67.46%, respectively. Cellulosic ethanol wastewater treated by the anaerobic-aerobic biological process resulted in removal of COD, NH4+-N, TP and TN reaching 67.55%, 94.17%, 90.16% and 48.89%, respectively. The reused water was used to dilute medium of R. glutinis for microbial lipid production reaching 2.38 g/L and caused positive effects on the accumulation of biomass and lipid.
Collapse
Affiliation(s)
- Xueling Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xu Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
41
|
Qin L, Liu L, Wang Z, Chen W, Wei D. Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae. BIORESOURCE TECHNOLOGY 2018; 264:90-97. [PMID: 29793118 DOI: 10.1016/j.biortech.2018.05.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
To determine the feasibility of microalgae-yeast mixed culture using the liquid digestate of dairy wastewater (LDDW) for biofuels and single cell protein (SCP) production, the cell growth, nutrient removal and outputs evaluation of the mono and mixed culture of Chlorella vulgaris and Yarrowia lipolytica in LDDW were investigated by adding glycerol as carbon source. The results showed that the mixed culture could enhance the biological utilization efficiency of nitrogen and phosphorus, and obtain higher yield of biomass (1.62 g/L), lipid (0.31 g/L), protein (0.51 g/L), and higher heating value (34.06 KJ/L). Compared with the mono culture of C. vulgaris, a decline of the transcription level in nitrate reductase and glutamine synthetase II genes in C. vulgaris was observed in the mixed culture when ammonia was sufficient. The results suggest the possibility of using the mixed culture for the efficient treatment of LDDW and resources recycling.
Collapse
Affiliation(s)
- Lei Qin
- School of Food Science and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China; Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lu Liu
- School of Food Science and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Zhongming Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Weining Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, PR China.
| |
Collapse
|
42
|
Ma Y, Gao Z, Wang Q, Liu Y. Biodiesels from microbial oils: Opportunity and challenges. BIORESOURCE TECHNOLOGY 2018; 263:631-641. [PMID: 29759818 DOI: 10.1016/j.biortech.2018.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 05/26/2023]
Abstract
Although biodiesel has been extensively explored as an important renewable energy source, the raw materials-associated cost poses a serious challenge on its large-scale commercial production. The first and second generations of biodiesel are mainly produced from usable raw materials, e.g. edible oils, crops etc. Such a situation inevitably imposes higher demands on land and water usage, which in turn compromise future food and water supply. Obviously, there is an urgent need to explore alternative feedstock, e.g. microbial oils which can be produced by many types of microorganisms including microalgae, fungi and bacteria with the advantages of small footprint, high lipid content and efficient uptake of carbon dioxide. Therefore, this review offers a comprehensive picture of microbial oil-based technology for biodiesel production. The perspectives and directions forward are also outlined for future biodiesel production and commercialization.
Collapse
Affiliation(s)
- Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhen Gao
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
43
|
Qin L, Wei D, Wang Z, Alam MA. Advantage Assessment of Mixed Culture of Chlorella vulgaris and Yarrowia lipolytica for Treatment of Liquid Digestate of Yeast Industry and Cogeneration of Biofuel Feedstock. Appl Biochem Biotechnol 2018; 187:856-869. [DOI: 10.1007/s12010-018-2854-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
|
44
|
Chaturvedi S, Bhattacharya A, Khare SK. Trends in Oil Production from Oleaginous Yeast Using Biomass: Biotechnological Potential and Constraints. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s000368381804004x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Cho HU, Park JM. Biodiesel production by various oleaginous microorganisms from organic wastes. BIORESOURCE TECHNOLOGY 2018; 256:502-508. [PMID: 29478783 DOI: 10.1016/j.biortech.2018.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/23/2023]
Abstract
Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes.
