1
|
Xu W, Cai B, Zhang X, Zhang Y, Zhang Y, Peng H. The Biochar Derived from Pecan Shells for the Removal of Congo Red: The Effects of Temperature and Heating Rate. Molecules 2024; 29:5532. [PMID: 39683692 DOI: 10.3390/molecules29235532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Organic pollutants, especially dyes, are seriously hazardous to the aquatic system and humans due to their toxicity, and carcinogenic or mutagenic properties. In this study, a biochar prepared from agricultural waste (pecan shells) via pyrolysis was applied to remove the dye pollutant Congo Red from wastewater to avoid a negative effect to the ecosystem. This study also investigated the effect of preparation conditions (temperature and heating rate) on the physicochemical properties and the adsorption performance of biochars. The physicochemical properties of the biochar were characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorption performance of the biochar was evaluated for Congo Red removal. The results showed that biochar prepared at 800 °C with a heating rate of 20 °C/min (PSC-800-20) exhibited a higher specific surface area of 450.23 m2/g and a higher adsorption capacity for Congo Red (130.48 mg/g). Furthermore, adsorption experiments indicated that the pseudo-second-order and Langmuir models fitted well with the adsorption kinetics and isotherms of the biochar derived from pecan shells, respectively. Additionally, the PSC-800-20 biochar demonstrated a stable adsorption capacity over multiple cycles, suggesting its potential for regeneration and reuse in wastewater treatment applications. Therefore, the biochar derived from agricultural waste presents a promising and sustainable solution for the removal of toxic dye pollutants from wastewater.
Collapse
Affiliation(s)
- Wanqiang Xu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Bo Cai
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Xujie Zhang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yating Zhang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Yongjian Zhang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A & F University, Hangzhou 311300, China
- Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Hehuan Peng
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A & F University, Hangzhou 311300, China
- Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| |
Collapse
|
2
|
Ali QA, Ali MF, Mohammed SJ, M-Ridha MJ. Utilising date palm fibres as a permeable reactive barrier to remove methylene blue dye from groundwater: a batch and continuous adsorption study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1112. [PMID: 39466462 DOI: 10.1007/s10661-024-13262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
This study aimed to utilise cheap and abundantly available date palm fibre (DPF) wastes for the remediation of methylene blue (MLB) dye-contaminated groundwater. The DPF adsorbents were first prepared, followed by various characterisation analyses, including surface morphology, functional groups, and material structure. Subsequently, the DPF adsorbents were applied in the batch and continuous adsorption studies to assess the MLB dye removal from aqueous environments. The batch adsorption study achieved 98% maximum removal efficiency with a contact time, adsorbents dosage, initial pH, temperature, particle size, initial dye concentration, and agitation speed of 105 min, 3 g/L, 7.0, 45 °C, 0.075 mm, 50 mg/L, and 150 rpm, respectively. Langmuir was the best-fitted isotherm model depending on a higher correlation coefficient (R2 = 0.985), with a maximum monolayer dye adsorption capacity (qmax) of 54.204 mg/g. Additionally, the second order was the best-fitted kinetic model (R2 = 0.990), indicating that MLB dye was removed through chemisorption. Besides, the positive enthalpy change (ΔH°) and negative Gibb's free energy (ΔG°) values verified the endothermic process and spontaneous adsorption. According to the impact analysis of initial dye concentrations and flow rates on the permeable reactive barrier (PRB) performance in the continuous adsorption study using the Thomas, Belter, and Yan models, the experimental results and predicted breakthrough curves reflected an excellent agreement (R2 ≥ 0.8767) and a sum of squared errors (SSE) ≤ 0.4834. In short, the results demonstrated DPF as an effective adsorbent material in PRB technology.
