1
|
Xu M, Chen HQ, Gao P, Shen XX. Fulvic acid impact on constructed wetland-microbial electrolysis cell system performance: Metagenomic insights. BIORESOURCE TECHNOLOGY 2024; 413:131504. [PMID: 39303948 DOI: 10.1016/j.biortech.2024.131504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
This study explores the roles of fulvic acid (FA) in both a conventionally constructed wetland (CCW) and a newly constructed wetland-microbial electrolysis cell (ECW). The results showed that FA increased the average removal efficiency of chemical oxygen demand, total phosphorus, total nitrogen, and ammonia nitrogen in ECW by 8.6, 46.2, 33.0, and 27.9 %, respectively, compared to CCW, and reduced the global warming potential by > 60 %. FA promoted the proliferation of electroactive bacteria (e.g., Chlorobaculum and Candidatus Tenderia) and FA-degrading bacteria (e.g., Anaerolineaceae and Gammaproteobacteria) and reduced methanogens (e.g., Methanothrix) via type-changing. The study's findings suggest that FA influences pollutant removal and microbiome dynamics by altering dissolved oxygen levels and redox potential. In summary, FA and ECW enhanced the efficiency of constructed wetlands by facilitating electron transfer and consumption, and supporting microbial growth and metabolism.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Xiao Shen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Durkin A, Vinestock T, Guo M. Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective. CARBON CAPTURE SCIENCE & TECHNOLOGY 2024; 13:None. [PMID: 39759871 PMCID: PMC11698304 DOI: 10.1016/j.ccst.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 01/07/2025]
Abstract
Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth's natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste. In this review, we address the recovery of resources from food and beverage processing wastewater (FPWW), which offers a synergistic solution to some of the environmental issues with traditional food production. Research on resource recovery from FPWW typically focuses on technologies to recover specific resources without considering integrative process systems to recover multiple resources while simultaneously satisfying regulations on final effluent quality. Process Systems Engineering (PSE) offers methodologies able to address this holistic process design problem, including modelling the trade-offs between competing objectives. Optimisation of FPWW treatment and resource recovery has significant scope to reduce the environmental impacts of food production systems. There is significant potential to recover carbon, nitrogen, and phosphorus resources while respecting effluent quality limits, even when the significant uncertainties inherent to wastewater systems are considered. This review article gives an overview of the environmental challenges we face, discussed within the framework of the planetary boundary, and highlights the impacts caused by the agri-food sector. This paper also presents a comprehensive review of the characteristics of FPWW and available technologies to recover carbon and nutrient resources from wastewater streams with a particular focus on bioprocesses. PSE research and modelling advances are discussed in this review. Based on this discussion, we conclude the article with future research directions.
Collapse
Affiliation(s)
- Alex Durkin
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Tom Vinestock
- Department of Engineering, King’s College London, WC2R 2LS, UK
| | - Miao Guo
- Department of Engineering, King’s College London, WC2R 2LS, UK
| |
Collapse
|
3
|
Wang R, Nabi M, Jiang Y, Xiao K. Characterizing properties and environmental behaviors of organic matter in sludge using liquid chromatography organic carbon detection and organic nitrogen detection: A mini-review. ENVIRONMENTAL RESEARCH 2024; 262:119900. [PMID: 39233026 DOI: 10.1016/j.envres.2024.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
The presence of organic matter in sludge plays a significant role in sludge dewatering, anaerobic sludge digestion, resource (i.e., protein) recovery and pollutants removal (i.e., heavy metals) from sludge, as well as post-application of sludge liquid and solid digestate. This study summarized the current knowledge on using liquid chromatography organic carbon detection and organic nitrogen detection (LC-OCD-OND) for characterization and quantification of organic matter in sludge samples related with sludge treatment processes by fractionating organic matter into biopolymers, building blocks, humic substances, low molecular weight (LMW) acids, low LMW neutrals, and inorganic colloids. In addition, the fate, interaction, removal, and degradation of these fractions in different sludge treatment processes were summarized. A standardized extraction procedure for organic components in different extracellular polymeric substances (EPS) layers prior to the LC-OCD-OND analysis is highly recommended for future studies. The analysis of humic substances using the LC-OCD-OND analysis in sludge samples should be carefully conducted. In conclusion, this study not only provides a theoretical foundation and technical guidance for future experiments and practices in characterizing sludge organic matter using LC-OCD-OND, but also serves as a valuable resource for consulting engineers and other professionals involved in sludge treatment.
Collapse
Affiliation(s)
- Ruiyao Wang
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Yue Jiang
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China; Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
4
|
Sang W, Ge Z, Zhang Q, Gan F, Wan N, Zou L. A new strategy for greenhouse gas emission reduction in the anaerobic/anoxic/oxic biological treatment process using exogenous N-acyl-homoserine lactones, a quorum-sensing signaling molecules. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2764-2783. [PMID: 39612173 DOI: 10.2166/wst.2024.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
In this study, the impact of exogenous N-acyl-homoserine lactones (AHLs) on greenhouse gas (GHG) emissions in anaerobic/anoxic/oxic (A/A/O) systems was analyzed by manipulating the type and dosage of AHLs. The mechanism behind AHLs' effects on GHG emissions was explored through changes in microbial community structure. Findings revealed that N-octanoyl-homoserine lactone (C8-HSL) and high-dose N-dodecanoyl-homoserine lactone (C12-HSL) increased GHG emissions, while low-dose C12-HSL decreased them. Moreover, C8-HSL and high-dose C12-HSL promoted methane (CH4) and nitrous oxide (N2O) production by affecting sludge particle size. Bacterial community analysis highlighted Acinetobacter and Flavobacterium's roles in N2O emissions and acetate methanogens in methane synthesis. Metabolic pathway analysis showed that the acetic acid (CH3COOH) methanogenic pathway was the main methanogenic pathway; C8-HSL and C12-HSL influenced methane emission by affecting the methanogenic pathway and N2O emission by changing nitrous oxide reductase (Nos) abundance. This research underscores AHL-based quorum sensing's potential in mitigating GHG emissions during activated sludge wastewater treatment, offering insights into their application and impact on key microbial activities. Limitations include the absence of methane emission reduction by signaling molecules and the need for further investigation into their effects on sludge accumulation.
Collapse
Affiliation(s)
- Wenjiao Sang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China E-mail:
| | - Zhenxue Ge
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Fangmao Gan
- Yangtze Ecology and Environment Company, Limited, No. 96, Xudong Road, Wuhan 430062, China
| | - Nianhong Wan
- Central & Southern China Municipal Engineering Design & Research Institute Company, Limited, No. 8 Jiefang Park Road, Wuhan 430010, China
| | - Lei Zou
- Central & Southern China Municipal Engineering Design & Research Institute Company, Limited, No. 8 Jiefang Park Road, Wuhan 430010, China
| |
Collapse
|
5
|
Action S, Arimoro FO, Assie FAGJ, Nantege D, Ndatimana G, Keke UN. Stream ecosystem puzzle: understanding how water column and sediment variables shape macroinvertebrate patterns in some Afrotropical streams. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:172. [PMID: 38236491 DOI: 10.1007/s10661-024-12319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Although the interaction of water column and sediment variables in streams is intricate, minimal studies have been conducted on how they influence macroinvertebrate community patterns. This study, therefore, aimed to evaluate the influence of water column and sediment variables on macroinvertebrate community patterns in selected Afrotropical streams. Spatiotemporal scales of water column and sediment variables were analysed following standard methods while macroinvertebrates were sampled using the kick sampling technique. Redundancy analysis (RDA) and variation partitioning were used to assess the relationship of macroinvertebrates with water column and sediment variables. Significant differences were observed between seasons amongst water column variables such as total dissolved solids (p=0.046), turbidity (p=0.027), dissolved oxygen (p=0.011), chemical oxygen demand (p=0.002), bank vegetation (p=0.013), velocity (p=0.04), phosphates (p=0.031), and sediment variables such as total organic matter (p=0.01), pH (p=0.024), electrical conductivity (p=0.014). This accounted for the shift in biotic communities across the two seasons. In the studied area and seasons, Baetidae, Chironomidae, and Thiaridae were the most abundant families of macroinvertebrates representing 21.5%, 17.8%, and 6.9% of the 5266 recorded individuals belonging to 68 families. The water column was the most important predictor of macroinvertebrate community patterns (57%) compared to sediments (35%). Therefore, the use of both water column and sediment variables in ecological studies and biomonitoring should be emphasised because the two compartments provide complementary information. This enables researchers to gain a more complete understanding of the ecological health of aquatic habitats, useful in the development of effective management strategies.
