1
|
Wani PA, Wani TA, Olajumoke Oluwagbemisola OS, Alotaibi RN, Fawzhia SJ, Zargar S, Ahmed B. Green Synthesized Antimicrobial Peptides and Nanoparticles from Phoenix dactylifera: Evaluation of Anti-biofilm, Anti-Pathogenic and Anti-diabetic Activities. Microb Pathog 2025:107700. [PMID: 40368068 DOI: 10.1016/j.micpath.2025.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
In recent years, an increasing demand for medicinal plants to control diseases for human well being has resulted in the usage of such plants in our society. Current study aims to determine the role of antimicrobial peptides and nanoparticles synthesized by aqueous extract of date fruit palm as antimicrobial, anti-pathogenic, anti-diabetic agents and their effect on hematological parameters. A total of 32 chemical compounds, 21 unique antimicrobial peptides (proteins) and 10 low molecular weight antioxidant peptides were identified in the aqueous extract of Phoenix dactylifera. FT-NMR analysis of the plant extract also revealed presence of various antimicrobial compounds in aqueous extract of Phoenix dactylifera. The aqueous extract of Phoenix dactylifera showed significantly higher antimicrobial and anti-biofilm activities due to the synthesis of antimicrobial peptides (proteins) and nanoparticles such as selenium and titanium. Synthesis of antimicrobial peptides and nanoparticles damaged intracellular and extracellular structure of microbes by breaking functional groups of Pseudomonas aeruginosa. In the absence of extract, Pseudomonas aeruginosa expressed multiple pathogenic proteins; however almost all of these proteins were inhibited when Pseudomonas aeruginosa was treated with aqueous extract of date fruit palm. During metabolism, reactive oxygen species are produced and subsequently detoxified by low molecular weight antioxidant peptides and nanoparticles such as selenium and titanium found in Phoenix dactylifera. Blood glucose level significantly (80.4 mg/dl on day 5, 69.6 mg/dl on day 15) reduced in albino rats when fed with aqueous extract (300 mg/kg body weight) and alloxan (100 mg/kg body weight) compared to control rats (which did not receive alloxin) and rats fed with alloxan (100 mg/kg body weight) at day 5 and day 15. Antioxidant levels significantly increased in presence of aqueous extracts. The aqueous extract of date palm fruit significantly decreased hematological parameters in albino rats compared to control groups, in a dose-dependent manner. Duncan's multiple range test confirmed effect of extracts of Phoenix dactylifera were significantly (p<0.05) different for each measured parameter. These results confirmed that Phoenix dactylifera synthesized antimicrobial peptides and nanoparticles, which showed Phoenix dactylifera as an alternative medicine for treating various diseases.
Collapse
Affiliation(s)
- Parvaze Ahmad Wani
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Ogun State, Nigeria.
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | | | - Reem Naseer Alotaibi
- Department of Biochemistry, College of Sciences, King Saud University, P.O. Box 22452.Riyad 11451, Saudi Arabia
| | - Sanusi Jadesola Fawzhia
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Ogun State, Nigeria
| | - Seema Zargar
- Department of Biochemistry, College of Sciences, King Saud University, P.O. Box 22452.Riyad 11451, Saudi Arabia
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongan, 38541, Republic of Korea; Current Address: Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Chai R, Guo J, Yang C, Zhu D, Li T, Yang W, Liu X, Chen X, Huang S, Wang H, Yao X, Gao Y, Qiu L. Enhanced chemotaxis and degradation of nonylphenol in Pseudoxanthomonas mexicana via CRISPR-mediated receptor modification. Sci Rep 2025; 15:14296. [PMID: 40274871 PMCID: PMC12022248 DOI: 10.1038/s41598-025-97273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
In this study, a novel nonylphenol (NP)-degrading bacterium, Pseudoxanthomonas mexicana CH, was isolated from wastewater treatment plant effluent. Phylogenetic analysis showed its close relationship to P. mexicana AMX 26BT. The strain displayed chemotaxis toward NP, with Mcp24 as the key chemoreceptor. The Mcp24 deletion mutant (CH- 1) had weaker chemotaxis and NP degradation (over 30% lower in solution and 8% lower in sludge than the wild type). In vitro, Mcp15's C-terminal pentapeptide DWQEF was methylated by CheR. Using CRISPR, this pentapeptide was added to Mcp24 to create CH- 2. CH- 2 showed better NP chemotaxis (17% higher in plate assays and 39% higher in capillary assays) and higher NP degradation rates (23.5% and 24.2% higher in solution and sludge, respectively). These findings demonstrate that NP acts as a bacterial chemoattractant, with Mcp24 as the receptor. Enhancing Mcp24's C-terminal pentapeptide improves chemotaxis and degradation efficiency, representing a significant advancement in bioremediation by strengthening bacterial responses to pollutants.
Collapse
Affiliation(s)
- Ran Chai
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxiang Guo
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chuanzhong Yang
- Huaxia Bishui Environmental Protection Technology Co., Ltd, Zhengzhou, 450047, China
| | - Dan Zhu
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Tao Li
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia, 472000, China
| | - Wen Yang
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, 451400, China.
| | - Xinxin Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xing Chen
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Shuai Huang
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Haifeng Wang
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China.
| | - Xinding Yao
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China.
| | - Yuqian Gao
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Liyou Qiu
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Chang YC, Reddy MV, Mawatari Y, Sarkar O. Enhanced polyhydroxyalkanoate biosynthesis by Cupriavidus sp. CY-1 utilizing CO 2 under controlled non-explosive conditions. CHEMOSPHERE 2025; 373:144181. [PMID: 39908848 DOI: 10.1016/j.chemosphere.2025.144181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The production of polyhydroxyalkanoate (PHA) using CO2 through hydrogen-oxidizing bacteria under safe, non-explosive conditions is making impressive strides. The present study aimed to evaluate and demonstrate the growth and productivity of PHA by Cupriavidus sp. CY-1 under different non-explosive conditions, thereby providing critical data for practical applications. The experimental results highlighted the efficiency of the CY-1 strain in PHA biosynthesis, achieving a production rate of 11.87 g L-1, which corresponds to a 90.6% yield when fermenting a gaseous substrate composed of H2 (70%), O2 (20%), and CO2 (10%). The study also examined PHA production under different non-explosive conditions, including H2 concentrations of 3.8% (v/v) and O2 at 6.5% (v/v). Furthermore, the impact of CO (30% and higher) was assessed, revealing a detrimental effect on growth and PHA production. Notably, the addition of Tween 80 significantly enhanced PHA productivity. The effective utilization of CO2 has confirmed poly[(R)-3-hydroxybutyrate] (PHB) as a valuable derived form of PHA. By implementing a two-step treatment with valeric acid, we successfully produced P(3HB-co-3HV) (PHBV) at a concentration of 1.47 g L-1. This achievement highlights the potential to enhance PHA production through innovative strategies. Furthermore, the examination of phaC gene expression levels has facilitated accurate predictions of PHA productivity. The use of CO2 from trichloroethylene (TCE) biodegradation faced concentration-related challenges; however, the higher CO2 levels achieved from phenol biodegradation, at 1200 mg L-1, indicate substantial potential for efficient PHA production.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan.