Collapse
Affiliation(s)
- Qahtan Adnan Ali
- Department of Environment and Pollution Techniques Engineering, Technical Engineering College/Kirkuk, Northern Technical University, 36001, Kirkuk, Iraq
- Renewable Energy Research Center-Kirkuk, Northern Technical University, 36001, Kirkuk, Iraq
| | - Muna Faeq Ali
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Sabah J Mohammed
- Department of Environmental, North Refineries Company (NRC), Ministry of Oil, Baiji, Salahuldeen, Iraq.
| | - Mohanad J M-Ridha
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Yan Z, Jiang S, Meng L, Lou Y, Xi J, Xiao H, Wu W. Self-supporting and hierarchical porous membrane of bacterial nanocellulose@metal-organic framework for ultra-high adsorption of Congo red. Int J Biol Macromol 2024; 277:134277. [PMID: 39089537 DOI: 10.1016/j.ijbiomac.2024.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method. The resulting BC@MOF composite nanofibers have a high specific surface area of 651 m2/g and can be assembled into a self-supported porous membrane (BMMCa) through vacuum filtration with the assistance of calcium ions. The addition of Ca(II) significantly enhanced the mechanical properties of the membrane through dispersion effect and electrostatic interactions, as well as enhancing its adsorption performance through the salting-out effect. The BMMCa membrane, with its hierarchical porous structure and high flux, exhibits high selectivity for Congo red (CR) with an ultra-high adsorption capacity of 3518.6 mg/g. Furthermore, the self-supporting membrane achieved rapid and convenient removal of CR through circulating filtration adsorption. The adsorption mechanism and selectivity were verified through the molecular dynamics simulation calculations by Materials Studio (MS) software. This membrane-based adsorbent, with its ultra-high adsorption capacity, good selectivity, and recycling ability, has great potential for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Mahmood Al-Nuaimy MN, Azizi N, Nural Y, Yabalak E. Recent advances in environmental and agricultural applications of hydrochars: A review. ENVIRONMENTAL RESEARCH 2024; 250:117923. [PMID: 38104920 DOI: 10.1016/j.envres.2023.117923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Hydrochar is a carbonaceous material that is generated through the process of hydrothermal carbonization (HTC) from biomass, which has garnered considerable attention in recent years owing to its potential applications in a diverse range of fields, such as environmental remediation and agriculture. Hydrochar is produced from a diverse range of biomass waste materials and retains exceptional properties, including high carbon content, stability, and surface area, making it an optimal candidate for various enviro-agricultural applications. Moreover, it delves into the production process of hydrochar, with explicit emphasis on the optimization of certain properties during the production of hydrochar from bio-waste. Furthermore, the potential of hydrochar as an adsorbent and catalyst support for heavy metals and dyes was extensively explored, along with a soil remediation potential that can improve the physical, chemical and biological properties of soil. This comprehensive review aims to provide a thorough overview of hydrochar with a particular focus on its production, properties, and prospective applications. The significance of hydrochar is accentuated and the growing need for alternative sources of energy and materials that are environmentally sustainable is highlighted in this paper. Besides, the consequence of hydrochar on soil properties such as water-holding capacity, nutrient retention, and total soil porosity, as well as its influence on soil chemical properties such as cation exchange capacity, electrical conductivity, and surface functionality is scrutinized.
Collapse
Affiliation(s)
| | - Nangyallai Azizi
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
5
|
Saqib NU, Naqvi M, Li B, Sarmah AK, Munir MT. From scraps to purification: innovative use of food waste-derived hydrochar in eradicating pharmaceutical pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33630-1. [PMID: 38758447 DOI: 10.1007/s11356-024-33630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Chemical products (CPs) such as carbamazepine and naproxen, present in aquatic environments, pose significant risks to both aquatic life and human health. This study investigated the use of hydrothermally carbonized food waste-derived hydrochar (AC-HTC) at three distinct temperatures (200, 250, and 300 °C) as an adsorbent to remove these CPs from water. Our research focused on the impact of hydrothermal carbonization temperature on hydrochar properties and the effects of chemical activation with phosphoric acid on adsorption capacity. Hydrothermal carbonization increased the hydrochar's surface area from 1.47 to 7.52 m2/g, which was further enhanced to 32.81 m2/g after activation with phosphoric acid. Batch adsorption experiments revealed that hydrochar produced at 250 °C (AC-HTC-250) demonstrated high adsorption capacities of 49.10 mg/g for carbamazepine and 14.35 mg/g for naproxen, outperforming several conventional adsorbents. Optimal adsorption occurred at pH 4, aligning well with the Langmuir and pseudo-first-order models. The hydrochar showed potential for regeneration and multiple uses, suggesting its applicability in sustainable wastewater treatment. Future research will explore scalability and effectiveness against a broader range of pollutants.