Collapse
Affiliation(s)
- Simon Action
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology Minna, P.M.B, Minna, Niger State, 65, Nigeria.
| | - Francis O Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology Minna, P.M.B, Minna, Niger State, 65, Nigeria
| | - Fulbert A G J Assie
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology Minna, P.M.B, Minna, Niger State, 65, Nigeria
| | - Diana Nantege
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology Minna, P.M.B, Minna, Niger State, 65, Nigeria
| | - Gilbert Ndatimana
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology Minna, P.M.B, Minna, Niger State, 65, Nigeria
| | - Unique N Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology Minna, P.M.B, Minna, Niger State, 65, Nigeria
| |
Collapse
|
6
|
Wu R, Guo W, Li Y, Deng S, Chang J. Land use regulates the spectroscopic properties and sources of dissolved organic matter in the inflowing rivers of a large plateau lake in southwestern China: implication for organic pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94623-94638. [PMID: 37535281 DOI: 10.1007/s11356-023-29037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Dissolved organic matter (DOM) transported by inflowing rivers can considerably contribute to the organic loadings of lakes. The current study characterized the DOM properties and source apportionment in the inflowing rivers of Dianchi Lake, the sixth largest freshwater lake in China suffering from organic pollution, during the rainy season by using spectroscopic and carbon stable isotope techniques, and the regulation role of land use was assessed. The results showed that land use (urbanized, agricultural, or mixed) largely affected DOM properties. Greater concentrations and fluorescence intensities of DOM with low aromaticity and dominant autochthonous sources were observed in the urban rivers than in the agricultural rivers. The proportion of humic-like substances increased, while that of tryptophan-like matter decreased from upstream to downstream of two main urban rivers. DOM in the agricultural rivers was characterized by more amounts of aromatic humic-like substances with dominant allochthonous sources compared to that in the urban rivers. Stable isotope analysis showed that the decomposition of macrophytes and input of terrestrial sources from C3 plant-dominated soil and sewage were the major DOM origins in the rivers. The positive linear relationship between the chemical oxygen demand (COD) concentration and fluorescence intensities of terrigenous DOM components implied the necessity of controlling exogenous inputs to alleviate organic pollution in the Dianchi Lake.
Collapse
Affiliation(s)
- Rong Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Weijie Guo
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Yutong Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
7
|
Feng H, Xu X, Peng P, Yang C, Zou H, Chen C, Zhang Y. Sorption and desorption of epiandrosterone and cortisol on sewage sludge: Comparison to aquatic sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121663. [PMID: 37085099 DOI: 10.1016/j.envpol.2023.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Steroids have aroused global concern due to their potent endocrine-disrupting effects. Androgens and glucocorticoids are the most abundant species in sewage; however, our understanding of their fate and risks from the source to environmental sinks remains elusive. This study compared the sorption-desorption characteristics of epiandrosterone (EADR) and cortisol (CRL) in sewage sludge and aquatic sediment, and the surface and molecular interactions were tentatively investigated through infrared spectroscopy and the fluorescence excitation-emission matrix. The results showed that the sorption capacities of EADR and CRL in the sludge were 4015 L/kg and 81.17 L/kg, respectively, which are much larger than those in the sediment (EADR: 78.77 L/kg, CRL: 6.39 L/kg); 0.02%-1.2% of EADR and 0.2%-14.5% of CRL could be desorbed from sludge, while the desorption ratios were even lower in the sediment. The high organic content in the sludge might contribute to the larger sorption capacities, while the weak interaction between steroids and organic matter could lead to larger desorption potential. The sediment contained more mineral content and featured a larger specific surface area, which could be responsible for the greater desorption hysteresis for EADR and CRL. These results will help to better understand the potential risk of sewage sludge-associated steroids and their distribution in sediment-water systems.
Collapse
Affiliation(s)
- Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Peng Peng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenghao Yang
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, 85281, Arizona, USA
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, 510535, China
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Asgari G, Seid-Mohammadi A, Shokoohi R, Samarghandi MR, Diger GT, Malekolkalami B, Khoshniyat R. The best location for the application of static magnetic fields based on biokinetic coefficients in complete-mix activated sludge process. Sci Rep 2023; 13:5091. [PMID: 36991097 PMCID: PMC10060213 DOI: 10.1038/s41598-023-32285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
The use of the kinetic coefficients for the mathematical expression of the biochemical processes and the relationship between the effective parameters is importance. Change of the biokinetic coefficients in the complete-mix activated sludge processes were calculated for 1 month operation of the activated sludge model (ASM) in a Lab-scale in three series. 15 mT intensity of static magnetic fields (SMFs) applied on the aeration reactor (ASM 1), clarifier reactor (ASM 2) and, sludge returning systems (ASM 3) for 1 h, daily. During the operation of the systems, five basic biokinetic coefficients such as maximum specific substrate utilization rate (k), heterotrophic half-saturation substrate concentration (Ks), decay coefficient (kd), yield coefficient (Y) and, maximum specific microbial growth rate (μmax) were determined. The rate of k (g COD/g Cells.d) in ASM 1 was 2.69% and, 22.79% higher than ASM 2 and, ASM 3. The value of Ks (mg COD/L) was 54.44 and, 71.13 (mg/L) lower than the ASM 2 and, ASM 3. The rate of kd ASM 1, ASM 2 and, ASM 3 was 0.070, 0.054 and, 0.516 (d-1). The value of Y (kg VSS/kg COD) in ASM 1 was 0.58% and, 0.48% lower than ASM 2 and, ASM 3. The rate of μmax (d-1) in ASM 1 was 0.197, this value for ASM 2 and ASM 3 were 0.324 and 0.309 (d-1). Related to the biokinetic coefficients analyses the best location for the application of 15 mT SMFs was the aeration reactor, where the present of oxygen, substrate and, SMFs have the greatest impact on the positive changes of these coefficients.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Faculty of Public Health, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolmotaleb Seid-Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Samarghandi
- Department of Environmental Health Engineering, School of Public Health, Research Centre for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Glen T Diger
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI, 48109, USA
| | | | - Ramin Khoshniyat
- Social Determinants of Health Research Center (SDHRC), Faculty of Public Health, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Zhu X, Liu J, Li L, Zhen G, Lu X, Zhang J, Liu H, Zhou Z, Wu Z, Zhang X. Prospects for humic acids treatment and recovery in wastewater: A review. CHEMOSPHERE 2023; 312:137193. [PMID: 36370766 DOI: 10.1016/j.chemosphere.2022.137193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Clean water shortages require the reuse of wastewater. The presence of organic substances such as humic acids in wastewater makes the water treatment process more difficult. Humic acids can significantly affect the removal of heavy metals and other such toxins. Humic acids is formed by the decomposition and transformation of animal and plant remains by microorganisms, and naturally exists in soil and water. It is necessary to degrade and remove humic acids from wastewater. As it seriously human health, effective technologies for removing humic acids from wastewater have attracted great interest over the past decades. This study compared existing techniques for removing humic acids from wastewater, as well as their limitations. Physicochemical treatments including filtration and oxidation are basic and key approaches to removing humic acids. Biological treatments including enzyme and fungi-mediated humic acids degradation are economically feasible but require some scalability. In conclusion, the integrated treatment processes are more significant options for the effective removal of humic acids from wastewater. In addition, humic acids have rich utilization values. It can improve the soil, increase crop yields, and promote the removal of pollutants.
Collapse
Affiliation(s)
- Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Jiadong Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuedong Zhang
- Department of Environmental Engineering, Faculty of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
10
|
He S, Han Z, Li H, Wang J, Guo N, Wu Y. Influence of dissolved organic matter and heavy metals on the utilization of soil-like material mined from different types of MSW landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:312-322. [PMID: 36181741 DOI: 10.1016/j.wasman.2022.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Soil-like material (SLM) mined from municipal solid waste (MSW) landfills can be used as nursery cultivation soil, landfill cover, and as a building material. However, SLM utilization is restrained by heavy metal (HM) contents whose speciation and migration are influenced by their dissolved organic matter (DOM) content. Therefore, the properties of aged refuse and the correlation between DOM and HM forms were studied using samples from different types of MSW landfills. The dominant components of aged refuse were SLM (18.80%-83.51%) and plastics (11.17%-65.51%). The moisture, organic matter, and pH ranged from 29.55% to 57.92%, 15.70%-57.68%, and 7.84-8.51, respectively. The Zn content was highest (455.48-1379.27 mg/kg) in the SLM, followed by Cu (96.29-428.90 mg/kg), Cr (49.10-236.21 mg/kg), Pb (53.52-222.71 mg/kg), and Ni (20.92-39.10 mg/kg). The SLM cannot be used for agriculture because the HM contamination exceeds the multiple of 0.07-7.99. Zinc in the acid-soluble state and reducible state had the highest mobility in SLM. However, Cu and Pb, mainly in the oxidizable state, and Cr and Ni, in the oxidizable and residual states, were relatively stable. In the sanitary and simple MSW landfills, the average proportion of protein-like materials decreased from 84.44% to 82.61% and from 65.58% to 55.94%, respectively, as the landfill depth increased. Both the acid-soluble and oxidizable HM states and all forms of Zn in the SLM were significantly positively correlated with tyrosine-like materials (r = 0.58*-0.87**). Protein-like materials may enhance the mobility of HMs.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China
| | - Zhiyong Han
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China.