| | - M Venkateswar Reddy
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490, Bull Lea RD, Lexington, KY, 40512-4125, USA
| | - Yasuteru Mawatari
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87, Luleå, Sweden
| |
Collapse
|
4
|
Sabri I, Mohd Yusoff MZ, Nor Muhammad NA, Ho LS, Ramli N. Metabolic conversion of phenol to polyhydroxyalkanoate (PHA) for addressing dual environmental challenges: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100352. [PMID: 39958774 PMCID: PMC11830346 DOI: 10.1016/j.crmicr.2025.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
A sustainable approach to microbial polyhydroxyalkanoate (PHA) production involves utilizing waste as a substrate, which can include toxic pollutants like phenol as a carbon feedstock. Phenol-contaminated effluents offer cost-effective and readily available resources for PHA production, while simultaneously addressing phenol contamination issues. Understanding the metabolic conversion of phenol to PHA is crucial to enhance its efficiency, especially considering phenol's toxicity to microbial cells and the substrate-dependent nature of microbial PHA production. In this review, the mechanisms of phenol biodegradation and PHA biosynthesis are first independently elucidated to comprehend the role of bacteria in these processes. Phenol can be metabolized aerobically via various pathways, including catechol meta-cleavage I and II, catechol ortho-cleavage, protocatechuate ortho-cleavage, and protocatechuate meta-cleavage, as well as anaerobically via 4-hydrozybenzoate and/or n-caproate formation. Meanwhile, PHA can be synthesized through the acetoacetyl-CoA (pathway I), de novo fatty acids synthesis (pathway II), β-oxidation (pathway III), and the tricarboxylic acid (TCA) cycle, with the induction of these pathways are highly dependent on the substrate. Given that the link between these two mechanisms was not comprehensively reported before, the second part of the review delve into understanding phenol conversion into PHA, specifically polyhydroxybutyrate (PHB). While phenol toxicity can inhibit bacterial performance, it can be alleviated through the utilization of microbial mixed culture (MMC), which offers a wider range of metabolic capabilities. Utilizing phenol as a carbon feedstock for PHB accumulation could offer a viable approach to boost PHA's commercialization while addressing the issue of phenol pollution.
Collapse
Affiliation(s)
- Izzati Sabri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Li Sim Ho
- SD Guthrie Technology Centre Sdn. Bhd., Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Corti Monzón G, Bertola G, Herrera Seitz MK, Murialdo SE. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation 2024; 35:519-538. [PMID: 38310580 DOI: 10.1007/s10532-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Environmental pollution caused by petrochemical hydrocarbons (HC) and plastic waste is a pressing global challenge. However, there is a promising solution in the form of bacteria that possess the ability to degrade HC, making them valuable tools for remediating contaminated environments and effluents. Moreover, some of these bacteria offer far-reaching potential beyond bioremediation, as they can also be utilized to produce polyhydroxyalkanoates (PHAs), a common type of bioplastics. The accumulation of PHAs in bacterial cells is facilitated in environments with high C/N or C/P ratio, which are often found in HC-contaminated environments and effluents. Consequently, some HC-degrading bacteria can be employed to simultaneously produce PHAs and conduct biodegradation processes. Although bacterial bioplastic production has been thoroughly studied, production costs are still too high compared to petroleum-derived plastics. This article aims to provide a comprehensive review of recent scientific advancements concerning the capacity of HC-degrading bacteria to produce PHAs. It will delve into the microbial strains involved and the types of bioplastics generated, as well as the primary pathways for HC biodegradation and PHAs production. In essence, we propose the potential utilization of HC-degrading bacteria as a versatile tool to tackle two major environmental challenges: HC pollution and the accumulation of plastic waste. Through a comprehensive analysis of strengths and weaknesses in this aspect, this review aims to pave the way for future research in this area, with the goal of facilitating and promoting investigation in a field where obtaining PHAs from HC remains a costly and challenging process.
Collapse
Affiliation(s)
- G Corti Monzón
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | - G Bertola
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - M K Herrera Seitz
- Instituto de Investigaciones Biológicas, IIB, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CIC, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Chang YC, Venkateswar Reddy M, Suzuki H, Terayama T, Mawatari Y, Seki C, Sarkar O. Characterization of Ralstonia insidiosa C1 isolated from Alpine regions: Capability in polyhydroxyalkanoates degradation and production. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134348. [PMID: 38653138 DOI: 10.1016/j.jhazmat.2024.134348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
This study ventures into the exploration of potential poly-3-hydroxybutyrate (PHB) degradation in alpine environments. PHB-degrading bacteria were identified in both campus soil, representing a residential area, and Mt. Kurodake soil, an alpine region in Hokkaido, Japan. Next-generation sequencing analysis indicated that the campus soil exhibited higher microbial diversity, while Ralstonia insidiosa C1, isolated from Mt. Kurodake soil, displayed the highest proficiency in PHB degradation. R. insidiosa C1 efficiently degraded up to 3% (w/v) of PHB and various films composed of other biopolymers at 14 °C. This bacterium synthesized homopolymers using substrates such as 3-hydroxybutyric acid, sugars, and acetic acid, while also produced copolymers using a mixture of fatty acids. The analysis results confirmed that the biopolymer synthesized by strain C1 using glucose was PHB, with physical properties comparable to commercial products. The unique capabilities of R. insidiosa C1, encompassing both the production and degradation of bioplastics, highlight its potential to establish a novel material circulation model.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan.
| | - M Venkateswar Reddy
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Hinako Suzuki
- Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Takumi Terayama
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan
| | - Yasuteru Mawatari
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Chigusa Seki
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
7
|
Altamira-Algarra B, Rueda E, Lage A, San León D, Martínez-Blanch JF, Nogales J, García J, Gonzalez-Flo E. New strategy for bioplastic and exopolysaccharides production: Enrichment of field microbiomes with cyanobacteria. N Biotechnol 2023; 78:141-149. [PMID: 37852438 DOI: 10.1016/j.nbt.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Seven photosynthethic microbiomes were collected from field environmental samples to test their potential in polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) production, both alternatives to chemical-based polymers. Microscope observations together with microbial sequence analysis revealed the microbiome enrichment in cyanobacteria after culture growth under phosphorus limitation. PHB and EPS production were studied under three culture factors (phototrophy, mixotrophy and heterotrophy) by evaluating and optimizing the effect of three parameters (organic and inorganic carbon and days under light:dark cycles) by Box-Behnken design. Results showed that optimal conditions for both biopolymers synthesis were microbiome-dependent; however, the addition of organic carbon boosted PHB production in all the tested microbiomes, producing up to 14 %dcw PHB with the addition of 1.2 g acetate·L-1 and seven days under light:dark photoperiods. The highest EPS production was 59 mg·L-1 with the addition of 1.2 g acetate·L-1 and four days under light:dark photoperiods. The methodology used is suitable for enriching microbiomes in cyanobacteria, and for testing the best conditions for bioproduct synthesis for further scale up.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Estel Rueda
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Artai Lage
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Juan F Martínez-Blanch
- Department of preventive medicine, public health, food sciences, toxicology and forensic medicine, Universitat de Valencia, Valencia, Spain; Biopolis S.L., ADM, Parc Cientifc Universidad De Valencia, Edif. 2, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain.