Collapse
Affiliation(s)
- Najam Ul Saqib
- Department of Civil & Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Muhammad Naqvi
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Bing Li
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait.
| |
Collapse
|
6
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
7
|
Nadarajah K, Rodriguez-Narvaez OM, Ramirez J, Bandala ER, Goonetilleke A. Lab-scale engineered hydrochar production and techno-economic scaling-up analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:568-574. [PMID: 38141374 DOI: 10.1016/j.wasman.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Despite the extensive use of engineered hydrochar (EHC) for contaminants adsorption in water, little is known about the scaling-up of EHC production which has kept the technology at a low readiness level (TRL). Full-scale EHC production was simulated to help bridge this knowledge gap. A systematic analysis was performed where EHC was produced from rice straw using hydrothermal carbonization (HTC) at 200 °C with iron addition. A techno-economic evaluation model was employed to simulate the production process and to estimate energy requirements, configuration, and cost scenarios for the HTC process. The minimum selling price (MSP) analysis of the engineered hydrochar was found to be almost half compared to the market price for other similar sorbents ($ 76/t vs. $136/t) suggesting that EHC production is feasible for scaling up. Finally, as a trial, the resulting material was tested for its efficacy in the adsorption of an anionic organic contaminant (e.g., Congo Red, C32H22N6Na2O6S2) in water to identify its potential for water treatment. Experimental results showed that EHC adsorbed > 95% CR suggesting significant adsorption capability and feasibility for production scale-up.
Collapse
Affiliation(s)
- Kannan Nadarajah
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | - Oscar M Rodriguez-Narvaez
- CIATEC, A.C., Dirección de investigación y soluciones tecnológicas, Omega 201, Col. Industrial Delta, León, Guanajuato C.P. 37545, Mexico.
| | - Jerome Ramirez
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia
| | - Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas NV89119-7363, USA
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology, GPO Box 2344, Brisbane 4001, Queensland, Australia
| |
Collapse
|
8
|
Senthil Kumar P, Shanmugapriya M, Prasannamedha G, Rangasamy G. Immobilization of hydrochar in cellulose beads for eradicating paracetamol from synthetic and sewage water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123035. [PMID: 38030112 DOI: 10.1016/j.envpol.2023.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Sodium carboxymethyl cellulose polymer was used as a support matrix in immobilizing activated hydrochar derived from bamboo using hydrothermal carbonization. The structural and textural morphology of the beads were studied using FTIR, XRD, SEM/EDS, BET and TGA. Activated hydrochar showed a rough surface with irregular spherical shaped structure. Various oxygenated functional groups in composite beads and activated hydrochar were identified that assist in interaction with PARA pollutant. TGA analysis showed weight loss at three stages 200 °C, 365 °C and 710 °C that leads to complete disintegration of composite beads. BET analysis showed a variation in the surface area between activated hydrochar and beads which could be due to air drying process. Batch adsorption test was conducted for investigating the efficiency of beads in removing PARA from water. Pseudo-second order and Langmuir isotherm fitted the best highlighting chemical mode of adsorption with homogenous interaction on the adsorbent surface. 48.12 mg g-1 was the maximum adsorption capacity estimated from sorption between beads and PARA. For practical applications beads were effectively used in reducing COD levels of PARA spiked sewage water with the defined experimental parameters. Ethanol would be effectively used as regenerating solvent in recycling the beads for the betterment of cost reduction. The activated hydrochar immobilized cellulose beads would be successfully applied as adsorbent in removing target pollutants from water thereby reducing the hurdles faced with respect to fine particles in water treatment.