| | - Hao Li
- College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China; Sichaun Institute of Geological Engineering Investigation Group Co., Ltd, Chengdu 610000, China
| | - Jin Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China
| | - Nanfei Guo
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China
| | - Yayan Wu
- Chengdu XingRong Environmental Technology Co. Ltd, Chengdu 610108, China
| |
Collapse
|
11
|
Hidayah EN, Cahyonugroho OH, Sulistyo EN, Karnaningroem N. Using molecular weight-based fluorescent detector to characterize dissolved effluent organic matter in oxidation ditch with algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67418-67429. [PMID: 35994144 DOI: 10.1007/s11356-022-22464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Implementation of microalgae has been considered for enhancing effluent wastewater quality. However, it can cause environmental issues due to the release of extracellular and algal organic matter in the biological process. This study aimed to investigate the characteristics of dissolved effluent as algae- and bacteria-derived organic matter during the oxidation ditch process. Furthermore, experiments were conducted under three combinations filled by Spirulina platensis, Chlorella vulgaris, and without microalgae. The results showed that dissolved effluent organic matter was more aromatic and hydrophobic than before treatment. Fluorescence spectroscopy identified two components-aromatic protein-like and soluble microbial product-like components-at excitation/emission of 230/345 nm and 320/345 nm after treatment, instead of fulvic acid-like at 230/420 nm and humic acid-like at 320/420 nm in raw wastewater. These components were fractionated based on the average of molecular weight cut-offs (MWCOs), and high (MWCOs > 50,000 Da), medium (MWCOs 50,000-1650 Da), and low molecular weights (MWCOs < 1650 Da) were reported. Biological oxidation ditch under symbiosis algal bacteria generated humic and fulvic acid with a higher MWCOs than the process without algal. The quality and quantity of dissolved effluent organic matter in an oxidation ditch reactor were significantly affected by algal-bacteria symbiotic.
Collapse
Affiliation(s)
- Euis Nurul Hidayah
- Department of Environmental Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Surabaya, Indonesia.
| | | | | | - Nieke Karnaningroem
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| |
Collapse
|
12
|
Characterization and Analysis of Acetaldehyde Wastewater by Molecular Weight Distribution, Hydrophilicity, and Chemical Composition. SUSTAINABILITY 2022. [DOI: 10.3390/su14116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Acetaldehyde is a typical toxic substance of the petrochemical industry. Dissolved organic carbon (DOC) plays an important role in wastewater treatment. Therefore, the molecular weight, hydrophilicity, and chemical composition of DOC in acetaldehyde wastewater were evaluated. First, the molecular weight (MW) distribution was investigated; the results showed that acetaldehyde wastewater was mainly composed of components with a MW less than 1 kDa, and possessed higher proportion of protein-like substances that were dominant contributors to membrane fouling. Then, the distribution of hydrophobicity was evaluated; hydrophobic bases were reported to be slowly biodegradable fractions due to the high humic content. Finally, gas chromatography–mass spectrometry (GC-MS) was utilized to determine chemical composition, and 30 pollutants were detected. Aldehydes, hydrocarbons, ketones, alcohols, furans, phenols, and organic acids were the dominant pollutants. Most of them were moderately toxic compounds. The comprehensive characterization of acetaldehyde wastewater will contribute to control strategies and sustainable development.
Collapse
|
13
|
Sardana A, Weaver L, Aziz TN. Effects of dissolved organic matter characteristics on the photosensitized degradation of pharmaceuticals in wastewater treatment wetlands. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:805-824. [PMID: 35481471 DOI: 10.1039/d1em00545f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater treatment wetlands are aquatic systems where diverse dissolved organic matter (DOM) compositions physically interact. Complex photochemical behaviors ensue, leading to uncertainties in the prediction of indirect photodegradation rates for organic contaminants. Here, we evaluate the photosensitization ability of whole water DOM samples from a treatment wetland and wastewater treatment plant (WWTP) in North Carolina to photodegrade target pharmaceuticals. Optical characterization using ultraviolet-visible and excitation-emission matrix spectroscopy shows that wetland DOM has higher aromaticity than WWTP DOM and that WWTP secondary treatment processes increase aromaticity, overall molecular weight, and humic character of wastewater DOM. Our application of a reversed-phase HPLC method to assess DOM polarity distinctly reveals that a subset of the wetland samples possesses an abundance of hydrophobic DOM moieties. Hydroxyl radicals (˙OH) mediate the majority (>50%) of the indirect photodegradation for amoxicillin (AMX), atenolol (ATL), and 17α-ethinylestradiol (EE2), while singlet oxygen (1O2) is presumed to be solely responsible for the photodegradation of cimetidine (CME). Our findings suggest that hydrophobic interactions and improved accessibility to photogenerated reactive intermediates lead to significant increases in photosensitization efficiencies and overall indirect photodegradation rates of AMX, ATL, and EE2 for the hydrophobic wetland samples. In contrast, CME photosensitization yields are unaffected by polarity and trend positively with optical indicators of sunlight-induced DOM photobleaching and humification, suggesting that wetland processing favors faster 1O2 photogeneration. These relationships highlight the uncertainties in photosensitization yields and effects of DOM optical properties and polarity on the photochemical fate of organic contaminants.
Collapse
Affiliation(s)
- Arpit Sardana
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
- Geosyntec Consultants Inc., 2501 Blue Ridge Road, Suite 430, Raleigh, NC, 27607, USA
| | - Leah Weaver
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
| |
Collapse
|
14
|
Xiao K, Horn H, Abbt-Braun G. "Humic substances" measurement in sludge dissolved organic matter: A critical assessment of current methods. CHEMOSPHERE 2022; 293:133608. [PMID: 35033510 DOI: 10.1016/j.chemosphere.2022.133608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The role of humic substances (HS) during sludge treatment has been the focus in recent years. Quantification of HS in sludge dissolved organic matter (DOM) and the chemical and structural characterization of HS data are the prerequisite for understanding their role during different sludge treatment processes. Currently, a number of published articles inadequately acknowledge fundamental principles of analysis methods both in terms of experimental approach and data analysis. Therefore, a more comprehensive and detailed description of the experimental methods and the data analysis are needed. In this study, the current used methods for HS quantification in DOM of sludge had been tested for different calibration and sludge DOM samples. The results indicated that the current methods showed overestimated and contradictory results for HS quantification in sludge DOM. To be specific, using the modified Lowry method, different values were obtained depending on the humic acids used for calibration, and false negative results were observed for some sludge samples. By using the relative amount of HS (based on dissolved organic carbon (DOC)) to total sludge DOM (based on DOC), variations among the results of different analysis methods for the same sample were high. According to the calculated Bray-Curtis dissimilarity indexes, the results for HS quantification obtained by three-dimensional excitation emission matrix (3D-EEM), either with spectra analysis methods by peak picking, fluorescence region integration (both region volume and area integration), or PARAllel FACtor analysis showed higher degrees of dissimilarity to those quantified by size exclusion liquid chromatography or XAD-8 method. The selection of fluorescence regions for HS seemed to be the determining factor for overestimation obtained by the 3D-EEM technique. In future work, strategies, like a consistent terminology of HS, the use of an internal standard sample, and the related standardized operation for HS quantification in sludge DOM need to be established.
Collapse
Affiliation(s)
- Keke Xiao
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; DVGW Research Center, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
15
|
Zhang H, Zheng Y, Wang XC, Wang Y, Dzakpasu M. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113041. [PMID: 34126535 DOI: 10.1016/j.jenvman.2021.113041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is viewed as one of the most chemically active organic substances on earth. It plays vital roles in the fate, bioavailability and toxicity of aquatic exogenous chemical species (e.g., heavy metals, organic pollutants, and nanomaterials). The characteristics of DOM such low concentrations, salt interference and complexity in aquatic environments and limitations of pretreatment for sample preparation and application of characterization techniques severely limit understanding of its nature and environmental roles. This review provides a characterization continuum of aquatic DOM, and demonstrate its biogeochemical implications, enabling in-depth insight into its nature and environmental roles. A synthesis of the effective DOM pretreatment strategies, comprising extraction and fractionation methods, and characterization techniques is presented. Additionally, the biogeochemical dynamics of aquatic DOM and its environmental implications are discussed. The findings indicate the collection of representative DOM samples from water as the first and critical step for characterizing its properties, dynamics, and environmental implications. However, various pretreatment procedures may alter DOM composition and structure, producing highly variable recoveries and even influencing its subsequent characterization. Therefore, complimentary use of various characterization techniques is highly recommended to obtain as much information on DOM as possible, as each characterization technique exhibits various advantages and limitations. Moreover, DOM could markedly change the physical and chemical properties of exogenous chemical species, influencing their transformation and mobility, and finally altering their potential bioavailability and toxicity. Several research gaps to be addressed include the impact of pretreatment on the composition and structure of aquatic DOM, molecular-level structural elucidation for DOM, and assessment of the effects of DOM dynamics on the fate, bioavailability and toxicity of exogenous chemical species.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yongkun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
16
|
Shi Y, Li S, Wang L, Yu Q, Shen G, Li J, Xu K, Ren H, Geng J. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146278. [PMID: 33714830 DOI: 10.1016/j.scitotenv.2021.146278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The compositional characteristics of dissolved organic matter (DOM) in pharmaceutical wastewater effluent can affect the further improvement and application of the ozone treatment process. The present study investigated the changes of chemical structures, molecular weight (MW) distribution, hydrophobicity/hydrophilicity distribution, fluorescence properties and the molecular composition of DOM in pharmaceutical wastewater effluent during ozonation. Besides, the toxicity change of pharmaceutical wastewater effluent during ozonation was estimated. The results show that ozone is prone to attack high MW fractions, which contributes the most to the UV254 value and could improve the biodegradability of refractory DOM in pharmaceutical wastewater effluent. Hydrophobic acid contained the most aromatic and unsaturated bonded organic matter, and was more readily oxidized under ozonation. In fluorescent components, ozonation significantly decreased humic-like acid compounds, and hydrophobic humic-like compounds exhibited the highest removal through parallel factor analysis. At the molecular level, the main organics removed by ozone were compounds with high H/C and low O/C, especially compounds where H/C >1.5. The CHO, CHON and CHOS compounds exhibited high removal under ozonation in formula classes. Lignin compounds, condensed aromatics compounds, and unsaturated hydrocarbons were effectively removed by ozone in compound classes. After ozonation, the number of lipid and sugar compounds increased. In addition, O/Cwa (the intensity-weighted average parameters of O/C) and NOSCwa (nominal oxidation state of carbon) were significantly positively correlated with acute toxicity on the luminescence. With the increase of ozone dose, the acute toxicity of pharmaceutical wastewater effluent after ozonation first decreased and then increased.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Shengnan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Guochen Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Juechun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, PR China.
