1
|
John J, Krishnan H, Ajit K. Performance evaluation of Iron-doped carbon cloth cathodes in bio-electrochemical system for dye degradation. Bioelectrochemistry 2025; 165:109001. [PMID: 40378506 DOI: 10.1016/j.bioelechem.2025.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Bio electro-Fenton (BEF) is an advanced bio-electrochemical system that utilizes the synergistic effect of microbial activity and electrochemical reactions to degrade organic pollutants in wastewater. This study investigates the degradation of Chrysoidine Y dye using iron-doped, binder-free carbon cloth cathodes in a BEF system. The cathodes exhibited significant electrochemical enhancements, including increased electrochemical active surface area, improved electrical conductivity, and efficient Fe3+/Fe2+ redox cycling. Under optimal conditions (1000 mg/L substrate concentration, pH 3, 750 Ω applied resistance and 20 ppm dye concentration), the BEF system achieved 73.14 % dye removal and 58.69 % total organic carbon (TOC) reduction within 10 h. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed the breakdown of chrysoidine Y into non-toxic intermediates. Toxicity tests using chick pea germination showed no adverse effects (Germination Index>80 %) in the treated effluent. Whole genome sequencing of the anodic biofilm identified electrogenic bacteria responsible for electron generation to drive the fenton reaction. These findings highlight the potential of iron-doped cathodes in BEF systems for sustainable and efficient treatment of dye-contaminated wastewater, ensuring effective pollutant removal and environmental safety.
Collapse
Affiliation(s)
- Juliana John
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| | - Haribabu Krishnan
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India.
| | - Karnapa Ajit
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India
| |
Collapse
|
2
|
Alinasab M, Navidjouy N, Alizadeh S, Rahimnejad M. Bio-electro-fenton system assisted with metal-organic framework for degradation of bis-phenol S in wastewater as an emerging contaminant. Sci Rep 2025; 15:6475. [PMID: 39987225 PMCID: PMC11846976 DOI: 10.1038/s41598-025-90969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The bio-electro-fenton (BEF) system is a novel technology that can be utilized to degrade both emerging and persistent pollutants while producing clean, green, and sustainable energy. Various catalysts that have a high active surface area are employed in these systems to enhance the oxygen reduction reaction (ORR) efficiency. In this study, the Nickel/Cobalt metal-organic framework (Ni/Co BTC-MOF) as heterogeneous catalyst was synthesized and deposited by the cathodic electrochemical deposition method on the carbon felt (CF) and graphite plate (GP) electrodes. The results of FT-IR, Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and Energy Dispersive X-ray spectroscopy (EDS) analysis proved that the synthesis of Ni/Co-BTC MOF successfully carried out. The performance and positive effect of the modified electrodes in ORR were investigated and compared in electrical energy generation. Finally, bio-electro-degradation of bisphenol-S (BPS) as one of the endocrine-disrupting compounds (EDCs) was studied by the optimal modified electrode. According to the results of electrochemical experiments, the highest maximum power density is equal to 133.6 mW/m2, which is related to Ni/Co-BTC@CF, and the highest production voltage is related to Ni/Co-BTC@CF, Ni/Co-BTC@GP, CF, and GP, respectively. The removal efficiency levels of bisphenol S in this system at different concentrations of 1.0, 5.0, and 10.0 mg/l after 24 h were 98.0%, 84.0%, and 41.0%, respectively. Based on the obtained results, the improved BEF system with Ni/Co-BTC@CF catalyst can be a suitable technology to achieve more electricity flow and at the same time have a positive effect on the decomposition of bisphenol S pollutant.
Collapse
Affiliation(s)
- Maryam Alinasab
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65174-38683, Iran
| | - Mostafa Rahimnejad
- Department of Chemical Engineering, Biofuel and Renewable Energy Research Center, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
3
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Qi J, Li M, Yin E, Zhang H, Wang H, Li X. Degradation of tetracycline under a wide pH range in a heterogeneous photo bio-electro-fenton system using FeMn-LDH/g-C 3N 4 cathode: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121111. [PMID: 38761620 DOI: 10.1016/j.jenvman.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The widespread use of antibiotics and the inefficiency of traditional degradation treatments pose threats to the environment and human health. Previous studies have reported the potential of bio-electro-Fenton (BEF) processes for antibiotic removal. However, some drawbacks, such as a strict pH range of 2-3 and iron sludge generation, limit their large-scale application. Thus, to overcome the narrow pH range of traditional BEF processes, a photo-BEF (PBEF) system was established using a novel FeMn-layered double hydroxide (LDH)/graphitic carbon nitride (g-C3N4) (FM/CN) composite cathode. The performance of the PBEF system was investigated by degrading tetracycline (TC) under low-power LED lamp irradiation. The results indicated that the pH range of the PBEF system could be expanded to 3-11 using an FM/CN cathode, which exhibited a TC removal efficiency of 63.0%-75.9%. The highest TC removal efficiency was achieved at pH 7. The efficient mineralization of TC by the PBEF system can be high, up to 67.6%. In addition, the TC removal mechanism was discussed in terms of reactive oxygen species, TC degradation intermediate analyses, and density functional theory (DFT) calculations. Strong oxidative hydroxyl radicals (·OH) were the dominant reactive oxidizing species in the PBEF system, followed by ·O2- and h+. Three pathways of TC degradation were proposed based on the analysis of intermediates, and the reactive sites attacked by electrophilic reagents were explored using DFT modeling. In addition, the overall toxicity of TC degradation intermediates effectively decreased in the PBEF system. This work offers deep insights into the TC removal mechanisms and performance of the PBEF system over a wide pH range of 3-11.
