1
|
Abdullah M, Ali Z, Yasin MT, Amanat K, Sarwar F, Khan J, Ahmad K. Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions. ENVIRONMENTAL RESEARCH 2024; 262:119902. [PMID: 39222730 DOI: 10.1016/j.envres.2024.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Industrial Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, P.O. Box 577-Jhang Road, Faisalabad, Pakistan; Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| |
Collapse
|
2
|
Kendir S, Franzreb M. Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae. BIORESOURCE TECHNOLOGY 2024; 391:129964. [PMID: 37926356 DOI: 10.1016/j.biortech.2023.129964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Energy- and time-consuming concentration steps currently limit the industrial application of microalgae. Compared to state-of-the-art technologies, magnetic separation shows a high potential for efficient harvesting of microalgae. This study presents a novel approach to combine pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles for magnetic separation of the freshwater microalgae Chlorella vulgaris. Harvesting efficiencies up to 98% were achieved at moderate pH and low particle and calcium phosphate concentrations in a model medium. However, cultivation-dependent high loads of algogenic organic matter can severely inhibit flocculation and particle/algae interactions, requiring higher salt concentrations or pH. Harvesting efficiencies above 90% were still attainable at moderate pH with increased calcium phosphate concentrations of 10mM. Acidification of the suspension to pH 5 allows for simple and reversible particle recycling. The presented process provides a promising path to universal and cost-effective harvesting, advancing the utilization of microalgae as a sustainable bioresource.
Collapse
Affiliation(s)
- Sefkan Kendir
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
3
|
Tan KY, Low SS, Manickam S, Ma Z, Banat F, Munawaroh HSH, Show PL. Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Res Int 2023; 169:112870. [PMID: 37254319 DOI: 10.1016/j.foodres.2023.112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Nutraceutical supplements provide health benefits, such as fulfilling the lack of nutrients in the human body or being utilized to treat or cure certain diseases. As the world population is growing, certain countries are experiencing food crisis challenges, causing natural foods are not sustainable to be used for nutraceutical production because it will require large-scale of food supply to produce enriched nutraceutics. The high demand for abundant nutritional compounds has made microalgae a reliable source as they can synthesize high-value molecules through photosynthetic activities. However, some microalgae species are limited in growth and unable to accumulate a significant amount of biomass due to several factors related to environmental conditions. Therefore, adding nanoparticles (NPs) as a photocatalyst is considered to enhance the yield rate of microalgae in an energy-saving and economical way. This review focuses on the composition of microalgal biomass for nutraceutical production, the health perspectives of nutritional compounds on humans, and the application of nanotechnology on microalgae for improved production and harvesting. The results obtained show that microalgal-based compounds indeed have better nutrients content than natural foods. However, nanotechnology must be further comprehended to make them non-hazardous and sustainable.
Collapse
Affiliation(s)
- Kai Yao Tan
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100 China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou 325035, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi, 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
4
|
Shanmuganathan R, Le QH, Aloufi AS, Gavurová B, Deepak JR, Mosisa E, R PT. High efficiency lipid production, biochar yield and chlorophyll a content of chlorella sp. microalgae exposed on sea water and TiO 2 nanoparticles. ENVIRONMENTAL RESEARCH 2023:116263. [PMID: 37247655 DOI: 10.1016/j.envres.2023.116263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
This study explores the challenges facing microalgae biofuel production, specifically low lipid content and difficulties with algal cell harvesting. The purpose of the research is to investigate the effect of seawater content and nanoparticle concentration on freshwater microalgae growth and biofuel production. The principal results of the study show that increasing the proportion of seawater and nanoparticles enhances the lipid content and cell diameter of microalgae, while excessive concentrations of nanoparticles and low seawater content lead to reduced microalgae growth. Furthermore, an optimal cell diameter was identified at a nanoparticle concentration of 150 mg/L. The study also reveals that increasing seawater content can decrease zeta potential and increase chlorophyll a content due to the concentration of dissolved organic matter. Increasing the seawater content from 0% to 25% decreased zeta potential by 1% owing to the instability and aggregation of the cells. Chlorophyll a for the 0% seawater was 0.55 which is increased to 1.32 only due to the increase in the seawater content. This significant increase is due to the concentration of dissolved organic matter in seawater. Additionally, the presence of seawater positively affects microalgae metabolic activity and biochar yield. The findings of this study offer valuable insights into the potential for optimizing microalgae biofuel production. The use of seawater and nanoparticles has shown promise in enhancing microalgae growth and biofuel yield, and the results of this study underscore the scientific value of exploring the role of seawater and nanoparticles in microalgae biofuel production. Further research in this area has the potential to significantly contribute to the development of sustainable energy solutions.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Beata Gavurová
- Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letná 1/9, 042 00, Košice-Sever, Slovak Republic
| | - J R Deepak
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | | | - Praveenkumar T R
- Department of Construction Technology and Management, Wollega University, Ethiopia.
