1
|
Lakshmikandan M, Li M. Advancements and hurdles in symbiotic microalgal co-cultivation strategies for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125018. [PMID: 40106994 DOI: 10.1016/j.jenvman.2025.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microalgae offer significant potential in various industrial applications, such as biofuel production and wastewater treatment, but the economic barriers to their cultivation and harvesting have been a major obstacle. However, a promising strategy involving co-cultivating microalgae in wastewater treatment could overcome the limitations of monocultivation and open the possibility for increased integration of microalgae into various industrial processes. This symbiotic relationship between microalgae and other microbes can enhance nutrient removal efficiency, increase value-added bioproduct production, promote carbon capture, and decrease energy consumption. However, unresolved challenges, such as the competition between microalgae and other microbes within the wastewater treatment system, may result in imbalances and reduced efficiency. The complexity of managing multiple microbes in a co-cultivation system poses difficulties in achieving stability and consistency in bioproduct production. In response to these challenges, strategies such as optimizing nutrient ratios, manipulating environmental conditions, understanding the dynamics of microbial relationships, and employing genetic modification to enhance the metabolic capabilities of microalgae and improve their competitiveness are critical in transitioning to a more sustainable path. Hence, this review will provide an in-depth analysis of recent advancements in symbiotic microalgal co-cultivation for applications in wastewater treatment and CO2 utilization, as well as discuss approaches for improving microalgal strains through genetic modification. Furthermore, the review will explore the use of efficient bioreactors, advanced control systems, and advancements in biorefinery processes.
Collapse
Affiliation(s)
- Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Chen Y, Wan WW, Cui KH, Lau BPY, Lee FWF, Xu SJL. Feasibility and efficiency of microalgae cultivation for nutrient recycling and energy recovery from food waste filtrate. PLoS One 2025; 20:e0315801. [PMID: 39908251 PMCID: PMC11798482 DOI: 10.1371/journal.pone.0315801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
With the continuous growth of economic and population, the generation of food waste has significantly increased in recent years. The disposition of food waste, typically through incineration or landfill, can lead to severe health and environmental problems, accompanied by high additional costs. However, the leachate produced from food waste during collection, transportation and landfill operations predominantly contains high levels of nutrients necessary for microalgae growth. The integration of microalgae cultivation into waste treatment for nutrient recycling presents a potential route for energy recovery from food waste. Therefore, this study was conducted to evaluate the feasibility of microalgae cultivation for food waste filtrate treatment. In addition, the optimal cultivation conditions and nutrient removal efficiency for microalgae in food waste filtrate treatment were investigated. The results indicated that Cyanobacterium aponinum exhibited the highest growth rate (0.530 cells d-1) and maximum cell density (9.6 × 106 cells mL-1) among eight potential microalgal species in 10% food waste filtrate treatment under 10,000 lux and 32°C. It was also observed that C. aponinum had significantly higher biomass productivity and nutrient removal efficiency under a 5% CO2 concentration. The successful cultivation of C. aponinum demonstrated that food waste filtrate could be a promising growth medium, reducing the high cost of cultivation with synthetic medium. However, further efforts should be made to utilize microalgae in food waster filtrate treatment, transitioning from laboratory condition to a pilot scale.
Collapse
Affiliation(s)
- Yanghang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wing-Wai Wan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong
| | - Kai-Hui Cui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong
| | - Bonnie Pui-Ying Lau
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong
| | - Fred Wang-Fat Lee
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Steven Jing-Liang Xu
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong
| |
Collapse
|
3
|
Xu Y, Zhang X, Xiao S, Peng BY, Chen J, Yang L, Zhou X, Zhang Y. Distinct exposure impact of non-degradable and biodegradable microplastics on freshwater microalgae (Chlorella pyrenoidosa): Implications for polylactic acid as a sustainable plastic alternative. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136265. [PMID: 39515141 DOI: 10.1016/j.jhazmat.2024.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are increasingly recognized as significant sources of harm to biota in various environments. However, the detrimental impacts of aged MPs with different structures and degradability remain poorly understood. In this study, aged MPs from polylactic acid (PLA), polyethylene (PE), and polystyrene (PS), representing biodegradable, aliphatic, and aromatic plastics, respectively, were prepared to examine their effects on microalgae (Chlorella pyrenoidosa). Structural and property analyses indicated the presence of aging and oxygen-containing functional groups on the surfaces of the MPs, which correlated with an increase in negative electrical charge (i.e., aged PLA > aged PE ≈ aged PS). Aged PLA MPs affected microalgae biomass, promoted protein synthesis, and elevated mild oxidative stress. In contrast, aged PE and PS MPs not only affected biomass, protein, and carbohydrate synthesis but also inhibited photosynthetic pigment production and activity, resulting in intracellular oxidative stress. Excitation-emission-matrix spectra analysis showed that PLA induced microalgae to secrete large amounts of humic acid-like extracellular polymers, whereas aged PE and aged PS groups contained only small amounts of them and proteins. This study addresses critical knowledge gaps in the toxicology of various aged MPs on microalgae and provides valuable insights into the potential of PLA as a sustainable alternative to conventional plastics in microalgae culture industry.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
4
|
Xu Y, Peng BY, Zhang X, Xu Q, Yang L, Chen J, Zhou X, Zhang Y. The aging of microplastics exacerbates the damage to photosynthetic performance and bioenergy production in microalgae (Chlorella pyrenoidosa). WATER RESEARCH 2024; 259:121841. [PMID: 38820734 DOI: 10.1016/j.watres.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qianfeng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang Q, Higgins B, Fallahi A, Wilson AE. Engineered algal systems for the treatment of anaerobic digestate: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120669. [PMID: 38520852 DOI: 10.1016/j.jenvman.2024.120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
The objective of this review was to provide quantitative insights into algal growth and nutrient removal in anaerobic digestate. To synthesize the relevant literature, a meta-analysis was conducted using data from 58 articles to elucidate key factors that impact algal biomass productivity and nutrient removal from anaerobic digestate. On average, algal biomass productivity in anaerobic digestate was significantly lower than that in synthetic control media (p < 0.05) but large variation in productivity was observed. A mixed-effects multiple regression model across study revealed that biological or chemical pretreatment of digestate significantly increase productivity (p < 0.001). In contrast, the commonly used practice of digestate dilution was not a significant factor in the model. High initial total ammonia nitrogen suppressed algal growth (p = 0.036) whereas initial total phosphorus concentration, digestate sterilization, CO2 supplementation, and temperature were not statistically significant factors. Higher growth corresponded with significantly higher NH4-N and phosphorus removal with a linear relationship of 6.4 mg NH4-N and 0.73 mg P removed per 100 mg of algal biomass growth (p < 0.001). The literature suggests that suboptimal algal growth in anaerobic digestate could be due to factors such as turbidity, high free ammonia, and residual organic compounds. This analysis shows that non-dilution approaches, such as biological or chemical pretreatment, for alleviating algal inhibition are recommended for algal digestate treatment systems.