| |
Collapse
|
8
|
Chang YC, Reddy MV, Tsukiori Y, Mawatari Y, Choi D. Production of polyhydroxyalkanoates using sewage and cheese whey. Heliyon 2023; 9:e23130. [PMID: 38144304 PMCID: PMC10746463 DOI: 10.1016/j.heliyon.2023.e23130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Recently, polyhydroxyalkanoates (PHAs) have been produced using raw sewage in our laboratory; however, the production concentrations are low. Therefore, this study aimed to enhance PHA production by applying different strategies. PHA production was higher in sewage-containing medium than in mineral salt medium and was enhanced 22-fold after glucose supplementation. A relatively high degree of glucose consumption (83.6 ± 1.59 %) was also achieved. Bacteria incubated with cheese whey diluted with sewage showed higher PHA production than bacteria incubated with cheese whey diluted with distilled water did. The expression of the PHA synthase gene (phaC) was evaluated via real-time polymerase chain reaction using low- and high-carbon-containing sewage. Relatively higher phaC expression levels were observed in high-carbon-containing sewage but at lower nitrogen concentrations. The characteristics of the produced PHA were comparable to those of standard PHA. Therefore, this study revealed that the bacterium Bacillus sp. CYR1 can produce PHA from low- or high-carbon-containing wastewater.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - M. Venkateswar Reddy
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yusei Tsukiori
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, Hokkaido, 050-8585, Japan
| | - DuBok Choi
- Faculty of Advanced Industry Convergence, Chosun University, Gwangju, 61452, South Korea
| |
Collapse
|
9
|
Jiang N, Wang M, Song L, Yu D, Zhou S, Li Y, Li H, Han X. Polyhydroxybutyrate production by recombinant Escherichia coli based on genes related to synthesis pathway of PHB from Massilia sp. UMI-21. Microb Cell Fact 2023; 22:129. [PMID: 37452345 PMCID: PMC10347839 DOI: 10.1186/s12934-023-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Polyhydroxybutyrate (PHB) is currently the most common polymer produced by natural bacteria and alternative to conventional petrochemical-based plastics due to its similar material properties and biodegradability. Massilia sp. UMI-21, a newly found bacterium, could produce PHB from starch, maltotriose, or maltose, etc. and could serve as a candidate for seaweed-degrading bioplastic producers. However, the genes involved in PHB metabolism in Massilia sp. UMI-21 are still unclear. RESULTS In the present study, we assembled and annotated the genome of Massilia sp. UMI-21, identified genes related to the metabolism of PHB, and successfully constructed recombinant Escherichia coli harboring PHB-related genes (phaA2, phaB1 and phaC1) of Massilia sp. UMI-21, which showed up to 139.41% more product. Also, the vgb gene (encoding Vitreoscilla hemoglobin) was introduced into the genetically engineered E. coli and gained up to 117.42% more cell dry weight, 213.30% more PHB-like production and 44.09% more product content. Fermentation products extracted from recombinant E. coli harboring pETDuet1-phaA2phaB1-phaC1 and pETDuet1-phaA2phaB1-phaC1-vgb were identified as PHB by Fourier Transform Infrared and Proton nuclear magnetic resonance spectroscopy analysis. Furthermore, the decomposition temperature at 10% weight loss of PHB extracted from Massilia sp. UMI-21, recombinant E. coli DH5α-pETDuet1-phaA2phaB1-phaC1 and DH5α-pETDuet1-phaA2phaB1-phaC1-vgb was 276.5, 278.7 and 286.3 °C, respectively, showing good thermal stability. CONCLUSIONS Herein, we presented the whole genome information of PHB-producing Massilia sp. UMI-21 and constructed novel recombinant strains using key genes in PHB synthesis of strain UMI-21 and the vgb gene. This genetically engineered E. coli strain can serve as an effective novel candidate in E. coli cell factory for PHB production by the rapid cell growth and high PHB production.
Collapse
Affiliation(s)
- Nan Jiang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Ming Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Linxin Song
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Dengbin Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Shuangzi Zhou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haiyan Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China.
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China.
| |
Collapse
|
10
|
Zhao L, Pan J, Cai S, Chen L, Cai T, Ji XM. Biosynthesis of poly(3-hydroxybutyrate) by N,N-dimethylformamide degrading strain Paracoccus sp. PXZ: A strategy for resource utilization of pollutants. BIORESOURCE TECHNOLOGY 2023; 384:129318. [PMID: 37315624 DOI: 10.1016/j.biortech.2023.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
N,N-dimethylformamide is a toxic chemical solvent, which widely exists in industrial wastewater. Nevertheless, the relevant methods merely achieved non-hazardous treatment of N,N-dimethylformamide. In this study, one efficient N,N-dimethylformamide degrading strain was isolated and developed for pollutant removal coupling with poly(3-hydroxybutyrate) (PHB) accumulation. The functional host was characterized as Paracoccus sp. PXZ, which could consume N,N-dimethylformamide as the nutrient substrate for cell reproduction. Whole-genome sequencing analysis confirmed that PXZ simultaneously possesses the essential genes for poly(3-hydroxybutyrate) synthesis. Subsequently, the approaches of nutrient supplementation and various physicochemical variables to strengthen poly(3-hydroxybutyrate) production were investigated. The optimal biopolymer concentration was 2.74 g·L-1 with a poly(3-hydroxybutyrate) proportion of 61%, showing a yield of 0.29 g-PHB·g-1-fructose. Furthermore, N,N-dimethylformamide served as the special nitrogen matter that could realize a similar poly(3-hydroxybutyrate) accumulation. This study provided a fermentation technology coupling with N,N-dimethylformamide degradation, offering a new strategy for resource utilization of specific pollutants and wastewater treatment.