| |
Collapse
|
5
|
Xu H, Tang Z, Yang D, Dai X, Chen H. Enhanced growth and auto-flocculation of Scenedesmus quadricauda in anaerobic digestate using high light intensity and nanosilica: A biomineralization-inspired strategy. WATER RESEARCH 2023; 235:119893. [PMID: 36989808 DOI: 10.1016/j.watres.2023.119893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Coupling municipal anaerobic digestate (MAD) treatments with microalgal cultivation can concomitantly achieve nutrient removal and microalgal bioenergy production. However, the high cost caused by dilution water and microalgal harvesting is a great challenge. In this study, Scenedesmus quadricauda was screened as the most appropriate algae strain due to its potential for growth and auto-flocculation, and the MAD diluted 5-fold with WWTP effluent was demonstrated as an ideal medium for S. quadricauda growth. Moreover, inspired by naturally generated silica shells of diatoms, a low-cost and biomimetic auto-flocculation strategy that combined high light intensity induction and microalgal silicification was proposed to accelerate the auto-flocculation process. Compared with low light intensity groups, this strategy imparted diatom-like features to S. quadricauda cells, and contributed to 3.07-fold higher auto-flocculation efficiency within 30 min. It was attributed to the fact that the high light intensity of 150 μmol·m - 2·s - 1 stimulated the extracellular polymeric substances (EPS) secretion and induced the variation in property and composition of EPS, especially the protein secondary structures, which allowed silica nanoparticles to spontaneously attach onto S. quadricauda cells in the presence of viscous EPS. Furthermore, this strategy significantly increased microalgal biomass yield to a dry weight of 1.37 g·L - 1, accompanied by 93.78%, 96.39% and 91.36% removals of NH4+-N, TP, and COD, respectively. The productivity of valuable by-products, including lipid, carbohydrate, protein, and pigment, reached 56.30, 101.35, 30.39 and 11.28 mg·L - 1·d - 1, respectively. Overall, this study supplies a novel approach for low-cost microalgal bioenergy production from MAD and energy-efficient microalgae harvest by auto-flocculation.
Collapse
Affiliation(s)
- Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
7
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
8
|
Khan N, Sudhakar K, Mamat R. Seaweed farming: A perspectives of genetic engineering and nano-technology application. Heliyon 2023; 9:e15168. [PMID: 37123906 PMCID: PMC10130772 DOI: 10.1016/j.heliyon.2023.e15168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
In order to meet the growing demand for resources, there is a rising interest in macroalgae cultivation worldwide due to their potential as a source of food, fuel, and bio-products. However, large-scale and sustainable seaweed cultivation has been a persistent challenge. Specific fundamental issues need to be addressed to maximize the benefits of seaweed production. This article reviews a plan for transitioning to an environmentally sustainable aquaculture system incorporating non-toxic nanoparticles. It also provides an overview of genetic enhancement techniques for macroalgae species to realize their potential fully. Additionally, the article discusses the need for advanced tools and concepts to overcome the challenges in seaweed identification and cultivation and emphasizes the importance of a coordinated effort in fundamental and applied research using emerging technologies to ensure long-term practicality.
Collapse
Affiliation(s)
- Nida Khan
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
- Centre for Research in Advanced Fluid & Process, Universiti Malaysia Pahang, Gambang, 26300, Malaysia
| | - K. Sudhakar
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
- Centre for Research in Advanced Fluid & Process, Universiti Malaysia Pahang, Gambang, 26300, Malaysia
- Energy Centre, Maulana Azad National Institute of Technology, Bhopal,462003, India
- Corresponding author. Centre for Research in Advanced Fluid & Process, Universiti Malaysia Pahang, Gambang, 26300, Malaysia.
| | - R. Mamat
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
- School of Mechanical Engineering, Ningxia University, China
- Centre for Automotive Engineering, Universiti Malaysia Pahang, Pekan,Pahang Malaysia
| |
Collapse
|
9
|
Al-Bawwat AK, Cano A, Gomaa MR, Jurado F. Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes (Basel) 2023. [DOI: 10.3390/pr11040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Jordan’s energy situation is in a critical state of dependency, with the country relying heavily on imports to satisfy its ever-increasing energy requirements. Renewable energy is a more competitive and consistent source of energy that can supply a large proportion of a country’s energy demand. It is environmentally friendly and minimizes atmospheric pollutant emissions. Thus, bioenergy has the potential to be a crucial alternative energy source in Jordan. Biomass is the principal source of bioenergy; it accounts for approximately 13% of the primary energy demand and is anticipated to supply half of the total primary energy demand by 2050. Nanotechnology has emerged as an important scientific research area with numerous applications, including biofuels. This review summarizes the application of nanoparticles to improve the properties and processes of biofuels. It presents the availability and viability of nanotechnology-supported bioenergy production in Jordan. Jordan generates up to 5.8 million tons of biomass each year and has access to abundant nonedible plant resources (such as Jojoba, Handal, and Jatropha). The theoretical energy potential of waste and residue available in Jordan was also assessed; it was discovered that the 1.28 million tons of dry crop residues (vegetables, fruits, and farming crops) could generate 6.8 PJ of energy per year and that biogas could be generated at a rate of 817 MCM/year
Collapse
|
10
|
Cavelius P, Engelhart-Straub S, Mehlmer N, Lercher J, Awad D, Brück T. The potential of biofuels from first to fourth generation. PLoS Biol 2023; 21:e3002063. [PMID: 36996247 PMCID: PMC10063169 DOI: 10.1371/journal.pbio.3002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
The steady increase in human population and a rising standard of living heighten global demand for energy. Fossil fuels account for more than three-quarters of energy production, releasing enormous amounts of carbon dioxide (CO2) that drive climate change effects as well as contributing to severe air pollution in many countries. Hence, drastic reduction of CO2 emissions, especially from fossil fuels, is essential to tackle anthropogenic climate change. To reduce CO2 emissions and to cope with the ever-growing demand for energy, it is essential to develop renewable energy sources, of which biofuels will form an important contribution. In this Essay, liquid biofuels from first to fourth generation are discussed in detail alongside their industrial development and policy implications, with a focus on the transport sector as a complementary solution to other environmentally friendly technologies, such as electric cars.