Collapse
Affiliation(s)
- Qichen Wang
- Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Brendan Higgins
- Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Alireza Fallahi
- Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
6
|
Zhang X, Lu Q. Cultivation of microalgae in food processing effluent for pollution attenuation and astaxanthin production: a review of technological innovation and downstream application. Front Bioeng Biotechnol 2024; 12:1365514. [PMID: 38572356 PMCID: PMC10987718 DOI: 10.3389/fbioe.2024.1365514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Valorization of food processing effluent (FPE) by microalgae cultivation for astaxanthin production is regarded as a potential strategy to solve the environmental pollution of food processing industry and promote the development of eco-friendly agriculture. In this review paper, microalgal species which have the potential to be employed for astaxanthin in FPE were identified. Additionally, in terms of CO2 emission, the performances of microalgae cultivation and traditional methods for FPE remediation were compared. Thirdly, an in-depth discussion of some innovative technologies, which may be employed to lower the total cost, improve the nutrient profile of FPE, and enhance the astaxanthin synthesis, was provided. Finally, specific effects of dietary supplementation of algal astaxanthin on the growth rate, immune response, and pigmentation of animals were discussed. Based on the discussion of this work, the cultivation of microalgae in FPE for astaxanthin production is a value-adding process which can bring environmental benefits and ecological benefits to the food processing industry and agriculture. Particularly, technological innovations in recent years are promoting the shift of this new idea from academic research to practical application. In the coming future, with the reduction of the total cost of algal astaxanthin, policy support from the governments, and further improvement of the innovative technologies, the concept of growing microalgae in FPE for astaxanthin will be more applicable in the industry.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
7
|
Scarponi P, Caminiti V, Bravi M, Izzo FC, Cavinato C. Coupling anaerobic co-digestion of winery waste and waste activated sludge with a microalgae process: Optimization of a semi-continuous system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:300-309. [PMID: 38086294 DOI: 10.1016/j.wasman.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
Wine production represents one of the most important agro-industrial sectors in Italy. Wine lees are the most significant waste in the winery industry and have high disposal and storage costs and few applications within the circular economy. In this study, anaerobic digestion and a microalgae coupled process was studied in order to treat wine lees and waste activated sludge produced within the same facility, with the aim of producing energy and valuable microalgae biomass that could be processed to recover biofuel or biostimulant. Chlorella vulgaris was cultivated on liquid digestate in a semi-continuous system without biomass recirculation. The best growth and phytoremediation performance were achieved applying a hydraulic retention time (HRT) of 20 days with a stable dry weight, lipid and protein storage of 1.85 ± 0.02 g l-1, 33.48 ± 7.54 % and 57.85 ± 10.14 % respectively. Lipid characterization highlighted the potential use in high quality biodiesel production, according to EN14214 (<12 % v/v linolenic acid). The microalgae reactor's liquid output showed high removal of ammonia (95.72 ± 2.10 %), but low organic soluble matter reduction. Further semi-continuous process optimization was carried out by increasing the time between digestate feeding and biomass recovery at HRT 10. These operative changes avoided biomass wash-out and provided a stable phytoremediation of the digestate with 84.58 ± 4.02 % ammonia removal, 33.01 ± 1.44 % sCOD removal, 38.06 ± 2.65 % of polyphenols removal.
Collapse
Affiliation(s)
- P Scarponi
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - V Caminiti
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, viale dell'Università, 16, 35020 Legnaro, Italy
| | - M Bravi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana, 18, 00184 Roma, Italy
| | - F C Izzo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| |
Collapse
|
8
|
Jiang J, Cai X, Ren H, Cao G, Meng J, Xing D, Vollertsen J, Liu B. Effects of polyethylene terephthalate microplastics on cell growth, intracellular products and oxidative stress of Scenedesmus sp. CHEMOSPHERE 2024; 348:140760. [PMID: 37989440 DOI: 10.1016/j.chemosphere.2023.140760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Polyethylene terephthalate (PET) has been widely utilized in the synthesis of textile materials and packaging of foods and beverages. In recent years, it has been commonly detected in the form of microplastics (MPs) in wastewater. However, the effects of PET MPs on microalgal intracellular products and their interrelationships have been poorly investigated. In this study, the microalgae Scenedesmus sp. Strain H-1 was exposed to PET MPs to explore their effects on the growth, intracellular products (such as lipids, carbohydrates, and proteins), and antioxidative defense systems of Scenedesmus sp. The results demonstrated that PET MPs significantly reduced Scenedesmus sp. cell growth, with a maximum inhibition rate of 38.25% in the 500 mg L-1 treatment group. PET MPs had negative effects on glucose and nitrate utilization rates and reduced intracellular carbohydrates, intracellular proteins, and photosynthetic pigments. Surprisingly, PET MPs reduced acetyl-CoA carboxylase activity but induced lipid accumulation in microalgae. In addition, PET MPs significantly decreased the essential linoleic acid concentration and increased the palmitic acid content, resulting in reduced biodiesel quality. PET MPs induced the production of reactive oxygen species and malondialdehyde as well as the activities of superoxide dismutase and catalase. The results of the PCA indicated that the response mechanism of Scenedesmus sp. to PET MPs exposure was synergistic. This study provides fundamental data on the impact of MPs on the intracellular products of microalgae.
Collapse
Affiliation(s)
- Jiahui Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Xiaoyu Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Hongyu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg Øst 9220, Denmark
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China.
| |
Collapse
|
9
|
Hasnain M, Zainab R, Ali F, Abideen Z, Yong JWH, El-Keblawy A, Hashmi S, Radicetti E. Utilization of microalgal-bacterial energy nexus improves CO 2 sequestration and remediation of wastewater pollutants for beneficial environmental services. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115646. [PMID: 37939556 DOI: 10.1016/j.ecoenv.2023.115646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan; Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Saud Hashmi
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Emanuele Radicetti
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Bedane DT, Asfaw SL. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse. BIORESOUR BIOPROCESS 2023; 10:81. [PMID: 38647578 PMCID: PMC10992203 DOI: 10.1186/s40643-023-00699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Anaerobically treated slaughterhouse effluent is rich in nutrients, organic matter, and cause eutrophication if discharged to the environment without proper further treatment. Moreover, phosphorus and nitrogen in agro-processing industry wastewaters are mainly removed in the tertiary treatment phase. The objective of this study is to evaluate the pollutant removal efficiency of Chlorella and Scenedesmus species as well as their co-culture treating two-phase anaerobic digester effluent through microalgae biomass production. The dimensions of the rectangular photobioreactor used to conduct the experiment are 15 cm in height, 20 cm in width, and 30 cm in length. Removal efficiencies between 86.74-93.11%, 96.74-97.47%, 91.49-92.91%, 97.94-99.46%, 89.22-94.28%, and 91.08-95.31% were attained for chemical oxygen demand, total nitrogen, nitrate, ammonium, total phosphorous, and orthophosphate by Chlorella species, Scenedesmus species, and their co-culture, respectively. The average biomass productivity and biomass yield of Chlorella species, Scenedesmus species, and their co-culture were 1.4 ± 0.1, 1.17 ± 0.12, 1.5 ± 0.13 g/L, and 0.18, 0.21, and 0.23 g/L*day, respectively. The final effluent quality in terms of chemical oxygen demand, total nitrogen, and total phosphorous attained by Chlorella species and the co-culture were below the permissible discharge limit for slaughterhouse effluent standards in the country (Ethiopia). The results of the study showed that the use of microalgae as well as their co-culture for polishing the nutrients and residual organic matter in the anaerobically treated agro-processing industry effluent offers a promising result for wastewater remediation and biomass production. In general, Chlorella and Scenedesmus species microalgae and their co-culture can be applied as an alternative for nutrient removal from anaerobically treated slaughterhouse wastewater as well as biomass production that can be used for bioenergy.
Collapse
Affiliation(s)
- Dejene Tsegaye Bedane
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Seyoum Leta Asfaw
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Tan XB, Huang ZY, Wan XP, Duan ZJ, Zhang YL, Liao JY. Growth of Scenedesmus obliquus on anaerobic soybean wastewater using different wasted organics for high biomass production and nutrients recycling. CHEMOSPHERE 2023; 338:139514. [PMID: 37454982 DOI: 10.1016/j.chemosphere.2023.139514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The microalgae culture in mixing sewage with different characteristics may significantly improve biomass production and nutrients recycling efficiency. In this study, three waste organic wastewater including molasses, alcohol and glycerol wastewater were mixed with anaerobic soybean wastewater as mediums for microalgae culture. The optimal mixture of molasses, alcohol and glycerol wastewater was at an initial carbon-nitrogen ratio of 7:1, 5:1 and 10:1, improving biomass production by 60.4%, 31.3% and 68.7%, respectively. The removal efficiencies of organics, ammonia nitrogen and phosphorus at optimal mixture were 54.8-62.4%, 79.5-99.1% and 49.3-61.5%, and the removal rates increased by 340-630%, 27.5-66.3% and 36.3-70.2% compared to the blank culture. In addition, the culture in mixed wastewater increased lipids contrast by 0.7-1.3 times, while achieving higher saturation in fatty acids. The results suggested that microalgae culture using mixed wastewater was a strategy for high biomass production and nutrients recycling efficiency.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- Hunan Provincial Key Laboratory of Safe Discharge and Resource Utilization of Urban Water, College of Urban and Environment Sciences, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China.