Collapse
Affiliation(s)
- Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachen Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Saito K, Reddy MV, Sarkar O, Kumar AN, Choi D, Chang YC. Quantification of the Monomer Compositions of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxyvalerate) by Alkaline Hydrolysis and Using High-Performance Liquid Chromatography. Bioengineering (Basel) 2023; 10:bioengineering10050618. [PMID: 37237688 DOI: 10.3390/bioengineering10050618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
With the growing interest in bioplastics, there is an urgent need to develop rapid analysis methods linked to production technology development. This study focused on the production of a commercially non-available homopolymer, poly(3-hydroxyvalerate) (P(3HV)), and a commercially available copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), through fermentation using two different bacterial strains. The bacteria Chromobacterium violaceum and Bacillus sp. CYR1 were used to produce P(3HV) and P(3HB-co-3HV), respectively. The bacterium Bacillus sp. CYR1 produced 415 mg/L of P(3HB-co-3HV) when incubated with acetic acid and valeric acid as the carbon sources, whereas the bacterium C. violaceum produced 0.198 g of P(3HV)/g dry biomass when incubated with sodium valerate as the carbon source. Additionally, we developed a fast, simple, and inexpensive method to quantify P(3HV) and P(3HB-co-3HV) using high-performance liquid chromatography (HPLC). As the alkaline decomposition of P(3HB-co-3HV) releases 2-butenoic acid (2BE) and 2-pentenoic acid (2PE), we were able to determine the concentration using HPLC. Moreover, calibration curves were prepared using standard 2BE and 2PE, along with sample 2BE and 2PE produced by the alkaline decomposition of poly(3-hydroxybutyrate) and P(3HV), respectively. Finally, the HPLC results obtained by our new method were compared using gas chromatography (GC) analysis.
Collapse
Affiliation(s)
- Kyo Saito
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - M Venkateswar Reddy
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Omprakash Sarkar
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - DuBok Choi
- Faculty of Advanced Industry Convergence, Chosun University, Kwangju 61452, Republic of Korea
| | - Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| |
Collapse
|
12
|
Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH. Finding of Novel Galactose Utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) Production. Polymers (Basel) 2022; 14:polym14245407. [PMID: 36559775 PMCID: PMC9782037 DOI: 10.3390/polym14245407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic with potential applications as an alternative to petroleum-based plastics. However, efficient PHB production remains difficult. The main cost of PHB production is attributed to carbon sources; hence, finding inexpensive sources is important. Galactose is a possible substrate for polyhydroxyalkanoate production as it is abundant in marine environments. Marine bacteria that produce PHB from galactose could be an effective resource that can be used for efficient PHB production. In this study, to identify a galactose utilizing PHB producer, we examined 16 Halomonas strains. We demonstrated that Halomonas cerina (Halomonas sp. YK44) has the highest growth and PHB production using a culture media containing 2% galactose, final 4% NaCl, and 0.1% yeast extract. These culture conditions yielded 8.98 g/L PHB (78.1% PHB content (w/w)). When galactose-containing red algae (Eucheuma spinosum) hydrolysates were used as a carbon source, 5.2 g/L PHB was produced with 1.425% galactose after treatment with activated carbon. Since high salt conditions can be used to avoid sterilization, we examined whether Halomonas sp. YK44 could produce PHB in non-sterilized conditions. Culture media in these conditions yielded 72.41% PHB content. Thus, Halomonas sp. YK44 is robust against contamination, allowing for long-term culture and economical PHB production.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-2-3936
| |
Collapse
|
13
|
Lara-Moreno A, Aguilar-Romero I, Rubio-Bellido M, Madrid F, Villaverde J, Santos JL, Alonso E, Morillo E. Novel nonylphenol-degrading bacterial strains isolated from sewage sludge: Application in bioremediation of sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157647. [PMID: 35907537 DOI: 10.1016/j.scitotenv.2022.157647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is an anthropogenic pollutant frequently found in sewage sludge due to the insufficient degrading effectiveness of conventional WWTPs and has attracted attention as an endocrine disruptor. The aim of this study was to isolate specific NP-degrading bacteria from sewage sludge to be used in the degradation of this contaminant through bioaugmentation processes in aqueous solution and sewage sludge. Up to eight different bacterial strains were isolated, six of them not previously described as NP degraders. Bacillus safensis CN12 presented the best NP degradation in solution, and glucose used as an external carbon source increased its effect, reaching DT50 degradation values (time to decline to half the initial concentration of the pollutant) of only 0.9 days and a complete degradation in <7 days. Four NP metabolites were identified throughout the biodegradation process, showing higher toxicity than the parent contaminant. In sewage sludge suspensions, the endogenous microbiota was capable of partially degrading NP, but a part remained adsorbed as bound residue. Bioaugmentation was used for the first time to remove NP from sewage sludge to obtain more environmentally friendly biosolids. However, B. safensis CN12 was not able to degrade NP due to its high adsorption on sludge, but the use of a cyclodextrin (HPBCD) as availability enhancer allowed us to extract NP and degrade it in solution. The addition of glucose as an external carbon source gave the best results since the metabolism of the sludge microbiota was activated, and HPBCD was able to remove NP from sewage sludge to the solution to be degraded by B. safensis CN12. These results indicate that B. safensis CN12 can be used to degrade NP in water and sewage sludge, but the method must be improved using consortia of B. safensis CN12 with other bacterial strains able to degrade the toxic metabolites produced.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - I Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - M Rubio-Bellido
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain
| | - J L Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|
14
|
Qiao G, Li X, Li J, Zhang M, Shen Y, Zhao Z, Zhang Y, Qi Z, Chen P, Sun Y, Cang P, Liu P, Wangkahart E, Wang Z. An Eco-Friendly Conversion of Aquaculture Suspended Solid Wastes Into High-Quality Fish Food by Improving Poly-β-Hydroxybutyrate Production. Front Physiol 2022; 13:797625. [PMID: 35721543 PMCID: PMC9205610 DOI: 10.3389/fphys.2022.797625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
The aquaculture industry is vital in providing a valuable protein food source for humans, but generates a huge amount of solid and dissolved wastes that pose great risks to the environment and aquaculture sustainability. Suspended solids (in short SS), one of the aquaculture wastes, are very difficult to be treated due to their high organic contents. The bioconversion from wastewater, food effluents, and activated sludge into poly-β-hydroxybutyrate (PHB) is a sustainable alternative to generate an additional income and could be highly attractive to the agricultural and environmental management firms. However, little is known about its potential application in aquaculture wastes. In the present study, we first determined that 7.2% of SS was PHB. Then, the production of PHB was increased two-fold by the optimal fermentation conditions of wheat bran and microbial cocktails at a C/N ratio of 12. Also, the PHB-enriched SS showed a higher total ammonia nitrogen removal rate. Importantly, we further demonstrated that the PHB-enriched SS as a feed could promote fish growth and up-regulate the expression of the immune-related genes. Our study developed an eco-friendly and simple approach to transforming problematic SS wastes into PHB-enriched high-quality food for omnivorous fish, which will increase the usage efficiency of SS and provide a cheaper diet for aquatic animals.