| |
Collapse
|
17
|
Mazioti AA, Vasquez MI, Vyrides I. Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36506-36522. [PMID: 33709312 DOI: 10.1007/s11356-021-13153-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Bilge wastewater is a high strength, typically saline wastewater, originating from operation of ships. In this study, the treatment of real bilge wastewater was tested using pure isolated aerobic strains and mixed cultures (aerobic and anaerobic). The Chemical Oxygen Demand (COD) and ecotoxicity decrease were monitored over time, while the microbial dynamics alterations in mixed cultures were also recorded. The isolated strains Pseudodonghicola xiamenensis, Halomonas alkaliphila and Vibrio antiquaries were shown to significantly biodegrade bilge wastewater. Reasonable COD removal rates were achieved by aerobic mixed cultures (59%, 9 days), while anaerobic mixed cultures showed lower performance (34%, 51 days). The genus Pseudodonghicola was identified as dominant under aerobic conditions both in the mixed cultures and in the control sample (raw wastewater), after exposure to bilge wastewater, demonstrating natural proliferation of the genus and potential contribution to COD reduction. Biodegradation rates were higher when initial organic load was high, while the toxicity of raw wastewater partially decreased after treatment.
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus.
| |
Collapse
|
18
|
Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, Abirami B, George CS. A review on algal-bacterial symbiotic system for effective treatment of wastewater. CHEMOSPHERE 2021; 271:129540. [PMID: 33434824 DOI: 10.1016/j.chemosphere.2021.129540] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Industrialization, urbanization and other anthropogenic activities releases different organic and inorganic toxic chemicals into the environment which prompted the water contamination in the environment. Different physical and chemical techniques have been employed to treat the contaminated wastewater, among them biological wastewater treatment using algae has been studied extensively to overwhelm the constraints related to the usually utilized wastewater treatment techniques. The presence of bacterial biota in the wastewater will form a bond with algae and act as a natural water purification system. The removal efficiency of single algae systems was very low in contrast with that of algal-bacterial systems. Heterotrophic microorganisms separate natural organic matter that is discharged by algae as dissolved organic carbon (DOC) and discharges CO2 that the algae can take up for photosynthesis. Algae bacteria associations offer an exquisite answer for tertiary and scrape medicines because of the capacity of micro-algae to exploit inorganic compounds for their development. Furthermore, for their ability to evacuate noxious contaminants, in this way, it does not prompt optional contamination. The present review contribute the outline of algae-bacteria symbiotic relationship and their applications in the wastewater treatment. The role of algae and bacteria in the wastewater treatment have been elucidated in this review. Moreover, the efforts have been imparted the importance of alage-bacteria consortium and its applications for various pollutant removal from the environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Thamarai
- Department of Food Technology, JCT College of Engineering and Technology, Coimbatore, 641105, India
| | - B Abirami
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
19
|
Zhang J, Shao Y, Liu G, Qi L, Wang H, Xu X, Liu S. Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods. Sci Rep 2021; 11:691. [PMID: 33436934 PMCID: PMC7804026 DOI: 10.1038/s41598-020-80700-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
Wastewater characterization is the basis for process design and operation optimization of wastewater treatment plants (WWTPs). In this work, a comprehensive study of the respirometry method has been performed to evaluate the biodegradable organic matters of wastewater. First, the optimal initial substrate to biomass ratio (S0/X0) was confirmed. Second, under the optimal S0/X0, the degradation curves of wastewater carbon oxygen demand (COD) components rapidly biodegradable COD (RBCOD) and slowly biodegradable COD (SBCOD) were obtained. Third, the Mann–Kendall test was performed to confirm the time point (t2) when endogenous respiration levels were reached, and the hydrolysis model was used to determine the time point (t1) of the SBCOD degradation stage. Considering the results, an adequate wastewater COD characterization method for RBCOD and SBCOD has been proposed. This study provides strong support to carry out effective and feasible process design, process diagnosis and optimization capability, can help achieve refined and stable operational management of WWTPs.
Collapse
Affiliation(s)
- Jingbing Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Yuting Shao
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Guohua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Xianglong Xu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| | - Shuai Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
20
|
Alvarado A, West S, Abbt-Braun G, Horn H. Hydrolysis of particulate organic matter from municipal wastewater under aerobic treatment. CHEMOSPHERE 2021; 263:128329. [PMID: 33297259 DOI: 10.1016/j.chemosphere.2020.128329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Hydrolysis of particulate organic matter is known to be a limiting step in biological wastewater treatment. In this work, we used an experimental set-up, which allowed the parallel observation of hydrolysis product formation on the one side and utilization on the other side. The hydrolysis products are characterized by using size exclusion chromatography with online carbon and UV (254 nm) detection. The used particles (size: 25-250 μm) originated from municipal wastewater. Here, it is shown that the concentration of high molecular weight organic matter increases over the first three days. During this time, bacteria grow and produce the required enzymes to perform the further degradation. The oxygen utilization rate (OUR) on the other side continuously develops, confirming the presence of easily biodegradable organic matter. In parallel, the amount of bacteria and extracellular polymeric substances (EPS) undergoes a certain dynamics, which was visualized by using confocal laser scanning images.
Collapse
Affiliation(s)
- Alondra Alvarado
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131, Karlsruhe, Engler-Bunte-Ring 9, Germany
| | - Stephanie West
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131, Karlsruhe, Engler-Bunte-Ring 9, Germany
| | - Gudrun Abbt-Braun
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131, Karlsruhe, Engler-Bunte-Ring 9, Germany
| | - Harald Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131, Karlsruhe, Engler-Bunte-Ring 9, Germany.
| |
Collapse
|
21
|
Guimarães NR, Dörr F, Marques RDO, Pinto E, Ferreira Filho SS. Removal efficiency of dissolved organic matter from secondary effluent by coagulation-flocculation processes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:161-170. [PMID: 33378253 DOI: 10.1080/10934529.2020.1856580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Wastewater reuse has been widely discussed as an essential strategy to minimize the consumption of drinking water for less noble purposes. During biological wastewater treatment, organic matter is converted into a complex matrix containing a variety of soluble organic compounds. The objective of the present study was to evaluate the removal efficiency of the residual organic load in the final effluent from wastewater treatment plant with a conventional activated sludge process by different coagulants and parameters of coagulation-flocculation process, using dissolved organic carbon (DOC) concentration, molecular weight (MW) size distribution by size exclusion chromatography (SEC) coupled to mass spectrometry (MS), and zeta potential (ZP) analyses. The results showed a DOC removal efficiency up to 45% with iron chloride, and of 38% for aluminum sulfate and 31% for PAC coagulants. ZP was also measured during the procedures and authors conclude that the ZP also does not have a determining role in these removals. SEC and MS assessment was able to detect changes on secondary effluent molecular weight distribution profile after effluent coagulation-flocculation, this technique might be a promising tool to understand the composition of effluent organic matter and be helpful to estimate and optimize the performance of wastewater effluents treatment processes.
Collapse
Affiliation(s)
- Natália Rodrigues Guimarães
- Hydraulic and Environmental Engineering Department, Polytechnic School of University of São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiane Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rodrigo de Oliveira Marques
- Hydraulic and Environmental Engineering Department, Polytechnic School of University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Sidney Seckler Ferreira Filho
- Hydraulic and Environmental Engineering Department, Polytechnic School of University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Xiao K, Abbt-Braun G, Horn H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. WATER RESEARCH 2020; 187:116441. [PMID: 33022515 DOI: 10.1016/j.watres.2020.116441] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) of sludge is a heterogeneous mixture of high to low molecular weight organic substances which is including proteinaceous compounds, carbohydrates, humic substances, lipids, lignins, organic acids, organic micropollutants and other biological derived substances generated during wastewater treatment. This paper reviews definition, composition, quantification, and transformation of DOM during different sludge treatments, and the complex interplay of DOM with microbial communities. In anaerobic digestion, anaerobic digestion-refractory organic matter, particularly compounds showing polycyclic steroid-like, alkane and aromatic structures can be generated after pretreatment. During dewatering, the DOM fraction of low molecular weight proteins (< 20,000 Dalton) is the key parameter deteriorating sludge dewaterability. During composting, decomposition and polymerization of DOM occur, followed by the formation of humic substances. During landfill treatment, the composition of DOM, particularly humic substances, are related with leachate quality. Finally, suggestions are proposed for a better understanding of the transformation and degradation of DOM during sludge treatment. Future work in sludge studies needs the establishment and implementation of definitions for sample handling and the standardization of DOM methods for analysis, including sample preparation and fractionation, and data integration. A more detailed knowledge of DOM in sludge facilitates the operation and optimization of sludge treatment technologies.