| | - Zhuo-Yi Huang
- Hunan Provincial Key Laboratory of Safe Discharge and Resource Utilization of Urban Water, College of Urban and Environment Sciences, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Xi-Ping Wan
- Hunan Provincial Key Laboratory of Safe Discharge and Resource Utilization of Urban Water, College of Urban and Environment Sciences, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Zi-Jie Duan
- Hunan Provincial Key Laboratory of Safe Discharge and Resource Utilization of Urban Water, College of Urban and Environment Sciences, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Ya-Lei Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jian-Yu Liao
- Hunan Provincial Key Laboratory of Safe Discharge and Resource Utilization of Urban Water, College of Urban and Environment Sciences, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| |
Collapse
|
12
|
Jiang Y, Chen X, Wang Z, Deng H, Qin X, Huang L, Shen P. Potential application of a newly isolated microalga Desmodesmus sp. GXU-A4 for recycling Molasses vinasse. CHEMOSPHERE 2023; 328:138616. [PMID: 37028718 DOI: 10.1016/j.chemosphere.2023.138616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/11/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
The development of cost-effective and energy-efficient technologies for the stabilization of organic wastewater by microalgae has been essential and sought after. In the current study, GXU-A4 was isolated from an aerobic tank treating molasses vinasse (MV) and identified as Desmodesmus sp. based on its morphology, rbcL, and ITS sequences. It exhibited good growth with a high lipid content and chemical oxygen demand (COD) when grown using MV and the anaerobic digestate of MV (ADMV) as the growth medium. Three distinct COD concentrations for wastewater were established. Accordingly, GXU-A4 removed more than 90% of the COD from molasses vinasse (MV1, MV2, and MV3) with initial COD concentrations of 1193 mgL-1, 2100 mgL-1, and 3180 mgL-1, respectively. MV1 attained the highest COD and color removal rates of 92.48% and 64.63%, respectively, and accumulated 47.32% DW (dry weight) of lipids and 32.62% DW of carbohydrates, respectively. Moreover, GXU-A4 grew rapidly in anaerobic digestate of MV (ADMV1, ADMV2, and ADMV3) with initial COD concentrations of 1433 mgL-1, 2567 mgL-1, and 3293 mgL-1, respectively. Under ADMV3 conditions, the highest biomass reached 13.81 g L-1 and accumulated 27.43% DW of lipids and 38.70% DW of carbohydrates, respectively. Meanwhile, the removal rates of NH4-N and chroma in ADMV3 reached 91.10% and 47.89%, respectively, significantly reducing the concentration of ammonia nitrogen and color in ADMV. Thus, the results demonstrate that GXU-A4 has a high fouling tolerance, a rapid growth rate in MV and ADMV, the ability to achieve biomass accumulation and nutrient removal from wastewater, and a high potential for MV recycling.
Collapse
Affiliation(s)
- Yu Jiang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Xinqiang Chen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Zihao Wang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Hongyu Deng
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Xinhua Qin
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China.
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning, 530005, Guangxi, China.
| |
Collapse
|
13
|
Feng L, Aryal N, Li Y, Horn SJ, Ward AJ. Developing a biogas centralised circular bioeconomy using agricultural residues - Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161656. [PMID: 36669668 DOI: 10.1016/j.scitotenv.2023.161656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) can be used as a stand-alone process or integrated as part of a larger biorefining process to produce biofuels, biochemicals and fertiliser, and has the potential to play a central role in the emerging circular bioeconomy (CBE). Agricultural residues, such as animal slurry, straw, and grass silage, represent an important resource and have a huge potential to boost biogas and methane yields. Under the CBE concept, there is a need to assess the long-term impact and investigate the potential accumulation of specific unwanted substances. Thus, a comprehensive literature review to summarise the benefits and environmental impacts of using agricultural residues for AD is needed. This review analyses the benefits and potential adverse effects related to developing biogas-centred CBE. The identified potential risks/challenges for developing biogas CBE include GHG emission, nutrient management, pollutants, etc. In general, the environmental risks are highly dependent on the input feedstocks and resulting digestate. Integrated treatment processes should be developed as these could both minimise risks and improve the economic perspective.
Collapse
Affiliation(s)
- Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway.
| | - Nabin Aryal
- Department of Microsystems, University of South-Eastern Norway, Borre, Norway
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Svein Jarle Horn
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway; Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Alastair James Ward
- Department of Biological and Chemical Engineering, Aarhus University, Denmark
| |
Collapse
|
14
|
Yang H, Xin X. CO 2 capture and lipid production performance of microalgae in the S-shaped photobioreactor under different culture modes. Enzyme Microb Technol 2023; 165:110194. [PMID: 36682097 DOI: 10.1016/j.enzmictec.2023.110194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
An S-shaped photobioreactor was designed by adding grooves and baffles in the traditional photobioreactor to improve the culture efficiency of microalgae. After that, the parameters of the characterization of the S-shaped photobioreactor, such as the mixing time, gas holdup, and gas-liquid mass transfer coefficient, were determined. The biomass, lipid production rate, and average CO2 capture rate of microalgae were then analyzed under different culture modes. Finally, the feasibility of using digested piggery wastewater combined with simulated flue gas was explored as a culture mode for the microalgae and the lipid properties of the microalgae were analyzed. The results revealed that, at a flow rate of 0.08 vvm, the mixing time was reduced by 8.5 s, the gas hold-up increased by 44.6% and the gas-liquid mass transfer ability was also improved. Improvements were also observed in the biomass values, lipid production rate, and average CO2 capture rate of the microalgae under different culture conditions, with respective values reaching 0.23 g·(L·d)-1, 70.28 mg·(L·d)-1, and 0.43 g·(L·d)-1 under the mixotrophic mode. Additionally, digested piggery wastewater combined with the simulated microalgae flue gas culture was determined to be feasible. The biomass, lipid production rate, and the average CO2 capture rate of microalgae, the values of which were 0.22 g·(L·d)-1, 52.55 mg·(L·d)-1, and 0.41 g·(L·d)-1, respectively. Lipid was observed to have the potential to produce high-quality biofuel.
Collapse
Affiliation(s)
- Hao Yang
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China.
| |
Collapse
|
15
|
Tan XB, Zhang YL, Zhao XC, Yang LB, Yangwang SC, Zou Y, Lu JM. Anaerobic digestates grown oleaginous microalgae for pollutants removal and lipids production. CHEMOSPHERE 2022; 308:136177. [PMID: 36037939 DOI: 10.1016/j.chemosphere.2022.136177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestates were potential mediums for cultivating oleaginous microalgae, but their various components brought uncertainties for aglal growth and lipids production. In this study, three microalgae strains were tested to grow on four typical anaerobic digestates. The results showed that anaerobic food wastewater was an optimal medium for C. pyrenoidosa and S. obliquus culture (N. oleoabundanst cannot survive), achieving the highest biomass (2.15-2.32 g L-1) and lipids production (20.6-32.5 mg L-1·d-1). In contrast, three microalgae strains could grow suboptimally in anaerobic municipal (0.79-0.95 g L-1) and toilet (0.92-1.40 g L-1) wastewater, but showed poor performances in anaerobic swine wastewater. The growth of microalgae removed 40.9-63.4% of TOC, 83.7-96.3% of NH4+-N and 70.3-89.4% of TP in the three ADs. In addition, it was unfortunately found that the lipids content and saturation degree in fatty acids significantly decreased in ADs with sufficient nutrients. It suggests that some measures should be taken to balance biomass, lipids production and quality for cultivating microalgae in anaerobic digestates.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China.