Collapse
Affiliation(s)
- Jinqiu Qi
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Ming Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haiman Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
5
|
Roy SV, Raychaudhuri A, Behera M, Neelancherry R. Elimination of pharmaceuticals from wastewater using microbial fuel cell-based bio-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28424-w. [PMID: 37402924 DOI: 10.1007/s11356-023-28424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
This study highlights the potential of the microbial fuel cell (MFC)-based bio-electro-Fenton (BEF) process as an efficient and highly adaptable strategy for wastewater treatment. The research aims to optimize the pH of the cathodic chamber (3-7) and catalyst doses (Fe) (0-18.56%) on the graphite felt (GF) cathode, and examine the effect of operating parameters on chemical oxygen demand (COD) removal, mineralization efficiency, pharmaceuticals (ampicillin, diclofenac, and paracetamol) removal, and power generation. The study found that lower pH and higher catalyst dosage on the GF led to better performance of the MFC-BEF system. Under neutral pH, mineralization efficiency, paracetamol removal, and ampicillin removal were enhanced by 1.1 times, and power density improved by 1.25 times as catalyst dosage increased from 0 to 18.56%. Additionally, employing full factorial design (FFD) statistical optimization, the study identifies the optimized conditions for maximum COD removal, mineralization efficiency, and power generation, which are determined to be a pH of 3.82 and a catalyst dose of 18.56%.
Collapse
Affiliation(s)
- Sruthi V Roy
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| | - Aryama Raychaudhuri
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| | - Manaswini Behera
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India.
| | - Remya Neelancherry
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| |
Collapse
|
6
|
Wang K, Li H, Yang Y, Wang P, Zheng Y, Song L. Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Li Y, Cao H, Liu W, Liu P. Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe 3O 4 hybrid hydrogel as a photo-Fenton catalyst. CHEMOSPHERE 2022; 307:135665. [PMID: 35835244 DOI: 10.1016/j.chemosphere.2022.135665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the method of in-situ co-precipitation was used to prepare PVA/CNF/Fe3O4 hybrid hydrogel, and the relationship between its structure and performance was explored. The Fe3O4NPs prepared by this method were dispersed on the carrier PVA/CNF hydrogel and were easy to recover. The catalytic degradation of tetracycline was investigated using PVA/CNF/Fe3O4 hybrid hydrogel as photo-Fenton catalysts. The results showed that light and hydrogel carriers were pivotal factors in promoting Fe2+ and Fe3+ cycling and that the PVA/CNF/Fe3O4 hybrid hydrogel as catalysts were able to activate H2O2 to generate a large amount of oxygen radical •OH, resulting in efficient removal of tetracycline. The tetracycline degradation followed a proposed first-order kinetic model and achieved a removal rate of about 98% in 120 min at an optimum pH of 3, H2O2 100 mM, catalyst 0.3 g/L, and a temperature of 25 °C.
Collapse
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenli Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
8
|
Tian H, Wang Y. A new photoelectrochemical cell coupled with the Fenton reaction to remove pollutant and generate electricity under the drive of waste heat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156277. [PMID: 35643138 DOI: 10.1016/j.scitotenv.2022.156277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The water and energy crises are becoming increasingly serious with rapid population and economic development. It is urgent to develop new wastewater treatment technologies with high efficiency and low energy consumption. Herein, a solar-salinity nexus cell (called PRC) integrated by a photocatalytic fuel cell and reverse electrodialysis was combined with the Fenton reaction. The PRC-Fenton process can extract electrons from organic wastewater driven by salinity gradient energy for power generation and wastewater remediation in two chambers. The Fenton cathode MOF(2Fe/Co)-GO/GF with good electrocatalytic and photocatalytic activity was developed and optimized in a three-electrode system. GO doping obviously enhanced the catalytic activity and stability of the Fenton cathode. The pollutant (ampicillin, AMP) was simultaneously removed in both anode and cathode chambers of the PRC-Fenton system. AMP removal by the MOF(2Fe/Co)-GO/GF cathode remained above 95% in a wide range of pH values (3.0-7.0). The output current of the PRC-Fenton process was 1.7-2.4 mA. Compared to similar systems, PRC-Fenton is suitable for treating toxic and refractory organic pollutants with green energy in two chambers and generating electricity.