Collapse
Affiliation(s)
- Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
| |
Collapse
|
23
|
Shi Y, Li S, Wang L, Li J, Shen G, Wu G, Xu K, Ren H, Geng J. Characteristics of DOM in 14 AAO processes of municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140654. [PMID: 32721750 DOI: 10.1016/j.scitotenv.2020.140654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
The characteristics of dissolved organic matter (DOM) such as chemical composition, molecular weight (MW) distribution and hydrophobic/hydrophilic distribution can affect wastewater treatment efficiency, effluent quality and ecological risk. Fluorescence spectroscopy could provide a quick estimate of DOM characteristics during the monitoring of wastewater treatment plants (WWTPs). In this study, the characteristic and quantitative correlation of DOM from 14 anaerobic-anoxic-oxic (AAO) processes of WWTPs located in different provinces (municipalities) of China were investigated. The results showed that DOM of MW <1 kDa was the largest group of DOM in influent and secondary effluent, and DOM removal increased as the MW increased. Hydrophilic (HPI) fraction and hydrophobic acid (HPO-A) comprised the major portion of DOM in influent and secondary effluent and exhibited the lowest rate of removal. In addition, DOM concentrations in the northern provinces were higher than in the southern provinces, which were related to the water quality, economy and population. There were positive correlations between specific fluorescence intensity (SFI) and the MW <1 kDa, 1-5 kDa and <10 kDa fractions. The smaller the molecular weight, the better the correlation. Strong positive correlations between regional fluorescence proportion (fi) and HPI were found. SFI and fi may be explored as potential indicators of the MW fractions and the hydrophobic/hydrophilic distribution of DOM in AAO processes WWTPs.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengnan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Juechun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Guochen Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
24
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Caltran I, Heijman S, Shorney-Darby H, Rietveld L. Impact of removal of natural organic matter from surface water by ion exchange: A case study of pilots in Belgium, United Kingdom and the Netherlands. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Gursoy-Haksevenler BH, Arslan-Alaton I. Effects of treatment on the characterization of organic matter in wastewater: a review on size distribution and structural fractionation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:799-828. [PMID: 33031062 DOI: 10.2166/wst.2020.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since it is difficult to analyze the components of organic matter in complex effluent matrices individually, the use of more collective, but at the same time, specific wastewater characterization methods would be more appropriate to evaluate changes in effluent characteristics during wastewater treatment. For this purpose, size distribution and structural (resin) fractionation tools have recently been proposed to categorize wastewater. There are several case studies available in the scientific literature being devoted to the application of these fractionation methods. This paper aimed to review the most relevant studies dealing with the evaluation of changes in wastewater characteristics using size distribution and structural (resin) fractionation tools. According to these studies, sequential filtration-ultrafiltration procedures, as well as XAD resins, are frequently employed for size and structural fractionations, respectively. This review focuses on the most relevant publications including biological treatment processes, as well as chemical treatment methods such as coagulation-flocculation, electrocoagulation, the Fenton's reagent and ozonation. This study aims at providing an insight into the possible treatment mechanisms and details the understanding what structural features of wastewater components enabled or prevented efficient treatment (removal) or targeted pollutants.
Collapse
Affiliation(s)
- B Hande Gursoy-Haksevenler
- Faculty of Political Science, Department of Political Science and Public Administration, Marmara University, 34820 Beykoz, Istanbul, Turkey E-mail:
| | - Idil Arslan-Alaton
- School of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
27
|
Li Y, He C, Li Z, Zhang Y, Wu B, Shi Q. Molecular transformation of dissolved organic matter in refinery wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:107-119. [PMID: 32910796 DOI: 10.2166/wst.2020.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) has an important impact on the water treatment and reuse of petroleum refinery wastewater. In order to improve the treatment efficiency, it is necessary to understand the chemical composition of the DOM in the treatment processes. In this paper, the molecular composition of DOM in wastewater samples from a representative refinery were characterized. The transformation of various compounds along the wastewater treatment processes was investigated. A total of 61 heteroatomic class species were detected from the DOM extracts, in which CHO (molecules composed of carbon, hydrogen, and oxygen atoms) and CHOS (CHO molecules that also contained sulfur) class species were the most abundant and account for 78.43% in relative mass peak abundance. The solid phase extraction DOM from the dichloromethane unextractable fraction exhibited a more complex molecular composition and contained more oxygen atoms than in the dichloromethane extract. During wastewater treatment processes, the chemical oxygen demand (COD) and ammonia-nitrogen were reduced by more than 90%. Volatile organic compounds (VOCs) accounted for about 30% of the total COD, in which benzene and toluene were dominant. After biochemical treatment, the VOCs were effectively removed but the molecular diversity of the DOM was increased and new compounds were generated. Sulfur-containing class species were more recalcitrant to biodegradation, so the origin and transformation of these compounds should be the subject of further research.
Collapse
Affiliation(s)
- Yuguo Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| | - Ze Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Yuxi Zhang
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; Daqing Oilfield Water Company, Daqing, Heilongjiang 163454, China
| | - Baichun Wu
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| |
Collapse
|
28
|
Enhanced Hydrophilic and Electrophilic Properties of Polyvinyl Chloride (PVC) Biofilm Carrier. Polymers (Basel) 2020; 12:polym12061240. [PMID: 32485913 PMCID: PMC7361826 DOI: 10.3390/polym12061240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023] Open
Abstract
Polyvinyl chloride (PVC) biofilm carrier is used as a carrier for bacterial adsorption in wastewater treatment. The hydrophilicity and electrophilicity of its surface play an important role in the adsorption of bacteria. The PVC biofilm carrier was prepared by extruder, and its surface properties were investigated. In order to improve the hydrophilicity and electrophilic properties of the PVC biofilm carrier, polyvinyl alcohol (PVA) and cationic polyacrylamide (cPAM) were incorporated into polyvinyl chloride (PVC) by blending. Besides, the surface area of the PVC biofilm carrier was increased by azodicarbonamide modified with 10% by weight of zinc oxide (mAC). The surface contact angle of PVC applied by PVA and cPAM at 5 wt %, 15 wt % was 81.6°, which was 18.0% lower than pure PVC. It shows the significant improvement of the hydrophilicity of PVC. The zeta potential of pure PVC was −9.59 mV, while the modified PVC was 14.6 mV, which proves that the surface charge of PVC changed from negative to positive. Positive charge is more conducive to the adsorption of bacteria. It is obvious from the scanning electron microscope (SEM) images that holes appeared on the surface of the PVC biofilm carrier after adding mAC, which indicates the increase of PVC surface area.
Collapse
|
29
|
Shen L, Huang Z, Liu Y, Li R, Xu Y, Jakaj G, Lin H. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front Chem 2020; 8:224. [PMID: 32322573 PMCID: PMC7156636 DOI: 10.3389/fchem.2020.00224] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Due to the flexibility of operation, high removal ability, and economic cost, separation membranes have proved to be one of the most significant technologies in various aspects including water treatment. However, membrane fouling is a predominant barrier which is severely limiting the whole membrane industry. To mitigate membrane fouling, researchers have carried out several modification strategies including the incorporation of hydrophilic inorganic components. Zinc oxide (ZnO) nanoparticles, known as a low-cost, environment-friendly, and hydrophilic inorganic material, have been used by worldwide researchers. As claimed by the scientific literatures, ZnO nanoparticles can not only endow the polymeric membranes with antifouling performance but also supply a photocatalytic self-cleaning ability. Therefore, polymer-ZnO composite membranes were considered to be an attractive hot topic in membrane technology. In the last decades, it has been significantly matured by a large mass of literature reports. The current review highlights the latest findings in polymeric membranes incorporated with ZnO nanoparticles for membrane fouling mitigation. The membrane fouling, ZnO nanoparticles, and modification technology were introduced in the first three sections. Particularly, the review makes a summary of the reports of polyvinylidene fluoride (PVDF)-ZnO composite membranes, polyethersulfone (PES)-ZnO composite membranes, and other composite membranes incorporated with ZnO nanoparticles. This review further points out several crucial topics for the future development of polymer-ZnO composite membranes.