Collapse
Affiliation(s)
- Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Selina Engelhart-Straub
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Johannes Lercher
- Chair of Technical Chemistry II, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| |
Collapse
|
11
|
Bin Rashid A. Utilization of Nanotechnology and Nanomaterials in Biodiesel Production and Property Enhancement. JOURNAL OF NANOMATERIALS 2023; 2023:1-14. [DOI: 10.1155/2023/7054045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the applications of nanotechnology and nanomaterials are attracting interest in a wide variety of study domains because of their appealing qualities. The use of nanotechnology and nanomaterials in biodiesel processing and manufacturing is a focus of research globally. For accelerating the progress and development of biodiesel production, more focus is being given to the application of advanced nanotechnology for maximum yield in low cost. Hence, this paper will discuss the utilization of numerous nanomaterials/nanocatalysts for biodiesel synthesis from multiple feedstocks. This study will also focus on nanomaterials’ applications in algae cultivation and lipid extraction. Furthermore, the current study will comprehensively overview the nanoadditives blended biodiesel in diesel engines and the significant challenges and future opportunities. Moreover, this paper will also focus on human and environmental safety concerns of nanotechnology-based large-scale biodiesel production. Hence, this review will provide perception for future manufacturers, researchers, and academicians into the extent of research in nanotechnology and nanomaterials assisted biodiesel production and its efficiency enhancement.
Collapse
Affiliation(s)
- Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
12
|
Sneha M, Sowmya S, Premalatha M, Mathivanan K, Muthukumar K, Mathimani T. Multifarious extraction methodologies for ameliorating lipid recovery from algae. ENVIRONMENTAL RESEARCH 2023; 218:114978. [PMID: 36495964 DOI: 10.1016/j.envres.2022.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Amongst the current alternatives, algae were proven to be a promising source of biofuel, which is renewable and capable of meeting world demand for transportation fuels. However, a suitable lipid extraction method that efficiently releases the lipids from different algal strains remains a bottleneck. The multifarious pretreatment methods are prevalent in this field of lipid extraction, and therefore, this article has critically reviewed the various lipid extraction methods for ameliorating the lipid yield from algae, irrespective of the strains/species. Physical, mechanical, and chemical are the different types of pretreatment methods. In this review, methodologies such as homogenization, sonication, Soxhlet extraction, microwave treatment, and bead-beating, have been studied in detail and are the most commonly used methods for lipid extraction. Specific advanced/emerging processes such as supercritical CO2 extraction, ionic liquid, and CO2 switchable solvent-based algal lipid extraction are yet to be demonstrated at pilot-scale, though promising. The extraction of lipids has to be financially conducive, environmentally sustainable, and industrially applicable for further conversion into biodiesel. Hence, this paper discusses variable pretreatment for lipid extraction and imparts a comparative analysis to elect an efficient, economically sound lipid extraction method for pilot-scale biodiesel production.
Collapse
Affiliation(s)
- Mohapatra Sneha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - S Sowmya
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Krishnan Muthukumar
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
13
|
Aratboni HA, Rafiei N, Allaf MM, Abedini S, Rasheed RN, Seif A, Wang S, Ramirez JRM. Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Sukkasam N, Leksingto J, Incharoensakdi A, Monshupanee T. Chemical Triggering Cyanobacterial Glycogen Accumulation: Methyl Viologen Treatment Increases Synechocystis sp. PCC 6803 Glycogen Storage by Enhancing Levels of Gene Transcript and Substrates in Glycogen Synthesis. PLANT & CELL PHYSIOLOGY 2023; 63:2027-2041. [PMID: 36197756 DOI: 10.1093/pcp/pcac136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Two-stage cultivation is effective for glycogen production by cyanobacteria. Cells were first grown under adequate nitrate supply (BG11) to increase biomass and subsequently transferred to nitrogen deprivation (-N) to stimulate glycogen accumulation. However, the two-stage method is time-consuming and requires extensive energy. Thus, one-stage cultivation that enables both cell growth and glycogen accumulation is advantageous. Such one-stage method could be achieved using a chemical triggering glycogen storage. However, there is a limited study on such chemicals. Here, nine compounds previously reported to affect cyanobacterial cellular functions were examined in Synechocystis sp. PCC 6803. 2-Phenylethanol, phenoxyethanol, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and methyl viologen can stimulate glycogen accumulation. The oxidative stress agent, methyl viologen significantly increased glycogen levels up to 57% and 69% [w/w dry weight (DW)] under BG11 and -N cultivation, respectively. One-stage cultivation where methyl viologen was directly added to the pre-grown culture enhanced glycogen storage to 53% (w/w DW), compared to the 10% (w/w DW) glycogen level of the control cells without methyl viologen. Methyl viologen treatment reduced the contents of total proteins (including phycobiliproteins) but caused increased transcript levels of glycogen synthetic genes and elevated levels of metabolite substrates for glycogen synthesis. Metabolomic results suggested that upon methyl viologen treatment, proteins degraded to amino acids, some of which could be used as a carbon source for glycogen synthesis. Results of oxygen evolution and metabolomic analysis suggested that photosynthesis and carbon fixation were not completely inhibited upon methyl viologen treatment, and these two processes may partially generate upstream metabolites required for glycogen synthesis.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Vignesh P, Jayaseelan V, Pugazhendiran P, Prakash MS, Sudhakar K. Nature-inspired nano-additives for Biofuel application – A Review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
16
|
Marinho YF, Oliveira CYB, Malafaia CB, Cahú TB, Oliveira APS, Napoleão TH, Bezerra RS, Paiva PG, Gálvez AO. A circular approach for the efficient recovery of astaxanthin from Haematococcus pluvialis biomass harvested by flocculation and water reusability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156795. [PMID: 35732235 DOI: 10.1016/j.scitotenv.2022.156795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Flocculation has been proved an efficient method for microalgal biomass harvesting, but some coagulant agents may have adverse effects on microalgae growth, making the reuse of the medium unfeasible. In this study, Haematococcus pluvialis was harvested by different flocculants, and the feasibility of the reuse of the culture medium was evaluated. Results suggested that both inorganics, polyaluminum chloride (PA) and ferric chloride (FC), and organics, extracted from Moringa oleifera seed (MSE) and chitosan (CH) resulted in efficient flocculation - flocculation efficiency above 99 %. However, using PA and FC had adverse effects on the astaxanthin recovery from haematocysts - losses of 58.6 and 73.5 %, respectively. Bioflocculants in the reused medium also had higher growth performance than inorganic ones. Furthermore, bioflocculants in reused medium increase the contents of β-carotene, astaxanthin, and linolenic acid. This investigation demonstrated that using MSE and CHI for harvesting H. pluvialis enables the water reusability from a flocculated medium.