Collapse
Affiliation(s)
- Hailong Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou 325035, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
9
|
Sathe SM, Chakraborty I, Doki MM, Dubey BK, Ghangrekar MM. Waste-derived iron catalyzed bio-electro-Fenton process for the cathodic degradation of surfactants. ENVIRONMENTAL RESEARCH 2022; 212:113141. [PMID: 35337835 DOI: 10.1016/j.envres.2022.113141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The application of waste-derived iron for reuse in wastewater treatment is an effective way of utilizing waste and attaining sustainability in the overall process. In the present investigation, bio-electro-Fenton process was initiated for the cathodic degradation of surfactants using waste-iron catalyzed MFC (WFe-MFC). The waste-iron was derived from spent tonner ink using calcination at 600 °C. Three surfactants namely, sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide, and Triton x-100 were selected as target pollutants. The effect of experimental factors like application of catalyst, contact time, external resistance, and anodic substrate concentration on the SDS degradation was investigated. At a neutral pH, the cathodic surfactants removal efficiency in WFe-MFC was above 85% in a contact time of 180 min with the initial surfactant concentration of ∼20 mg L-1 and external resistance of 100 Ω. The long-term operation using secondary treated real wastewater with unchanged cathode proved that the catalyst was still active to produce effluent SDS concentration of less than 1 mg L-1 in 4 h of contact time after 16 cycles. In a way, the present investigation suggests a potential application for spent tonner ink in the form of Fenton catalyst for wastewater treatment via bio-electro-Fenton MFC.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Manikanta M Doki
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
10
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
11
|
Sathe SM, Chakraborty I, Dubey BK, Ghangrekar MM. Microbial fuel cell coupled Fenton oxidation for the cathodic degradation of emerging contaminants from wastewater: Applications and challenges. ENVIRONMENTAL RESEARCH 2022; 204:112135. [PMID: 34592250 DOI: 10.1016/j.envres.2021.112135] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Urbanization and industrialization have resulted in the escalation of the occurrence of emerging contaminants (EC) in the wastewater and ultimately to the receiving water bodies due to their bio-refractory nature. The presence of ECs in the water bodies adversely affects all three domains of life, viz. bacteria, archaea and eukaryotes, and eventually the ecosystem. Fenton oxidation is one of the most suitable method that is capable of degrading a variety of ECs by employing a strong oxidizing agent in the form of •OH. The coupling of Fenton oxidation with microbial fuel cell (MFC) offers benefits, such as low-cost, minimal requirement of external energy, and in-situ generation of oxidizing agents. The resulting system, termed as bio-electro-Fenton MFC (BEF-MFC), is capable of degrading the ECs in the cathodic chamber, while harvesting bioelectricity and simultaneously removing oxidizable organic matter from wastewater in the anodic chamber. This review discusses the applications of BEF-MFC for the treatment of dyes, pharmaceuticals, pesticides, and real complex wastewaters. Additionally, the effect of operating conditions on the performance of BEF-MFC are elaborated and emphasis is also given on possible future direction of research that can be adopted in BEF-MFC in the purview of up-scaling.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
12
|
Zheng L, Lin X, Liu Y, Li H, Sun Y, Li C. Synergistically enhanced oxygen reduction reaction and oxytetracycline mineralization by FeCoO/GO modified cathode in microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151873. [PMID: 34838552 DOI: 10.1016/j.scitotenv.2021.151873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The widespread application of antibiotics have aroused serious pollution over the world. Microbial fuel cell (MFC) air cathode was able to simultaneously recover electricity and perform advanced oxidation of pollutions through electro-Fenton (EF). This study synthesized an iron‑cobalt oxide and graphene composite (FeCoO/GO), which possessed high electrochemical activity and ORR catalytic performance. The uniform decoration of FeCoO/GO in MFC air cathode distinctly increased the electricity generation (4.5 times higher than carbon felt) and oxytetracycline (OTC) degradation and detoxification (1.33 times higher). FeCoO/GO boosted the H2O2 generation from ORR (1.14 times higher than CF) and mineralization efficiency of OTC (2.63 times higher than CF). UPLC-QTOF-MS verified that OTC was degraded and mineralized through decarboxylation, demethylation, and carbon ring cleavage by the oxidation of ·OH. The enhanced degradation of OTC was not only benefited from the increased ORR catalytic performance, but also the excellent H2O2 catalytic activity by Fe and Co for ·OH generation. This study demonstrated an effective strategy by decorating FeCoO/GO in MFC air cathode for the synergistically enhanced ORR and OTC degradation and detoxification, giving promising guidance for the deep removal of antibiotic pollutants in the environment.
