1
|
Pires RHM, Simon S, Buzier R, Almeida CMR, Mucha AP, Guibaud G. Comparison of fractionation methods to assess Ni impact on anaerobic digestion: Filtration versus DGT. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:136995. [PMID: 39787929 DOI: 10.1016/j.jhazmat.2024.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue. This study focuses on two chemical methods to monitor the potentially bioavailable Ni, selected as a model TE. The determination of the dissolved fraction by microfiltration was selected because it is commonly used, while the determination of the labile fraction by DGT (Diffusive Gradients in Thin films) was tested as it might better assess the bioavailable fraction. Different levels of Ni and ligands (EDTA and extracellular polymeric substances) were added in lab-scale AD reactors to induce AD performance alteration by changes of Ni amount or speciation. The AD performances were evaluated through biogas production and methane content. The results show that monitoring dissolved Ni highlights the alteration of AD performance due to variations of Ni amount but failed to detect alteration by change of speciation. The monitoring of DGT-labile Ni highlights reactor performance alteration by both variation of Ni amount and speciation. DGT therefore appears as an interesting complementary tool to detect potential alterations induced by TE.
Collapse
Affiliation(s)
- Rahul H M Pires
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Stéphane Simon
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France.
| | - Rémy Buzier
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; FCUP - Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gilles Guibaud
- E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France
| |
Collapse
|
2
|
Cui S, Yang L, Lu H, Guo L, Wang Y, Lan J, Ren YX, Li YY. Elucidation of the stress mechanisms on activated sludge stability induced by yttrium oxide nanoparticles with cytotoxicity: Performance deterioration, biointerface variation and microbial response. BIORESOURCE TECHNOLOGY 2025; 422:132217. [PMID: 39952619 DOI: 10.1016/j.biortech.2025.132217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
As technoscience advances, widespread use of nanoparticles (NPs) has resulted in environmental risks. This study focuses on the potential stress of 0-200 mg/L yttrium oxide (Y2O3) NPs on the activated sludge stability. Y2O3 NPs progressively suppressed nitrification, caused significant NO2- accumulation (200 mg/L) and diminished activities of key functional enzymes. Deteriorated flocculation corroborates the Y2O3 NPs' destruction. Extracellular polymeric substances were lessened, yet amplified microbial metabolites prove the microbial counteraction coping with Y2O3 NPs' cytotoxicity. Plausible blockage of different protein channels contributed to the wane in biological nitrogen-removal capacity. Plus, 50 mg/L Y2O3 NPs stimulated the β-glucan production. When exceeding 100 mg/L, plentiful Y2O3 NPs aggregate on sludge-surface, which inhibits nutrients transfer and metabolism. Furthermore, ammonia-oxidizing bacteria shifted from Nitrosomonas to Nitrosospira with Y2O3 NPs increase. Reduction in Nitrospira, Saccharimonada-genera, and Microlunatus further corroborates the impairment of pollutants removal. PICRUSt2 prediction demonstrates Y2O3 NPs impedes nitrogen and glycolytic metabolic pathway.
Collapse
Affiliation(s)
- Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haoqi Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linkai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuchao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
3
|
Zhou H, Xiao L, Deng Y, Wang R, Li Q, Ye Y, Pei X, Sun L, Zhang Y, Pan F. Efficient degradation of tetracycline by Mn(III)-microbial complexes mediated by mnOx@ACF in sequencing batch reactors: performance, mechanism, and effect on microbial community structure. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:3111-3122. [PMID: 39673321 DOI: 10.2166/wst.2024.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/19/2024] [Indexed: 12/16/2024]
Abstract
Engineered nanomaterials are widely used in water and wastewater treatment processes, and minimizing their adverse effects on biological treatment processes in wastewater treatment plants has become the primary focus. In this study, activated carbon fiber (ACF)-loaded manganese oxide nanomaterials (MnOx@ACF) were synthesized. A small-scale sequencing batch reactor (SBR) was constructed to simulate the synergistic degradation of pollutants by nanomaterials and microorganisms and the effects of nanomaterials on the structure of the microbial community in a wastewater treatment plant. The MnOx@ACF exhibited efficient removal of pollutants (98.7% in 30 cycles) and chemical oxygen demand (COD 96.4% in 30 cycles) through the formation of Mn-microbial complexes and enhanced cycling between Mn(III) and Mn(II) over 30 operating cycles. Metagenome analysis results showed that the microbial population composition and functional abundance increased when the SBR was exposed to different dosages of MnOx@ACF for a long time, among which 0.2 g/L MnOx@ACF exhibited the highest stimulation and influence on the functional abundance of microorganisms, which showed optimum ecological effects.
Collapse
Affiliation(s)
- Huo Zhou
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China
| | - Lixi Xiao
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; Jinglang Eco Environmental Technology (Wuhan) Co., Ltd, Wuhan 430074, China
| | - Yuwei Deng
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China
| | - Rongling Wang
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China
| | - Qiang Li
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yuxuan Ye
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Xuanyuan Pei
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Lei Sun
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yingzhou Zhang
- Wuhan Qichuang Zhixin Technology Co., Ltd, Wuhan 430299, China
| | - Fei Pan
- School of Resources and Environment, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China E-mail:
| |
Collapse
|
4
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
5
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
6
|
Yu MY, Sun JP, Li SF, Sun J, Liu XM, Wang AQ. Effect of microwaves combined with peracetic acid to improve the dewatering performance of residual sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44885-44899. [PMID: 38954344 DOI: 10.1007/s11356-024-33931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.
Collapse
Affiliation(s)
- Ming-Yuan Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jian-Ping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Shao-Feng Li
- Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Jian Sun
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiao-Ming Liu
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Ao-Qian Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| |
Collapse
|
7
|
Qian X, Huang J, Yan C, Xiao J, Cao C, Wu Y, Wang L. Evaluation of ecological impacts with ferrous iron addition in constructed wetland under perfluorooctanoic acid stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134074. [PMID: 38518702 DOI: 10.1016/j.jhazmat.2024.134074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
In this study, ferrous ion (Fe(II)) had the potential to promote ecological functions in constructed wetlands (CWs) under perfluorooctanoic acid (PFOA) stress. Concretely, Fe(II) at 30 mg/L and 20-30 mg/L even led to 11.37% increase of urease and 93.15-243.61% increase of nitrite oxidoreductase respectively compared to the control. Fe(II) promotion was also observed on Nitrosomonas, Nitrospira, Azospira, and Zoogloea by 1.00-6.50 folds, which might result from higher expression of nitrogen fixation and nitrite redox genes. These findings could be explanation for increase of ammonium removal by 7.47-8.75% with Fe(II) addition, and reduction of nitrate accumulation with 30 mg/L Fe(II). Meanwhile, both Fe(II) stimulation on PAOs like Dechloromonas, Rhodococcus, Mesorhizobium, and Methylobacterium by 1.58-2.00 folds, and improvement on chemical phosphorus removal contributed to higher total phosphorus removal efficiency under high-level PFOA exposure. Moreover, Fe(II) raised chlorophyll content and reduced the oxidative damage brought by PFOA, especially at lower dosage. Nevertheless, combination of Fe(II) and high-level PFOA caused inhibition on microbial alpha diversity, which could result in decline of PFOA removal (by 4.29-12.83%). Besides, decrease of genes related to nitrate reduction demonstrated that enhancement on denitrification was due to nitrite reduction to N2 pathways rather than the first step of denitrifying process.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chunni Yan
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jun Xiao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Qian X, Huang J, Ji X, Yan C, Cao C, Wu Y, Wang X. Modified basalt fibers boost performance of constructed wetlands: Comparison between surface coating and chemical grafting. BIORESOURCE TECHNOLOGY 2024; 397:130492. [PMID: 38408500 DOI: 10.1016/j.biortech.2024.130492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Modified basalt fiber (MBF) is a potential material that has been applied in wastewater treatment fields. In this study, superior performances of MBFs by calcium (Ca-MBF) and polyethyleneimine modification (PEI-MBF) were compared in constructed wetlands (CWs). Via chemical grafting, higher biofilm contents were observed on the surface of PEI-MBF, compared to Ca-MBF. Moreover, MBF increased key enzyme activities particularly in lower substrate layer, contributing to positive responses of microbial community in CWs. For instance, PEI-MBF boosted microbial richness and diversity and improved the abundances of denitrifying functional bacteria and biomarkers like Thauera, Vulcanibacillus, and Maritimimonas, probably promoting nitrate removal compared with Ca-MBF group. By contrast, Ca-MBF enriched more functional genera involved in nutrients removal, with the highest removal of ammonium (43.9 %), total nitrogen (66.2 %), and total phosphorus (37.1 %). Overall, this work provided new findings on improved performance of CWs with MBF.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Xiaoyu Ji
- Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd, Shanghai 744000, China
| | - Chunni Yan