Collapse
Affiliation(s)
- P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - M Shanmugapriya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - G Prasannamedha
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, 600062, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
9
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
10
|
Zhong J, Zhu W, Wang X, Sun J, Mu B, Xu Y, Li G. Effect mechanism of iron conversion on adsorption performance of hydrochar derived from coking sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165427. [PMID: 37451467 DOI: 10.1016/j.scitotenv.2023.165427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, Fe conversion during hydrothermal carbonization (HTC) of coking sludge were investigated, and the effect mechanism of Fe component on the adsorption performance of coking sludge hydrochar (CHC) was explored. The results showed that after HTC treatment, more than 95 % of Fe remained in the CHC. Fe3+ was reduced to Fe2+ by sugar and amino acids. Fe was stabilized during the HTC process and was still predominantly in the Fe manganese oxidation state. The CHC prepared at 270 °C exhibited excellent adsorption capacities for Congo red (CR), tetracycline (TC), and Cr (VI). Their maximum adsorption capacities were 140.85, 147.06, and 19.92 mg/g, respectively. Quantitative adsorption mechanism experiments, XRD and VSM characterization revealed that Fe component played a significant role in adsorption, and CHC with more Fe3O4 exhibited better adsorption capacity. The results of the XPS characterization of CHC before and after adsorption showed that Fe3O4 provided rich Fe adsorption sites on the surface of CHC to strengthen the adsorption efficiency of pollutants through Fe3+/Fe2+ reduction and complexation of Fe-O/N. In addition, the formed Fe3O4 also imparted CHC with magnetic properties (Ms = 4.12 emu/g) to facilitate the subsequent separation and recovery. These results demonstrated that the prepared CHC has great potential for treating actual wastewater containing CR and TC.
Collapse
Affiliation(s)
- Jun Zhong
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Zhu
- Center for Taihu Basin, Hohai University, Nanjing 210098, PR China.
| | - Xin Wang
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jipeng Sun
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Biao Mu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yucheng Xu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guorui Li
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
11
|
Zhao J, Liu H, Xue P, Qi Y, Lv Z, Wang R, Wang Y, Sun S. Construction of a multi-layer protection of CS polymer brush grafted DA@CNTs coating on PVDF membrane for effective removal of dye effluent. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132435. [PMID: 37651930 DOI: 10.1016/j.jhazmat.2023.132435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
In the process of removing dye wastewater, the membrane surface is susceptible to contamination, resulting in reduced performance and limited dye separation efficiency. A single hydrophilic modification layer is not enough to achieve effective separation of different types of dyes. The present research designed a "double layer protection" method in order to overcome the above deficiencies. A solution of dopamine (DA) coated carbon nanotubes (CNTs-COOH) was covered on the surface of the polyvinylidene fluoride (PVDF) membrane by deposition, followed by grafting a layer of chitosan (CS) polymer brushes on its surface. The spatial double layer structure provides an excellent barrier effect and effectively reduces the contamination of dyes. When filtering different types of dyes, effective filtration of anionic and cationic dyes through the electrostatic effect of the first layer, the adsorption of CNTs in the second layer and the hydration layer of both layers. All membranes have excellent rejection properties. More importantly, the membranes also had good chemical and mechanical stability and their serviceability was not degraded. Therefore, the prepared PVDF-based multi-layer composite membranes behave a potential application prospect in the wastewater purification field.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Peng Xue
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yucheng Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
12
|
Zhu Y, Qi BK, Lv HN, Gao Y, Zha SH, An RY, Zhao QS, Zhao B. Preparation of DES lignin-chitosan aerogel and its adsorption performance for dyes, catechin and epicatechin. Int J Biol Macromol 2023; 247:125761. [PMID: 37429341 DOI: 10.1016/j.ijbiomac.2023.125761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Herein, DES lignin was obtained by pretreatment of grapevine with a deep eutectic solvent (ChCl-LA). A novel chitosan-DES lignin composite aerogel material (CS-LIG aerogel) was prepared to adsorb methylene blue (MB), Congo red (CR), catechin (C), and epicatechin (EC). The CS-LIG aerogel was systematically characterized by modern technological instruments. It was demonstrated that the DES lignin was successfully incorporated and had an important effect on the morphological structure and adsorption of dyes and natural products in the aerogel. The adsorption kinetic models for both adsorbed CR and MB are pseudo-second-order models. Adsorption isotherms followed Langmuir for the adsorption of CR and Freundlich for the adsorption of MB. The π-π interaction and hydrogen bonding of DES lignin aromatic groups in CS-LIG aerogels were responsible for the adsorption of C and EC with 86.42 % and 90.85 % removal rates, respectively. This study opens a new avenue for the high-value utilization of DES lignin and the preparation of chitosan-based composites for the adsorption of dyes and purification of natural products.