Collapse
Affiliation(s)
- Linshan Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Huiyu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
13
|
Soltani F, Navidjouy N, Rahimnejad M. A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Adv 2022; 12:5184-5213. [PMID: 35425537 PMCID: PMC8982105 DOI: 10.1039/d1ra08825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Bio-electro-Fenton (BEF) systems have been potentially studied as a promising technology to achieve environmental organic pollutants degradation and bioelectricity generation. The BEF systems are interesting and constantly expanding fields of science and technology. These emerging technologies, coupled with anodic microbial metabolisms and electrochemical Fenton's reactions, are considered suitable alternatives. Recently, great attention has been paid to BEFs due to special features such as hydrogen peroxide generation, energy saving, high efficiency and energy production, that these features make BEFs outstanding compared with the existing technologies. Despite the advantages of this technology, there are still problems to consider including low production of current density, chemical requirement for pH adjustment, iron sludge formation due to the addition of iron catalysts and costly materials used. This review has described the general features of BEF system, and introduced some operational parameters affecting the performance of BEF system. In addition, the results of published researches about the degradation of persistent organic pollutants and real wastewaters treatment in BEF system are presented. Some challenges and possible future prospects such as suitable methods for improving current generation, selection of electrode materials, and methods for reducing iron residues and application over a wide pH range are also given. Thus, the present review mainly revealed that BEF system is an environmental friendly technology for integrated wastewater treatment and clean energy production.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Student Research Committee, Urmia University of Medical Sciences Urmia Iran
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| |
Collapse
|
14
|
Liu Y, Gao C, Liu L, Yu T, Li Y. Improved degradation of tetracycline, norfloxacin and methyl orange wastewater treatment with dual catalytic electrode assisted self-sustained Fe2+ electro-Fenton system: Regulatory factors, mechanisms and pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Sathe SM, Chakraborty I, Sankar Cheela VR, Chowdhury S, Dubey BK, Ghangrekar MM. A novel bio-electro-Fenton process for eliminating sodium dodecyl sulphate from wastewater using dual chamber microbial fuel cell. BIORESOURCE TECHNOLOGY 2021; 341:125850. [PMID: 34474233 DOI: 10.1016/j.biortech.2021.125850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
The frequent occurrence of surfactants in urban wastewaters represents a multifaceted environmental concern. In this investigation, bio-electro-Fenton-microbial fuel cell (BEF-MFC) was developed for the degradation of sodium dodecyl sulphate (SDS) from wastewater. The synthesised cathode catalyst (powdered activated carbon and iron oxide) facilitated the Fenton reaction in the cathodic chamber of the MFC, concurrently generating a maximum power density of 105.67 mW m-2. The overall performance of the BEF-MFC for SDS removal and power generation excelled the control MFC (C-MFC) having carbon black coated cathode under similar operating conditions. Although, the rate of SDS degradation was favourable in acidic pH, under neutral pH, 70.8 ± 6.4% of SDS degradation was achieved in 120 min in BEF-MFC. A comparison of environmental impacts of BEF-MFC with up-flow MFC and electrochemical oxidation using life cycle assessment tool suggests that BEF-MFC can be one of the promising technologies for the tertiary treatment of wastewater.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - V R Sankar Cheela
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
16
|
Soltani F, Navidjouy N, Khorsandi H, Rahimnejad M, Alizadeh S. A novel bio-electro-Fenton system with dual application for the catalytic degradation of tetracycline antibiotic in wastewater and bioelectricity generation. RSC Adv 2021; 11:27160-27173. [PMID: 35480664 PMCID: PMC9037666 DOI: 10.1039/d1ra04584a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
In this new insight, the potential application of the eco-friendly Bio-Electro-Fenton (BEF) system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source. To shed light on this issue, catalytic degradation of tetracycline was directly accrued via in situ generated hydroxyl free radicals from Fenton's reaction in the cathode chamber. Simultaneously, the in situ electricity generation as renewable bioenergy was carried out through microbial activities. The effects of operating parameters, such as electrical circuit conditions (in the absence and presence of external resistor load), substrate concentration (1000, 2000, 5000, and 10 000 mg L−1), catholyte pH (3, 5, and 7), and FeSO4 concentration (2, 5, and 10 mg L−1) were investigated in detail. The obtained results indicated that the tetracycline degradation was up to 99.04 ± 0.91% after 24 h under the optimal conditions (short-circuit, pH 3, FeSO4 concentration of 5 mg L−1, and substrate concentration of 2000 mg L−1). Also, the maximum removal efficiency of anodic COD (85.71 ± 1.81%) was achieved by increasing the substrate concentration up to 2000 mg L−1. However, the removal efficiencies decreased to 78.29 ± 2.68% with increasing substrate concentration up to 10 000 mg L−1. Meanwhile, the obtained maximum voltage, current density, and power density were 322 mV, 1195 mA m−2, and 141.60 mW m−2, respectively, at the substrate concentration of 10 000 mg L−1. Present results suggested that the BEF system could be employed as an energy-saving and promising technology for antibiotic-containing wastewater treatment and simultaneous sustainable bioelectricity generation. In this new insight, the potential application of the Bio-Electro-Fenton system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source.![]()
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Nahid Navidjouy
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences Urmia Iran +98 9143489617
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology Babol Iran
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University Hamedan Iran
| |
Collapse
|
17
|
Li B, Sun JD, Tang C, Yan ZY, Zhou J, Wu XY, Jia HH, Yong XY. A novel core-shell Fe@Co nanoparticles uniformly modified graphite felt cathode (Fe@Co/GF) for efficient bio-electro-Fenton degradation of phenolic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143415. [PMID: 33248786 DOI: 10.1016/j.scitotenv.2020.143415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
In this study, a core-shell Fe@Co nanoparticles uniformly modified graphite felt (Fe@Co/GF) was fabricated as the cathode by one-pot self-assembly strategy for the degradation of vanillic acid (VA), syringic acid (SA), and 4-hydroxybenzoic acid (HBA) in the Bio-Electro-Fenton (BEF) system. The Fe@Co/GF cathode showed dual advantages with excellent electrochemical performance and catalytic reactivity not only due to the high electron transfer efficiency but also the synergistic redox cycles between Fe and Co species, both of which significantly enhanced the in situ generation of H2O2 and hydroxyl radicals (OH) to 152.40 μmol/L and 138.48 μmol/L, respectively. In this case, the degradation rates of VA, SA, and HBA reached 100, 94.32, and 100%, respectively, within 22 h. Representatively, VA was degraded and ultimately mineralized via demethylation, decarboxylation and ring-opening reactions. This work provided a promising approach for eliminating typical recalcitrant organic pollutants generated by the pre-treatment of lignocellulose resources.