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Li K, Hao W, Su H, Liu C, Chen Z, Ye Z. Ecotoxicity of three typical tire wear particles to periphytic biofilms: The potentiating role after natural water-incubation-aging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123561. [PMID: 38355081 DOI: 10.1016/j.envpol.2024.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Tire wear particles (TWPs), abundant in the aquatic environment, pose potential ecological risks, yet their implications have not been extensively studied. Rolling friction TWPs, sliding friction TWPs (S-TWPs) and cryogenically milled tire treads were used as research objects to study the ecotoxicity and difference of the above materials before and after aging in natural water (AS-TWPs) to the periphytic biofilm. The results showed that there were significant differences in the microstructure, surface elements, size, functional groups and environmentally persistent free radicals (EPFRs) of the three TWPs. After aging in natural water, the properties of the three TWPs mentioned above showed homogenization, but the EPFRs and reactive oxygen species (ROS) yield were different. After exposure to TWPs (10 mg L-1), total organic carbon and adenosine triphosphate decreased significantly (p < 0.05), and the production of extracellular polymeric substances (EPS) in the periphytic biofilm increased, in which the content of humic-like substance and proteins (tryptophan protein and humic acid-like substances) increased obviously. The increment of TB-EPS was higher than that of LB-EPS, and S-TWPs and AS-TWPs had the strongest promoting effect on EPS secretion. In addition, 10 mg L-1 TWPs caused massive cell death in the periphytic biofilm, which was more obvious in the S-TWPs and AS-TWPs exposure group. The toxic mechanism of TWPs promotes intracellular ROS accumulation and leads to the release of lactate dehydrogenase, which was attributed to the formation of EPFRs on the surface of TWPs and an increase in EPFRs intensity after aging in natural water. TWPs at environmentally relevant concentrations (0.1 mg L-1) had no biological toxicity to periphytic biofilms. This study fills the gap in the study of the surface structure characteristics of TWPs on the toxicity of periphytic biofilms, and is of great significance to the study of the aquatic toxicity mechanism of TWPs.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chi Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
10
|
Guo L, Yang L, Ren Y, Cui S, Li X, Wang J, Lan J, Lu H, Wang Y. The response and anti-stress mechanisms of nitrifying sludge under long-term exposure to CdSe quantum dots. J Environ Sci (China) 2024; 135:174-184. [PMID: 37778793 DOI: 10.1016/j.jes.2022.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 10/03/2023]
Abstract
The wide application of CdSe quantum dots (QDs) increases its stress risk to sewage treatment systems. This study evaluated the response of nitrification performance, floc characteristics and microbial community of nitrifying sludge under long-term exposure to CdSe QDs. Results showed CdSe QDs (≥1 mg/L) would decrease the activity of ammonia monooxygenase (AMO). Under the stress of 30 mg/L CdSe QDs, the activity of AMO was reduced by 66%, while the activities of hydroxylamine oxidase and nitrite oxidoreductase were enhanced by 19.1% and 26%, respectively. Thus, the final nitrification effects were not adversely affected, and the production rates of NO2--N and NO3--N were accelerated. Additionally, CdSe QDs improved biomass concentration in sludge and maintained the stability of sludge settleability. High throughput sequencing analysis showed that CdSe QDs evidently reduced the abundance and diversity of microbial community in nitrifying sludge. The abundances of amino acid metabolism and lipid metabolism were enriched. Moreover, CdSe QDs decreased the fluorescence intensity of tryptophan-like protein from 2,326 to 1,179 a.u. in loosely bound extracellular polymeric substances (EPSs) and from 3,792 to 3,117 a.u. in tightly bound EPSs. To relieve CdSe QD stress, the polysaccharide content increased from 0.31 to 0.61 mg/g MLSS and intracellular antioxidant defense was activated. With CdSe QD level increasing to 30 mg/L, the total antioxygenic capacity and the activities of catalase were enhanced up to 411% and 143.2%, respectively. Thereby, CdSe QDs had little adverse effects on cell membrane integrity, microbial metabolism and the abundance of Nitrospirae.
Collapse
Affiliation(s)
- Linkai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaotong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jia Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haoqi Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuchao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
12
|
Luo K, Chen L, Zhao Y, Peng G, Chen Z, Chen Q. Transcriptomics uncover the response of an aerobic denitrifying bacteria to zinc oxide nanoparticles exposure. ENVIRONMENTAL TECHNOLOGY 2023; 44:3685-3697. [PMID: 35466863 DOI: 10.1080/09593330.2022.2069517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) show adverse impacts on aerobic denitrifying bacteria, little is known about the response of these bacteria to ZnO NPs exposure at cellular level. This study assessed the multiple responses of Pseudomonas aeruginosa PCN-2 under ZnO NPs exposure. We demonstrated that ZnO NPs exposure could inhibit the intracellular metabolism and stimulate the antioxidant defence capability of PCN-2. At lower exposure concentration (5 mg/L), exogenous ROS generated and resulted in the inhibition of pyruvate metabolism and citrate cycle, which caused deficient energy for aerobic denitrification. At higher concentrations (50 mg/L), endogenous ROS additionally generated and triggered to stronger down-regulation of oxidative phosphorylation, which caused suppressed electron transfers for aerobic denitrification. Meanwhile, ZnO NPs exposure promoted EPS production and biofilm formation, and antioxidases was especially particularly stimulated at higher concentration. Our findings are significant for understanding of microbial bacterial susceptibility, tolerance and resistance under the exposure of ZnO NPs.
Collapse
Affiliation(s)
- Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
- College of Environment and Resources, Dalian Minzu University, Dalian, PR People's Republic of China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Guyu Peng
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian, PR People's Republic of China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| |
Collapse
|
13
|
Zhang H, Yan D, Zhu Y, Li Y, Zhang G, Jiao Y, Chen Q, Li S. Effect of Cd(II) shock loading on performance, microbial enzymatic activity and microbial community in a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118108. [PMID: 37201390 DOI: 10.1016/j.jenvman.2023.118108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) were explored under instantaneous Cd(II) shock loading. After a 24-h Cd(II) shock loading of 100 mg/L, the chemical oxygen demand and NH4+-N removal efficiencies decreased significantly from 92.73% and 99.56% on day 22 to 32.73% and 43% on day 24, respectively, and then recovered to the normal values gradually. The specific oxygen utilization rate (SOUR), specific ammonia oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), specific nitrite reduction rate (SNIRR) and specific nitrate reduction rate (SNRR) decreased by 64.81%, 73.28%, 77.77%, 56.84% and 52.46% on day 23 in comparison with the absence of Cd(II) shock loading, respectively, and they gradually returned to the normal levels. The changing trends of their associated microbial enzymatic activities including dehydrogenase, ammonia monooxygenase, nitrite oxidoreductase, nitrite reductase and nitrate reductase were in accordance with SOUR, SAOR, SNOR, SNIRR and SNRR, respectively. Cd(II) shock loading promoted the microbial reactive oxygen species production and lactate dehydrogenase release, indicating that instantaneous shock caused oxidative stress and damaged to cell membranes of the activated sludge. The microbial richness and diversity, and the relative abundance of Nitrosomonas and Thauera obviously decreased under the stress of Cd(II) shock loading. PICRUSt prediction showed that Cd (II) shock loading significantly affected Amino acid biosynthesis, Nucleoside and nucleotide biosynthesis. The present results are conducive to take adequate precautions to reduce the adverse effect on bioreactor performance in wastewater treatment systems.
Collapse
Affiliation(s)
- Hanlin Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Duosen Yan
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yaqi Zhu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yun Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Jiao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shanshan Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Wang Q, Zhao Y, Zhang C, Zhao M, Jia X, Mutabazi E, Liu Y. New insights into hexavalent chromium exposure in electron donor limited denitrification: bio-electron behavior. BIORESOURCE TECHNOLOGY 2023; 380:129088. [PMID: 37094618 DOI: 10.1016/j.biortech.2023.129088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The bio-electron behavior (electron production, transmission, and consumption) response to a typical heavy metal, hexavalent chromium, was unraveled in the electron donor limited system (EDLS) and electron donor sufficient system (EDSS). Nicotinamide adenine dinucleotide and adenosine triphosphate production were reduced by 44% and 47%, respectively, due to glucose metabolism inhibition, leading to NO3--N declining to 31% in EDLS. The decreased electron carrier contents and denitrifying enzymes activity inhibited electron transmission and consumption in both EDLS and EDSS. Additionally, electron transfer and antioxidant stress abilities were reduced, further hindering the survival of denitrifiers in EDLS. The lack of dominant genera (Comamonas, Thermomonas, and Microbacterium) in EDLS was the primary reason for poor biofilm formation and chromium adaptability. The decreased expression of enzymes related to glucose metabolism caused the imbalance of electron supply, transport, and consumption in EDLS, adversely impacting nitrogen metabolism and inhibiting denitrification performance.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Emmanuel Mutabazi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Hasani Zadeh P, Fermoso FG, Collins G, Serrano A, Mills S, Abram F. Impacts of metal stress on extracellular microbial products, and potential for selective metal recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114604. [PMID: 36758509 DOI: 10.1016/j.ecoenv.2023.114604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Harnessing microbial capabilities for metal recovery from secondary waste sources is an eco-friendly and sustainable approach for the management of metal-containing wastes. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) are the two main groups of extracellular compounds produced by microorganisms in response to metal stress that are of great importance for remediation and recovery of metals. These include various high-, and low, molecular weight components, which serve various functional and structural roles. These compounds often contain functional groups with metal binding potential that can attenuate metal stress by sequestering metal ions, making them less bioavailable. Microorganisms can regulate the content and composition of EPS and SMP in response to metal stress in order to increase the compounds specificity and capacity for metal binding. Thus, EPS and SMP represent ideal candidates for developing technologies for selective metal recovery from complex wastes. To discover highly metal-sorptive compounds with specific metal binding affinity for metal recovery applications, it is necessary to investigate the metal binding affinity of these compounds, especially under metal stressed conditions. In this review we critically reviewed microbial EPS and SMP production as a response to metal stress with a particular emphasis on the metal binding properties of these compounds and their role in altering metal bioavailability. Furthermore, for the first time, we compiled the available data on potential application of these compounds for selective metal recovery from waste streams.