Collapse
Affiliation(s)
- Yllana F Marinho
- Centro de Ciências Humanas, Naturais, Saúde e Tecnologia, Universidade Federal do Maranhão, 65200-000 Pinheiro, Maranhão, Brazil
| | - Carlos Yure B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil.
| | - Carolina B Malafaia
- Centro de Tecnologias Estratégicas do Nordeste, Av. Prof. Luís Freire, 01, Cidade Universitária, CEP 50.740-540 Recife, PE, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Ana Patrícia S Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Ranilson S Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Patrícia G Paiva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Mittal V, Talapatra KN, Ghosh UK. A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kim B, Youn Lee S, Lakshmi Narasimhan A, Kim S, Oh YK. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. BIORESOURCE TECHNOLOGY 2022; 343:126124. [PMID: 34653624 DOI: 10.1016/j.biortech.2021.126124] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The green microalga Haematococcus pluvialis is an excellent source of astaxanthin, a powerful antioxidant widely used in cosmetics, aquaculture, health foods, and pharmaceuticals. This review explores recent developments in cell disruption and astaxanthin extraction techniques applied using H. pluvialis as a model species for large-scale algal biorefinery. Notably, this alga develops a unique cyst-like cell with a rigid three-layered cell wall during astaxanthin accumulation (∼4% of dry weight) under stress. The thick (∼2 µm), acetolysis-resistant cell wall forms the strongest barrier to astaxanthin extraction. Various physical, chemical, and biological cell disruption methods were discussed and compared based on theoretical mechanisms, biomass status (wet, dry, and live), cell-disruption efficacy, astaxanthin extractability, cost, scalability, synergistic combinations, and impact on the stress-sensitive astaxanthin content. The challenges and future prospects of the downstream processes for the sustainable and economic development of advanced H. pluvialis biorefineries are also outlined.
Collapse
Affiliation(s)
- Bolam Kim
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Aditya Lakshmi Narasimhan
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sangui Kim
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical Engineering, and Institute for Environment & Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
19
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
20
|
Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. SUSTAINABILITY 2021. [DOI: 10.3390/su132212374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern civilization is heavily reliant on petroleum-based fuels to meet the energy demand of the transportation sector. However, burning fossil fuels in engines emits greenhouse gas emissions that harm the environment. Biofuels are commonly regarded as an alternative for sustainable transportation and economic development. Algal-based fuels, solar fuels, e-fuels, and CO2-to-fuels are marketed as next-generation sources that address the shortcomings of first-generation and second-generation biofuels. This article investigates the benefits, limitations, and trends in different generations of biofuels through a review of the literature. The study also addresses the newer generation of biofuels highlighting the social, economic, and environmental aspects, providing the reader with information on long-term sustainability. The use of nanoparticles in the commercialization of biofuel is also highlighted. Finally, the paper discusses the recent advancements that potentially enable a sustainable energy transition, green economy, and carbon neutrality in the biofuel sector.