Collapse
Affiliation(s)
- Biao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jia-Dong Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chen Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Ying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
18
|
Zhao H, Zhang Q. Performance of electro-Fenton process coupling with microbial fuel cell for simultaneous removal of herbicide mesotrione. BIORESOURCE TECHNOLOGY 2021; 319:124244. [PMID: 33254467 DOI: 10.1016/j.biortech.2020.124244] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
The aim of this work was to investigate the performance of electro-Fenton process coupling with microbial fuel cell for removal of herbicide mesotrione. After a six months acclimation, the anodic biofilm exhibited stable degradation ability to herbicide mesotrione, and the bioelectricity generated by the anodic biofilm could be utilized to in-situ generate H2O2 in cathode. Under the optimized conditions, the mesotrione removal rates reached 0.83 mg L-1h-1 for anodic microbial degradation and 1.39 mg L-1h-1 for cathodic Fenton oxidation, respectively. The bacteria possessing functions of compounds degradation (e.g. Petrimonas, Desulfovibrio, and Mycobacterium) and electrons transfer (e.g. Petrimonas, Cloacibacillus, and Azospirillum) were selectively enriched in anodic biofilm. Therefore, with the advantages of pollutant removal by simultaneous microbial degradation and Fenton oxidation, the MFC-Fenton offer a promising and sustainable approach for wastewater treatment and refractory contaminants elimination.
Collapse
Affiliation(s)
- Huanhuan Zhao
- College of Plant Protection, Hainan University, Haikou 570228, China; China Agricultural University, Beijing 100094, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
19
|
Rodríguez-González V, Obregón S, Patrón-Soberano OA, Terashima C, Fujishima A. An approach to the photocatalytic mechanism in the TiO 2-nanomaterials microorganism interface for the control of infectious processes. APPLIED CATALYSIS. B, ENVIRONMENTAL 2020; 270:118853. [PMID: 32292243 DOI: 10.1016/j.apcatb.2020.118857] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 05/21/2023]
Abstract
The approach of this timely review considers the current literature that is focused on the interface nanostructure/cell-wall microorganism to understand the annihilation mechanism. Morphological studies use optical and electronic microscopes to determine the physical damage on the cell-wall and the possible cell lysis that confirms the viability and microorganism death. The key parameters of the tailoring the surface of the photoactive nanostructures such as the metal functionalization with bacteriostatic properties, hydrophilicity, textural porosity, morphology and the formation of heterojunction systems, can achieve the effective eradication of the microorganisms under natural conditions, ranging from practical to applications in environment, agriculture, and so on. However, to our knowledge, a comprehensive review of the microorganism/nanomaterial interface approach has rarely been conducted. The final remarks point the ideal photocatalytic way for the effective prevention/eradication of microorganisms, considering the resistance that the microorganism could develop without the appropriate regulatory aspects for human and ecosystem safety.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Olga A Patrón-Soberano
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Biología Molecular, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
20
|
Yu X, Fu W, Jiang M, Liu G, Zou Y, Chen S. Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138508. [PMID: 32302852 DOI: 10.1016/j.scitotenv.2020.138508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/13/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Microbial electro-Fenton system (MEFS) shows potential application for degradation of recalcitrant pollutants. In order to simplify the MEFS and adapt to the practical application situations, such as water, soil or sludge remediation, we developed an automatic MEFS (AMEFS) for degradation of a recalcitrant dye, acid orange 7. The AMEFS contained a microchannel-structured carbon decorated with iron oxides as electro-Fenton cathode. The AMEFS could be either two-electrode configuration that the microchannel-structured carbon connected with an additional bioanode by an external circuit, or single-electrode configuration that the microchannel-structured carbon served as both bioanode and cathode. Thanks to the microchannel structure of the carbon cathode, the AMEFS could be auto-driven by a process similar to the transpiration process of natural plants. The two-electrode AMEFS had higher degradation efficiency of acid orange 7 at lower external resistance, and achieved the highest degradation efficiency of 96% at the short-circuit condition. The single-electrode configuration simplified the setup of the AMEFS and possessed comparable performance with that of two-electrode configuration at short-circuit condition. Moreover, it could degrade high concentration acid orange 7 of up to 50 mg L-1 and achieve a high degradation efficiency of over 93%. The AMEFS could be applied for soil and sludge remediation by direct insertion of the microchannel structured carbon into contaminated body.