Collapse
Affiliation(s)
- Parvin Hasani Zadeh
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain; Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Fernando G Fermoso
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain
| | - Gavin Collins
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Simon Mills
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Wang Y, Liu X, Liu R, Han W, Yang Q. Mechanisms of interaction between polystyrene nanoplastics and extracellular polymeric substances in the activated sludge cultivated by different carbon sources. CHEMOSPHERE 2023; 314:137656. [PMID: 36581121 DOI: 10.1016/j.chemosphere.2022.137656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are ubiquitously present in wastewater treatment plants, which would be removed by the flocculation of extracellular polymeric substances (EPS) from activated sludge. However, the interaction mechanisms between NPs and EPS of activated sludge remain largely unexplored. This study investigated the interaction mechanisms between polystyrene nanoplastics (PS-NPs) and EPS with sodium acetate (NaAc), methanol (MeOH) and glucose (GLC) as carbon sources. The results showed that the functional group involved in the interactions between PS-NPs and EPS was the carbonyl of protein amide I region. The interaction between PS-NPs and EPS increased the β-sheets content, decreased the ratio of α-helix to (β-sheet + random coil), and changed the protein secondary structures to strong rigidity. This enhanced the flocculation of activated sludge cultivated by these three carbon sources. The flocculation between PS-NPs and EPS in activated sludge using NaAc as the carbon source was the strongest among these three carbon sources. Therefore, the degree of flocculation between NPs and EPS of activated sludge in wastewater treatment plants varies with carbon sources. This work provides a reference for the NPs removal mechanisms from wastewater, which will help to understand the migration behavior of MPs and NPs in wastewater treatment processes.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Runyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Weipeng Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
17
|
Li YQ, Zhao BH, Chen XT, Zhang YQ, Yang HS. Co-existence effect of copper oxide nanoparticles and ciprofloxacin on simultaneous nitrification, endogenous denitrification, and phosphorus removal by aerobic granular sludge. CHEMOSPHERE 2023; 312:137254. [PMID: 36395892 DOI: 10.1016/j.chemosphere.2022.137254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles and antibiotics are toxic to humans and ecosystems, and they inevitably coexist in the wastewater treatment plants. Hence, the co-existence effects and stress mechanism of copper (II) oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) on simultaneous nitrification, endogenous denitrification and phosphorus removal (SNEDPR) by aerobic granular sludge (AGS) were investigated here. The co-existence stress of 5 mg/L CuO NPs and 5 mg/L CIP resulted in the synergistic inhibitory effect on nutrient removal. Transformation inhibition mechanisms of carbon (C), nitrogen (N) and phosphorus (P) with CuO NPs and CIP addition were time-dependent. Furthermore, the long-term stress mainly inhibited PO43--P removal by inhibiting phosphorus release process, while short-term stress mainly inhibited phosphorus uptake process. The synergistic inhibitory effect of CuO NPs and CIP may be due to the changes of physicochemical characteristics under the co-existence of CuO NPs and CIP. This further altered the sludge characteristics, microbial community structure and functional metabolic pathways under the long-term stress. Resistance genes analysis exhibited that the co-existence stress of CuO NPs and CIP induced the amplification of qnrA (2.38 folds), qnrB (4.70 folds) and intI1 (3.41 folds) compared with the control group.
Collapse
Affiliation(s)
- Yu-Qi Li
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Bai-Hang Zhao
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiao-Tang Chen
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yu-Qing Zhang
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hai-Shan Yang
- Department of Municipal Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
18
|
Qian X, Huang J, Yan C, Xiao J. Ecological restoration performance enhanced by nano zero valent iron treatment in constructed wetlands under perfluorooctanoic acid stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157413. [PMID: 35870581 DOI: 10.1016/j.scitotenv.2022.157413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) of widespread use can enter constructed wetlands (CWs) via migration, and inevitably causes negative impacts on removal efficiencies of conventional pollutants due to its ecotoxicity. However, little attention has been paid to strengthen performance of CWs under PFOA stress. In this study, influences of nano zero valent iron (nZVI), which has been demonstrated to improve nutrients removal, were explored after exemplifying threats of PFOA to operation performance in CWs. The results revealed that 1 mg/L PFOA suppressed the nitrification capacity and phosphorus removal, and nZVI distinctly improved the removal efficiency of ammonia and total phosphorus in CWs compared to PFOA exposure group without nZVI, with the maximum increases of 3.65 % and 16.76 %. Furthermore, nZVI significantly stimulated dehydrogenase (390.64 % and 884.54 %) and urease (118.15 % and 246.92 %) activities during 0-30 d and 30-60 d in comparison to PFOA group. On the other hand, nitrifying enzymes were also promoted, in which ammonia monooxygenase increased by 30.90 % during 0-30 d, and nitrite oxidoreductase was raised by 117.91 % and 232.10 % in two stages. Besides, the content of extracellular polymeric substances (EPS) under nZVI treatment was 72.98 % higher than PFOA group. Analyses of Illumina Miseq sequencing further certified that nZVI effectively improved the community richness and caused the enrichment of microorganisms related to nitrogen and phosphorus removal and EPS secreting. These results could provide valuable information for ecological restoration and decontamination performance enhancement of CWs exposed to PFOA.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Ji J, Luan Y, Zhu X, Sun P, Gao M, Zhao Y, Guo L, She Z, Jin C, Ding S, Zhang M. Insights into the response of anammox sludge to the combined stress of nickel and salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156670. [PMID: 35700780 DOI: 10.1016/j.scitotenv.2022.156670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising technology applied to treat industrial wastewater, while the commonly coexistent heavy metals and salinity usually become a challenging issue to be addressed. In this study, the responses of anammox sludge in terms of performance, activity, functional enzyme and extracellular polymeric substance (EPS) to the combined stress of Ni(II) and salinity (20 ‰) were investigated holistically. It turned out that low Ni(II) concentration (0.2 mg·L-1) together with salinity (20 ‰) showed an insignificant effect on the anammox performance, while a decreased nitrogen removal by 46.96 % was observed with the increased Ni(II) concentration to 1 mg·L-1. It should be pointed out that the anammox system exhibited good robustness evidenced by rapid recovery to achieve 89.13 % of nitrogen removal efficiency and 1.21 kg·m-3·d-1 of nitrogen removal rate after the elimination of stress factors within 40 days. Ni(II) concentration was revealed to play a more important role in the specific activity of anammox sludge. The functional enzymes related to nitrogen removal, e.g. nitrite reductase (NIR), hydrazine oxidase (HZO) and heme c were found to be inhibited by the combined stress of Ni(II) and salinity, with decreased activity by 49.54 %, 39.39 % and 45.88 %, respectively. However, the enzyme related to assimilation, e.g. alkaline phosphatase (AKP) and nitrate reductase (NAR) appeared to be enhanced. The EPS content was found to decrease by 55.19 % under the combined stress. Detailed analysis of 3D-EEM and FTIR spectra further revealed that the combined stress of Ni(II) and salinity could change both the quantity and composition of EPS in anammox sludge. These results are expected to offer insights into the combined effect of nickel and salinity on the anammox system, and benefit the application of anammox technology for industrial metal-rich saline wastewater treatment.