Collapse
Affiliation(s)
- Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Ying Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Gjon Jakaj
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
30
|
Wu QY, Zhou TH, Du Y, Ye B, Wang WL, Hu HY. Characterizing the molecular weight distribution of dissolved organic matter by measuring the contents of electron-donating moieties, UV absorbance, and fluorescence intensity. ENVIRONMENT INTERNATIONAL 2020; 137:105570. [PMID: 32078873 DOI: 10.1016/j.envint.2020.105570] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Electron-donating moieties (EDM) have recently been used to characterize the redox properties and treatability of dissolved organic matter during water and wastewater treatment. In this study, size exclusion chromatography followed by a derivatization-spectrometric method was developed to determine the molecular weight (MW) distribution of EDM in dissolved organic matter. The relationships between EDM concentration and chromophore content (indicated by UVA254), fluorophore content (indicated by fluorescence), and dissolved organic carbon (DOC) concentration were analyzed for different MW fractions. In general, natural organic matter (NOM) showed higher total EDM concentration and higher EDM average MW than effluent organic matter (EfOM). For NOM, fractions with MW between 1.8 k and 6.9 k Da accounted for most of the EDM (45.4%-48.6%), followed by the fractions with MW < 1.8 k Da (25.6%-42.4%). By contrast, the EDM in EfOM occurred predominantly in fractions with MW < 1 k Da (51.8%-58.6%), with lower concentrations in fractions with MW > 1.8 k Da (<20.2%). The heterogeneous MW distribution of EDM was strongly correlated to the presence of chromophores, but not DOC or fluorophores. The EDM difference between MW fractions suggested that the fraction with MW 1.8-6.9 k Da (40.7%-47.1%) and the fractions with MW < 1 k Da (50.2%-58.8%) should be the dominant oxidant consumers in NOM and EfOM, respectively. When the EDM was normalized by the DOC for each MW fraction (EDMMW/DOCMW), the EDMMW/DOCMW of relatively high-MW fractions (>1.8 k Da) is 1.2-1.9 times of relatively low-MW (<1 k Da) fractions for both NOM and EfOM, which indicates that higher-MW fractions are more susceptible to chemical oxidations. The relationship between EDM change and UVA254 change varied for different MW fractions during advanced ozonation treatment, because of the different oxidation mechanisms in operation for MW fractions. The ozonation of EfOM fractions with higher MW (>1.8 k Da) and lower MW (<1 k Da) preferentially resulted in benzoquinone formation and ring-cleavage, respectively.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Tian-Hui Zhou
- Shenzhen Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Bei Ye
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
31
|
Ahmadi E, Yousefzadeh S, Mokammel A, Miri M, Ansari M, Arfaeinia H, Badi MY, Ghaffari HR, Rezaei S, Mahvi AH. Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2020; 121:109674. [DOI: 10.1016/j.rser.2019.109674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Komatsu K, Onodera T, Kohzu A, Syutsubo K, Imai A. Characterization of dissolved organic matter in wastewater during aerobic, anaerobic, and anoxic treatment processes by molecular size and fluorescence analyses. WATER RESEARCH 2020; 171:115459. [PMID: 31935641 DOI: 10.1016/j.watres.2019.115459] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Changes in the characteristics of dissolved organic matter (DOM: the dissolved fraction of natural organic matter) during a series of wastewater treatment plant (WWTP) processes were investigated by using a combination of molecular size analysis and excitation emission matrix (EEM) spectroscopy coupled with parallel factor analysis. The characteristics of DOM were compared following aerobic, anoxic, and anaerobic treatments. Three peaks at about 100,000 Da (high-molecular-size DOM, Peak 1) and about 900-1,100 Da (intermediate-molecular-size DOM, Peak 2; low-molecular-size DOM, Peak 3 as the shoulder of Peak 2) were observed in the distribution of total organic carbon molecular sizes in the influent of the WWTPs. In this study, five fluorescent components (C1 to C5) were identified in the EEM spectra. Molecular size analysis and molecular size fractionation revealed that the C3 (humic-like) and C5 (specific to sewage) fluorophores had intermediate or low molecular sizes. Comparison of the changes of the concentrations of dissolved organic carbon in each reaction tank and investigation of the removal selectivity of each treatment (aerobic, anaerobic, and anoxic) suggested that the heterogenous compounds present in DOM of the influent were homogenized into intermediate-molecular-size DOM with high hydrophobicity and aromaticity, or into C4 fluorophores (DOM-X), during anaerobic or anoxic treatment. DOM-X was able to be transformed or removed by aerobic treatment. The results suggested that introduction of aerobic treatment at the appropriate stage of wastewater treatment or inclusion of physical or chemical treatment should be an effective way to optimize DOM removal.
Collapse
Affiliation(s)
- Kazuhiro Komatsu
- National Institute for Environmental Studies, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan.
| | - Takashi Onodera
- National Institute for Environmental Studies, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Kazuaki Syutsubo
- National Institute for Environmental Studies, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Akio Imai
- National Institute for Environmental Studies, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
33
|
Tikariha H, Purohit HJ. Unfolding microbial community intelligence in aerobic and anaerobic biodegradation processes using metagenomics. Arch Microbiol 2020; 202:1269-1274. [PMID: 32130435 DOI: 10.1007/s00203-020-01839-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Environmental factors and available nutrients influence microbial communities, and with that, there exists a dynamic shift in community structure and hierarchy in wastewater treatment systems. Of the various factors, the availability and gradient of oxygen selectively enrich a typical microbial community and also form the community stratification which could be established through metagenomics studies. In recent years, metagenomics with various sets of bioinformatics tools has assisted in exploration and better insight into the organization and relation of the taxonomical and functional composition and associate physiological intelligence of the microbial communities. The microbial communities, under defined conditions acquire a typical hierarchy with flexible but active network of the metabolic route, which ensures the survival needs of every member residing in that community and their abundance. This knowledge of community functional organization defines the rule in designing and improving biodegradation processes in case of both aerobic and anaerobic systems.
Collapse
Affiliation(s)
- Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
34
|
Ulliman SL, Korak JA, Linden KG, Rosario-Ortiz FL. Methodology for selection of optical parameters as wastewater effluent organic matter surrogates. WATER RESEARCH 2020; 170:115321. [PMID: 31877555 DOI: 10.1016/j.watres.2019.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Absorbance- and fluorescence-based optical parameters are commonly used as surrogates in engineered systems, but there is no systematic approach for selecting robust parameters. This study develops a methodology that is applied to a case study of differentiating wastewater effluent organic matter from naturally-derived organic matter. The methodology defines criteria to identify optical parameters that could detect statistically significant compositional differences in organic matter, independent of organic matter concentration, and measure fluorescence-based parameters with low susceptibility to inner filter effects. The criteria were applied to 26 parameters that were measured for 11 pairs of source water and conventionally-treated wastewater samples collected from sites with varied spatial and temporal conditions. Only two parameters, apparent fluorescence quantum yield measured at excitation 370 nm and fluorescence peak ratio A:T, met the criteria across all sites. These results demonstrate and encourage an objective and robust process for selecting optical surrogates for organic matter characterization.
Collapse
Affiliation(s)
- Sydney L Ulliman
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States
| | - Julie A Korak
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States.
| | - Karl G Linden
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado, 80309, United States.
| |
Collapse
|
35
|
Sgroi M, Gagliano E, Vagliasindi FGA, Roccaro P. Absorbance and EEM fluorescence of wastewater: Effects of filters, storage conditions, and chlorination. CHEMOSPHERE 2020; 243:125292. [PMID: 31756656 DOI: 10.1016/j.chemosphere.2019.125292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Aim of this study was to delineate sample handling procedures for accurate fluorescence and UV absorbance measurements of wastewater organic matter. Investigations were performed using different wastewater qualities, including primary, secondary and tertiary wastewater effluents, and a wastewater-impacted surface water. Filtration by 0.7 μm glass microfiber filter, 0.45 μm polyvinylidene fluoride (PVDF) membrane, 0.45 μm cellulose nitrate membrane, and 0.45 μm polyethersulfone (PES) syringe filter released manufacture impurities in water that affected fluorescence measurements. However, pre-washing of filter by Milli-Q water was able to eliminate these interferences. Different storage conditions were tested, including storage of filtered and unfiltered samples under different temperatures (25 °C, 4 °C, -20 °C). According to the obtained results, the best practice of wastewater samples preservation was sample filtration at 0.7/0.45 μm immediately after collection followed by storage at 4 °C. However, the time of storage that assured changes of these spectroscopic measurements that do not exceed the 10% of the original value was dependent on water quality and selected wavelengths (i.e., selected fluorescing organic matter component). As a general rule, it is advisable to perform fluorescence and UV absorbance measurements as soon as possible after collection avoiding storage times of filtered water longer than 2 days. Finally, addition of chlorine doses typical for wastewater disinfection mainly affected tryptophan-like components, where changes that exceed the 10% of the fluorescence intensity measured in the unchlorinated sample were observed even at very low doses (≥1 mg/L). On the contrary, tyrosine-like and humic-like components showed changes <10% at chlorine doses of 0.5-5 mg/L.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Erica Gagliano
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
36
|
Xu D, Bai L, Tang X, Niu D, Luo X, Zhu X, Li G, Liang H. A comparison study of sand filtration and ultrafiltration in drinking water treatment: Removal of organic foulants and disinfection by-product formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:322-331. [PMID: 31323577 DOI: 10.1016/j.scitotenv.2019.07.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
A detailed comparison of sand filtration (SF) and ultrafiltration (UF) was conducted in this study with the aim to provide systematic support for alternative UF and SF technologies. The results of natural organic matter (NOM) removal indicated that SF conferred a slightly higher removal rate for UV-absorbing compounds, humic-like substances and protein-like substances than UF, with removal efficiencies of 21.9%, 19.8% and 26.1%, respectively. In addition, SF and UF exhibited different removal performances for organic fractions: UF better removed high molecular-weight (MW) organics, while SF exhibited higher removal of medium-MW organics. Furthermore, chlorine and chlorine dioxide were used as disinfectants to compare the different influences of SF and UF on disinfection by-product (DBP) formation. Unexpectedly, SF exhibited a better capacity for reducing the formation of chlorite than the UF process, with concentrations of 0.57 mg/L and 0.69 mg/L, respectively. Importantly, for the emergency scenario, e.g. seasonal algae pollution, the UF process achieved significantly higher removal of algae cells (98.7%) than SF due to size exclusion, indicating substantial resistance to algae load shocks. Therefore, these findings are beneficial for making practical decisions to adopt SF or UF technology in drinking water treatment plants.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongyuan Niu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xingsheng Luo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xuewu Zhu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
37
|
Qian C, Chen W, Gong B, Wang LF, Yu HQ. Diagnosis of the unexpected fluorescent contaminants in quantifying dissolved organic matter using excitation-emission matrix fluorescence spectroscopy. WATER RESEARCH 2019; 163:114873. [PMID: 31326694 DOI: 10.1016/j.watres.2019.114873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is widely present in aqueous environments and plays a significant role in pollutant mitigation and transformation. So far, excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) has been widely applied to quantify fluorescent DOM. However, this approach fails to provide accurate concentration of DOM when fluorescent contaminants exist. In this work, a new method, prior linear decomposition (PLD), is developed to solve this problem by introducing prior information, i.e., EEMs of DOM, into data decomposition. First, EEM of humic acid (HA) with different numbers of random Gaussian peaks are tested to confirm the robustness of PLD. The percentages for the relative errors within 5% are found to be 97.7% and 69% using PLD and PARAFAC, respectively. Then, the determination of mixture of HA with several contaminants is performed, validating the feasibility of DOM quantification and capability of contaminant diagnosis using PLD for synthetic water samples. Finally, DOM-containing natural water samples collected from a polluted lake, river and wastewater treatment plant (WWTP) are measured. The testing results confirm that PLD provides an accurate result with less evaluated error than PARAFAC and the EEMs of the contaminants can be inferred precisely. This work clearly demonstrates that PLD offers a robust approach for quantifying fluorescent DOM, which is of great significance in both natural and engineered aqueous environments.