Collapse
Affiliation(s)
- Guo Qiao
- Yancheng Institute of Technology, Yancheng, China
| | - Xiaoxia Li
- Yancheng Institute of Technology, Yancheng, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Li
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | | | - Yang Shen
- Yancheng Institute of Technology, Yancheng, China
| | - Zhigang Zhao
- Heilongjiang Provincial Key Laboratory of Cold Water Fish Germplasm Resources and Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yichan Zhang
- Yancheng Institute of Technology, Yancheng, China
| | - Zhitao Qi
- Yancheng Institute of Technology, Yancheng, China
| | - Peng Chen
- Yancheng Institute of Technology, Yancheng, China
| | - Yuyu Sun
- Yancheng Institute of Technology, Yancheng, China
| | | | - Peng Liu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Zisheng Wang
- Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
15
|
Zhao L, Cai S, Zhang J, Zhang Q, Chen L, Ji X, Zhang R, Cai T. Poly(3-hydroxybutyrate) biosynthesis under non-sterile conditions: Piperazine as nitrogen substrate control switch. Int J Biol Macromol 2022; 209:1457-1464. [PMID: 35461873 DOI: 10.1016/j.ijbiomac.2022.04.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB), as a kind of bioplastics for sustainable development, can be synthesized by various microorganisms, however, the high cost of its microbial fermentation is a challenge for its large-scale application. In this study, piperazine degrading strain, Paracoccus sp. TOH, was developed as an excellent chassis for open PHB fermentation with piperazine as controlling element. Whole-genome analysis showed that TOH possesses multi-substrate metabolic pathways to synthesize PHB. Next, TOH could achieve a maximum PHB concentration of 2.42 g L-1, representing a yield of 0.36 g-PHB g-1-glycerol when C/N ratio was set as 60:1 with 10 g L-1 glycerol as substrate. Furthermore, TOH could even synthesize 0.39 g-PHB g-1-glycerol under non-sterile conditions when piperazine was fed with a suitable rate of 1 mg L-1 h-1. 16S rRNA gene sequencing analysis showed that microbial contamination could be effectively inhibited through the regulation of piperazine under non-sterile conditions and TOH dominated the microbial community with a relative abundance of 72.3% at the end of the operational period. This study offers an inspired open PHB fermentation system with piperazine as the control switch, which will realize the goal of efficient industrial biotechnology as well as industrial wastewater treatment.
Collapse
Affiliation(s)
- Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Ortega Ramírez CA, Ching T, Yoza B, Li QX. Glycerol-assisted degradation of dibenzothiophene by Paraburkholderia sp. C3 is associated with polyhydroxyalkanoate granulation. CHEMOSPHERE 2022; 291:133054. [PMID: 34838841 DOI: 10.1016/j.chemosphere.2021.133054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Glycerol is a biodiesel byproduct. In the present study, glycerol was used as a co-substrate during biodegradation of dibenzothiophene (DBT) by Paraburkholderia sp. C3. Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent, ubiquitous and carcinogenic chemicals found in the environment. DBT is a major sulfur-containing PAH. The chemical properties of DBT make it an ideal model pollutant for examining the bioremediation of higher molecular weight PAHs. Bioremediation uses microbial catalysis for removal of environmental pollutants. Environmental microorganisms that encounter aromatic substrates such as heterocyclic PAHs develop unique characteristics that allow the uptake and assimilation of these cytotoxic substrates. Microbial adaptations include changes in membrane lipid composition, secretion of surface-active compounds and accumulation of lipid granules to withstand chemical toxicity. Biostimulation using more readily metabolized substrates can increase the biodegradation rate of PAHs, but the molecular mechanisms are not well understood. We analyzed the DBT biodegradation kinetics in C3, proteome changes and TEM micrographs in different culturing conditions. We utilized 2-bromoalkanoic lipid metabolic inhibitors to establish a correlation between polyhydroxyalkanoate (PHA) granule formation and the enhancement of DBT biodegradation induced by glycerol. This is the first description linking PHA biosynthesis, DBT biodegradation and 2-bromoalkanoic acids in a Paraburkholderia species.
Collapse
Affiliation(s)
- Camila A Ortega Ramírez
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Travers Ching
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brandon Yoza
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
17
|
Lee J, Park HJ, Moon M, Lee JS, Min K. Recent progress and challenges in microbial polyhydroxybutyrate (PHB) production from CO 2 as a sustainable feedstock: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2021; 339:125616. [PMID: 34304096 DOI: 10.1016/j.biortech.2021.125616] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The recalcitrance of petroleum-based plastics causes severe environmental problems and has accelerated research into production of biodegradable polymers from inexpensive and sustainable feedstocks. Various microorganisms are capable of producing Polyhydroxybutyrate (PHB), a representative biodegradable polymer, under nutrient-limited conditions, among which CO2-utilizing microorganisms are of primary interest. Herein, we discuss recent progress on bacterial strains including proteobacteria, purple non-sulfur bacteria, and cyanobacteria in terms of CO2-containing carbon sources, PHB-production capability, and genetic modification. In addition, this review introduces recent technical approaches used to improve PHB production from CO2 such as two-stage bioprocesses and bioelectrochemical systems. Challenges and future perspectives for the development of economically feasible PHB production are also discussed. Finally, this review might provide insights into the construction of a closed-carbon-loop to cope with climate change.
Collapse
Affiliation(s)
- Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
18
|
Chang YC, Reddy MV, Imura K, Onodera R, Kamada N, Sano Y. Two-Stage Polyhydroxyalkanoates (PHA) Production from Cheese Whey Using Acetobacter pasteurianus C1 and Bacillus sp. CYR1. Bioengineering (Basel) 2021; 8:bioengineering8110157. [PMID: 34821723 PMCID: PMC8614810 DOI: 10.3390/bioengineering8110157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Cheese whey (CW) can be an excellent carbon source for polyhydroxyalkanoates (PHA)-producing bacteria. Most studies have used CW, which contains high amounts of lactose, however, there are no reports using raw CW, which has a relatively low amount of lactose. Therefore, in the present study, PHA production was evaluated in a two-stage process using the CW that contains low amounts of lactose. In first stage, the carbon source existing in CW was converted into acetic acid using the bacteria, Acetobacter pasteurianus C1, which was isolated from food waste. In the second stage, acetic acid produced in the first stage was converted into PHA using the bacteria, Bacillus sp. CYR-1. Under the condition of without the pretreatment of CW, acetic acid produced from CW was diluted at different folds and used for the production of PHA. Strain CYR-1 incubated with 10-fold diluted CW containing 5.7 g/L of acetic acid showed the higher PHA production (240.6 mg/L), whereas strain CYR-1 incubated with four-fold diluted CW containing 12.3 g/L of acetic acid showed 126 mg/L of PHA. After removing the excess protein present in CW, PHA production was further enhanced by 3.26 times (411 mg/L) at a four-fold dilution containing 11.3 g/L of acetic acid. Based on Fourier transform infrared spectroscopy (FT-IR), and 1H and 13C nuclear magnetic resonance (NMR) analyses, it was confirmed that the PHA produced from the two-stage process is poly-β-hydroxybutyrate (PHB). All bands appearing in the FT-IR spectrum and the chemical shifts of NMR nearly matched with those of standard PHB. Based on these studies, we concluded that a two-stage process using Acetobacter pasteurianus C1 and Bacillus sp. CYR-1 would be applicable for the production of PHB using CW containing a low amount of lactose.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
- Correspondence: ; Tel.: +81-143-46-5757
| | - Motakatla Venkateswar Reddy
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; or
| | - Kazuma Imura
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Rui Onodera
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Natsumi Kamada
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
| | - Yuki Sano
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| |
Collapse
|
19
|
Mohanrasu K, Guru Raj Rao R, Dinesh GH, Zhang K, Sudhakar M, Pugazhendhi A, Jeyakanthan J, Ponnuchamy K, Govarthanan M, Arun A. Production and characterization of biodegradable polyhydroxybutyrate by Micrococcus luteus isolated from marine environment. Int J Biol Macromol 2021; 186:125-134. [PMID: 34246666 DOI: 10.1016/j.ijbiomac.2021.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/26/2022]
Abstract
Marine microorganisms are reported to produce polyhydroxybutyrate (PHB) that has wide range of medical and industrial applications with the advantage of biodegradability. PHBs are synthesized as an energy and carbon storage element under metabolic pressure. The scope of this work is enhancing PHB production using marine microbial isolate, Micrococcus luteus by selectively optimizing various growth conditions such as different media components and growth parameters that influence the cell growth and PHB production were sampled. Micrococcus luteus produced 7.54 g/L of PHB utilizing glucose as a carbon source and ammonium sulphate as a nitrogen source with maximum efficiency. The same optimized operational conditions were further employed in batch fermentation over a time span of 72 h. Interestingly higher cell dry weight of 21.52 g/L with PHB yield of 12.18 g/L and 56.59% polymer content was observed in batch fermentation studies at 64 h. The chemical nature of the extracted polymer was validated with physio-chemical experiments and was at par with the commercially available PHB. This study will spotlight M. luteus as a potential source for large-scale industrial production of PHB with reducing environmental pollutions.