Collapse
Affiliation(s)
- Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Yaping Luan
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaotong Zhu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Pan Sun
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuang Ding
- China National Institute of Standardization, Beijing 100000, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Gao H, Ye J, Zhao R, Zhan M, Yang G, Yu R. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156911. [PMID: 35753480 DOI: 10.1016/j.scitotenv.2022.156911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The impacts of quorum sensing (QS) on nanoparticle (NP)-stressed biological nitrogen removal (BNR) system have seldom been addressed yet. In this study, the contributions of endogenous N-acyl-homoserine lactone (AHL)-based QS regulation to the BNR system's adaptation to the zinc oxide (ZnO) NP stress and its recovery potential were systematically investigated. Although 1 mg/L ZnO NPs exerted little impact on the BNR system, chronic exposure to 10 mg/L ones depressed the system's BNR performance which irreversibly impaired the nitrification process even when the system entered the recovery period with no NP added anymore. Meanwhile, ZnO NPs exhibited hormesis effects on the production of AHLs and extracellular polymeric substance (EPS), and activities of superoxide dismutase and catalase. During the ZnO NP exposure period, C4-HSL, C6-HSL, and C10-HSL were discovered to be positively associated with nitrogen removal efficiency, tightly-bound EPS production, and antioxidase activities. Besides, the shifts of Nitrospira, Dechloromonas, Aeromonas, Acinetobacter, Delftia, and Bosea were expected to determine the AHL's dynamic distribution. During the system's recovery stage, Dechloromonas replaced Candidatus_Competibacter as the dominant denitrification-related genus. Dechloromonas abundance elevated with the increased contents of C4-HSL in the aqueous and EPS phases and C10-HSL in EPS and sludge phases, and were expected to promote the activities of BNR-related and antioxidant enzymes, and the EPS production to assist in the recovery of the impaired system's BNR performance. The QS-related BNR genera exhibited higher resilience to ZnO NPs than quorum quenching-related ones, indicating their critical role in nitrogen removal in the restored system. This work provided an insight into the potential pluripotency of AHL-based QS regulation on the ZnO NP-stressed BNR system's adaptation and recovery.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| | - Guangping Yang
- Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
21
|
Zhao Y, Chen Z, Wang Q, Zhang C, Ji M. A new insight to explore toxic Cd(II) affecting denitrification: Reaction kinetic, electron behavior and microbial community. CHEMOSPHERE 2022; 305:135419. [PMID: 35752314 DOI: 10.1016/j.chemosphere.2022.135419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Denitrification process is a crucial step in nitrogen removal and is more vulnerable to external shocks due to the fact that anoxic process is always located before aerobic process in conventional sewage treatment. This study aims to elaborate the nitrogen conversion characteristics by investigating denitrification kinetics, electron behavior and microbial community under Cd(II) shock. Reaction kinetics showed that 10 mg/L of Cd(II) accelerated nitrate reduction rate by 52.29% but 80 mg/L of Cd(II) severely decelerated it by 95.41% with the accumulation of nitrite. High concentration of COD (C/N = 10.4) in the system caused by Cd(II) disrupting the integrity of cell membrane (lactate dehydrogenase increased by 328.7%) was proved to induce occurrence of Dissimilatory Nitrate Reduction to Ammonia (DNRA). The electron transport system activity (ETSA), electron consumption and electron distribution were combined to reveal the electron behavior regulated by Cd(II). The electron ratio of nitrate reductase to nitrite reductase increased from 1.48 (control) to 3.91 and 3.52 (40 and 80 mg/L of Cd(II)) indicated the electrons allocating tendency and further explained the nitrite accumulation. High concentration of Cd(II) also decreased ETSA by weakening the physiological activities of flavin adenine dinucleotide, flavin mononucleotide and cytochrome c or hindered the microbes to secrete these electron carriers. Furthermore, Cd(II) inhibited dominant bacteria genera containing napA gene (Azospirillum and Thauera) and nirS gene (unclassified_c_Betaproteobacteria). Enterobacteriaceae family was found to dominate the DNRA process.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Zhihui Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
22
|
Jagaba AH, Kutty SRM, Isa MH, Ghaleb AAS, Lawal IM, Usman AK, Birniwa AH, Noor A, Abubakar S, Umaru I, Saeed AAH, Afolabi HK, Soja UB. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmad Hussaini Jagaba
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Universiti Teknologi PETRONAS Centre of Urban Resource Sustainability Institute of Self-Sustainable Building 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Mohamed Hasnain Isa
- Universiti Teknologi Brunei Civil Engineering Programme Faculty of Engineering Tungku Highway BE1410 Gadong Brunei Darussalam
| | - Aiban Abdulhakim Saeed Ghaleb
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ibrahim Mohammed Lawal
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
- University of Strathclyde Department of Civil and Environmental Engineering Glasgow United Kingdom
| | | | | | - Azmatullah Noor
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Sule Abubakar
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Ibrahim Umaru
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Anwar Ameen Hezam Saeed
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Haruna Kolawole Afolabi
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Usman Bala Soja
- Federal University Dutsin-Ma Department of Civil Engineering P.M.B. 5001 Dutsin-Ma Katsina State Nigeria
| |
Collapse
|
23
|
Zhang B, Wang J, Huang JJ, Razaqpur AG, Han X, Fan L. Promotion of anammox process by different graphene-based materials: Roles of particle size and oxidation degree. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154816. [PMID: 35341875 DOI: 10.1016/j.scitotenv.2022.154816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (RGO) have been applied in the anaerobic ammonium oxidation (anammox) process for nitrogen removal as electron shuttles. However, there is still controversy about their efficacy. In this study, nine graphene-based materials with a gradient of three particle sizes (large (l), medium (m) and small (s) sizes) and oxidation degrees, were used to compare their effects on the anammox process efficiency. The graphene-based materials include GO and its reduced products (RGO250 and RGO800) obtained at temperatures of 250 °C and 800 °C respectively. It was observed that their enhancements on the anammox process were in the order of GO > RGO800 > RGO250. In detail, at the dose of 100 mg/L, specific anammox activities (SAA) were promoted by 6.7% (l-GO), 4.9% (l-RGO800), 11.5% (m-GO), 7.3% (m-RGO800), 13.2% (s-GO) and 8.3% (s-RGO800) compared to the control respectively; while RGO250 with the same dose inhibited the process. In addition, the enhancement of the anammox process was increasing with the decreasing size of GO and RGO800. The nitrite reductase (NIR) activity was greatly increased by up to 24.9% with the presence of GO, which might be attributed to organized and specific electron transport with oxygen functional groups. The finding of hydroxyl on RGO and increasing content of oxygen determined after reaction detected by Fourier transform infrared spectroscopy and energy dispersive spectrometer respectively, indicated the essential condition for RGO's function on transferring electrons for key enzymes in annamox bacteria. Most importantly, O/C (Oxygen/Carbon) ratios of graphene-based materials had greater effects on the promotion of the anammox process than the particle size and electrical conductivity.
Collapse
Affiliation(s)
- Beichen Zhang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jingshu Wang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Abdul Ghani Razaqpur
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Liang Fan
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
24
|
Li K, Xu D, Liao H, Xue Y, Sun M, Su H, Xiu X, Zhao T. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO 2 in sewage and surface-water and related research prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153866. [PMID: 35181357 DOI: 10.1016/j.scitotenv.2022.153866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/28/2023]
Abstract
This article reviews the nano-effects and applications of different crystalline nano‑titanium dioxide (nano-TiO2), identifies their discharge, distribution, behavior, and toxicity to aquatic organisms (focusing on microbial aggregates) in sewage and surface-water, summarizes related toxicity mechanisms, and critically proposes future perspectives. The results show that: 1) based on crystal type, application boundaries of nano-TiO2 have become clear, extending from traditional manufacturing to high-tech fields; 2) concentration of nano-TiO2 in water is as high as hundreds of thousands of μg/L (sewage) or several to dozens of μg/L (surface-water) due to direct application or indirect release; 3) water environmental behaviors of nano-TiO2 are mainly controlled by hydration conditions and particle characteristics; 4) aquatic toxicities of nano-TiO2 are closely related to their water environmental behavior, in which crystal type and tested species (such as single species and microbial aggregates) also play the key role. Going forward, the exploration of the toxicity mechanism will surely become a hot topic in the aquatic-toxicology of nano-TiO2, because most of the research so far has focused on the responses of biological indicators (such as metabolism and damage), while little is known about the stress imprint caused by the crystal structures of nano-TiO2 in water environments. Additionally, the aging of nano-TiO2 in a water environment should be heeded to because the continuously changing surface structure is bound to have a significant impact on its behavior and toxicity. Moreover, for microbial aggregates, comprehensive response analysis should be conducted in terms of the functional activity, surface features, composition structure, internal microenvironment, cellular and molecular level changes, etc., to find the key point of the interaction between nano-TiO2 and microbial aggregates, and to take mitigation or beneficial measures to deal with the aquatic-toxicity of nano-TiO2. In short, this article contributes by 1) reviewing the research status of nano-TiO2 in all aspects: application and discharge, distribution and behavior, and its aquatic toxicity; 2) suggesting the response mechanism of microbial aggregates and putting forward the toxigenic mechanism of nanomaterial structure; 3) pointing out the future research direction of nano-TiO2 in water environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Defu Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingyang Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianyi Zhao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
25
|