Collapse
Affiliation(s)
- Hyun Uk Cho
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Bioenergy Research Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong Moon Park
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Bioenergy Research Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
46
|
Liu L, Chen J, Lim PE, Wei D. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source. BIORESOURCE TECHNOLOGY 2018; 255:140-148. [PMID: 29414159 DOI: 10.1016/j.biortech.2018.01.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The single cell oil (SCO) production by the mono and mixed culture of microalgae Chlorella pyrenoidosa and red yeast Rhodotorula glutinis was investigated using non-detoxified cassava bagasse hydrolysate (CBH) as carbon source. The results suggested that the two strains were able to tolerate and even degrade some byproducts presented in the CBH, and the mixed culture approach enhanced the degradation of certain byproducts. Biomass (20.37 ± 0.38 g/L) and lipid yield (10.42 ± 1.21 g/L) of the mixed culture achieved in the batch culture were significantly higher than that of the mono-cultures (p < 0.05). The fed-batch culture further raised the biomass and lipid yield to 31.45 ± 4.93 g/L and 18.47 ± 3.25 g/L, respectively. The lipids mainly composed of oleic acid and palmitic acid, suggesting the potential applications such as biofuel feedstock, cosmetics, food additives and lubricant. This study provided new insights for the integration of the economical SCO production with agro-industrial waste disposal.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Junhui Chen
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Phaik-Eem Lim
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dong Wei
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
47
|
Iasimone F, Zuccaro G, D'Oriano V, Franci G, Galdiero M, Pirozzi D, De Felice V, Pirozzi F. Combined yeast and microalgal cultivation in a pilot-scale raceway pond for urban wastewater treatment and potential biodiesel production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1062-1071. [PMID: 29488969 DOI: 10.2166/wst.2017.620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A mixed culture of oleaginous yeast Lipomyces starkeyi and wastewater native microalgae (mostly Scenedesmus sp. and Chlorella sp.) was performed to enhance lipid and biomass production from urban wastewaters. A 400 L raceway pond, operating outdoors, was designed and used for biomass cultivation. Microalgae and yeast were inoculated into the cultivation pond with a 2:1 inoculum ratio. Their concentrations were monitored for 14 continuous days of batch cultivation. Microalgal growth presented a 3-day initial lag-phase, while yeast growth occurred in the first few days. Yeast activity during the microalgal lag-phase enhanced microalgal biomass productivity, corresponding to 31.4 mgTSS m-2 d-1. Yeast growth was limited by low concentrations in wastewater of easily assimilated organic substrates. Organic carbon was absorbed in the first 3 days with a 3.7 mgC L-1 d-1 removal rate. Complete nutrient removal occurred during microalgal linear growth with 2.9 mgN L-1 d-1 and 0.96 mgP L-1 d-1 removal rates. Microalgal photosynthetic activity induced high pH and dissolved oxygen values resulted in natural bactericidal and antifungal activity. A 15% lipid/dry weight was measured at the end of the cultivation time. Fatty acid methyl ester (FAME) analysis indicated that the lipids were mainly composed of arachidic acid.
Collapse
Affiliation(s)
- F Iasimone
- Bioscience and Territory Department, University of Molise, C. da Fonte Lappone, 86090 Pesche (IS), Italy E-mail:
| | - G Zuccaro
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P. V. Tecchio, 80, 80125 Naples, Italy
| | - V D'Oriano
- Department of Experimental Medicine, University of Study of Campania 'Luigi Vanvitelli', Via Costantinopoli 16, 80138 Naples, Italy
| | - G Franci
- Department of Experimental Medicine, University of Study of Campania 'Luigi Vanvitelli', Via Costantinopoli 16, 80138 Naples, Italy
| | - M Galdiero
- Department of Experimental Medicine, University of Study of Campania 'Luigi Vanvitelli', Via Costantinopoli 16, 80138 Naples, Italy
| | - D Pirozzi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P. V. Tecchio, 80, 80125 Naples, Italy
| | - V De Felice
- Bioscience and Territory Department, University of Molise, C. da Fonte Lappone, 86090 Pesche (IS), Italy E-mail:
| | - F Pirozzi
- Civil and Environmental Department, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
48
|
Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 2017; 38:690-703. [PMID: 29233009 DOI: 10.1080/07388551.2017.1390728] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.
Collapse
Affiliation(s)
- Gloria Padmaperuma
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Rahul Vijay Kapoore
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Daniel James Gilmour
- b Department of Molecular Biology and Biotechnology , The University of Sheffield , Sheffield , UK
| | - Seetharaman Vaidyanathan
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| |
Collapse
|
49
|
Qin L, Liu L, Zeng AP, Wei D. From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. BIORESOURCE TECHNOLOGY 2017; 245:1507-1519. [PMID: 28642053 DOI: 10.1016/j.biortech.2017.05.163] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/23/2023]
Abstract
As new feedstock for biofuels, microbial oils have received worldwide attentions due to their environmentally-friendly characters. Microbial oil production based on low-cost raw materials is significantly attractive to the current biodiesel refinery industry. In terms of SCOs production, oleaginous yeast has numerous advantages over bacteria, molds and microalgae based on their high growth rate and lipid yield. Numerous efforts have been made on the competitive lipid production combining the use of cheap raw materials as substrates by yeasts. In this paper, we provided an overview of lipid metabolism in yeast cells. New advances using oleaginous yeast as a cell factory for high-value lipid production from various low-cost substrates are also reviewed, and the enhanced strategies based on synergistic effects of oleaginous yeast and microalgae in co-culture are discussed in details.
Collapse
Affiliation(s)
- Lei Qin
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China; Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lu Liu
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany
| | - Dong Wei
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China.
| |
Collapse
|
50
|
Park YK, Nicaud JM, Ledesma-Amaro R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol 2017; 36:304-317. [PMID: 29132754 DOI: 10.1016/j.tibtech.2017.10.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | |
Collapse
|