Collapse
Affiliation(s)
- Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Bo Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Long-Fei Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
38
|
Wei C, Wu H, Kong Q, Wei J, Feng C, Qiu G, Wei C, Li F. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:324-333. [PMID: 31185319 DOI: 10.1016/j.jenvman.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/23/2019] [Accepted: 06/01/2019] [Indexed: 05/15/2023]
Abstract
The refractory nature of residual COD in bio-treated coking wastewater (BTCW) creates barriers for its further treatment and reclamation. It is necessary to fractionate the residual COD in BTCW associated with characterization of solution properties. In this paper, a stepwise process composed of membrane filtration, coagulation, adsorption and ozonation was proposed to fractionate residual COD in the BTCW, in which the COD was stepwise reduced to near zero. In addition, the correlation between COD and water quality indexes as well as solution properties were discussed together with a safety assessment of the water quality. Results showed that the residual COD fractionation percentage contributed by suspended solids, colloids, dissolved organics and reductive inorganic substances in the BTCW was 43.7%, 22.1%, 26.2% and 4.9%, respectively. By stepwise fractionating of these substances, the residual COD was reduced from 168.8 to 5.2 mg L-1, and the UV254 value decreased from 1.90 to 0.15 cm-1. In addition, the particle size of the dominant substances contributing to the residual COD was smaller than 450 nm. Among these substances, the hydrophobic fraction accounted for 78.66% (in the term of TOC). Three-dimensional excitation-emission matrix (3D-EEM) analysis showed that hydrophobic neutral substances (HON) were the main fluorescence constituent in the BTCW, which was highly removable by adsorption. The residual COD after adsorption was mainly composed of reductive inorganic substances. Apart from pursuit of high COD removal rates, more emphasis should be given to the removal of toxic COD. Correlations were observed between the residual COD and water quality indicators as well as solution properties, providing a guideline for optimized removal of residual COD in the BTCW. In summary, these results gave a referential information about the nature of residual COD in the BTCW for the selection of advanced treatment technologies and the management of water quality safety.
Collapse
Affiliation(s)
- Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Hengping Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Qiaoping Kong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Jingyue Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Fusheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
39
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
40
|
Watanabe A, Murayama S, Karasawa K, Yamamoto E, Morikawa S, Takita R, Murata S, Kato M. A Simple and Easy Method of Monitoring Doxorubicin Release from a Liposomal Drug Formulation in the Serum Using Fluorescence Spectroscopy. Chem Pharm Bull (Tokyo) 2019; 67:367-371. [PMID: 30930441 DOI: 10.1248/cpb.c18-00868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formulation of a drug as liposomes facilitates its delivery to the disease target. Rightly, liposomes are gaining popularity in the medical field. In order for the drug to show efficacy, release of the encapsulated drug from the liposome at the target site is required. However, the release is affected by the permeability of the lipid bilayer of the liposome, and it is important to examine the effect of the surrounding environment on the permeability. In this study, we showed the usefulness of fluorescence analysis, especially fluorescence fingerprint, for a rapid and simple monitoring of release of an encapsulated anticancer drug (doxorubicin) from its liposomal formulation (DOXIL). Our result indicated that the release is accelerated by the existence of membrane permeable ions, such as tris(hydroxymethyl)aminomethane, and blood proteins like albumin. Hence, monitoring of doxorubicin release by fluorescence analysis is useful for the efficacy evaluation of DOXIL in a biomimetic environment.
Collapse
Affiliation(s)
- Ayako Watanabe
- One-Stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shuhei Murayama
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University
| | - Koji Karasawa
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University
| | - Eiichi Yamamoto
- Analytical Research, Pharmaceutical Science & Technology Unit, Medicine Development Center, Eisai Co., Ltd
| | | | - Ryo Takita
- One-Stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shigeo Murata
- One-Stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masaru Kato
- One-Stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University
| |
Collapse
|
41
|
López D, Sepúlveda-Mardones M, Ruiz-Tagle N, Sossa K, Uggetti E, Vidal G. Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1042-1051. [PMID: 30340252 DOI: 10.1016/j.scitotenv.2018.08.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Organic matter removal in a horizontal subsurface flow constructed wetland (HSSF) treating wastewater is associated with the presence of bacteria and archaea. These organisms perform anaerobic microbial processes such as methanogenesis, which can lead to methane emissions. The aim of this study was to evaluate methane production and characterize the bacterial and archaeal communities found in HSSFs treating secondary urban wastewater during cold and warm seasons. The pilot system used in this study corresponds to four HSSFs, two planted with Phragmites australis (HSSF-Phr) and two planted with Schoenoplectus californicus (HSSF-Sch), the monitoring was carried out for 1335 days. Removal efficiencies for organic matter (biological and chemical oxygen demand) and total and volatile suspended solids were evaluated in each HSSF. Moreover, biomass from each HSSF was sampled during warm and cold season, and methane productions determined by Specific Methanogenic Activity assays(maximum) (SMAm). In the same samples, the quantification and identification of bacteria and archaea were performed. The results showed that the degradation of organic matter (53-67% BOD5 and 51-62% COD) and suspended solids (85-93%) was not influenced by seasonal conditions or plant species. Potential methane production from HSSF-Sch was between 20 and 51% higher than from HSSF-Phr. Moreover, potential methane production during warm season was 3.4-42% higher than during cold season. The quantification of microorganisms in HSSFs, determined greater development of bacteria (38%) and archaea (50-57%) during the warm season. In addition, the species Schoenoplectus californicus has a larger number of bacteria (4-48%) and archaea (34-43%) than Phragmites australis. The identification of microorganisms evidenced the sequences associated with bacteria belong mainly to Firmicutes (42%), Proteobacteria (33%) and Bacteroidetes (25%). The archaea were represented primarily by Methanosarcinales, specifically Methanosaeta (75%) and Methanosarcina (16%). The community structure of the methanogenic archaea in HSSFs did not change throughout the seasons or plant species.