Niu L, Hu J, Li Y, Wang C, Zhang W, Hu Q, Wang L, Zhang H. Effects of long-term exposure to silver nanoparticles on the structure and function of microplastic biofilms in eutrophic water. ENVIRONMENTAL RESEARCH 2022; 207:112182. [PMID: 34648762 DOI: 10.1016/j.envres.2021.112182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are frequently detected in natural aquatic systems proximate to populated areas, such as urban rivers and lakes, and can be rapidly colonized by microbial communities. Microplastics and silver nanoparticles (AgNPs) share similar pathways into natural waters and tend to form heteroaggregations. However, very little is known about the long-term impacts on the structure and function of microplastic biofilms when chronically exposed to silver nanoparticles. Thus, the present study assessed the accumulation property of AgNPs on polymethyl methacrylate (PMMA) microplastics via adsorption tests and studied the chronic effects of AgNPs on the structure and function of microplastic biofilms via 30-day microcosmic experiments in eutrophic water. The adsorption tests showed that the biofilms-colonized PMMA microplastics presented the highest adsorption of 0.98 mg/g in the 1 mg/L AgNPs microcosms. After the 30-day exposure, lactic dehydrogenase release and reactive oxygen species generation of PMMA biofilms increased by 33.23% and 23.98% compared to the MPs-control group with no-AgNPs, indicating that the number of dead cells colonizing microplastics significantly increased. Network analysis suggested that the stabilization of the bacterial community declined with the long-term exposure to AgNPs through the reduction of the modularity and average path length of the network. Compared to the MPs-control group, long-term exposure to AgNPs caused cumulatively inhibitory effects on the nitrogen removal and the N2O emissions in eutrophic water. The isotopomer analysis revealed that the contribution rate of NO2- reduction to N2O emissions was gradually increasing with the AgNPs exposure. Real-time PCR analysis showed that denitrification genes were less sensitive to AgNPs than the nitrification genes, with gene nosZ performed the most negligible response. Overall, our results revealed that long-term exposure to AgNPs could alter biogeochemical cycling involved by microplastic biofilms and cumulatively reduce the self-recovery of the eutrophic ecosystem.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
26
|
Ma XL, He EJ, Cao FT, Fan YY, Zhou XT, Xiao X. Re-evaluation of the environmental hazards of nZnO to denitrification: Performance and mechanism. CHEMOSPHERE 2022; 291:132824. [PMID: 34752835 DOI: 10.1016/j.chemosphere.2021.132824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have shown that zinc oxide nanoparticles (nZnO) have an inhibitory effect on wastewater biotreatment, where doses exceeding ambient concentrations are used. However, the effect of ambient concentrations of ZnO (<1 mg/L) on anaerobic digestion processes is not clear. Herein, this study comprehensively explored the impact of nZnO on the denitrification performance and core microbial community of activated sludge under ambient concentrations. Results showed that only 0.075 mg/L nZnO had shown a beneficial effect on nitrogen removal by activated sludge. When nZnO concentration reached 0.75 mg/L, significant enhancement of nitrate reduction and mitigation of nitrite accumulation were observed, indicating a remarkable stimulatory effect on nitrogen removal. Simultaneously, nZnO could weaken the sludge surface charge and improve the secretion of extracellular polymeric substances, thus enhancing sludge flocculation for denitrification. Microbial community analysis revealed that nZnO exposure increased the relative abundance of denitrifying bacteria, which could contribute to the reinforcement of traditional denitrification. Furthermore, exogenous addition of NH4+ significantly inhibited the accumulation of nitrite, implying that nZnO had a potential to improve the denitrification process via a partial denitrification-anammox pathway. Considering current ambient concentration, the stimulatory effect shown in our work may better represent the actual behavior of ZnO in wastewater biotreatment.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - En-Jing He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
27
|
Cervantes-Avilés P, Saber AN, Mora A, Mahlknecht J, Cuevas-Rodríguez G. Influence of wastewater type in the effects caused by titanium dioxide nanoparticles in the removal of macronutrients by activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8746-8757. [PMID: 34490574 DOI: 10.1007/s11356-021-16221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The imminent arrival of nanoparticles (NPs) to the wastewater treatment plants (WWTP) brings concern about their effects, which can be related to the wastewater composition. In this work, the effects of titanium dioxide (TiO2) NPs in the removal of carbon, nitrogen, and phosphorus by activated sludge bioreactors during the treatment of synthetic, raw, and filtered wastewaters were evaluated. Floc size, compaction of sludge, and morphological interactions between sludge and NPs were also determined. The main effect of TiO2 NPs was the inhibition of up to 22% in the removal of ammonia nitrogen for all types of wastewaters. This effect is strong dependent on combined factors of TiO2 NPs concentration and content of organic matter and ammonia in wastewater. The removal of dissolved organic carbon was affected by TiO2 NPs in lower level (up to 6%) than nitrogen removal for all types of wastewaters. Conversely to adverse effects, the removals of orthophosphate in the presence of TiO2 NPs were improved by 34%, 16%, and 55% for synthetic, raw, and filtered wastewater, respectively. Compaction of the sludge was also enhanced as the concentrations of NPs increased without alterations in the floc size for all types of wastewaters. Based on TEM and STEM imaging, the main interaction between TiO2 NPs and the activated sludge flocs was the adsorption of NPs on cell membrane. This means that NPs can be attached to cell membrane during aerobic wastewater treatment, and potentially disrupt this membrane. The effects of TiO2 NPs on macronutrient removal clearly depended on wastewater characteristics; hence, the use of realistic media is highly encouraged for ecotoxicological experiments involving NPs.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, CP 72453, Pue, México.
| | - Ayman N Saber
- National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, CP 72453, Pue, México
| | - Jurgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, Monterrey, CP 64149, Nuevo León, México
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, México.
| |
Collapse
|
28
|
Zhao B, Zheng K, Liu C. Bio-dissolution process and mechanism of copper phosphate hybrid nanoflowers by Pseudomonas aeruginosa and its bacteria-toxicity in life cycle. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126494. [PMID: 34323740 DOI: 10.1016/j.jhazmat.2021.126494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Copper phosphate hybrid nanoflowers (HNF) have been widely used in chemical industries and wastewater treatment owing to its excellent catalytic activity and high stability. However, their fate and ecological risks have not received due attention after being discharged into natural environment. The significance of bacteria on the dissolution and fate of HNF and its toxicity to bacteria was evaluated from the perspective of its life cycle. Results showed that in the presence of Pseudomonas aeruginosa, HNF was gradually 'disassembled' into smaller nanoparticles (NPs), and then dissolved completely. More than half of the dissolution products (Cu2+) entered biological phase, and PO43- was absorbed and utilized by bacteria as a phosphorus source. The mechanisms of HNF bio-dissolution are as follows: the metabolites of bacteria dissolve HNF through complexation and acidification, in which small molecular organic acids and amino acids play an important role. Bacteria toxicity experiments of HNF in its cycle life show that HNF exhibits lower cell toxicity, but its intermediate (smaller NPs) and final dissolved products (Cu2+) exhibit stronger cytotoxicity by increasing the level of intracellular ROS and membrane permeability of bacteria. This research is helpful to provide ecological risk assessment, develop targeted applications, and rationally design future nanomaterials.
Collapse
Affiliation(s)
- Bo Zhao
- China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Kai Zheng
- College of Resources and Environment, Shandong Agricultural University, 61 Daizong street, Tai'an, Shandong 271018, PR China
| | - Chunguang Liu
- China-America CRC for Environment & Health of Shandong Province, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
29
|
Wang X, Han T, Sun Y, Geng H, Li B, Dai H. Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117408. [PMID: 34049134 DOI: 10.1016/j.envpol.2021.117408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO2, CuO, CeO2, MgO, and MnO2 in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
30
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
31
|
Xu J, Wang X, Zhang Z, Yan Z, Zhang Y. Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146954. [PMID: 33866171 DOI: 10.1016/j.scitotenv.2021.146954] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) have become an important source of microplastics (MPs) contamination and most MPs remain in the sludge inducing potential impacts on sludge disposal. However, little is known about the influence of MPs on the characteristics of sludge, which is essential for sludge disposal. In this study, the dewaterability of activated sludge in response to chronic exposure (60 days) to MPs of different sizes (213.7 nm ~ 4.2 mm) and polymers (polystyrene, polyethylene, and polyvinyl chloride) were investigated. Overall, different particle sizes caused more evident effects on sludge dewatering than different polymer types did. Millimeter MPs (~4 mm) dramatically reduced the dewaterability of sludge by 29.6% ~ 47.7%. These effects were mainly caused by the physical crushing of MPs on sludge flocs, except polyvinyl chloride (PVC)-MPs, possibly containing additives, induced toxicity on sludge. Moreover, 100 mg/L nano-size MPs (213 nm) also reduced the dewatering performance of sludge. The potential mechanism is that nano-size MPs inhibited sludge activity and decreased the abundance of key microorganisms, which subsequently altered the composition and spatial distribution of extracellular polymeric substances (EPS), and finally impeded sludge dewatering. Our results highlight the impacts of different sizes of MPs on the characteristics of sludge, affecting the final disposal of sludge.
Collapse
Affiliation(s)
- Jiankang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhanao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zehua Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
32
|
Tan Q, Chen J, Chu Y, Liu W, Yang L, Ma L, Zhang Y, Qiu D, Wu Z, He F. Triclosan weakens the nitrification process of activated sludge and increases the risk of the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126085. [PMID: 34492900 DOI: 10.1016/j.jhazmat.2021.126085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The usage of triclosan (TCS) may rise rapidly due to the COVID-19 pandemic. TCS usually sinks in the activated sludge. However, the effects of TCS in activated sludge remain largely unknown. The changes in nitrogen cycles and the abundances of antibiotic resistance genes (ARGs) caused by TCS were investigated in this study. The addition of 1000 μg/L TCS significantly inhibited nitrification since the ammonia conversion rate and the abundance of nitrification functional genes decreased by 12.14%. The other nitrogen cycle genes involved in nitrogen fixation and denitrification were also suppressed. The microbial community shifted towards tolerance and degradation of phenols. The addition of 100 μg/L TCS remarkably increased the total abundance of ARGs and mobile genetic elements by 33.1%, and notably, the tetracycline and multidrug resistance genes increased by 54.75% and 103.42%, respectively. The co-occurrence network revealed that Flavobacterium might have played a key role in the spread of ARGs. The abundance of this genus increased 92-fold under the addition of 1000 μg/L TCS, indicating that Flavobacterium is potent in the tolerance and degradation of TCS. This work would help to better understand the effects of TCS in activated sludge and provide comprehensive insight into TCS management during the pandemic era.