Collapse
Affiliation(s)
- Xiaofang Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China
| | - Wenna Fu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China
| | - Minhua Jiang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China; School of New Energy Science and Engineering, Xinyu University, 2666 Sunshine Avenue, 338004 Xinyu City, Jiangxi Province, China
| | - Gongming Liu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China
| | - Yan Zou
- Department of mechanics, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Wuhan, China.
| | - Shuiliang Chen
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Ziyang Road 99th, 330022 Nanchang, China.
| |
Collapse
|
21
|
Zheng X, Xie X, Liu Y, Cong J, Fan J, Fang Y, Liu N, He Z, Liu J. Deciphering the mechanism of carbon sources inhibiting recolorization in the removal of refractory dye: Based on an untargeted LC-MS metabolomics approach. BIORESOURCE TECHNOLOGY 2020; 307:123248. [PMID: 32248066 DOI: 10.1016/j.biortech.2020.123248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, the biological decolorization of reactive black 5 (RB5) by Klebsiella sp. KL-1 in yeast extract (YE) medium was captured the recolorization after exposure to O2, which induced a 15.82% reduction in decolorization efficiency. Similar result was also observed in YE + lactose medium, but not in YE + glucose/xylose media (groups YE + Glu/Xyl). Through biodegradation studies, several degradation intermediates without quinoid structure were produced in groups YE + Glu/Xyl and differential degradation pathways were deduced in diverse groups. Metabolomics analysis revealed significant variations in up-/down-regulated metabolites using RB5 and different carbon sources. Moreover, the underlying mechanism of recolorization inhibition was proposed. Elevated reducing power associated with variable metabolites (2-hydroxyhexadecanoic acid, 9(R)-HODE cholesteryl ester, linoleamide, oleamide) rendered additional reductive cleavage of C-N bond on naphthalene ring. This study provided a new orientation to inhibit recolorization and deepened the understanding of the molecular mechanism of carbon sources inhibiting recolorization in the removal of refractory dyes.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Fan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingrong Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
22
|
Enhanced degradation of Acid Red 73 by using cellulose-based hydrogel coated Fe3O4 nanocomposite as a Fenton-like catalyst. Int J Biol Macromol 2020; 152:242-249. [DOI: 10.1016/j.ijbiomac.2020.02.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
|
23
|
Wu Q, Jiao S, Ma M, Peng S. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6749-6764. [PMID: 31956948 DOI: 10.1007/s11356-020-07745-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
The microbial fuel cell (MFC) system is a promising environmental remediation technology due to its simple compact design, low cost, and renewable energy producing. MFCs can convert chemical energy from waste matters to electrical energy, which provides a sustainable and environmentally friendly solution for pollutant degradations. In this review, we attempt to gather research progress of MFC technology in pollutant removal and environmental remediation. The main configurations and pollutant removal mechanism by MFCs are introduced. The research progress of MFC systems in pollutant removal and environmental remediation, including wastewater treatment, soil remediation, natural water and groundwater remediation, sludge and solid waste treatment, and greenhouse gas emission control, as well as the application of MFCs in environmental monitoring have been reviewed. Subsequently, the application of MFCs in environmental monitoring and the combination of MFCs with other technologies are described. Finally, the current limitations and potential future research has been demonstrated in this review.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Mengxing Ma
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
24
|
Xu P, Zheng D, Xie Z, Ma J, Yu J, Hou B. The mechanism and oxidation efficiency of bio-electro-Fenton system with Fe@Fe2O3/ACF composite cathode. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116103] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zou R, Angelidaki I, Jin B, Zhang Y. Feasibility and applicability of the scaling-up of bio-electro-Fenton system for textile wastewater treatment. ENVIRONMENT INTERNATIONAL 2020; 134:105352. [PMID: 31778935 DOI: 10.1016/j.envint.2019.105352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Textile wastewater entering natural water bodies could cause serious environment and health issues. Bio-electro-Fenton (BEF) as an efficient and energy saving wastewater treatment technology has recently attracted widespread attention. So far, there is no research available on the scaling-up of BEF process. In this work, an innovative 20 L up-scaled BEF system was constructed for the treatment of methylene blue (MB) containing wastewater. The system was first tested in batch mode. The results showed that the system performance was majorly related to the operating parameters including initial MB concentration, catholyte pH and concentration, cathodic aeration rate, Fe2+ dosage, and applied voltage. At the optimal condition, 20 mg L-1 of MB was efficiently removed following the apparent first order kinetics. The corresponding rate constants for the decolorization and mineralization were 0.68 and 0.20 h-1, respectively. Furthermore, MB decolorization efficiency of 99% and mineralization efficiency of 74% were observed when the hydraulic retention time was 28 h in continuous mode. This work demonstrates the scaling-up potential of BEF for recalcitrant wastewater treatment.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
26
|
Li B, Yan ZY, Liu XN, Tang C, Zhou J, Wu XY, Wei P, Jia HH, Yong XY. Enhanced Bio-Electro-Fenton degradation of phenolic compounds based on a novel Fe-Mn/Graphite felt composite cathode. CHEMOSPHERE 2019; 234:260-268. [PMID: 31220659 DOI: 10.1016/j.chemosphere.2019.06.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Phenolic compounds are problematic byproducts generated from lignocellulose pretreatment. In this study, the feasibility degradation of syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) by Bio-Electro-Fenton (BEF) system with a novel Fe-Mn/graphite felt (Fe-Mn/GF) composite cathode were investigated. The nano-scale Fe-Mn multivalent composite catalyst with core shell structure distributed more evenly on GF surface to form a catalyst layer with higher oxygen reduction reaction performance. Accordingly, the maximum power density generated with Fe-Mn/GF cathode was 48.1% and 238.9% higher than Fe/GF and GF respectively, which further enhanced the in situ generation of H2O2 due to the superiority of nano-scale core shell structure and synergistic effect of Fe and Mn species. The degradation efficiency of the three phenolic compounds in the BEF system could reached 100% after optimization of influencing parameters. Furthermore, a possible SA degradation pathway by BEF process in the present system was proposed based on the detected intermediates. These results demonstrated an efficient approach for the degradation of phenolic compounds derived from lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Biao Li
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China
| | - Zhi-Ying Yan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Xiao-Na Liu
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China
| | - Chen Tang
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China.