| | - Ya-Lei Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xian-Chao Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun-Cheng Yangwang
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Yue Zou
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Jue-Ming Lu
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| |
Collapse
|
16
|
Kumar Y, Kaur S, Kheto A, Munshi M, Sarkar A, Om Pandey H, Tarafdar A, Sindhu R, Sirohi R. Cultivation of microalgae on food waste: Recent advances and way forward. BIORESOURCE TECHNOLOGY 2022; 363:127834. [PMID: 36029984 DOI: 10.1016/j.biortech.2022.127834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are photosynthetic microbes that can synthesize compounds of therapeutic potential with wide applications in the food, bioprocessing and pharmaceutical sector. Recent research advances have therefore, focused on finding suitable economic substrates for the sustainable cultivation of microalgae. Among such substrates, food derived waste specifically from the starch, meat, dairy, brewery, oil and fruit and vegetable processing industries has gained popularity but poses numerous challenges. Pretreatment, dilution of waste water supernatants, mixing of different food waste streams, utilizing two-stage cultivation and other biorefinery approaches have been intensively explored for multifold improvement in microalgal biomass recovery from food waste. This review discusses the advances and challenges associated with cultivation of microalgae on food waste. The review suggests that there is a need to standardize different waste substrates in terms of general composition, genetically engineered microalgal strains, tackling process scalability issues, controlling wastewater toxicity and establishing a waste transportation chain.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Samandeep Kaur
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Ankan Kheto
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Mohona Munshi
- Division of Food Technology, Department of Chemical Engineering, VFSTR, Guntur, A.P, India
| | - Ayan Sarkar
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
17
|
Sichel-Crespo CM, Ortiz-Montoya EY, Caicedo-Ortega NH, Machuca-Martínez F. State of microalgae-based swine manure digestate treatment: An overview. Heliyon 2022; 8:e11256. [PMID: 36353151 PMCID: PMC9638745 DOI: 10.1016/j.heliyon.2022.e11256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Global pork production has an annual growth of approximately 2.1%, and its economic and environmental impact are related with the treatment of waste in the production chain. There is little evidence of research advances to generate alternatives for using these wastes. The lack of research related to microalgae cultivation using digestate produced by porcine residues generates negative environmental impact, inadequate and inefficient technologies, low recovery and use of waste and loss of value and competitiveness in the market. The available literature focuses mainly on the treatment of anaerobic digestion liquid effluents for the removal of components, but not on the generation of value-added products. Therefore, there is a need to collect the available information, analyze it and propose other new methodologies. This article presents the information obtained from conducting a systematic review of the literature with a bibliometric and a comparative analysis; achieving an analysis of the temporal and geographical distribution, the main topics, the most influential players, the degree of maturity of the research and different strategies collected for microalgae-based swine manure digestate treatment. In this way, it was possible to capture an overview of the current state of the development of research focused on the use of digestate for the cultivation of microalgae, visualizing important aspects as the evolution of publications, identifying China and USA as the main players in research, biomass and wastewater as potential topics also Spirulina, Astaxanthin and beta-carotene as the main products based on microalgae. Thus, achieving an structure, organized and synthesized landscape of scientific and technological knowledge available for the proposal of investigations that allow the use of anaerobic digestion liquid effluents as cultivation medium for microalgae. The biometric analysis and SAN provides an overview of the evolution of technology. China and the USA are the main players in the use of digestate in microalgae cultivation. Biomass and wastewater are trending topics in the microalgal application at the near future. Spirulina, Astaxanthin and beta-carotene as the main products based on market worldwide forecasting.
Collapse
Affiliation(s)
- Claudia M. Sichel-Crespo
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia
| | - Erika Y. Ortiz-Montoya
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia,Centro BioInc, Universidad Icesi, Calle 18 No. 122–135, Cali 760031, Colombia,Corresponding author.
| | - Nelson H. Caicedo-Ortega
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad ICESI, Calle 18 No. 122-135, Cali 760031, Colombia,Centro BioInc, Universidad Icesi, Calle 18 No. 122–135, Cali 760031, Colombia
| | - Fiderman Machuca-Martínez
- Escuela de Ingeniería Química, Universidad del Valle, Calle 13 Nº100-00, Cali, Colombia,Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 Nº100-00, Cali, Colombia
| |
Collapse
|
18
|
You X, Yang L, Zhou X, Zhang Y. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. ENVIRONMENTAL RESEARCH 2022; 209:112860. [PMID: 35123965 DOI: 10.1016/j.envres.2022.112860] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
As the global economy develops and the population increases, greenhouse gas emissions and wastewater discharge have become inevitable global problems. Conventional wastewater treatment processes produce direct or indirect greenhouse gas, which can intensify global warming. Microalgae-based wastewater treatment technology can not only purify wastewater and use the nutrients in wastewater to produce microalgae biomass, but it can also absorb CO2 in the atmosphere or flue gas through photosynthesis, which demonstrates great potential as a sustainable and economical wastewater treatment technology. This review highlights the multifaceted roles of microalgae in different types of wastewater treatment processes in terms of the extent of their bioremediation function and microalgae biomass production. In addition, various newly developed microalgae cultivation systems, especially biofilm cultivation systems, were further characterized systematically. The performance of different microalgae cultivation systems was studied and summarized. Current research on the technical approaches for the modification of the CO2 capture by microalgae and the maximization of CO2 transfer and conversion efficiency were also reviewed. This review serves as a useful and informative reference for the application of wastewater treatment and CO2 capture by microalgae, aiming to provide a reference for the realization of carbon neutrality in wastewater treatment systems.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China.
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| |
Collapse
|
19
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
20
|
Kusmayadi A, Lu PH, Huang CY, Leong YK, Yen HW, Chang JS. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. CHEMOSPHERE 2022; 291:133057. [PMID: 34838828 DOI: 10.1016/j.chemosphere.2021.133057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Utilizing wastewaters as feedstock for microalgal cultivation has the dual benefits of water-saving and low nutrient costs, with simultaneous remediation of pollutants and generation of value-added biochemical products. This study employed two different strategies to treat raw dairy wastewaters with moderate and high chemical oxygen demand (COD) levels. For moderate-COD dairy wastewater, the wastewater was directly utilized as feedstock for algal cultivation, in which the effects of wastewater dilution ratios and algal inoculum sizes were investigated. The results show that the microalga strain used (Chlorella sorokiniana SU-1) was capable of obtaining a high biomass concentration of 3.2 ± 0.1 g/L, accompanied by 86.8 ± 6%, 94.6 ± 3%, and 80.7 ± 1%, removal of COD, total phosphorus (TP) and total nitrogen (TN), respectively. Meanwhile, the obtained microalgal biomass has lipids content of up to 12.0 ± 0.7% at a wastewater dilution ratio of 50% and an inoculum size of 2 g/L. For high-COD dairy wastewater, an integrated process of anaerobic digestion and microalgal phycoremediation was employed, and the effect of inoculum sizes was also studied. The inoculum size of 2 g/L gave highest biomass production of 4.25 ± 0.10 g/L with over 93.0 ± 2.0% removal of COD, TP, and TN. The harvested microalgal biomass has lipids and protein content of 12.5 ± 2.2% and 18.0 ± 2.2%, respectively. The present study demonstrated potential microalgal phycoremediation strategies for the efficient COD removal and nutrients recovery from dairy wastewater of different COD levels with simultaneous production of microalgal biomass which contains valuable components, such as protein and lipids.
Collapse
Affiliation(s)
- Adi Kusmayadi
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Po-Han Lu
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan.
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
Al-Mallahi J, Ishii K. Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114266. [PMID: 34906810 DOI: 10.1016/j.jenvman.2021.114266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion is a well-established process that is applied to treat organic wastes and convert the carbon to valuable methane gas as a source of energy. The digestate that comes out as a by-product is of a great challenge due to its high nutrient content that can be toxic in case of improper disposal to the environment. Several attempts have been done to valorize this digestate. Digestate has been considered as an interesting medium to cultivate microalgae. The nutrients available in the digestate, mainly nitrogen and phosphorus, can be an interesting supplement for microalgae growth requirement. The main obstacles of using digestate as a medium to cultivate microalgae are the dark color and the high ammonium-nitrogen concentration. The focus of this review is to discuss in detail the major attempts in research to overcome inhibition and enhance microalgae cultivation in digestate. This review initially discussed the obstacles of digestate as a medium for microalgae cultivation. Different processes to overcome inhibition were discussed including dilution, supplying additional carbon source, favoring mixotrophic cultivation and pretreatment. More emphasis in this review was given to digestate pretreatment. Among the pretreatment methods, filtration, and centrifugation were of the most applied ones. These strategies were found to be effective for turbidity and chromaticity reduction. For ammonium nitrogen removal, ammonia stripping and biological pretreatment methods were found to play a vital role. Adsorption could work both ways depending on the material used. Combining different pretreatment methods as well as including selected microalgae stains were found interesting strategies to facilitate microalgae cultivation with no dilution. This study recommend that more study should investigate the optimization of microalgae cultivation in anaerobic digestate without the need for dilution.