Collapse
Affiliation(s)
- Qiyang Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinmei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yifan Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lingli Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
33
|
Cai S, Wang H, Tang J, Tang X, Guan P, Li J, Jiang Y, Wu Y, Xu R. Feedback mechanisms of periphytic biofilms to ZnO nanoparticles toxicity at different phosphorus levels. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125834. [PMID: 33873034 DOI: 10.1016/j.jhazmat.2021.125834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The increasing use of nanoparticles (NPs) has raised concerns about their potential environmental risks. Many researches on NPs focused on the toxicity mechanism to microorganisms, but neglect the toxicity effects in relation to nutritional conditions. Here, we evaluated the interactive effects of zinc oxide (ZnO) NPs and phosphorus (P) levels on the bacterial community and functioning of periphytic biofilms. Results showed that long-term exposure to ZnO NPs significantly reduced alkaline phosphatase activity (APA) of periphytic biofilms just in P-limited conditions. Co-occurrence network analysis indicated that ZnO NPs exposure reduced network complexity between bacterial taxa in P-limited conditions, while the opposite trend was observed in P-replete conditions. Correlation analysis and random forest modeling suggested that excessive Zn2+ released and high reactive oxygen species (ROS) production might be mainly responsible for the inhibition of APA induced by ZnO NPs under P-limited conditions, while adjustment of bacterial diversity and improvement of keystone taxa cooperation were the main mechanisms in maintaining APA when subjected to weak toxicity of ZnO NPs in P-replete conditions. Taken together, our results provide insights into the biological feedback mechanism involved in ZnO NPs exposure on the ecological function of periphytic biofilms in different P nutritional conditions.
Collapse
Affiliation(s)
- Shujie Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haotian Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuyu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renkou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Qian J, He X, Wang P, Xu B, Li K, Lu B, Jin W, Tang S. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116904. [PMID: 33765504 DOI: 10.1016/j.envpol.2021.116904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS-COOH and PS-NH2) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH2 NPs and EPS were CO and O-C-O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH2 NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH2 was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
35
|
Zhang P, Xu XY, Zhang XL, Zou K, Liu BZ, Qing TP, Feng B. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124526. [PMID: 33218909 DOI: 10.1016/j.jhazmat.2020.124526] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/25/2023]
Abstract
Microbial extracellular polymeric substances (EPS) coating nanoparticles (NPs) surface can form NPs-EPS corona, which significantly affect the adsorption of NPs to toxic substances and alter the ecotoxicological effect of NPs. In this work, the EPS coronas on TiO2 NPs (TNPs) and CeO2 NPs (CNPs) were characterized and the adsorption characteristics of NPs with and without EPS corona to five heavy metals were investigated in single-metal and multiple-metal systems. The results of spectral analysis showed that NPs-EPS corona exhibited new crystalline phases and abundant functional groups. Moreover, 42 and 13 proteins were identified in the TNPs-EPS and CNPs-EPS coronas, respectively. The rates of Cd2+, Pb2+, Cu2+, Ni2+ and Ag+ adsorption by NPs-EPS corona increased to values that were 6.7-7.6, 4.4-5.1, 4.2-5.5, 3.9-4.9 and 8.5-8.8 times those of NPs without EPS corona, respectively, in single-metal system. NPs-EPS coronas are effective in absorbing Ag+, Pb2+ and Cu2+ compared with Cd2+and Ni2+ in multiple metal adsorption. These results indicated that NPs-EPS corona effectively adsorb and remove heavy metals by forming NPs-EPS-metal complexes and inducing precipitation. However, NPs-EPS corona can enhance the toxicity of NPs by accumulating highly-toxic heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xue-Lin Zhang
- Cotton Sciences Research Institute of Hunan, Changde 415101, Hunan, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bing-Zhi Liu
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
36
|
Cervantes-Avilés P, Caretta CA, Brito EMS, Bertin P, Cuevas-Rodríguez G, Duran R. Changes in bacterial diversity of activated sludge exposed to titanium dioxide nanoparticles. Biodegradation 2021; 32:313-326. [PMID: 33811584 DOI: 10.1007/s10532-021-09939-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
The rapid growth of the use of nanomaterials in different modern industrial branches makes the study of the impact of nanoparticles on the human health and environment an urgent matter. For instance, it has been reported that titanium dioxide nanoparticles (TiO2 NPs) can be found in wastewater treatment plants. Previous studies have found contrasting effects of these nanoparticles over the activated sludge process, including negative effects on the oxygen uptake. The non-utilization of oxygen reflects that aerobic bacteria were inhibited or decayed. The aim of this work was to study how TiO2 NPs affect the bacterial diversity and metabolic processes on an activated sludge. First, respirometry assays of 8 h were carried out at different concentrations of TiO2 NPs (0.5-2.0 mg/mL) to measure the oxygen uptake by the activated sludge. The bacterial diversity of these assays was determined by sequencing the amplified V3-V4 region of the 16S rRNA gene using Illumina MiSeq. According to the respirometry assays, the aerobic processes were inhibited in a range from 18.5 ± 4.8% to 37.5 ± 2.0% for concentrations of 0.5-2.0 mg/mL TiO2 NPs. The oxygen uptake rate was affected mainly after 4.5 h for concentrations higher than 1.0 mg/mL of these nanoparticles. Results indicated that, in the presence of TiO2 NPs, the bacterial community of activated sludge was altered mainly in the genera related to nitrogen removal (nitrogen assimilation, nitrification and denitrification). The metabolic pathways prediction suggested that genes related to biofilm formation were more sensitive than genes directly related to nitrification-denitrification and N-assimilation processes. These results indicated that TiO2 NPs might modify the bacteria diversity in the activated sludge according to their concentration and time of exposition, which in turn impact in the performance of the wastewater treatment processes.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Departamento de Ingeniería Civil and Ambiental, DI-CGT, Universidad de Guanajuato, Av. Juárez 77, Col. Centro, 36000, Guanajuato, Gto, Mexico.,Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcayotl, vía Atlixcayotl 5718, 72453, Puebla, Pue, Mexico
| | - César Augusto Caretta
- Departamento de Astronomía, DCNE-CGT, Universidad de Guanajuato, Callejón de Jalisco S/N, Col. Valenciana, 36023, Guanajuato, Gto, Mexico
| | - Elcia Margareth Souza Brito
- Departamento de Ingeniería Civil and Ambiental, DI-CGT, Universidad de Guanajuato, Av. Juárez 77, Col. Centro, 36000, Guanajuato, Gto, Mexico.
| | - Pierre Bertin
- Institut de Biologie Intégrative de la Cellule, Université Paris Sud, Batiment 400, 91400, Orsay, France
| | - Germán Cuevas-Rodríguez
- Departamento de Ingeniería Civil and Ambiental, DI-CGT, Universidad de Guanajuato, Av. Juárez 77, Col. Centro, 36000, Guanajuato, Gto, Mexico
| | - Robert Duran
- Equipe Environment et Microbiologie, MELODY Group, IPREM UMR CNRS 5254, Université de pau et des pays de l'Adour, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
37
|
Evariste L, Braylé P, Mouchet F, Silvestre J, Gauthier L, Flahaut E, Pinelli E, Barret M. Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity. Front Microbiol 2021; 12:623853. [PMID: 33841352 PMCID: PMC8032548 DOI: 10.3389/fmicb.2021.623853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L−1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L−1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Paul Braylé
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Silvestre
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Eric Pinelli
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
38
|
Ye J, Gao H, Wu J, Yu R. Effects of ZnO nanoparticles on flocculation and sedimentation of activated sludge in wastewater treatment process. ENVIRONMENTAL RESEARCH 2021; 192:110256. [PMID: 32997970 DOI: 10.1016/j.envres.2020.110256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Despite the behaviors of ZnO nanoparticles (ZnO NPs) in wastewater treatment processes have been widely explored, the impacts of ZnO NPs on the activated sludge's flocculation and sedimentation performances for solid-liquid separation have rarely been involved yet. In this study, ZnO NPs were observed to exert a dose-dependent negative effect on the sludge's flocculation performance but did not significantly impact the sludge' sedimentation behaviors. Furthermore, it was NPs themselves rather than the dissolved Zn2+ who impaired on the sludge flocculation performance because the Zn2+ alone would not compromise the sludge's flocculation efficiency. In addition, the sludge flocculation performance was revealed to be inversely related to the extracellular polymeric substances (EPS) content in the sludge and the direct contacts between ZnO NPs and the cells in the sludge should be the prerequisite to stimulate the secretion of the sludge EPS. The poor sludge flocculation performance could also be caused by the reduced protein/polysaccharide (PN/PS) ratio and the zeta (ζ) potential in the loosely bound (LB-EPS) after the sludge exposure to ZnO NPs. Fourier transform-infrared spectra (FT-IR) and three dimensional - excitation emission fluorescence spectra (3D-EEM) analysis further revealed that the decrease of the tyrosine PN-like substance level in the LB-EPS was probably the key reason for the decreased PN/PS ratio and ζ potential in the LB-EPS, which eventually induced the decline of the sludge flocculation performance under the ZnO NP stress. These results could potentially expand the knowledge on sludge flocculation and sedimentation in the presence of ZnO NPs.