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing TECH University, Nanjing, 211816, China.
| |
Collapse
|
27
|
Su C, Deng Q, Lu Y, Qin R, Chen S, Wei J, Chen M, Huang Z. Effects of hydraulic retention time on the performance and microbial community of an anaerobic baffled reactor-bioelectricity Fenton coupling reactor for treatment of traditional Chinese medicine wastewater. BIORESOURCE TECHNOLOGY 2019; 288:121508. [PMID: 31132595 DOI: 10.1016/j.biortech.2019.121508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present paper was to investigate the effects of hydraulic retention time (HRT) on the performance and microbial community dynamics of an anaerobic baffled reactor-bioelectricity Fenton (ABR-BEF) coupling reactor for treating traditional Chinese medicine (TCM) wastewater. The results show that the average removal of chemical oxygen demand (COD) and NH3-N at HRTs of 24 h and 18 h were high (>90% and >70%, respectively), but decreased to about 40% and 30% when operating at 12 h HRT. For the electrical production performance, the maximum power density was 196.86 mW/m3 at a HRT of 18 h. Methanomicrobia was the dominant archaea in the coupling reactor and the relative abundance of Methanothrix and Methanolinea increased with decreasing HRT. For the bacteria, the relative abundance of Planctomycetia significantly decreased with a short HRT; however, Anaerolineaceae was always the dominant bacterial taxa, which could guarantee efficient treatment of TCM wastewater.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shenglong Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Jingwei Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhi Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
28
|
Su C, Lu Y, Deng Q, Chen S, Pang G, Chen W, Chen M, Huang Z. Performance of a novel ABR-bioelectricity-Fenton coupling reactor for treating traditional Chinese medicine wastewater containing catechol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 177:39-46. [PMID: 30959311 DOI: 10.1016/j.ecoenv.2019.03.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
In this study, a novel anaerobic baffled reactor-bioelectricity-Fenton (ABR-BEF) coupling reactor, combining an ABR, microbial fuel cell (MFC), and Fenton system, was used to treat traditional Chinese medicine (TCM) wastewater containing catechol. The bio-electrochemical degradation of the catechol reached 99.7% after 8 h at dissolved oxygen (DO) concentration of 4 mg/L in the cathodic chamber. The removal rates of chemical oxygen demand (COD) reached 91.7%, when the ratio rate was 1 and the DO concentration was 4 mg/L. Moreover, the maximum open-circuit voltage and power density of the coupling reactor reached 424.9 mV and 77.1 mW/m3, respectively. According to the PICRUSt analysis, carbohydrate metabolism took up the most abundant function of metabolism and the enrichment of membrane transporters may relieve TCM wastewater toxicity. These results suggest that the ABR-BEF coupling reactor could be applied as an efficient approach to treat TCM wastewater.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shenglong Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Gange Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Wuyang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhi Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
29
|
Chen Y, Jing C, Zhang X, Jiang D, Liu X, Dong B, Feng L, Li S, Zhang Y. Acid-salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of methyl orange dye. J Colloid Interface Sci 2019; 548:100-109. [DOI: 10.1016/j.jcis.2019.03.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
|
30
|
Wang D, Hou H, Hu J, Xu J, Huang L, Hu S, Liang S, Xiao K, Liu B, Yang J. A bio-electro-Fenton system with a facile anti-biofouling air cathode for efficient degradation of landfill leachate. CHEMOSPHERE 2019; 215:173-181. [PMID: 30316159 DOI: 10.1016/j.chemosphere.2018.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Bio-electro-Fenton (BEF) system holds great potential for sustainable degradation of refractory organics. Activated carbon (AC) air cathode was modified by co-pyrolyzing of AC with glucose and doping with nano-zero-valent iron (denoted as nZVI@MAC) in order to promote two-electron oxygen reduction reaction (2e- ORR) for enhanced oxidizing performance. Single chamber microbial fuel cells (SCMFCs) with nZVI@MAC cathode was examined to degrade landfill leachate. It was revealed that nZVI@MAC cathode SCMFC showed higher degradation efficiency towards landfill leachate. Six landfill leachate treatment cycles indicated that nZVI@MAC cathode SCMFC exhibited higher COD removal efficiencies over AC and nZVI@AC and greatly enhanced columbic efficiency compared to AC and nZVI@AC cathode. Anti-biofouling effect was found on nZVI@MAC cathode because of the high Fenton oxidation effects at the vicinity of the cathode. Electrochemical characterizations indicated that MAC cathode had superior 2e- ORR capability than AC and nZVI@AC cathode, which was further evidenced by higher H2O2 production from nZVI@MAC cathode in SCMFC. Graphitic structure of MAC was evidenced by High Resolution Transmission Electron Microscopy, and glucose pyrolysis also resulted in nano carbon spheres on the activated carbon skeletons. Raman spectra indicated more defects were generated on MAC during its co-pyrolyzation with glucose.