Collapse
Affiliation(s)
- Jumana Al-Mallahi
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kazuei Ishii
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
22
|
Enhancement of ammonium removal from landfill leachate using microalgae by an integrated strategy of nutrient balance and trophic mode conversion. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Qin L, Wang B, Feng P, Cao Y, Wang Z, Zhu S. Treatment and resource utilization of dairy liquid digestate by nitrification of biological aerated filter coupled with assimilation of Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3406-3416. [PMID: 34389951 DOI: 10.1007/s11356-021-15903-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Ammonia inhibition is considered a key issue when using liquid digestate for microalgae cultivation. To study the effect of pretreatment with a biological aerated filter (BAF) on microalgae culture with dairy liquid digestate, nitrification characteristics of BAFs under different hydraulic retention time (HRT) and the growth characteristics of Chlorella pyrenoidosa in effluents of BAFs were investigated. Results showed that the BAFs can rapidly nitrify ammonia nitrogen and significantly improve the light transmittance of liquid digestate (the maximum promotion rate was ~260%), and the effect improved as the HRT increased. Pretreatment of liquid digestate with BAFs can eliminate ammonia inhibition for C. pyrenoidosa. Furthermore, lipid, crude protein, and higher heating value (HHV) output were also not affected by HRT. The similar removal of nitrate nitrogen in microalgae culture systems using effluents with 6-h and 12-h HRT (21.59% and 21.07%, respectively) were recorded. The results suggested that BAF coupled with microalgae culture is a novel option on the resource utilization of dairy liquid digestate.
Collapse
Affiliation(s)
- Lei Qin
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bo Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pinzhong Feng
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yinghan Cao
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Zhongming Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Shunni Zhu
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
24
|
P S, F C I, M B, C C. C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:266-272. [PMID: 34717214 DOI: 10.1016/j.wasman.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recovery of high added value compound from waste stream is fundamental to keep biotechnological processes sustainable. In this study, anaerobic digestion of two highly produced organic waste was integrated with microalgae-based processes both to treat liquid digestate and recover high value compounds. Chlorella vulgaris growth was assessed for lipids accumulation and subsequent recovery, using two types of digestate: organic waste and sewage sludge digestate (DIG-OFMSW) and wine lees digestate (DIG-WL). Growth tests were carried out in batch mode and results showed a slightly higher final biomass concentration from DIG-WL (1.36 ± 0.09 g l-1) compared to DIG-OFMSW (1.05 ± 0.13 g l-1) and a clearly different lipids accumulation yield (28.86 ± 0.05% in DIG-WL compared to 6.1 ± 0.2% of DIG-OFMSW, on total solids). Lipid characterization showed a high oleic acid accumulation (69.52 ± 0.50%w/w in DIG-WL) that positively influence biodiesel properties and a low linolenic acids content (below 0.30%w/w) that comply with European law EN14214 for biodiesel (linolenic acid content lower than 12%w/w). In addition, due to the high concentration of palmitic and stearic acids detected at the end of test, this oil can be used as new substrate to produce stearin, normally produced from palm oil.
Collapse
Affiliation(s)
- Scarponi P
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Izzo F C
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Bravi M
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Cavinato C
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| |
Collapse
|
25
|
Hu D, Zhang J, Chu R, Yin Z, Hu J, Kristianto Nugroho Y, Li Z, Zhu L. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. BIORESOURCE TECHNOLOGY 2021; 342:126003. [PMID: 34571333 DOI: 10.1016/j.biortech.2021.126003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, landfill leachate was pre-treated with NaClO, and then diluted to 5%, 10% and 15% for microalgae growth of Chlorella vulgaris and Scenedesmus dimorphus in the mono- and co-culture modes to investigate the nutrient removal and growth characteristics of microalgae. The results revealed that landfill leachate with the 10% dilution rate was conducive for microalgae growth and exhibited robust biomass growth and the highest nutrient removal efficiency. The co-culture biomass in 10% landfill leachate achieved 0.266 g/L within 10 days and demonstrated the improved nutrient utilisation efficiency of microalgae. In addition, the chemical oxygen demand, ammonia nitrogen, total nitrate and total phosphorus removal efficiencies accordingly reached 81.0%, 80.1%, 72.1% and 86.0% in 10% landfill leachate. Meanwhile, both the enzyme activity and fluorescence parameters proved that the cell activity of co-culture was higher than that of mono-culture.
Collapse
Affiliation(s)
- Dan Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Jiaxing Zhang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Ruoyu Chu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Jiangjun Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | | | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
26
|
Wang Q, Cherones J, Higgins B. Acclimation of an algal consortium to sequester nutrients from anaerobic digestate. BIORESOURCE TECHNOLOGY 2021; 342:125921. [PMID: 34543821 DOI: 10.1016/j.biortech.2021.125921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The objective of this research was to investigate the growth, community composition, and digestate treatment performance of a local algae consortium that was adapted to bacteria-pretreated digestate. The approach was to subculture a local consortium on pretreated dairy manure digestate and then municipal wastewater sludge digestate, allowing the community to adapt before assessing its performance. The adapted consortium was then tested for growth and nutrient removal performance on the digestates and compared to the model organism, Chlorella sorokiniana. Dramatic restructuring of the consortium took place when subcultured on the digestates with Scenedesmaceae and Chlorellaceae almost completely replacing Euglena. The consortium was consistently less productive than C. sorokiniana (184 vs. 248 mg/L/d in dairy digestate and 32 vs. 48 mg/L/d in municipal digestate, P < 0.01). Pretreatment increased growth by 81% and 500% for C. sorokiniana and the consortium, respectively, in dairy digestate (P < 0.01), and allowed for algal growth in municipal digestate.
Collapse
Affiliation(s)
- Qichen Wang
- Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jessa Cherones
- Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Brendan Higgins
- Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
27
|
Tan XB, Wang L, Wan XP, Zhou XN, Yang LB, Zhang WW, Zhao XC. Growth of Chlorella pyrenoidosa on different septic tank effluents from rural areas for lipids production and pollutants removal. BIORESOURCE TECHNOLOGY 2021; 339:125502. [PMID: 34304097 DOI: 10.1016/j.biortech.2021.125502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Septic tank effluent from rural areas was an ideal medium for cultivating oleaginous microalgae. However, the characteristics of septic tank effluents varied greatly due to the different incoming wastewater, and bring uncertain risks for algal growth. In this study, an oleaginous microalgae was cultivated in septic effluents from different mixed wastewater. The results showed that the effluent from pure toilet wastewater was the best medium to achieve the highest biomass yield (1.68 g·L-1) and productivity (154.6 mg·L-1·d-1). In contrast, the discharge of kitchen or laundry wastewater reduced the biomass production by 50.5-79.1%. That caused much lower lipids production in effluents from mixed wastewater regardless of its high lipids content and saturation degree. The results suggest that the discharge of kitchen or laundry wastewater bring risks for biomass and lipids production, and should be separated from the toilet wastewater before entering into septic tank.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Lu Wang
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Xi-Ping Wan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Xiao-Ni Zhou
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wen-Wen Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xian-Chao Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Resources Reuse for Agricultural and Livestock Waste, Hunan Key Laboratory of Water Safety Discharge in Urban and Its Resource Utilization, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China.
| |
Collapse
|
28
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Yirgu Z, Leta S, Hussen A, Khan MM, Aragaw T. Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon 2021; 7:e07115. [PMID: 34136690 PMCID: PMC8178074 DOI: 10.1016/j.heliyon.2021.e07115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022] Open
Abstract
The use of wastewater as a nutrient source for microalgae cultivation is considered as a cost-effective approach for algal biomass and biofuel production. The microalgal biomass contains carbohydrates that can be processed into bioethanol through different extraction methods. The objective of this study is to optimize the microwave-assisted extraction (MAE) of carbohydrates from the indigenous Scenedesmus sp. grown on brewery effluent. Optimization of independent variables, such as acid concentration (0.1–5 N), microwave power (800–1200 W), temperature (80–180 °C) and extraction time (5–30 min) performed by response surface methodology. It was found that all independent variables had a significant and positive effect on microwave-assisted carbohydrate extraction. The quadratic model developed on the basis of carbohydrate yield had F value of 112.05 with P < 0.05, indicating that the model was significant to predict the carbohydrate yield. The model had a high value of R2 (0.9899) and adjusted R2 (0.9811), indicating that the fitted model displayed a good agreement between the predicted and actual carbohydrate yield. An optimum carbohydrate yield obtained was 260.54 mg g−1 under the optimum conditions of acid concentration (2.8 N), microwave power (1075 W), temperature (151 °C) and extraction time (22 min). The validation test showed that the model has adequately described the microwave-assisted extraction (MAE) of carbohydrates from microalgal biomass. This study demonstrated that the indigenous Scenedesmus sp. grown on brewery effluent provides a promising result in carbohydrate production for bioethanol feedstock.