Collapse
|
21
|
Tanvir RU, Zhang J, Canter T, Chen D, Lu J, Hu Z. Harnessing Solar Energy using Phototrophic Microorganisms: A Sustainable Pathway to Bioenergy, Biomaterials, and Environmental Solutions. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 146:1-111181. [PMID: 34526853 PMCID: PMC8437043 DOI: 10.1016/j.rser.2021.111181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phototrophic microorganisms (microbial phototrophs) use light as an energy source to carry out various metabolic processes producing biomaterials and bioenergy and supporting their own growth. Among them, microalgae and cyanobacteria have been utilized extensively for bioenergy, biomaterials, and environmental applications. Their superior photosynthetic efficiency, lipid content, and shorter cultivation time compared to terrestrial biomass make them more suitable for efficient production of bioenergy and biomaterials. Other phototrophic microorganisms, especially anoxygenic phototrophs, demonstrated the ability to survive and flourish while producing renewable energy and high-value products under harsh environmental conditions. This review presents a comprehensive overview of microbial phototrophs on their (i) production of bioenergy and biomaterials, (ii) emerging and innovative applications for environmental conservation, mitigation, and remediation, and (iii) physical, genetic, and metabolic pathways to improve light harvesting and biomass/biofuel/biomaterial production. Both physical (e.g., incremental irradiation) and genetic approaches (e.g., truncated antenna) are implemented to increase the light-harvesting efficiency. Increases in biomass yield and metabolic products are possible through the manipulation of metabolic pathways and selection of a proper strain under optimal cultivation conditions and downstream processing, including harvesting, extraction, and purification. Finally, the current barriers in harnessing solar energy using phototrophic microorganisms are presented, and future research perspectives are discussed, such as integrating phototrophic microorganisms with emerging technologies.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Timothy Canter
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dick Chen
- Dual Enrollment Program, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (EPA), Cincinnati, Ohio, 45268, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
22
|
Nguyen MK, Moon JY, Lee YC. Microalgal ecotoxicity of nanoparticles: An updated review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110781. [PMID: 32497816 DOI: 10.1016/j.ecoenv.2020.110781] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, nanotechnology and its related industries are becoming a rapidly explosive industry that offers many benefits to human life. However, along with the increased production and use of nanoparticles (NPs), their presence in the environment creates a high risk of increasing toxic effects on aquatic organisms. Therefore, a large number of studies focusing on the toxicity of these NPs to the aquatic organisms are carried out which used algal species as a common biological model. In this review, the influences of the physio-chemical properties of NPs and the response mechanisms of the algae on the toxicity of the NPs were discussed focusing on the "assay" studies. Besides, the specific algal toxicities of each type of NPs along with the NP-induced changes in algal cells of these NPs are also assessed. Almost all commonly-used NPs exhibit algal toxicity. Although the algae have similarities in the symptoms under NP exposure, the sensitivity and variability of each algae species to the inherent properties of each NPs are quite different. They depend strongly on the concentration, size, characteristics of NPs, and biochemical nature of algae. Through the assessment, the review identifies several gaps that need to be further studied to make an explicit understanding. The findings in the majority of studies are mostly in laboratory conditions and there are still uncertainties and contradictory/inconsistent results about the behavioral effects of NPs under field conditions. Besides, there remains unsureness about NP-uptake pathways of microalgae. Finally, the toxicity mechanisms of NPs need to be thoughtfully understood which is essential in risk assessment.
Collapse
Affiliation(s)
- Minh Kim Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16 gil, Seoul, 02876, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
23
|
Choi HJ. Agricultural biowaste, rice bran, as carbon source to enhance biomass and lipid production: analysis with various growth rate models. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1120-1130. [PMID: 33055402 DOI: 10.2166/wst.2020.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a byproduct of agriculture, rice bran can be a good alternative carbon source to mass-produce microalgae and increase lipid content. The purpose of this study was to investigate the effects of rice bran extract (RBE) on the mass culture and oil content of microalgae. Various parameters were applied to the growth rate model to explain the dynamics of substrate inhibition and growth of microalgae. The rice bran contains 46.1% of carbohydrates, in which is 38.3% glucose, and is very suitable as a carbon source for microalgae growth. The culture with RBE had a four times higher biomass production than microalgae cultured on Jaworski's medium (JM) with a small amount of 1 g/L. In addition, for RBE, the lipid content was three times higher and saturated fatty acid was 3% lower than were those of JM. According to the above results, when Chlorella vulgaris is cultured using RBE, a high amount of biomass and high lipid content can be obtained with a small amount of RBE. RBE is a discarded waste and has a high content of glucose, so it can be replaced by an organic carbon source to increase microbial biomass growth and lipid content at low cost.
Collapse
Affiliation(s)
- H J Choi
- Department of Biosystems and Convergence Engineering, Beomil-ro 579, Catholic Kwandong University, Gangneung, Korea E-mail:
| |
Collapse
|
24
|
Xiong JQ, Ru S, Zhang Q, Jang M, Kurade MB, Kim SH, Jeon BH. Insights into the effect of cerium oxide nanoparticle on microalgal degradation of sulfonamides. BIORESOURCE TECHNOLOGY 2020; 309:123452. [PMID: 32371321 DOI: 10.1016/j.biortech.2020.123452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Nanoparticles have been commercially used worldwide; however, there is a lack of information of their environmental impacts and ecotoxicity. In this study, the effect of cerium oxide nanoparticle (CeO2NP) on a green microalga Scenedesmus obliquus, and microalgal biodegradation of four sulfonamides (sulfamethazine, sulfamethoxazole, sulfadiazine, and sulfamethoxazole) was investigated. There is insignificant inhibition of microalgal growth induced by CeO2NP; however, it substantially influenced the expression of genes involved in key cellular metabolic activities of S. obliquus. For example, genes involved in photosynthetic activity (psbA) and energy production (ATPF0C) were downregulated with exposure to CeO2NP. The low concentrations of CeO2NP improved microalgal degradation of sulfonamides. This may be because of the upregulated genes encoding hydrogenase and oxidoreductase. The exploration of this study has provided a new understanding of the environmental impacts of CeO2NP on microalgae-based biotechnologies for treatment of wastewater containing emerging organic contaminants.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Qing Zhang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
25
|
Han SF, Jin W, Tu R, Gao SH, Zhou X. Microalgae harvesting by magnetic flocculation for biodiesel production: current status and potential. World J Microbiol Biotechnol 2020; 36:105. [PMID: 32632607 DOI: 10.1007/s11274-020-02884-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
With the increasing demand for energy, microalgae, as one of the promising feedstocks of biodiesel, has raised great awareness. Because of its small size, similar density to water and electrical stability, harvesting methods of microalgae that have low energy consumption and that are highly efficient, easy to large-scale and environmentally friendly have become a bottleneck restricting development of the whole process. Among the numerous possible harvesting methods, magnetic flocculation has the advantages of simple operation, fast separation and energy saving and thus is considered as a promising novel harvesting method. In this review, we have summarized the updated status and application potential of magnetic flocculation, including the principle of magnetic flocculation, magnetic flocculating materials, flocculating efficiency and its effect on downstream process. The major challenges such as magnetic materials recovery, large-scale magnetic flocculation device design, and magnetic flocculation costs are also discussed.