Collapse
Affiliation(s)
- Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Department of Water Supply and Drainage Science and Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
39
|
Yang Y, Zhang C, Huang X, Gui X, Luo Y, Li Z. Exogenous Fe 2+ alleviated the toxicity of CuO nanoparticles on Pseudomonas tolaasii Y-11 under different nitrogen sources. PeerJ 2020; 8:e10351. [PMID: 33240659 PMCID: PMC7664463 DOI: 10.7717/peerj.10351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
Extensive use of CuO nanoparticles (CuO-NPs ) inevitably leads to their accumulation in wastewater and toxicity to microorganisms that effectively treat nitrogen pollution. Due to the effects of different mediums, the sources of CuO-NPs-induced toxicity to microorganisms and methods to mitigating the toxicity are still unclear. In this study, CuO-NPs were found to impact the nitrate reduction of Pseudomonas tolaasii Y-11 mainly through the action of NPs themselves while inhibiting the ammonium transformation of strain Y-11 through releasing Cu2+. As the content of CuO-NPs increased from 0 to 20 mg/L, the removal efficiency of NO3− and NH4+ decreased from 42.29% and 29.83% to 2.05% and 2.33%, respectively. Exogenous Fe2+ significantly promoted the aggregation of CuO-NPs, reduced the possibility of contact with bacteria, and slowed down the damage of CuO-NPs to strain Y-11. When 0.01 mol/L Fe2+ was added to 0, 1, 5, 10 and 20 mg/L CuO-NPs treatment, the removal efficiencies of NO3- were 69.77%, 88.93%, 80.51%, 36.17% and 2.47%, respectively; the removal efficiencies of NH4+ were 55.95%, 96.71%, 38.11%, 20.71% and 7.43%, respectively. This study provides a method for mitigating the toxicity of CuO-NPs on functional microorganisms.
Collapse
Affiliation(s)
- Yuran Yang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Can Zhang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xuejiao Huang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xuwei Gui
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yifang Luo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Sari T, Can S, Akgul D. Assessment of Anammox process against acute and long-term exposure of ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138603. [PMID: 32498210 DOI: 10.1016/j.scitotenv.2020.138603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The impacts of nanoparticles (NPs) on wastewater treatment have become a great concern because of their widespread applications. Although the acute responses of anammox bacteria to NPs have enhanced the knowledge about the potential risks of them, deep understanding of the cumulative impacts of NPs must be assessed. The purpose of this research was therefore to further extend the current knowledge by evaluating both acute and long-term effects of Zinc oxide (ZnO) NPs on Anammox process based on nitrogen removal performance, self-recovery ability and microbial community structure. The acute exposure tests indicated that, the median inhibition concentration (IC50) of ZnO NPs on Anammox process was 84.7 mg/L (54.82 mg ZnO NPs/g VSS). Acute exposure of 200 mg/L ZnO NPs (117.54 mg Zn/g VSS) caused 80% inhibition in batch assays while the long-term inhibition dosage was 100 mg/L ZnO NPs (187.50 mg ZnO NPs/g VSS) corresponding to 1022 mg/L total Zn (1916.27 mg Zn/g VSS) in the reactor due to the accumulation of NPs. Total, soluble and biomass-associated Zn concentrations were measured throughout the long-term exposure to observe the behavior of ZnO NPs in the reactor. Total Zn in the reactor was cumulatively increased and mostly originated from biomass-associated Zn. Following the long-term inhibition tests, self-recovery of Anammox process within 120 days demonstrated that, the ZnO NPs inhibition is reversible for the applied dose. Furthermore, next generation sequencing results indicated a symbiotic relationship between the microbial groups in the anammox bioreactor while relative abundance of Candidatus (Ca.) Brocadiaceae family showed a decrease parallel to the deterioration in nitrogen removal performance of bioreactor. At the end of the long-term exposure studies, 48.76% decline on anammox quantity was detected.
Collapse
Affiliation(s)
- Tugba Sari
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | - Safiye Can
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | - Deniz Akgul
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey.
| |
Collapse
|
41
|
Ma TF, Chen YP, Fang F, Yan P, Shen Y, Kang J, Nie YD. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138284. [PMID: 32276046 DOI: 10.1016/j.scitotenv.2020.138284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aerobic denitrification process is a promising and cost-effective alternative to the conventional nitrogen removal process. Widely used ZnO nanoparticles (NPs) will inevitably reach wastewater treatment plants, and cause adverse impacts on aerobic denitrification and nitrogen removal. Therefore, a full understanding of the responses and adaption of aerobic denitrifiers to ZnO NPs is essential to develop effective strategies to reduce adverse effects on wastewater treatment. In this study, the responses and adaption to ZnO NPs were investigated of a wild type strain (WT) and a resistant type strain (Re) of aerobic denitrifying bacteria Enterobacter cloacae strain HNR. When exposed to 0.75 mM ZnO NPs, the nitrate removal efficiency of Re was 11.2% higher than that of WT. To prevent ZnO NPs entering cells by adsorption, the production of extracellular polymeric substances (EPS) of WT and Re strains increased 13.2% and 43.9%, respectively. The upregulations of amino sugar and carbohydrate-related metabolism contributed to the increase of EPS production, and the increased nitrogen metabolism contributed to higher activities of nitrate and nitrite reductases. Interestingly, cationic antimicrobial peptide resistance contributed to resist Zn (II) released by ZnO NPs, and many antioxidative stress-related metabolism pathways were upregulated to resist the oxidative stress resulting from ZnO NPs. These findings will guide efforts to improve the aerobic denitrification process in an environment polluted by NPs, and promote the application of aerobic denitrification technologies.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - Jia Kang
- North China Univ Water Resources & Elect Power, Key Lab Water Environment Simulatation & Governance Henan, Zhengzhou 460046, Henan, China
| | - Yu-Dong Nie
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
42
|
Oubre C, Boopathy R. Effect of silver oxide nanoparticles on a bacterial consortium isolated from the sediment of the Gulf of Mexico in removing carbon and nitrogen. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/tqem.21688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher Oubre
- Department of Biological Sciences Nicholls State University Thibodaux Louisiana
| | - Raj Boopathy
- Department of Biological Sciences Nicholls State University Thibodaux Louisiana
| |
Collapse
|
43
|
Maqbool T, Ly QV, Asif MB, Ng HY, Zhang Z. Fate and role of fluorescence moieties in extracellular polymeric substances during biological wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137291. [PMID: 32087584 DOI: 10.1016/j.scitotenv.2020.137291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In biological wastewater treatment systems, extracellular polymeric substances (EPS) are continuously excreted as a response to environmental changes and substrate conditions. It could severely affect the treatment efficacy such as membrane fouling, dewaterability and the formation of carcinogenic disinfection by-products (DBPs). The heterogeneous dissolved organic matter (DOM) with varying size and chemical nature constitute a primary proportion of EPS. In the last few decades, fluorescence spectroscopy has received increasing attention for characterizing these organic substances due to the attractive features of this low-cost spectroscopic approach, including easy sample handling, rapid, non-destructive and highly sensitive nature. In this review, we summarize the application of fluorescence spectroscopy for characterizing EPS and provide the potential implications for online monitoring of water quality along with its limitations. We also link the dynamics of fluorescent dissolved organic matter (FDOM) in EPS with operational and environmental changes in wastewater treatment systems as well as their associations with metal binding, membrane fouling, adsorption, toxicity, and dewaterability. The multiple modes of exploration of fluorescence spectra, such as synchronous spectra with or without coupling with two-dimensional correlation spectroscopy (2D-COS), excitation-emission matrix (EEM) deconvoluted fluorescence regional integration (FRI), and parallel factor analysis (PARAFAC) are also discussed. The potential fluorescence indicators to depict the composition and bulk characteristics of EPS are also of interest. Further studies are highly recommended to expand the application of fluorescence spectroscopy paired with appropriate supplementary techniques to fully unravel the underlying mechanisms associated with EPS.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - How Yong Ng
- National University of Singapore Research Institute, National University of Singapore, Singapore
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
44
|
Qin R, Su C, Liu W, Tang L, Li X, Deng X, Wang A, Chen Z. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge. BIORESOURCE TECHNOLOGY 2020; 302:122827. [PMID: 32006924 DOI: 10.1016/j.biortech.2020.122827] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The effects of polyether sulfone (PES) microplastic concentration on the nitrifying process of aerobic granular sludge (AGS) were investigated together with the microbial community structure of AGS. The PES microplastic concentration inhibited the removal of ammonia nitrogen only to a small extent. The average total nitrogen removal rate increased by 5.6% after PES addition. On the 30th day, the addition of 0.5 g/L PES inhibited the specific nitrate reduction rate (SNRR) by 38.84 mg N/(g MLSS·h). Nitrite oxidase (NOR) performance of the AGS were inhibited with addition the PES. According to the high-throughput sequencing results, in the presence of PES, the abundance of Bacillales_Incertae Sedis XII reduced, while the abundance of Anaerolineaceaen increased in the AGS. According to the clusters of orthologous groups (COG) and kyoto encyclopedia of genes and genomes (KEGG), the content of cytochrome c-containing reduced and the Amino Acid Metabolism increased with addition 0.5 g/L PES microplastic.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Weihong Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Anliu Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
45
|
Effects of Four Kinds of Oxide Nanoparticles on Proteins in Extracellular Polymeric Substances of Sludge. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1754134. [PMID: 32190651 PMCID: PMC7072109 DOI: 10.1155/2020/1754134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 11/18/2022]
Abstract
Proteins are the most important component in sludge extracellular polymeric substances (EPS) and play a crucial role in the formation of sludge flocs, adsorption performance of sludge, and flocculation ability of sludge. This research is aimed at exploring the changes in proteins in EPS extracted from concentrated sludge after various nanoparticle (NP) treatments. The results showed that the protein content in EPS decreased by 40% after nanoalumina (Al2O3 NPs) treatment but increased at varying degrees after nanoferric oxide (Fe3O4 NPs), nanozinc oxide (ZnO NPs), and nanotitanium dioxide (TiO2 NPs) treatments. The four kinds of nanoparticles not only affected the protein content in EPS but also influenced the types and structures of proteins. The results of three-dimensional fluorescence spectroscopy showed that the tyrosine-like protein content in soluble EPS (SEPS) decreased after treatments with four kinds of NPs. Infrared spectroscopy analysis revealed that the absorption intensity of amide I and amide II weakened after Al2O3 NP treatment, whereas that of amide I enhanced after Fe3O4 NP, ZnO NP, and TiO2 NP treatments. Further analysis of the secondary structure of proteins in the infrared range of 1700–1600 cm−1 demonstrated that the value of α-helix/(β-sheet+random coil) decreased from 0.513 to 0.383 in SEPS after TiO2 NP treatment. For the samples treated by Fe3O4 NPs, the percentage of α-helix significantly increased and that of β-sheet slightly decreased in proteins from SEPS and loosely bound EPS.