Collapse
Affiliation(s)
- Zenebe Yirgu
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Environmental Science, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Seyoum Leta
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ahmed Hussen
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Temesgen Aragaw
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
30
|
Zheng S, Chen S, Zou S, Yan Y, Gao G, He M, Wang C, Chen H, Wang Q. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. BIORESOURCE TECHNOLOGY 2021; 321:124428. [PMID: 33272824 DOI: 10.1016/j.biortech.2020.124428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Pyropia-processing wastewater (PPW) contains diverse organic nutrients and causes environmental pollution. To explore the nutrient removal efficiency and growth performance of Chlorella sp. on PPW, the cultures were conducted in different culture substrates. Results showed that, after 7 days of incubation, the removal rates of total nitrogen (TN), total phosphorus (TP) and phycobiliprotein (PP) all reached more than 90% by cultivating Chlorella sp. C2 and C. sorokiniana F-275 in PPW. The chemical oxygen demand (COD) removal efficiencies could be over 50%. Meanwhile, the increments of biomass in two tested Chlorella strains were 1.39 and 4.89 times higher than those of BG11 and BBM substrates and the increases in lipid productivity were 1.34 and 10.18- fold, respectively. The C18:3 fatty acid proportions were markedly reduced by 27.89% and 29.10%. These results suggest that Chlorella sp. could efficiently reduce various nutrients in PPW and simultaneously accumulate higher biomass with higher biodiesel characteristics.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shanyi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yiwen Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
31
|
Zhang L, Loh KC, Kuroki A, Dai Y, Tong YW. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123543. [PMID: 32739727 DOI: 10.1016/j.jhazmat.2020.123543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This review aims to encourage the technical development of microbial biodiesel production from industrial-organic-wastes-derived volatile fatty acids (VFAs). To this end, this article summarizes the current status of several key technical steps during microbial biodiesel production, including (1) acidogenic fermentation of bio-wastes for VFA collection, (2) lipid accumulation in oleaginous microorganisms, (3) microbial lipid extraction, (4) transesterification of microbial lipids into crude biodiesel, and (5) crude biodiesel purification. The emerging membrane-based bioprocesses such as electrodialysis, forward osmosis and membrane distillation, are promising approaches as they could help tackle technical challenges related to the separation and recovery of VFAs from the fermentation broth. The genetic engineering and metabolic engineering approaches could be applied to design microbial species with higher lipid productivity and rapid growth rate for enhanced fatty acids synthesis. The enhanced in situ transesterification technologies aided by microwave, ultrasound and supercritical solvents are also recommended for future research. Technical limitations and cost-effectiveness of microbial biodiesel production from bio-wastes are also discussed, in regard to its potential industrial development. Based on the overview on microbial biodiesel technologies, an integrated biodiesel production line incorporating all the critical technical steps is proposed for unified management and continuous optimization for highly efficient biodiesel production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
32
|
Yang L, Ren L, Tan X, Chu H, Chen J, Zhang Y, Zhou X. Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. BIORESOURCE TECHNOLOGY 2020; 315:123738. [PMID: 32659423 DOI: 10.1016/j.biortech.2020.123738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Microalgae-based technology is an environmental-friendly and cost-effective method for biofuel production and pollutants removal. In this study, Scenedesmus obliquus (S. obliquus) was cultured with varying concentrations of ofloxacin (OFL) in BG11 medium. In the algae-antibiotics culture system, S. obliquus could effectively remove OFL with a concentration of 10 mg/L; however, the removal efficiency was restricted under higher doses (20-320 mg/L). Meanwhile, the lipid content significantly increased by 21.10-49.63%, which was caused by carbon being converted from carbohydrate to lipid. The greatest lipid productivity (7.53 mg/L/d) occurred at an OFL concentration of 10 mg/L, which was approximately 1.5-fold greater than the control. Moreover, S. obliquus cultured with OFL was able to improve the biodiesel quality due to an increase of saturated fatty acids and a decrease of unsaturated fatty acids. This study demonstrates that an algae-antibiotics system is a promising solution to simultaneously achieve antibiotics removal and biofuel production.
Collapse
Affiliation(s)
- Libin Yang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Li Ren
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Xiaobo Tan
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environment Sciences, Hunan University of Technology, Hunan Province 412007, China
| | - Huaqiang Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
33
|
Jeong D, Jang A. Exploration of microalgal species for simultaneous wastewater treatment and biofuel production. ENVIRONMENTAL RESEARCH 2020; 188:109772. [PMID: 32544724 DOI: 10.1016/j.envres.2020.109772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Microalgal isolates obtained from stream water and wastewater treatment plant were examined to select a suitable microalgal species capable of simultaneously removing nutrient and producing biofuel. Ten isolates were identified using internal transcribed spacer (ITS) region sequencing analysis and were determined to be green microalgae, belonging to phylum Chlorophyta. The highest nutrient removal rates of 8.1 mg-T-N/L-d and 1.6 mg-T-P/L-d were achieved by Chlorella sorokiniana UTEX 1810 under photo-autotrophic cultivation conditions. Fatty acid methyl ester (FAME) composition analysis was conducted to estimate biofuel quality using gas chromatography with mass spectrometry on the basis of the lipid content extracted from microalgal cell. The composition of FAME is mainly composed of palmitic acid (C16:0), stearic acid (C18:0), linoleic acid (C18:2), and heneicosanoic acid (C21:0). These results suggest that C. sorokiniana UTEX 1810 is a promising candidate for simultaneous removal of nutrient and biofuel production from wastewater.
Collapse
Affiliation(s)
- Dawoon Jeong
- Institute of Environmental Research, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
34
|
Singh A, Ummalyma SB, Sahoo D. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent. BIORESOURCE TECHNOLOGY 2020; 307:123233. [PMID: 32240927 DOI: 10.1016/j.biortech.2020.123233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
This work evaluated the potential of microalgae of Chlorella sp., SL7A, Chlorococcum sp., SL7B and Neochloris sp.,SK57 cultivated in river water contaminated with pharmaceutical effluent for biomass and lipid production. It has been observed that fast growing algae in this medium is Neochloris sp.SK57. Maximum biomass and lipid yield was obtained from Neochloris sp. SK57 (0.52 g/l) and Chlorococcum sp. SL7B (0.129 g/l)along with drycell weight of lipid was 28%.The increased in biomass and lipid in this media is could due to assimilation of organic nutrients and stress due to other components present in the river water. Fatty acid profile of algal biomass showed that saturated fatty acids production is enhanced in oils of Neochloris sp. SK57, and its suitability in food and fuel applications. Water quality of the river water was monitored before and after algal cultivation. Results showed that quality of river water was improved after algal cultivation.
Collapse
Affiliation(s)
- Anamika Singh
- Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Govt. of India, Sikkim Centre, Tadong, Gangtok-737102, Sikkim, India
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Govt. of India, Sikkim Centre, Tadong, Gangtok-737102, Sikkim, India.