Collapse
Affiliation(s)
- Dongliang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jikun Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Long Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shaogang Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
31
|
Wang W, Lu Y, Luo H, Liu G, Zhang R, Jin S. A microbial electro-fenton cell for removing carbamazepine in wastewater with electricity output. WATER RESEARCH 2018; 139:58-65. [PMID: 29626730 DOI: 10.1016/j.watres.2018.03.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 05/20/2023]
Abstract
High electrical energy is required for the electro-Fenton process to remove pharmaceuticals and personal care products (PPCPs) in wastewater. The aim of this study was to develop a novel and more cost-effective process, specifically a microbial electro-Fenton cell (MeFC), for treating PPCPs in wastewater. Acetylene black was selected as the catalyst for H2O2 electrogeneration and Fe-Mn binary oxide for hydroxyl radical production. In addition to lowering energy needs, the MeFC produced a maximum power density of 112 ± 11 mW/m2 with 1 g/L acetate as a representative substrate and 10 mg/L carbamazepine (CBZ) as a typical PPCP. Comparing with electro-Fenton process, the CBZ removal in the MeFC was 38% higher within 24 h operation (90% vs. 62%). Furthermore, the CBZ removal rate in the MeFC was 10-100 times faster than that in other biological treatment processes. Such enhanced degradation of CBZ in the MeFC was attributed to the synergistic reactions between radical oxidation of CBZ and biodegradation of degradative intermediates. The MeFC provides a promising method to remove PPCPs from wastewater coupling with efficient removal of other biodegradable organics.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
32
|
Dong H, Liu X, Xu T, Wang Q, Chen X, Chen S, Zhang H, Liang P, Huang X, Zhang X. Hydrogen peroxide generation in microbial fuel cells using graphene-based air-cathodes. BIORESOURCE TECHNOLOGY 2018; 247:684-689. [PMID: 30060400 DOI: 10.1016/j.biortech.2017.09.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 06/08/2023]
Abstract
Utilization of two-electron oxygen reduction reaction (ORR) in bioelectrochemical systems (BES) is a novel way to generate H2O2 from wastewater, and cathode catalyst is a key factor affecting ORR performance. Here, the catalytic performance of plain graphene, oxidized graphene and graphene oxide (GO) in microbial fuel cells (MFCs) and the influence of oxygen-containing functional groups are reported. Oxidized graphene air-cathode had 78% and 131% higher H2O2 productions than plain graphene cathode respectively in an abiotic reactor and an MFC. GO showed nearly no H2O2 production in the tests. XPS revealed that oxygen atomic fraction of oxidized graphene reached 5.7%, mostly in the form of COC. These results show that oxidized graphene had good catalytic performance for H2O2 production, and oxygen-containing functional groups, especially COC could significantly enhance its performance, but overoxidation worked adversely. Meanwhile, using oxidized graphene air-cathode could realize simultaneous wastewater treatment, power output and H2O2 generation in MFCs.
Collapse
Affiliation(s)
- Heng Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaowan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ting Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiuying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xianghao Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Helan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
33
|
Diaw PA, Oturan N, Seye MDG, Coly A, Tine A, Aaron JJ, Oturan MA. Oxidative degradation and mineralization of the phenylurea herbicide fluometuron in aqueous media by the electro-Fenton process. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Miran W, Nawaz M, Jang J, Lee DS. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. WATER RESEARCH 2017; 117:198-206. [PMID: 28399481 DOI: 10.1016/j.watres.2017.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 05/15/2023]
Abstract
Wastewaters are increasingly being considered as renewable resources for the sustainable production of electricity, fuels, and chemicals. In recent years, bioelectrochemical treatment has come to light as a prospective technology for the production of energy from wastewaters. In this study, a bioelectrochemical system (BES) enriched with sulfate-reducing bacteria (SRB) in the anodic chamber was proposed and evaluated for the biodegradation of recalcitrant chlorinated phenol, electricity generation (in the microbial fuel cell (MFC)), and production of hydrogen peroxide (H2O2) (in the microbial electrolysis cell (MEC)), which is a very strong oxidizing agent and often used for the degradation of complex organics. Maximum power generation of 253.5 mW/m2, corresponding to a current density of 712.0 mA/m2, was achieved in the presence of a chlorinated phenol pollutant (4-chlorophenol (4-CP) at 100 mg/L (0.78 mM)) and lactate (COD of 500 mg/L). In the anodic chamber, biodegradation of 4-CP was not limited to dechlorination, and further degradation of one of its metabolic products (phenol) was observed. In MEC operation mode, external voltage (0.2, 0.4, or 0.6 V) was added via a power supply, with 0.4 V producing the highest concentration of H2O2 (13.3 g/L-m2 or 974 μM) in the cathodic chamber after 6 h of operation. Consequently, SRB-based bioelectrochemical technology can be applied for chlorinated pollutant biodegradation in the anodic chamber and either net current or H2O2 production in the cathodic chamber by applying an optimum external voltage.
Collapse
Affiliation(s)
- Waheed Miran
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Mohsin Nawaz
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
35
|
Hoseinzadeh E, Rezaee A, Farzadkia M. Low frequency-low voltage alternating electric current-induced anoxic granulation in biofilm-electrode reactor: A study of granule properties. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|