Collapse
Affiliation(s)
- K Mohanrasu
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - R Guru Raj Rao
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - G H Dinesh
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kunyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, China
| | - Muniyasamy Sudhakar
- CSIR Chemical Cluster, Advanced Polymers and Composites Research, Pretoria, South Africa; Dept of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - A Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - J Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
20
|
Jayakrishnan U, Deka D, Das G. Influence of inoculum variation and nutrient availability on polyhydroxybutyrate production from activated sludge. Int J Biol Macromol 2020; 163:2032-2047. [PMID: 32949626 DOI: 10.1016/j.ijbiomac.2020.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Carbon recovery through polyhydroxybutyrate (PHB) production can create a value-added waste management system. Activated sludge as inoculum enables PHB production using cheap and renewable carbons source, bringing PHB at par to conventional plastics. The PHB accumulating potential of activated sludge needs to be improved to realize the objective. The interaction between the origin of activated sludge, petroleum refinery sludge and brewery sludge, and nitrogen availability was explored to effect culture enrichment, improve PHB accumulation, and polymer characteristics through aerobic dynamic feeding. Consequently, nitrogen excess and limitation enrichment of both sludges produced mix microbial culture with adequate PHB storage of 7.8 ± 0.05%, 14.4 ± 0.04%, 14.4 ± 0.04%, 13.4 ± 0.02% respectively. Batch accumulation revealed higher PHB accumulation of 76.1 ± 0.03% and 71.7 ± 0.05% under nitrogen limitation for PRS and BS enriched under nitrogen excess condition compared to any other combination. The higher decomposition temperature of 285 °C, 293 °C, and a lower melting point of 168 °C, 165 °C with a higher molecular weight of 4.3x105g/mol and semi-crystalline arrangement indicates the potential applications for extracted PHB. PHB production enhanced under nitrogen limited conditions with culture enriched under nitrogen excess condition. However, similar PHB storage, physiochemical property, and overlapping microbial community show an insignificant effect of sludge origin on PHB production.
Collapse
Affiliation(s)
- U Jayakrishnan
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Deepmoni Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
21
|
Martinez Martinez Toledo AL, Rocha Rodrigues EJ, Dutra Filho JC, Souza Aguiar dos Santos DM, Marques SA, Bruno Tavares MI. Study of C─H⋯O Bond of Organic–Inorganic Hybrids Based on Polyhydroxybutyrate and Oxides Obtained
Via
an
In Situ
Sol–Gel Route. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Elton Jorge Rocha Rodrigues
- Instituto de Macromoléculas Professora Eloisa ManoUniversidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - José Carlos Dutra Filho
- Instituto de Macromoléculas Professora Eloisa ManoUniversidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | | | - Suelen Adriani Marques
- Programa de Pós‐graduação em Anatomia PatológicaUFRJ Rio de Janeiro RJ Brazil
- Departamento de Neurobiologia, Instituto de BiologiaUFF Niterói RJ Brazil
| | - Maria Inês Bruno Tavares
- Instituto de Macromoléculas Professora Eloisa ManoUniversidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
22
|
Barati F, Asgarani E, Gharavi S, Soudi MR. Considerable increase in Poly(3-hydroxybutyrate) production via phbC gene overexpression in Ralstonia eutropha PTCC 1615. ACTA ACUST UNITED AC 2020; 11:53-57. [PMID: 33469508 PMCID: PMC7803923 DOI: 10.34172/bi.2021.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/23/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
![]()
Introduction: Poly(3-hydroxybutyrate) (PHB) is a well-known biodegradable polymer produced by some microorganisms and can be a suitable alternative for petrochemical plastics. PHB synthase encoded by phb C gene is the main enzyme in PHB biosynthesis pathway in Ralstonia eutropha. The aim of current study was the transformation of R. eutropha PTCC 1615 with its own phb C gene and evaluation of the overexpression effect on PHB accumulation.
Methods: DNA fragment including phbC gene and its promoter and terminator regions, was isolated from R. eutropha PTCC 1615, inserted into pET28a(+) vector, and transferred to the competent bacteria using calcium chloride and heat shock method. The effect of the cloned gene expression on PHB production was investigated with absorption of crotonic acid produced through PHB dehydration. Statistical analyses were carried out by SPSS software.
Results: PHB content of cells of the engineered strain was 1.4 times more than that of the native bacteria. This significant difference can be an important finding for improvement of biopolymer production.
Conclusion: Overexpression of phb C, the critical gene in PHB biosynthesis pathway, in R. eutropha PTCC 1615 had considerable effect on PHB accumulation.
Collapse
Affiliation(s)
- Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ezat Asgarani
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sara Gharavi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Reza Soudi
- 2 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
23
|
Zhang Y, Li T, Shen Y, Wang L, Zhang H, Qian H, Qi X. Preparation, statistical optimization and characterization of poly(3-hydroxybutyrate) fermented by Cupriavidus necator utilizing various hydrolysates of alligator weed (Alternanthera philoxeroides) as a sole carbon source. Biotechnol Prog 2020; 36:e2992. [PMID: 32185881 DOI: 10.1002/btpr.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
Abstract
Alligator weed (Alternanthera philoxeroides) is a stoloniferous, amphibious and perennial herb which has invaded many parts of the world and led to serious environmental and ecological problems. In order to exploit cheap carbon source for poly(3-hydroxybutyrate) (PHB) production, alligator weed hydrolysates were prepared by acid and enzyme treatment and used for PHB production via Cupriavidus necator. The bacterium utilized alligator weed enzymatic hydrolysate and produced the PHB concentration of 3.8 ± 0.2 g/L at the conditions of pH 7.0, 27.5°C, 1.5 g/L of nitrogen source, and 25 g/L of carbon source, this exceeded the value of 2.1 ± 0.1 g/L from acid hydrolysate media at the same conditions. In order to obtain the optimum conditions of PHB production, response surface methodology was employed which improved PHB content. The optimum conditions for PHB production are as follows: carbon source, 34 g/L; nitrogen source, 2 g/L; pH, 7; temperature, 28°C. After 72 hr of incubation, the bacterium produced 8.5 g/L of dry cell weight and 4.8 g/L of PHB. The PHB was subjected to Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and Molecular weight analysis and found the melting temperature, number average molecular mass, and polydispersity were 168.20°C, 185 kDa, and 2.1, respectively.