Collapse
|
46
|
Maqbool T, Cho J, Shin KH, Hur J. Using stable isotope labeling approach and two dimensional correlation spectroscopy to explore the turnover cycles of different carbon structures in extracellular polymeric substances. WATER RESEARCH 2020; 170:115355. [PMID: 31811990 DOI: 10.1016/j.watres.2019.115355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Extracellular polymeric substances (EPS) from activated sludge comprise many organic constituents with polysaccharides and proteins as the main components of two different functionalities. Despite a number of previous EPS studies, a fundamental question remained unanswered, namely, whether the different EPS components would have the same turnover cycle (i.e., formation/dissolution) in biological wastewater treatment systems. In this study, we employed a stable isotope labeling approach based on isotope-enriched substrates (i.e., 13C-glucose and 15NH4Cl) to examine the potential discrepancies in the turnover cycles among different major EPS constituents. Our results, based on substrate consumption in a batch bioreactor, evidenced the existence of differences in carbon and nitrogen cycles within bulk EPS with an earlier replenishment of organic carbon relative to organic nitrogen. The changes in the 13C nuclear magnetic resonance (13C NMR) spectra of EPS with operation clarified the relative differences in the turnover periods among several identified EPS structures with different chemical functionalities. Two-dimensional correlation spectroscopy (2D-COS) on the 13C NMR spectra further showed that the substrate-assimilated carbon functional groups appear to preferably formed within bulk EPS in the order of O-alkyl carbons > amides > α amino acids > aliphatic carbons. This study provides a novel insight into the dissimilar formation rates of different EPS structures after substrate assimilation. This isotope labeling approach can be further applied to determine the mass balance among the substrate, biomass, and bound/soluble EPS within activated sludge systems.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Kyung Hoon Shin
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do, 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
47
|
Abdolahpur Monikh F, Arenas-Lago D, Porcal P, Grillo R, Zhang P, Guo Z, Vijver MG, J G M Peijnenburg W. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae? Nanotoxicology 2019; 14:310-325. [PMID: 31775550 DOI: 10.1080/17435390.2019.1692381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We systematically investigated how the combinations of size, shape and the natural organic matter (NOM)-ecocorona of gold (Au) engineered nanoparticles (ENPs) influence the attachment of the particles to algae and physical toxicity to the cells. Spherical (10, 60 and 100 nm), urchin-shaped (60 nm), rod-shaped (10 × 45, 40 × 60 and 50 × 100 nm), and wire-shaped (75 × 500, 75 × 3000 and 75 × 6000 nm) citrate-coated and NOM-coated Au-ENPs were used. Among the spherical particles only the spherical 10 nm Au-ENPs caused membrane damage to algae. Only the rod-shaped 10 × 45 nm induced membrane damage among the rod-shaped Au-ENPs. Wire-shaped Au-ENPs caused no membrane damage to the algae. NOM ecocorona decreased the membrane damage effects of spherical 10 nm and rod-shaped 10 × 45 nm ENPs. The spherical Au-ENPs were mostly loosely attached to the cells compared to other shapes, whereas the wire-shaped Au-ENPs were mostly strongly attached compared to particles with other shapes. NOM ecocorona determined the strength of Au-ENPs attachment to the cell wall, leading to the formation of loose rather than strong attachment of Au-ENPs to the cells. After removal of the loosely and strongly attached Au-ENPs, some particles remained anchored to the surface of the algae. The highest concentration was detected for spherical 10 nm Au-ENPs followed by rod-shaped 10 × 45 nm Au-ENPs, while the lowest concentration was observed for the wire-shaped Au-ENPs. The combined effect of shape, size, and ecocorona controls the Au-ENPs attachment and physical toxicity to cells.
Collapse
Affiliation(s)
| | - Daniel Arenas-Lago
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Petr Porcal
- Institute of Hydrobiology and Soil & Water Research Infrastructure, Biology Centre CAS, České Budějovice, Czech Republic
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Peng Zhang
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
48
|
Wei L, Li J, Xue M, Wang S, Li Q, Qin K, Jiang J, Ding J, Zhao Q. Adsorption behaviors of Cu 2+, Zn 2+ and Cd 2+ onto proteins, humic acid, and polysaccharides extracted from sludge EPS: Sorption properties and mechanisms. BIORESOURCE TECHNOLOGY 2019; 291:121868. [PMID: 31357045 DOI: 10.1016/j.biortech.2019.121868] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
To clarify the adsorption behaviors of typical heavy metals onto sludge extracellular polymeric substances (EPS), the adsorption capacities and mechanisms, as well as the contributions of the different EPS components (proteins, humic acids and polysaccharides), to the adsorption of Zn2+, Cu2+ and Cd2+ were separately explored. Overall, proteins exhibited a relatively high adsorption capacity for the three metals ions, followed by humic acid, whereas least for polysaccharides. The adsorption of Cu2+ and Cd2+ onto proteins, humic acid and polysaccharides fit well to the Freundlich isotherm, whereas Langmuir model was the best fit for Zn2+ bindings onto polysaccharides/humic acid. The binding of Cu2+, Zn2+ and Cd2+ onto the three EPS components was exothermically favorable, and significant electrostatic interactions were observed for the heavy metals sorption onto humic acid and proteins. In addition, the effect of metal ions sorption on the spectrum of the proteins, polysaccharides and humic acid was also explored.
Collapse
Affiliation(s)
- Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mao Xue
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiaoyang Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kena Qin
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
49
|
Wang Q, Wen Q, Chen Z. Long term effects of Pb 2+ on the membrane fouling in a hydrolytic-anoxic-oxic-membrane bioreactor treating synthetic electroplating wastewater. CHEMOSPHERE 2019; 232:430-438. [PMID: 31158638 DOI: 10.1016/j.chemosphere.2019.05.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Long-term effects of Pb2+ on the operating performance and membrane fouling of two hydrolytic-anoxic-oxic-membrane bioreactors treating synthetic electroplating wastewater were investigated. The COD, NH4+-N and TN removal efficiencies decreased by 5.5%, 10.4% and 7.9% with long-term exposure of 2 mg L-1 Pb2+, while serious decreases achieved 25.4%, 35.0% and 26.2% with 6 mg L-1 Pb2+ exposure, respectively. 2 mg L-1 Pb2+ mitigated the cake layer fouling rate by 25.4% but increased the pore blocking rate by 69.1%, which was contributed by the increase of low and moderate molecular weight (MW) components in the soluble and colloidal foulants (SCFs). 6 mg L-1 Pb2+ accelerated the cake layer fouling rate by 101.1%, but mitigated the pore blocking rate by 6.4% due to the increase of high MW SCFs (especially polysaccharides). Thermodynamic analyses showed that Pb2+ regulated the concentration and protein/polysaccharide ratio of loosely bound extracellular polymeric substances, thus changing the flocs hydrophobicity and aggregation capacity, leading the cake layer fouling rate variation.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|
50
|
Liu Z, Zhou L, Liu F, Gao M, Wang J, Zhang A, Liu Y. Impact of Al-based coagulants on the formation of aerobic granules: Comparison between poly aluminum chloride (PAC) and aluminum sulfate (AS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:74-84. [PMID: 31174125 DOI: 10.1016/j.scitotenv.2019.05.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
As widely used Al-based coagulants, poly aluminum chloride (PAC) and aluminum sulfate (AS) were adopted in a short term at the start-up stage (from 10th to 16th) to enhance the formation of aerobic granules, and their effects on aerobic granulation were elucidated. The results suggested that both PAC and AS facilitated the granulation by improving the physicochemical properties of sludge. The reactor performance in pollutant removal was also enhanced. Specifically, in terms of extracellular polymeric substances (EPS), PAC dosing mainly stimulated the production of loosely bound EPS (LB-EPS), whereas more tightly bound EPS (TB-EPS) were secreted with the presence of AS. Based on the elemental analysis, polymeric Al hydrolyzed from PAC mainly worked on the exterior of microbial aggregates, and thus the attached aluminum in granules was gradually eliminated by ion exchange and hydraulic shear force. In contrast, the aluminum species in AS hydrolyzed into monomeric and oligomeric Al, and thus could diffuse into the interior of microbial aggregates and eventually created an "Al-core" in the granules. Overall, the present study describes the AGS formation with Al-based coagulants and the mechanisms of PAC- and AS-enhanced aerobic granulation.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lichao Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Fengdan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|