Collapse
Affiliation(s)
- Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ben-Kun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ning Lv
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Gao
- Ningxia University, Yinchuan 750021, China
| | - Sheng-Hua Zha
- Beijing Tong Ren Tang Health Pharmaceutical Co., Ltd., Beijing 100085, China
| | - Rong-Yan An
- StateFarm of Ningxia Liquor Industry Co., Ltd., Yinchuan 750021, China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Lin Z, Wang R, Tan S, Zhang K, Yin Q, Zhao Z, Gao P. Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: Effect of nitrogen source in wastewater on the adsorption performance of hydrochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117503. [PMID: 36796192 DOI: 10.1016/j.jenvman.2023.117503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Dye wastewater has become one of the main risk sources of environmental pollution due to its high toxicity and difficulty in degradation. Hydrochar prepared by hydrothermal carbonization (HTC) of biomass has abundant surface oxygen-containing functional groups, and therefore is used as an adsorbent to remove water pollutants. The adsorption performance of hydrochar can be enhanced after improving its surface characteristics through nitrogen-doping (N-doping). In this study, wastewater rich in nitrogen sources such as urea, melamine and ammonium chloride were selected as the water source for the preparation of HTC feedstock. The N atoms were doped in the hydrochar with a content of 3.87%-5.70%, and mainly in the form of pyridinic-N, pyrrolic-N and graphitic-N, which changed the acidity and basicity of the hydrochar surface. The N-doped hydrochar adsorbed methylene blue (MB) and congo red (CR) in wastewater through pore filling, Lewis acid-base interaction, hydrogen bond, and π-π interaction, and the maximum adsorption capacities of those were obtained with 57.52 mg/g and 62.19 mg/g, respectively. However, the adsorption performance of N-doped hydrochar was considerably affected by the acid-base property of the wastewater. In a basic environment, the surface carboxyl of the hydrochar exhibited a high negative charge and thus an enhanced electrostatic interaction with MB. Whereas, the hydrochar surface was positively charged in an acid environment by binding H+, resulting in an enhanced electrostatic interaction with CR. Therefore, the adsorption efficiency of MB and CR by N-doped hydrochar can be tuned by adjusting the nitrogen source and the pH of the wastewater.