Collapse
Affiliation(s)
- Youwei Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing, China
| | - Yingbin Shen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Reddy MV, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC. Bacterial conversion of waste into polyhydroxybutyrate (PHB): A new approach of bio-circular economy for treating waste and energy generation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Uma V, Gandhimathi R. Organic removal and synthesis of biopolymer from synthetic oily bilge water using the novel mixed bacterial consortium. BIORESOURCE TECHNOLOGY 2019; 273:169-176. [PMID: 30445269 DOI: 10.1016/j.biortech.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Synthetic oily bilge water (OBW) treatment and subsequent production of biopolymer were studied by using a sequential batch reactor (SBR). The effect of various influencing parameters such as solids retention time (SRT), cycle time (CT), substrate concentration, pH level on the organic removal and synthesis of polyhydroxyalkanoates (PHA) was examined by novel soil bacteria isolated from hydrocarbon contaminated site near Karaikal port, India. The isolates were identified as Pseudomonas tuomuerensis and Pseudomonas nitroreducens using 16S rRNA. Sudan Black B staining was performed to visualize the presence of PHA. The experimental results showed that a decrease in substrate concentration to 5000 mg/L of soluble COD (CODs) showed maximum organic removal (81%) and maximum PHA yields of its cell dry mass (81%). The PHA yield was maximum at SRT of 5 d, pH = 7 and CT of 24 h. The produced PHA was characterized by using FTIR, XRD and SEM analysis.
Collapse
Affiliation(s)
- V Uma
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620 015, India
| | - R Gandhimathi
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620 015, India.
| |
Collapse
|
26
|
Zheng G, Wang T, Niu M, Chen X, Liu C, Wang Y, Chen T. Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:783-791. [PMID: 29626822 DOI: 10.1016/j.envpol.2018.03.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r = 0.63, p < 0.05). Under aeration, Bacillus remained the dominant bacteria, especially in the thermal phase; this phenomenon possibly increased the biodegradation efficiency of NP. High-volume aeration accelerated the activity and prolonged the survival of Bacillus. The risk of organic pollution could be decreased prior to sewage sludge reuse in soil by adjusting the ventilation strategies of aerobic compost measurements.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tieyu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingjie Niu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changli Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Polyák P, Dohovits E, Nagy GN, Vértessy BG, Vörös G, Pukánszky B. Enzymatic degradation of poly-[(R)-3-hydroxybutyrate]: Mechanism, kinetics, consequences. Int J Biol Macromol 2018; 112:156-162. [DOI: 10.1016/j.ijbiomac.2018.01.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
|
28
|
Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: Batch study and impacts of operational conditions. J Biotechnol 2018; 267:36-44. [PMID: 29305323 DOI: 10.1016/j.jbiotec.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022]
Abstract
Microbial intracellular biopolymer PHA was synthesized from toxic pollutant phenol by an acclimated consortium. Various operational conditions were experimented for their effects on biomass growth and PHA accumulation. Carbon to nitrogen ratios from 5 to 40 (w/w) showed little impact, as did the levels of Fe, Ca and Mg in a short term. Acidic pH inhibited both growth and PHA synthesis, and an optimal dissolved oxygen level of 1-4 mg L-1 was identified. Low temperature (7 °C) significantly slowed but did not totally repress microbial activities. A 2% NaCl shock retarded reactions and 4% NaCl caused irreversible damage. Various initial phenol (S0) and biomass concentrations (X0) were combined to study the effect of food to microbe (F/M) ratio. High S0 and F/M exerted toxicity, reducing reaction rates but generating higher ultimate PHA wt% in biomass. Increasing X0 alleviated phenol inhibition and improved productivity and carbon conversion from phenol. A pseudo-optimized F/M ratio of 0.2-0.4 and a maximum PHA% rate of 1.15% min-1 were identified under medium S0/high X0. This study is the first to systematically investigate the feasibility of toxic industrial waste as the carbon source for PHA production, and likely the only one indicating potential for scaling-up and industrialization.
Collapse
|
29
|
Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:215-230. [PMID: 28987985 DOI: 10.1016/j.jenvman.2017.09.083] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/26/2023]
Abstract
The search for new materials that replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). The present paper reviews the challenges of scaling-up PHA production from waste streams during the period from 2014 to 2016, focusing on the feasibility of the alternatives and the most promising alternatives to its scaling-up. The reviewed research studies mainly focus on reducing costs or obtaining more valuable polymers. In the future, the integration of PHA production into processes such as wastewater treatment plants, hydrogen production or biodiesel factories could enhance its implementation at industrial scale.
Collapse
Affiliation(s)
- Santiago Rodriguez-Perez
- Molecular Biology and Biochemical Engineering Department, Universidad Pablo de Olavide, Ed. 22 Ctra. deUtrera, km. 1, Seville, Spain
| | - Antonio Serrano
- Instituto de Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. deUtrera, km. 1, Seville, Spain
| | - Alba A Pantión
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain
| | - Bernabé Alonso-Fariñas
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain.
| |
Collapse
|
30
|
Syntrophic association of termite gut bacterial symbionts with bifunctional characteristics of cellulose degrading and polyhydroxyalkanoate producing bacteria. Int J Biol Macromol 2017; 103:613-620. [DOI: 10.1016/j.ijbiomac.2017.05.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022]
|
31
|
Venkateswar Reddy M, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC. Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. BIORESOURCE TECHNOLOGY 2017; 234:99-105. [PMID: 28319778 DOI: 10.1016/j.biortech.2017.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Synthetic wastewater (SW) at various carbon concentrations (5-60g/l) were evaluated for polyhydroxyalkanoates (PHA) production using the bacteria Pseudomonas pseudoflava. Bacteria showed highest PHA production with 20g/l (57±5%), and highest carbon removal at 5g/l (74±6%) concentrations respectively. Structure, molecular weight, and thermal properties of the produced PHA were evaluated using various analytical techniques. Bacteria produced homo-polymer [poly-3-hydroxybutyrate (P3HB)] when only acetate was used as carbon source; and it produced co-polymer [poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV)] by addition of co-substrate propionate. PHA synthase, the enzyme which produce PHA was extracted from two bacterial strains i.e., P. pseudoflava and P. palleronii and its molecular weight was analysed using SDS-PAGE. Protein concentration, and PHA synthase enzyme activity of P. pseudoflava and P. palleronii was carried out using spectrophotometer. Results denoted that P. pseudoflava can be used for degradation of organic carbon persistent in wastewaters and their subsequent conversion into PHA.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Rui Onodera
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuki Nakamura
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuka Yajima
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Young-Cheol Chang
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.