Collapse
Affiliation(s)
- Song-Fang Han
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shu-Hong Gao
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
26
|
Abstract
The world energy production trumped by the exhaustive utilization of fossil fuels has highlighted the importance of searching for an alternative energy source that exhibits great potential. Ongoing efforts are being implemented to resolve the challenges regarding the preliminary processes before conversion to bioenergy such as pretreatment, enzymatic hydrolysis and cultivation of biomass. Nanotechnology has the ability to overcome the challenges associated with these biomass sources through their distinctive active sites for various reactions and processes. In this review, the potential of nanotechnology incorporated into these biomasses as an aid or addictive to enhance the efficiency of bioenergy generation has been reviewed. The fundamentals of nanomaterials along with their various bioenergy applications were discussed in-depth. Moreover, the optimization and enhancement of bioenergy production from lignocellulose, microalgae and wastewater using nanomaterials are comprehensively evaluated. The distinctive features of these nanomaterials contributing to better performance of biofuels, biodiesel, enzymes and microbial fuel cells are also critically reviewed. Subsequently, future trends and research needs are highlighted based on the current literature.
Collapse
|
27
|
|
28
|
Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications. NANOMATERIALS 2019; 9:nano9111608. [PMID: 31726776 PMCID: PMC6915624 DOI: 10.3390/nano9111608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Surface modification is widely assumed as a mandatory prerequisite for the real applicability of iron oxide nanoparticles. This is aimed to endow prolonged stability, electrolyte and pH tolerance as well as a desired specific surface chemistry for further functionalization to these materials. Nevertheless, coating processes have negative consequences on the sustainability of nanomaterial production contributing to high costs, heavy environmental impact and difficult scalability. In this view, bare iron oxide nanoparticles (BIONs) are arousing an increasing interest and the properties and advantages of pristine surface chemistry of iron oxide are becoming popular among the scientific community. In the authors’ knowledge, rare efforts were dedicated to the use of BIONs in biomedicine, biotechnology, food industry and environmental remediation. Furthermore, literature lacks examples highlighting the potential of BIONs as platforms for the creation of more complex nanostructured architectures, and emerging properties achievable by the direct manipulation of pristine iron oxide surfaces have been little studied. Based on authors’ background on BIONs, the present review is aimed at providing hints on the future expansion of these nanomaterials emphasizing the opportunities achievable by tuning their pristine surfaces.
Collapse
|
29
|
Khalid M. Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management. Crit Rev Biotechnol 2019; 40:46-63. [DOI: 10.1080/07388551.2019.1680599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muneeba Khalid
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Liu Y, Jin W, Zhou X, Han SF, Tu R, Feng X, Jensen PD, Wang Q. Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe 3O 4 coated with polyethyleneimine. BIORESOURCE TECHNOLOGY 2019; 290:121771. [PMID: 31302468 DOI: 10.1016/j.biortech.2019.121771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel flocculation process by using nano-Fe3O4 coated with polyethyleneimine (Fe3O4@PEI) as magnetic seeds was developed to harvest the microalgae cultivated in urban sewage. Experiment results indicated that the harvest efficiency of Chlorella pyrenoidosa (0.5 g/L) was 98.92 ± 0.41% under the optimal conditions of Fe3O4@PEI dose of 20 mL/L, flocculation time of 20 min, and stirring speed of 800 rpm (3 min), while that of Scenedesmus obliquus (0.4 g/L) was 98.45 ± 0.35% under a Fe3O4@PEI dose of 16 mL/L, flocculation time of 15 min, and stirring speed of 730 rpm (3 min). Moreover, the process did not reduce the lipid content of microalgae and quality of biodiesel. After microalgae harvest, Fe3O4@PEI could be recovered by ultrasonication, re-wrapped with polyethyleneimine and reused to reduce operational cost.
Collapse
Affiliation(s)
- Yuxi Liu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China.
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Xiaochi Feng
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia 4072, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
31
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Abstract
Microalgae have been considered as one of the most promising biomass feedstocks for various industrial applications such as biofuels, animal/aquaculture feeds, food supplements, nutraceuticals, and pharmaceuticals. Several biotechnological challenges associated with algae cultivation, including the small size and negative surface charge of algal cells as well as the dilution of its cultures, need to be circumvented, which increases the cost and labor. Therefore, efficient biomass recovery or harvesting of diverse algal species represents a critical bottleneck for large-scale algal biorefinery process. Among different algae harvesting techniques (e.g., centrifugation, gravity sedimentation, screening, filtration, and air flotation), the flocculation-based processes have acquired much attention due to their promising efficiency and scalability. This review covers the basics and recent research trends of various flocculation techniques, such as auto-flocculation, bio-flocculation, chemical flocculation, particle-based flocculation, and electrochemical flocculation, and also discusses their advantages and disadvantages. The challenges and prospects for the development of eco-friendly and economical algae harvesting processes have also been outlined here.