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Govt. of India, Sikkim Centre, Tadong, Gangtok-737102, Sikkim, India; Present Address: Department of Botany, University of Delhi, Delhi-110007, India
| |
Collapse
|
35
|
Chuka-ogwude D, Ogbonna J, Moheimani NR. A review on microalgal culture to treat anaerobic digestate food waste effluent. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101841] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Cui H, Ma H, Chen S, Yu J, Xu W, Zhu X, Gujar A, Ji C, Xue J, Zhang C, Li R. Mitigating excessive ammonia nitrogen in chicken farm flushing wastewater by mixing strategy for nutrient removal and lipid accumulation in the green alga Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2020; 303:122940. [PMID: 32044649 DOI: 10.1016/j.biortech.2020.122940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/21/2023]
Abstract
This study aimed to evaluate algal growth, lipid production, and nutrient removal in chicken farm flushing wastewater (CFFW). The excessive ammonia nitrogen (EAN) content in the CFFW wastewater represented a major factor limiting the algal growth. A strategy of mixing CFFW with municipal wastewater (MW) that contained less ammonia nitrogen was adopted. The results showed that the mixed wastewaters reduced ammonia nitrogen content, balanced nutrient profile, and promoted biomass production. The residual nutrients in mixed wastewaters were significantly reduced due to the algal absorption. Furthermore, alga grown on mixed wastewaters accumulated a higher level of total lipids and monounsaturated fatty acids that can be used for biodiesel production. The key issue of low biomass yield of algal grown on CFFW due to the inhibition of EAN was efficiently resolved by mitigating limiting factor to algal growth basing on mixing strategy, and accordingly the nutrients in the wastewater were significantly removed.
Collapse
Affiliation(s)
- Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Haotian Ma
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Shuaihang Chen
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Jie Yu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Wen Xu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoli Zhu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Asadullah Gujar
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Chunhui Zhang
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
37
|
Moungmoon T, Chaichana C, Pumas C, Pathom-Aree W, Ruangrit K, Pekkoh J. Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136577. [PMID: 31982736 DOI: 10.1016/j.scitotenv.2020.136577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Microalgal biomass is often used as a raw material in methane production. Some microalgae possess a complex cell-wall structure which has a low degradability of microorganisms in anaerobic digestion. However, some microalgae produce glycolate, which is excreted outside the cell and can be used to produce methane under anaerobic condition. This research aims to investigate microalgal cultivation using wastewater to reduce nutrients and efficiently create glycolate. Two strains of microalgae (Acutodesmus sp. AARL G023, Chlorella sp. AARL G049) and two microalgal consortia were cultivated at dilutions of 0.5-fold (W50), 0.75-fold (W75) and undiluted wastewater (W100). The results showed that the microalgal consortium with undiluted wastewater (WCW100) consisted of Leptolyngbya sp. (30.4%), Chlorella sp. (16.1%) and Chlamydomonas sp. (52.2%), revealed the highest biomass productivity at 64.38 ± 14.54 mg·L-1·d-1 and the highest glycolate productivity at 5.12 ± 0.48 mmol·L-1·d-1. The cultivation of microalgae effectively reduced ammonium‑nitrogen (NH4+-N) and soluble reactive phosphorus (SRP) levels in the wastewater at 43.5 ± 1.3% and 49.6 ± 6.9%. Furthermore, WCW100 showed the highest biogas productivity at 1.44 ± 0.07 mL·g-1·d-1 and the highest methane content at 58.3 ± 6.0% v/v. This study indicates that there is a definite potential of using undiluted wastewater for microalgal biomass production and glycolate production that can reduce the wastewater volume and be applied as a raw material for methane production.
Collapse
Affiliation(s)
- Thoranit Moungmoon
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchawan Chaichana
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
38
|
Nakai S, Oktavitri NI, Itamura N, Okuda T, Nishijima W, Matsumoto M. Use of Anaerobic Digestion Effluent and Secondary Treated Sewage Plant Discharge for Algal Cultivation and Prevention of Algal Pond Crash. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Satoshi Nakai
- Graduate School of Engineering, Hiroshima University
| | | | | | - Tetsuji Okuda
- Environmental Research Management Center, Hiroshima University
| | | | | |
Collapse
|
39
|
Wu KC, Yau YH, Sze ETP. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. MARINE POLLUTION BULLETIN 2020; 153:111007. [PMID: 32275554 DOI: 10.1016/j.marpolbul.2020.111007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Food waste constitutes the largest component of municipal solid waste in many urbanized societies. The current practice of disposing of biodegradable food waste mixed with other solid wastes to landfills is not sustainable and is environmentally undesirable. Moreover, the leakage of nutrient-rich food waste leachate (FWL) impacts the environment by eutrophication of the water body. Two robust microalgal species, Dunaliella tertiolecta (D. tertiolecta) and Cyanobacterium aponinum (C. aponinum), have been selected previously for the treatment of FWL because they can tolerate diluted FWL. However, growth suppression by some inhibiting factors, such as total suspended solids and organic nitrogen, limited biomass productivity, and substantial dilution (5-10% v/v FWL) was required. To alleviate this suppression, anaerobic bacterial digestion was proposed to pretreat FWL and convert certain nutrients such as organic nitrogen to ammonium. The pretreatment was optimized in neutral to slightly alkaline media, where a byproduct of biomethane up to 4.67 L methane/kg COD was produced. In addition, digestate after anaerobic ammonification can provide sufficient inorganic nutrients for subsequent microalgal biofuel production. Through batch cultivation, 50% (v/v) of anaerobic bacterial pretreated FWL digestate can be fed to D. tertiolecta, with biomass productivity of up to 0.88 g/L/day, and biomass productivity can be increased to 0.34 g/L/day for C. aponinum at 30% FWL digestate. Regarding the nutrient removal efficiency, 98.99% of total nitrogen and 65% of total phosphorus can be removed by D. tertiolecta, whereas more than 80% of total nitrogen and 65% of total phosphorus can be removed by C. aponinum. The use of anaerobic bacterial ammonification pretreatment can significantly improve the performance of subsequent microalgal treatments and has been shown to be a sustainable green technology for biofuel production and FWL recycling.
Collapse
Affiliation(s)
- Kam-Chau Wu
- School of Science and Technology, The Open University of Hong Kong, Hong Kong
| | - Yiu-Hung Yau
- School of Science and Technology, The Open University of Hong Kong, Hong Kong
| | - Eric Tung-Po Sze
- School of Science and Technology, The Open University of Hong Kong, Hong Kong.
| |
Collapse
|
40
|
Tan XB, Meng J, Tang Z, Yang LB, Zhang WW. Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. CHEMOSPHERE 2020; 244:125509. [PMID: 31812770 DOI: 10.1016/j.chemosphere.2019.125509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 05/09/2023]
Abstract
Anaerobically digested waste sludge contains very high concentrations of ammonium and phosphate that are difficult to be purified using traditional processes. Mixotrophic culture of microalgae is a potential way to achieve ammonium and phosphate removal, while harvesting considerable biomass for biodiesel production. In this study, four typical volatile organic acids that could be potentially produced from sludge fermentation were tested for algal mixotrophic culture in anaerobically digested waste sludge. The results showed that the addition of propionate and isovaleric acid had no significant improvement on biomass production, and even inhibited algal growth at low concentration. Fortunately, the addition of acetic and n-butyric acid (initial C/N = 10) increased biomass production by1.9-2.4 times compared to the blank culture. Higher biomass production increased ammonium and orthophosphate removal to 88.3-97.1% and 80.4-93.0%, respectively. Moreover, the optimal addition of volatile organic acids enhanced lipids production by 3.9-6.3 times, while achieving higher saturation degree in biodiesels. The results suggest that adding these optimal volatile organic acids is suitable to enhance nutrients recycling and algal biodiesel production from anaerobically digested waste sludge.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China.