| |
Collapse
|
32
|
Reddy MV, Yajima Y, Choi D, Chang YC. Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Wosman A, Lu Y, Sun S, Liu X, Wan C, Zhang Y, Lee DJ, Tay J. Effect of operational strategies on activated sludge's acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:221-228. [PMID: 27281169 DOI: 10.1016/j.jhazmat.2016.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Aerobic granules, a relative novel form of microbial aggregate, are capable of degrading many toxic organic pollutants. Appropriate strategy is needed to acclimate seed sludge to the toxic compounds for successful granulation. In this study, two distinct strategies, i.e. mixed or single carbon sources, were experimented to obtain phenol-acclimated sludge. Their effects on reactor performance, biomass characteristics, microbial population and the granulation process were analyzed. Sludge fed with phenol alone exhibited faster acclimation and earlier appearance of granules, but possibly lower microbial diversity and reactor stability. Using a mixture of acetate and phenol in the acclimation stage, on the other hand, led to a reactor with slower phenol degradation and granulation, but eventual formation of strong and stable aerobic granules. In addition, the content of intracellular polyhydoxyakanoates (PHA) was also monitored, and significant accumulation was observed during the pre-granulation stage, where PHA >50% of dry weight was observed in both reactors.
Collapse
Affiliation(s)
- Afrida Wosman
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Yuhao Lu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Supu Sun
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - JooHwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
34
|
Berwig KH, Baldasso C, Dettmer A. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. BIORESOURCE TECHNOLOGY 2016; 218:31-37. [PMID: 27347795 DOI: 10.1016/j.biortech.2016.06.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality.
Collapse
Affiliation(s)
- Karina Hammel Berwig
- Laboratory of Energy and Bioprocess, Engineering of Processes and Technology Post-Graduate Program, University of Caxias do Sul, 1130, Francisco Getúlio Vargas Street, 95070-560 Caxias do Sul, Rio Grande do Sul, Brazil
| | - Camila Baldasso
- Laboratory of Energy and Bioprocess, Engineering of Processes and Technology Post-Graduate Program, University of Caxias do Sul, 1130, Francisco Getúlio Vargas Street, 95070-560 Caxias do Sul, Rio Grande do Sul, Brazil
| | - Aline Dettmer
- Laboratory of Energy and Bioprocess, Engineering of Processes and Technology Post-Graduate Program, University of Caxias do Sul, 1130, Francisco Getúlio Vargas Street, 95070-560 Caxias do Sul, Rio Grande do Sul, Brazil.
| |
Collapse
|
35
|
Venkateswar Reddy M, Mawatari Y, Yajima Y, Satoh K, Venkata Mohan S, Chang YC. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. BIORESOURCE TECHNOLOGY 2016; 215:155-162. [PMID: 26995321 DOI: 10.1016/j.biortech.2016.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
In the present study, synthetic wastewater (SW) was used for production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) using the bacteria Hydrogenophaga palleronii. SW at various volatile fatty acids concentrations (5-60g/l) was evaluated for the growth and biopolymer production using H. palleronii. Substrate degradation was analyzed using total organic carbon (TOC) analyzer and high pressure liquid chromatography (HPLC). H. palleronii showed highest and lowest removal of TOC at 5g/l (88±4%) and 60g/l (15±6%) respectively. Among all the concentrations evaluated, bacteria showed highest biopolymer production with 20g/l (63±5%), followed by 30g/l (58±3%) and 40g/l (56±2%). Lowest biopolymer production was observed at 5g/l concentration (21±3%). Structure, molecular weight, and thermal properties of the produced biopolymer were analyzed. These results denoted that the strain H. palleronii can be used for degradation of high concentration of volatile fatty acids persistent in wastewaters and their subsequent conversion into useable biopolymers.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Yuka Yajima
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Kohki Satoh
- Department of Information and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Young-Cheol Chang
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.
| |
Collapse
|
36
|
Production of Poly (3-Hydroxybutyric Acid) by Ralstonia eutropha in a Biocalorimeter and its Thermokinetic Studies. Appl Biochem Biotechnol 2016; 179:1041-59. [DOI: 10.1007/s12010-016-2049-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
|
37
|
Chang YC, Reddy MV, Umemoto H, Sato Y, Kang MH, Yajima Y, Kikuchi S. Bio-Augmentation of Cupriavidus sp. CY-1 into 2,4-D Contaminated Soil: Microbial Community Analysis by Culture Dependent and Independent Techniques. PLoS One 2015; 10:e0145057. [PMID: 26710231 PMCID: PMC4699198 DOI: 10.1371/journal.pone.0145057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/29/2015] [Indexed: 11/21/2022] Open
Abstract
In the present study, a 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacterial strain CY-1 was isolated from the forest soil. Based on physiological, biochemical and 16S rRNA gene sequence analysis it was identified as Cupriavidus sp. CY-1. Further 2,4-D degradation experiments at different concentrations (200 to 800 mg l-1) were carried out using CY-1. Effect of NaCl and KNO3 on 2,4-D degradation was also evaluated. Degradation of 2,4-D and the metabolites produced during degradation process were analyzed using high pressure liquid chromatography (HPLC) and GC-MS respectively. The amount of chloride ions produced during the 2,4-D degradation were analyzed by Ion chromatography (IC) and it is stoichiometric with 2,4-D dechlorination. Furthermore two different types of soils collected from two different sources were used for 2,4-D degradation studies. The isolated strain CY-1 was bio-augmented into 2,4-D contaminated soils to analyze its degradation ability. Culture independent methods like denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP), and culture dependent methods like colony forming units (CFU) and most probable number (MPN) were used to analyze the survivability of strain CY-1 in contaminated soil. Results of T-RFLP were coincident with the DGGE analysis. From the DGGE, T-RFLP, MPN and HPLC results it was concluded that strain CY-1 effectively degraded 2,4-D without disturbing the ecosystem of soil indigenous microorganisms.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, College of Environmental Technology, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan
- * E-mail:
| | - M. Venkateswar Reddy
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, College of Environmental Technology, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan
| | - Honoka Umemoto
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, College of Environmental Technology, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan
| | - Yuki Sato
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, College of Environmental Technology, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan
| | - Mi-Hye Kang
- Seoul Metropolitan Government Research Institute of Public Health and Environment, 202–3 Yangjae-dong, Seocho-gu, Seoul, 137–893, Republic of Korea
| | - Yuka Yajima
- Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606–8501, Japan
| | - Shintaro Kikuchi
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, College of Environmental Technology, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan
| |
Collapse
|