Collapse
Affiliation(s)
- Zhaohua Lin
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Ruikun Wang
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China.
| | - Shiteng Tan
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Kai Zhang
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Qianqian Yin
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Zhenghui Zhao
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Peng Gao
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China; Baoding Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, 071003, Hebei, China
| |
Collapse
|
14
|
Khan MA, Alqadami AA, Wabaidur SM, Jeon BH. Co-Carbonized Waste Polythene/Sugarcane Bagasse Nanocomposite for Aqueous Environmental Remediation Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071193. [PMID: 37049288 PMCID: PMC10097173 DOI: 10.3390/nano13071193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/31/2023]
Abstract
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water decolorization application. An SBPE composite material was developed and co-pyrolyzed under an inert atmosphere to develop the activated SBPEAC composite. Both SBPE and SBPEAC composites were characterized to analyze their morphological characteristics, specific surface area, chemical functional groups, and elemental composition. The adsorption efficacies of the composites were comparatively tested in the removal of malachite green (MG) from water. The SBPEAC composite had a specific surface area of 284.5 m2/g and a pore size of ~1.33 nm. Batch-scale experiments revealed that the SBPEAC composite performed better toward MG adsorption compared to the SBPE composite. The maximum MG uptakes at 318 K on SBPEAC and SBPE were 926.6 and 375.6 mg/g, respectively. The adsorption of MG on both composites was endothermic. The isotherm and kinetic modeling data for MG adsorption on SBPEAC was fitted to pseudo-second-order kinetic and Langmuir isotherm models, while Elovich kinetic and D-R isotherm models were better fitted for MG adsorption on SBPE. Mechanistically, the MG adsorption on both SBPE and SBPEAC composites involved electrostatic interaction, H-bonding, and π-π/n-π interactions.
Collapse
Affiliation(s)
- Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
15
|
Liu Q, Deng WY, Zhang LY, Liu CX, Jie WW, Su RX, Zhou B, Lu LM, Liu SW, Huang XG. Modified Bamboo Charcoal as a Bifunctional Material for Methylene Blue Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1528. [PMID: 36837157 PMCID: PMC9964798 DOI: 10.3390/ma16041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biomass-derived raw bamboo charcoal (BC), NaOH-impregnated bamboo charcoal (BC-I), and magnetic bamboo charcoal (BC-IM) were fabricated and used as bio-adsorbents and Fenton-like catalysts for methylene blue removal. Compared to the raw biochar, a simple NaOH impregnation process significantly optimized the crystal structure, pore size distribution, and surface functional groups and increase the specific surface area from 1.4 to 63.0 m2/g. Further magnetization of the BC-I sample not only enhanced the surface area to 84.7 m2/g, but also improved the recycling convenience due to the superparamagnetism. The maximum adsorption capacity of BC, BC-I, and BC-IM for methylene blue at 328 K was 135.13, 220.26 and 497.51 mg/g, respectively. The pseudo-first-order rate constants k at 308 K for BC, BC-I, and BC-IM catalytic degradation in the presence of H2O2 were 0.198, 0.351, and 1.542 h-1, respectively. A synergistic mechanism between adsorption and radical processes was proposed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Yong Deng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lie-Yuan Zhang
- Technical Center of Nanchang Customs, Nanchang 330038, China
| | - Chang-Xiang Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei-Wei Jie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui-Xuan Su
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li-Min Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shu-Wu Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Gen Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Microwave-assisted hydrothermal preparation of magnetic hydrochar for the removal of organophosphorus insecticides from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
N-Doped Biochar from Lignocellulosic Biomass for Preparation of Adsorbent: Characterization, Kinetics and Application. Polymers (Basel) 2022; 14:polym14183889. [PMID: 36146033 PMCID: PMC9503327 DOI: 10.3390/polym14183889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Medulla tetrapanacis is composed of a lignocellulosic biopolymer and has a regular porous structure, which makes it a potential biomass material for preparing porous N-doped biochar. Herewith, N-doped Medulla tetrapanacis biochar (UBC) was successfully prepared by modification with urea and NaHCO3 under pyrolysis at 700 °C. The nitrogen-containing groups were efficiently introduced into biochar, and the micro-pore structures of the UBC were developed with sizeable specific surface area, which was loaded with massive adsorption sites. The adsorption kinetics and isotherms of the UBC conformed to pseudo-second-order and Langmuir model. The superior adsorption capacities of the UBC for methylene blue (MB) and congo red (CR) were 923.0 mg/g and 728.0 mg/g, and the capacities for Cu2+ and Pb2+ were 468.5 mg/g and 1466.5 mg/g, respectively. Moreover, the UBC had a stronger affinity for Cr3+ and Fe3+ in multiple metal ions and retained at a preferable adsorption performance for dyes and heavy metals after five cycles. Precipitation, complexation, and physical adsorption were the main mechanisms of the UBC-adsorbing metal ions and dyes. Thus, lignocellulosic biochar has great potential for removing dyes and heavy metals in aqueous solutions.