Collapse
|
33
|
Kong L, Hu W, Lu C, Cheng K, Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. CHEMOSPHERE 2019; 218:259-265. [PMID: 30472609 DOI: 10.1016/j.chemosphere.2018.11.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this research is to go a step further study on the reproductive toxicities and the underlying mechanisms induced by nickel nanoparticles (NiNPs), and the possible protective action of vitamin C. Animal experiment was designed according to the one-generation reproductive toxicity standard, and rats were exposed to NiNPs through gavage. Ultrastructural, reactive oxygen species (ROS), oxidant and antioxidant enzymes, and cell apoptosis-related factors in the testicular tissue were analyzed. In contrast with the control group, the activity of surperoxide dismutase (SOD), catalase (CAT) and gonad-stimulating hormone (GSH) was reduced, while the content of nitric oxide (NO), malondialdehyde (MDA) and ROS was increased in the NiNPs treated animals. As the doses of NiNPs increase, the mRNA of apoptotic related factor Caspase-9, Caspase-8 and Caspase-3 showed an obviously upregulation. Protein expression of Bcl-2-associated X Protein (Bax) and apoptosis inducing factor (AIF) was significantly unregulated. After addition of antioxidants-vitamin C, the toxicity was reduced. Injured testicular tissue indicated that NiNPs exposure could damage the reproductive system. Our results suggest that NiNPs induce significant reproductive toxicities. The cellular apoptosis might be induced by caspase family proteinases, but the regulator factor (factor associated suicide (Fas), B-cell lymphoma-2 (Bcl-2), Bax, BH3-interacting domain death agonist (Bid) and AIF protein) might not be involved in this process. Thus, the mechanism of reproductive toxicity of NiNPs on rat testes involves in the induction of oxidative stress, which further results in cell apoptosis. Antioxidants-vitamin C shows a significant inhibition on the reproductive toxicities induced by NiNPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Keping Cheng
- Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
34
|
Gim GH, Kim SW. Optimization of Cell Disruption and Transesterification of Lipids from Botryococcus braunii LB572. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0277-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zhang M, Wang H, Song Y, Huang H, Shao M, Liu Y, Li H, Kang Z. Pristine Carbon Dots Boost the Growth of Chlorella vulgaris by Enhancing Photosynthesis. ACS APPLIED BIO MATERIALS 2018; 1:894-902. [DOI: 10.1021/acsabm.8b00319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengling Zhang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Huibo Wang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuxiang Song
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hui Huang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Mingwang Shao
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hao Li
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Magnetic Fe3O4-polyethyleneimine nanocomposites for efficient harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Ferraro G, Toranzo RM, Castiglioni DM, Lima E, Vasquez Mansilla M, Fellenz NA, Zysler RD, Pasquevich DM, Bagnato C. Zinc removal by Chlorella sp. biomass and harvesting with low cost magnetic particles. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4) Hybrid Composites for Harvesting of Mixed Microalgae. ENERGIES 2018. [DOI: 10.3390/en11061359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Fraga-García P, Kubbutat P, Brammen M, Schwaminger S, Berensmeier S. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E292. [PMID: 29723963 PMCID: PMC5977306 DOI: 10.3390/nano8050292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
Microalgae continue to gain in importance as a bioresource, while their harvesting remains a major challenge at the moment. This study presents findings on microalgae separation using low-cost, easy-to-process bare iron oxide nanoparticles with the additional contribution of the upscaling demonstration of this simple, adhesion-based process. The high affinity of the cell wall for the inorganic surface enables harvesting efficiencies greater than 95% for Scenedesmus ovalternus and Chlorella vulgaris. Successful separation is possible in a broad range of environmental conditions and primarily depends on the nanoparticle-to-microalgae mass ratio, whereas the effect of pH and ionic strength are less significant when the mass ratio is chosen properly. The weakening of ionic concentration profiles at the interphase due to the successive addition of deionized water leads the microalgae to detach from the nanoparticles. The process works efficiently at the liter scale, enabling complete separation of the microalgae from their medium and the separate recovery of all materials (algae, salts, and nanoparticles). The current lack of profitable harvesting processes for microalgae demands innovative approaches to encourage further development. This application of magnetic nanoparticles is an example of the prospects that nanobiotechnology offers for biomass exploitation.
Collapse
Affiliation(s)
- Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Peter Kubbutat
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Markus Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr 15, 85748 Garching, Germany.
| |
Collapse
|
40
|
Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Bian X, Jin W, Gu Q, Zhou X, Xi Y, Tu R, Han SF, Xie GJ, Gao SH, Wang Q. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus. World J Microbiol Biotechnol 2018; 34:39. [PMID: 29460187 DOI: 10.1007/s11274-018-2421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Subcritical co-solvents of n-hexane/isopropanol were primarily utilized to extract lipid from wet microalgal pastes of Scenedesmus obliquus. The effects of key operational parameters were investigated, and the optimal parameters were obtained: solvent ratio of n-hexane to isopropanol was 3:2 (V:V), phase ratio of co-solvents to microalgal biomass was 35:1 (mL:g), reactor stirring speed was 900 rpm, extraction time was 60 min. Additional pretreatment with acid, ultrasonic and microwave as well as enhanced subcritical pressure/heating treatments were also applied to further study their effects on lipid extraction. The results showed that the lipid recovery rate with acid pretreatment was 8.6 and 6.2% higher than ultrasonic and microwave pretreatment; the optimum enhanced subcritical condition was 55 °C with atmospheric pressure. Under optimal operating conditions, the lipid and FAME yield were 13.5 and 7.2%, which was 82.6 and 135.1% higher than the traditional method. The results indicated that the subcritical n-hexane/isopropanol extraction process had promising application potential.