| | - Jing Meng
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Zhuo Tang
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen-Wen Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
41
|
Lipid Induction in Scenedesmus abundans GH-D11 by Reusing the Volatile Fatty Acids in the Effluent of Dark Anaerobic Fermentation of Biohydrogen. Appl Biochem Biotechnol 2020; 191:258-272. [DOI: 10.1007/s12010-020-03294-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
|
42
|
Tan XB, Yang LB, Zhang WW, Zhao XC. Lipids production and nutrients recycling by microalgae mixotrophic culture in anaerobic digestate of sludge using wasted organics as carbon source. BIORESOURCE TECHNOLOGY 2020; 297:122379. [PMID: 31735698 DOI: 10.1016/j.biortech.2019.122379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Insufficient organics in anaerobic digestate of sludge limited algal mixotrophic culture and caused low lipids production. In this study, enhancing lipids production and pollutants removal by adding acidified starch wastewater was tested for Chlorella pyrenoidosa mixotrophic culture. The results showed that an optimal addition of acidified starch wastewater into anaerobic digestate of sludge (1:1, v/v) improved biomass and lipids production by 0.5-fold (to 2.59 g·L-1) and 3.2-fold (87.3 mg·L-1·d-1), respectively. The acidified starch wastewater addition also improved the quality of algal biodiesel with higher saturation (typically in C16:0 and C18:0). In addition, 62% of total organic carbon, 99% of ammonium and 95% of orthophosphate in mixed wastewater were effectively removed by microalgae. This study provides a promising way to improve biodiesel production and nutrients recovery from anaerobic digestate of sludge using waste carbon source.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wen-Wen Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xian-Chao Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China.
| |
Collapse
|
43
|
Sobhi M, Guo J, Cui X, Sun H, Li B, Aboagye D, Shah GM, Dong R. A promising strategy for nutrient recovery using heterotrophic indigenous microflora from liquid biogas digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:492-501. [PMID: 31301490 DOI: 10.1016/j.scitotenv.2019.06.487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Nutrient overloading resulting from digestate (effluent of anaerobic digestion process) application has become a major bottleneck for the development of the biogas industry and raised environmental concerns in regions with intensive animal husbandry. Due to this, it is imperative to find low cost and effective alternative to export nutrient from digestate. Among the numerous applications, indigenous microflora has recently been utilized successfully as a biofloc technology in aquatic systems for controlling ammonia and subsequent reduction of feeding cost. Accordingly, performance of the indigenous microflora in undiluted liquid digestate of chicken manure was evaluated in this study to recover nutrients and produce high-value biomass under aerobic heterotrophic mode in batch shaking experiments. The results showed that 68% of phosphate was recovered and 97% of total nitrogen was removed from the liquid digestate. Additionally, >6 g L-1 of dry biomass was simultaneously produced and featured with up to 65% crude protein without pathogens, 10.9% lipids, 10.7% ash and 19.6 MJ kg-1 gross energy. Therefore, the produced biomass could be used either as an alternative sustainable source for animal or fish feeding or as a substrate for energy applications.
Collapse
Affiliation(s)
- Mostafa Sobhi
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| | - Xian Cui
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Dominic Aboagye
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
44
|
Ülgüdür N, Ergüder TH, Demirer GN. Simultaneous dissolution and uptake of nutrients in microalgal treatment of the secondarily treated digestate. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1107-1126. [PMID: 31412448 DOI: 10.1016/j.scitotenv.2019.06.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 05/20/2023]
Abstract
Considerable research activities are underway involving microalgae species in order to treat industrial wastewater to address the waste-to-bioenergy economy. Several studies of wastewater treatment using microalgae have been primarily focused on removal of key nutrients such as nitrogen and phosphorus. Although the use of wastewater would provide nutrients and water for microalgae growth, the whole process is even more complex than the conventional microalgae cultivation on freshwater media. The former one adds several gridlocks to the system. These gridlocks are surplus organic and inorganic nutrients concentration, pH of wastewater, wastewater color, total dissolved solids (TDS), microbial contaminants, the scale of photobioreactor, batch versus continuous system, harvesting of microalgae biomass etc. The present review discusses, analyses, and summarizes key aspects involved in the treatment of wastewaters from distillery, food/snacks product processing, and dairy processing industry using microalgae along with sustainable production of its biomass. This review further evaluates the bottlenecks for individual steps involved in the process such as pretreatment of wastewater for contaminants removal, concentration tolerance/dilutions, harvesting of microalgae biomass, and outdoor scale-up. The review also describes various strategies to optimize algal biomass and lipid productivities for various wastewater and photobioreactor type. Moreover, the review emphasizes the potential of co-cultivation of microorganism such as yeast and bacteria along with microalgae in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Suvidha Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sanjay B Pawar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - R A Pandey
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
46
|
Qiu Y, Zu Y, Song C, Xie M, Qi Y, Kansha Y, Kitamura Y. Soybean processing wastewater purification via Chlorella L166 and L38 with potential value-added ingredients production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Zhao XC, Tan XB, Yang LB, Liao JY, Li XY. Cultivation of Chlorella pyrenoidosa in anaerobic wastewater: The coupled effects of ammonium, temperature and pH conditions on lipids compositions. BIORESOURCE TECHNOLOGY 2019; 284:90-97. [PMID: 30927652 DOI: 10.1016/j.biortech.2019.03.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic wastewater potentially was an ideal medium for cultivating microalgae. The coupled effect of ammonium, temperature and pH on lipids accumulation was a core issue during algal culture using anaerobic wastewater. Therefore, their combined effects on Chlorella pyrenoidosa culture and lipids accumulation in anaerobic effluent were investigated. Free ammonia induced from the rising pH and temperature inhibited algal growth, but significantly promoted lipid accumulation. The highest lipids content reached 30.2% when pH rose to 8.3-8.5 (25 °C, ammonium 280 mg/L), which was 1.6-fold higher than that under neutral condition. Moreover, the percentage of unsaturated fatty acids (un-SFAs) increased to 74.8-77.9% at pH 8.3-8.5, whereas it was only 56.1-58.9% under neutral condition. The C18:2 and C18:3 dominated the un-SFAs increase at high pH, typically the percentage of C18:3 increased by 74.5-153.1%. This study provides a potential way for lipid accumulation in algal culture using anaerobic wastewater.
Collapse
Affiliation(s)
- Xian-Chao Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China.
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jian-Yu Liao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| | - Xiao-Yong Li
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province 412007, China
| |
Collapse
|
48
|
Luo L, Ren H, Pei X, Xie G, Xing D, Dai Y, Ren N, Liu B. Simultaneous nutrition removal and high-efficiency biomass and lipid accumulation by microalgae using anaerobic digested effluent from cattle manure combined with municipal wastewater. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:218. [PMID: 31528206 PMCID: PMC6739908 DOI: 10.1186/s13068-019-1553-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/28/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microalgae as a viable biodiesel feedstock show great potential to approach the challenges of energy shortage and environment pollution, but their economic feasibility was seriously hampered by high production cost. Thus, it is in urgent need to reduce the cost of cultivation and improve the biomass and lipid production of microalgae. In this work, anaerobic digestion effluent from cattle manure combined with municipal wastewater was used as a cost-effective medium for cultivating microalgae and expected to obtain high biomass. The pretreatment of anaerobic digested effluent containing dilution rate, sterilization and nutrient optimization was investigated. Then, initial pH and light intensity for algal growth, lipid production and wastewater purification were optimized in this study. RESULTS Scenedesmus sp. could grow rapidly in 10% anaerobic digestion effluent from cattle manure combined with secondary sedimentation tank effluent without sterilization. Optimum nutrient additives for higher biomass were as follows: glucose 10 g/L, NaNO3 0.3 g/L, K2HPO4·3H2O 0.01 g/L, MgSO4·7H2O 0.075 g/L and trace element A5 solution 1 mL/L. Biomass of 4.65 g/L and lipid productivity of 81.90 mg/L/day were achieved during 7-day cultivation accompanying over 90% of COD, NO3 --N, NH4 +-N, and 79-88% of PO4 3--P removal with optimized initial pH of 7.0 and light intensity of 5000 l×. The FAME profile in ADEC growth medium consisted in saturated (39.48%) and monounsaturated (60.52%) fatty acids with the 16- to 18-chain-length fatty acids constituting over 98% of total FAME. CONCLUSIONS This study proves the potential of anaerobic digested effluent combined with municipal wastewater for microalgae culture, and provides an effective avenue for simultaneous microalgal lipid production and treatment of two kinds of wastewater.
Collapse
Affiliation(s)
- Lin Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Hongyu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Xuanyuan Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Yingqi Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| |
Collapse
|
49
|
Nutrient removal from high strength nitrate containing industrial wastewater using Chlorella sp. strain ACUF_802. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1400-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Simulation study on comparison of algal treatment to conventional biological processes for greywater treatment. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|