Collapse
|
18
|
Li X, Wu Z, Tao X, Li R, Tian D, Liu X. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129525. [PMID: 35816800 DOI: 10.1016/j.jhazmat.2022.129525] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Laccase has received extensive attention in pollutant degradation due to its high efficiency and environmental friendliness, but free laccase has poor stability, easy inactivation, and difficulty in recycling, which limited its application. It was a smart strategy to construct a synergistic system for the efficient adsorption and degradation of pollutants by enzyme immobilization to improve the stability and recyclability of the enzyme. In this study, the materials were synthesized by a one-step co-precipitation method. With Cu-MOF as the main body, Co2+ was introduced to construct bimetallic CoCu-MOF as the protective carrier of the enzyme. The enzyme-carrying capacity and enzyme activity of Lac@CoCu-MOF were 2-fold and 3.5-fold higher than those of Lac@Cu-MOF, respectively. Lac@MOF composites had a good protective effect on enzyme in various interfering environments. At pH = 7, free laccase was completely inactivated and Lac@CoCu-MOF maintained 51.76% enzyme activity. In addition, the removal rate of Congo red by Lac@CoCu-MOF reached 90 % in 1 h at pH = 4 % and 95 % in 5 h at pH = 7, and the final TOC mineralization rate reached 86.05 %. After six cycles, the degradation rate of Lac@CoCu-MOF remained above 75 %. Therefore, Lac@CoCu-MOF was constructed with the advantages of enzyme immobilization (enhanced stability and easy operation), material adsorption, and biocatalysis (fast diffusion and high activity), which has great guiding significance for the industrial application of enzyme.
Collapse
Affiliation(s)
- Xueping Li
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China; School of Chemistry and Chemical Engineering, The Key Laboratory For Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Xiyang Tao
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Runze Li
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China; School of Chemistry and Chemical Engineering, The Key Laboratory For Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, PR China
| | - Duoduo Tian
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
19
|
Wang Z, Tang Z, Xie X, Xi M, Zhao J. Salt template synthesis of hierarchical porous carbon adsorbents for Congo red removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Divband Hafshejani L, Naseri AA, Moradzadeh M, Daneshvar E, Bhatnagar A. Applications of soft computing techniques for prediction of pollutant removal by environmentally friendly adsorbents (case study: the nitrate adsorption on modified hydrochar). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1066-1082. [PMID: 36358046 DOI: 10.2166/wst.2022.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial intelligence has emerged as a powerful tool for solving real-world problems in various fields. This study investigates the simulation and prediction of nitrate adsorption from an aqueous solution using modified hydrochar prepared from sugarcane bagasse using an artificial neural network (ANN), support vector machine (SVR), and gene expression programming (GEP). Different parameters, such as the solution pH, adsorbent dosage, contact time, and initial nitrate concentration, were introduced to the models as input variables, and adsorption capacity was the predicted variable. The comparison of artificial intelligence models demonstrated that an ANN with a lower root mean square error (0.001) and higher R2 (0.99) value can predict nitrate adsorption onto modified hydrochar of sugarcane bagasse better than other models. In addition, the contact time and initial nitrate concentration revealed a higher correlation between input variables with the adsorption capacity.