Collapse
Affiliation(s)
- Daniela López
- Engineering Engineering & Biotechnology Group, Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile
| | - Mario Sepúlveda-Mardones
- Engineering Engineering & Biotechnology Group, Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile
| | - Nathaly Ruiz-Tagle
- Biofilm laboratory and Environmental Microbiology, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | - Katherine Sossa
- Biofilm laboratory and Environmental Microbiology, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | - Enrica Uggetti
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politécnica de Catalunya·Barcelona Tech., c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Gladys Vidal
- Engineering Engineering & Biotechnology Group, Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
42
|
Bao W, Zhu S, Guo S, Wang L, Huang S, Fu J, Ye Z. Particle size distribution mathematical models and properties of suspended solids in a typical freshwater pond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:164-171. [PMID: 29804049 DOI: 10.1016/j.envpol.2018.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Many countries, such as China, today are facing the scarcity and pollution issues of freshwater resources. Suspended solids, as wastewater contaminants, may contain components such as nitrogen, phosphorus, heavy metals and pathogens that are harmful to the environment and human health, it is essential to know the size distribution regularity of the solids with a view to guiding the management of freshwater resources for sustainability. Particle size distribution (PSD) mathematical models and properties of suspended solids in a typical freshwater pond were investigated in this study. Particle size was measured using a laser particle size analyzer (measurement range: 0.01-3500 μm). The power law model and the variable-β model were tested for their ability to fit the numeric distribution of suspended solids; Gaussian (i.e., normal) distribution and log-normal distribution models were used to evaluate the volumetric distribution of suspended solids. The results showed that: by number, about 80% of the particles contributed to only 10% of total particle volume, while the remaining 20% contributed about 90% of the total volume. For numeric distribution, the variable-β model (R2 = 0.975 ± 0.011) was better than the power law model (R2 = 0.899 ± 0.033); for the volumetric distribution, the log-normal distribution model (R2 = 0.968 ± 0.020) clearly outperformed the Gaussian distribution model (R2 = 0.655 ± 0.093). Overall, the variable-β model and log-normal distribution were shown to accurately describe the numerical and volumetric distribution of pond water suspended solids, respectively. PSD model parameters can be related to some compositions in the wastewater and can provide guidance for suspended solids further treatment, be it physical, biological, chemical or synthetic methods.
Collapse
Affiliation(s)
- Weijun Bao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shuirong Guo
- Hangzhou Aquatic Product Technology Promotion Department, Hangzhou, 310001, China.
| | - Li Wang
- Hangzhou Aquatic Product Technology Promotion Department, Hangzhou, 310001, China.
| | - Shixue Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Jingyi Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
Treatment of Palm Oil Mill Effluent Using Membrane Bioreactor: Novel Processes and Their Major Drawbacks. WATER 2018. [DOI: 10.3390/w10091165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the years, different types of alternative technologies have been developed and used for palm oil mill effluent (POME) treatment. Specifically, membrane bioreactor (MBR) has been employed to relegate pollutants contained in POME under different operating conditions, and the technology was found to be promising. The major challenge impeding the wider application of this technology is membrane fouling, which usually attracts high operating energy and running cost. In this regard, novel methods of mitigating membrane fouling through the treatment processes have been developed. Therefore, this review article specifically focuses on the recent treatment processes of POME using MBR, with particular emphasis on innovative processes conditions such as aerobic, anaerobic, and hybrid processing as well as their performance in relation to fouling minimization. Furthermore, the effects of sonication and thermophilic and mesophilic conditions on membrane blockage were critically reviewed. The types of foulants and fouling mechanism as influenced by different operating conditions were also analyzed censoriously.
Collapse
|
44
|
Biosensors for wastewater monitoring: A review. Biosens Bioelectron 2018; 118:66-79. [PMID: 30056302 DOI: 10.1016/j.bios.2018.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
Water pollution and habitat degradation are the cause of increasing water scarcity and decline in aquatic biodiversity. While the freshwater availability has been declining through past decades, water demand has continued to increase particularly in areas with arid and semi-arid climate. Monitoring of pollutants in wastewater effluents are critical to identifying water pollution area for treatment. Conventional detection methods are not effective in tracing multiple harmful components in wastewater due to their variability along different times and sources. Currently, the development of biosensing instruments attracted significant attention because of their high sensitivity, selectivity, reliability, simplicity, low-cost and real-time response. This paper provides a general overview on reported biosensors, which have been applied for the recognition of important organic chemicals, heavy metals, and microorganisms in dark waters. The significance and successes of nanotechnology in the field of biomolecular detection are also reviewed. The commercially available biosensors and their main challenges in wastewater monitoring are finally discussed.
Collapse
|
45
|
Chen Z, Yu T, Ngo HH, Lu Y, Li G, Wu Q, Li K, Bai Y, Liu S, Hu HY. Assimilable organic carbon (AOC) variation in reclaimed water: Insight on biological stability evaluation and control for sustainable water reuse. BIORESOURCE TECHNOLOGY 2018; 254:290-299. [PMID: 29398290 DOI: 10.1016/j.biortech.2018.01.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/05/2023]
Abstract
This review highlights the importance of conducting biological stability evaluation due to water reuse progression. Specifically, assimilable organic carbon (AOC) has been identified as a practical indicator for microbial occurrence and regrowth which ultimately influence biological stability. Newly modified AOC bioassays aimed for reclaimed water are introduced. Since elevated AOC levels are often detected after tertiary treatment, the review emphasizes that actions can be taken to either limit AOC levels prior to disinfection or conduct post-treatment (e.g. biological filtration) as a supplement to chemical oxidation based approaches (e.g. ozonation and chlorine disinfection). During subsequent distribution and storage, microbial community and possible microbial regrowth caused by complex interactions are discussed. It is suggested that microbial surveillance, AOC threshold values, real-time field applications and surrogate parameters could provide additional information. This review can be used to formulate regulatory plans and strategies, and to aid in deriving relevant control, management and operational guidance.
Collapse
Affiliation(s)
- Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Tong Yu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guoqiang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Kuixiao Li
- Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Yu Bai
- Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Shuming Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
46
|
Ravndal KT, Opsahl E, Bagi A, Kommedal R. Wastewater characterisation by combining size fractionation, chemical composition and biodegradability. WATER RESEARCH 2018; 131:151-160. [PMID: 29281809 DOI: 10.1016/j.watres.2017.12.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
The potential for resource recovery from wastewater can be evaluated based on a detailed characterisation of wastewater. In this paper, results from fractionation and characterisation of two distinct wastewaters are reported. Using tangential flow filtration, the wastewater was fractionated into 10 size fractions ranging from 1 kDa to 1 mm, wherein the chemical composition and biodegradability were determined. Carbohydrates were dominant in particulate size fractions larger than 100 μm, indicating a potential of cellulose recovery from these fractions. While the particulate size fractions between 0.65 and 100 μm show a potential as a source for biofuel production due to an abundance of saturated C16 and C18 lipids. Both wastewaters were dominated by particulate (>0.65 μm), and oligo- and monomeric (<1 kDa) COD. Polymeric (1-1000 kDa) and colloidal (1000 kDa-0.65 μm) fractions had a low COD content, expected due to degradation in the sewer system upstream of the wastewater treatment plant. Biodegradation rates of particulate fractions increase with decreasing size. However, this was not seen in polymeric fractions where degradation rate was governed by chemical composition. Analytical validation of molecular weight and particle size distribution showed below filter cut-off retention of particles and polymers close to nominal cut-off, shifting the actual size distribution.
Collapse
Affiliation(s)
- Kristin T Ravndal
- University of Stavanger, Department of Mathematics and Natural Science, 4036 Stavanger, Norway; Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Eystein Opsahl
- University of Stavanger, Department of Mathematics and Natural Science, 4036 Stavanger, Norway
| | - Andrea Bagi
- University of Stavanger, Department of Mathematics and Natural Science, 4036 Stavanger, Norway; Marine Environment Group, International Research Institute of Stavanger, Mekjarvik 12, 4070 Randaberg, Norway
| | - Roald Kommedal
- University of Stavanger, Department of Mathematics and Natural Science, 4036 Stavanger, Norway.
| |
Collapse
|
47
|
Current status of water environment and their microbial biosensor techniques – Part I: Current data of water environment and recent studies on water quality investigations in Japan, and new possibility of microbial biosensor techniques. Anal Bioanal Chem 2018; 410:3953-3965. [DOI: 10.1007/s00216-018-0923-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
|
48
|
Li C, Yang Y, Liu Y, Hou LA. Removal of PhACs and their impacts on membrane fouling in NF/RO membrane filtration of various matrices. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Riley SM, Ahoor DC, Regnery J, Cath TY. Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:208-217. [PMID: 28915457 DOI: 10.1016/j.scitotenv.2017.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Dissolved organic matter (DOM) present in oil and gas (O&G) produced water and fracturing flowback was characterized and quantified by multiple analytical techniques throughout a hybrid biological-physical treatment process. Quantitative and qualitative analysis of DOM by liquid chromatography - organic carbon detection (LC-OCD), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-mass spectrometry (GC-MS), and 3D fluorescence spectroscopy, demonstrated increasing removal of all groups of DOM throughout the treatment train, with most removal occurring during biological pretreatment and some subsequent removal achieved during membrane treatment. Parallel factor analysis (PARAFAC) further validated these results and identified five fluorescent components, including DOM described as humic acids, fulvic acids, proteins, and aromatics. Tryptophan-like compounds bound by complexation to humics/fulvics were most difficult to remove biologically, while aromatics (particularly low molecular weight neutrals) were more challenging to remove with membranes. Strong correlation among PARAFAC, LC-OCD, LC-HRMS, and GC-MS suggests that PARAFAC can be a quick, affordable, and accurate tool for evaluating the presence or removal of specific DOM groups in O&G wastewater.
Collapse
|
50
|
Weng J, Jia H, Wu B, Pan B. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. CHEMOSPHERE 2018; 191:971-978. [PMID: 29145142 DOI: 10.1016/j.chemosphere.2017.10.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV254) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation.
Collapse
Affiliation(s)
- Jingxia Weng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huichao Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|