Collapse
Affiliation(s)
- Xiaoyu Bian
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qiong Gu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yuhe Xi
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150001, China
| | - Shu-Hong Gao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy & Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
42
|
|
43
|
Bayat Tork M, Khalilzadeh R, Kouchakzadeh H. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology. BIORESOURCE TECHNOLOGY 2017; 243:583-588. [PMID: 28704739 DOI: 10.1016/j.biortech.2017.06.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale.
Collapse
Affiliation(s)
- Mahya Bayat Tork
- Department of Biotechnology, Malek Ashtar University of Technology (MUT), Tehran, Iran
| | - Rasoul Khalilzadeh
- Department of Biotechnology, Malek Ashtar University of Technology (MUT), Tehran, Iran
| | - Hasan Kouchakzadeh
- Protein Research Center, Shahid Beheshti University, G.C., Velenjak, Tehran, Iran.
| |
Collapse
|
44
|
Liu PR, Wang T, Yang ZY, Hong Y, Hou YL. Long-chain poly-arginine functionalized porous Fe3O4 microspheres as magnetic flocculant for efficient harvesting of oleaginous microalgae. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Huang WC, Kim JD. Simultaneous cell disruption and lipid extraction in a microalgal biomass using a nonpolar tertiary amine. BIORESOURCE TECHNOLOGY 2017; 232:142-145. [PMID: 28219051 DOI: 10.1016/j.biortech.2017.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
A simultaneous cell disruption and lipid extraction method is developed for microalgal biodiesel production using a triethylamine/methanol solvent system. Individually, the pure solvents, i.e. triethylamine and methanol, do not exhibit significant enhancement in lipid extraction, but a 3:7 (v/v) triethylamine/methanol mixture exhibits the highest lipid extraction, corresponding to 150% of the conventional chloroform/methanol (2:1, v/v) solvent extraction. This extraction is equivalent to 92.5% of the total lipids, even when extracted from a wet microalgal biomass with a water content of 80%. The cell surfaces of the microalgae are significantly disrupted without using additional cell disruption reagents and without requiring energy-intensive equipment. The lipid mass transfer coefficient is 1.6 times greater than that of the chloroform/methanol solvent system. It is clearly demonstrated that triethylamine and methanol cooperate well for the cell disruption and lipid extraction.
Collapse
Affiliation(s)
- Wen-Can Huang
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-Gu, Guseong-Duong, Daejeon 305-701, Republic of Korea
| | - Jong-Duk Kim
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-Gu, Guseong-Duong, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
46
|
Seo JY, Kim MG, Lee K, Lee YC, Na JG, Jeon SG, Park SB, Oh YK. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. NANOTECHNOLOGY FOR BIOENERGY AND BIOFUEL PRODUCTION 2017. [DOI: 10.1007/978-3-319-45459-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Monshupanee T, Nimdach P, Incharoensakdi A. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci Rep 2016; 6:37121. [PMID: 27845413 PMCID: PMC5109257 DOI: 10.1038/srep37121] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022] Open
Abstract
Sustainable production of bioplastics by heterotrophic microbes has been restricted by the limited resources of organic substrates and the energy required for biomass harvest. Here, the easy-to-harvest cyanobacterium (Chlorogloea fritschii TISTR 8527), from which the biomass instantaneously settled to the bottom of liquid culture, was utilized to produce poly-3-hydroxybutyrate (PHB) using a two-stage cultivation strategy. The cells were first pre-grown under normal photoautotrophy to increase their biomass and then recultivated under a heterotrophic condition with a single organic substrate to produce the product. Through optimization of this two-stage cultivation, the mass conversion efficiency of acetate substrate to PHB was obtained at 51 ± 7% (w/w), the comparable level to the theoretical biochemical conversion efficiency of acetate to PHB. This two-stage cultivation that efficiently converted the substrate to the product, concurrent with a reduced culture biomass, may be applicable for the production of other biopolymers by cyanobacteria.
Collapse
Affiliation(s)
- Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Palida Nimdach
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
48
|
Kim B, Praveenkumar R, Lee J, Nam B, Kim DM, Lee K, Lee YC, Oh YK. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations. BIORESOURCE TECHNOLOGY 2016; 219:608-613. [PMID: 27543952 DOI: 10.1016/j.biortech.2016.08.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control.
Collapse
Affiliation(s)
- Bohwa Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ramasamy Praveenkumar
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33720, Finland
| | - Jiye Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Bora Nam
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyubock Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-Si, Gyeonggi-do 13120, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
| |
Collapse
|
49
|
Praveenkumar R, Kim B, Lee J, Vijayan D, Lee K, Nam B, Jeon SG, Kim DM, Oh YK. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. BIORESOURCE TECHNOLOGY 2016; 220:661-665. [PMID: 27634024 DOI: 10.1016/j.biortech.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG.
Collapse
Affiliation(s)
- Ramasamy Praveenkumar
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33720, Finland
| | - Bohwa Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiye Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Durairaj Vijayan
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Kyubock Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bora Nam
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Sang Goo Jeon
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
| |
Collapse
|
50
|
Peng C, Li S, Zheng J, Huang S, Li D. Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants. Appl Biochem Biotechnol 2016; 181:112-124. [DOI: 10.1007/s12010-016-2202-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
|