Collapse
Affiliation(s)
- Laleh Divband Hafshejani
- Environmental Engineering Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran E-mail:
| | - Abd Ali Naseri
- Irrigation and Drainage Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mostafa Moradzadeh
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), EMMAH, F-84914, Avignon, France
| | - Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| |
Collapse
|
21
|
Miao JL, Ren JQ, Li HJ, Wu DG, Wu YC. Mesoporous crosslinked chitosan-activated clinoptilolite biocomposite for the removal of anionic and cationic dyes. Colloids Surf B Biointerfaces 2022; 216:112579. [PMID: 35598510 DOI: 10.1016/j.colsurfb.2022.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023]
Abstract
A mesoporous crosslinked chitosan-activated clinoptilolite biocomposite (CS-GA/ACP) was prepared with chitosan (CS) as the substrate and glutaraldehyde (GA) as the crosslinking agent. Structural analysis of the CS-GA/ACP composite beads was performed using FTIR, SEM, and BET techniques. The adsorption properties of the CS-GA/ACP for Congo red (CR) and methylene blue (MB) removal were examined using a batch method. The effects of CS loading, CS-GA/ACP dosages (0.005-0.25 g), pH values (3-11), initial concentrations (30-300 mg/L), contact time (5-120 min), ionic strength, and temperatures (25-65 ℃) on the adsorption of CR and MB on the CS-GA/ACP composite beads were investigated. The pseudo-second-order kinetics could better describe the adsorption process than the pseudo-first-order kinetics, and the Langmuir isotherms model agreed well with the experimental data. The maximum adsorption capacities of the CS-GA/ACP for CR and MB were 180.59 mg/g and 143.67 mg/g at 25 ℃, respectively. The proposed mechanism studies showed that the possible interaction between the adsorbent and dye molecules were Yoshida H-bonding, dipole-dipole H-bonding, electrostatic interaction and n-π interaction. The CS-GA/ACP can be recycled to remove dyes without significant loss of efficacy, and the adsorption of dyes on the CS-GA/ACP is spontaneous endothermic adsorption. Overall, the CS-GA/ACP showed an excellent performance for dyes removal in aqueous solution and could be a practical candidate for industrial applications.
Collapse
Affiliation(s)
- Jia-Lin Miao
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jia-Qi Ren
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Da-Gang Wu
- Shandong Muxiang Biotechnology Co., Ltd, Qingdao 266100, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
22
|
Dabagh A, Abali M, Ait Ichou A, Benhiti R, Sinan F, Zerbet M. Optimization and modeling of adsorption of Congo Red and Rhodamine B dyes onto Carpobrotus edulis plant. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2093215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abdelkader Dabagh
- Laboratory LACAPE, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - M’hamed Abali
- Laboratory LACAPE, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | | | - Ridouan Benhiti
- Laboratory LACAPE, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Fouad Sinan
- Laboratory LACAPE, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Zerbet
- Laboratory LACAPE, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
23
|
Meng X, Liu Y, Wang S, Ye Y, Song X, Liang Z. Post-crosslinking of conjugated microporous polymers using vinyl polyhedral oligomeric silsesquioxane for enhancing surface areas and organic micropollutants removal performance from water. J Colloid Interface Sci 2022; 615:697-706. [DOI: 10.1016/j.jcis.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
24
|
Abstract
The study provides a review of various applications of biomass-derived biochars, waste-derived biochars, and modified biochars as adsorbent materials for removing dyestuff from process effluents. Processing significant amounts of dye effluent discharges into receiving waters can supply major benefits to countries which are affected by the water crisis and anticipated future stress in many areas in the world. When compared to most conventional adsorbents, biochars can provide an economically attractive solution. In comparison to many other textile effluent treatment processes, adsorption technology provides an economic, easily managed, and highly effective treatment option. Several tabulated data values are provided that summarize the main characteristics of various biochar adsorbents according to their ability to remove dyestuffs from wastewaters.
Collapse
|
25
|
Degradation of 2-Naphthol in Aqueous Solution by Electro-Fenton System with Cu-Supported Stainless Steel Electrode. WATER 2022. [DOI: 10.3390/w14071007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For the treatment of 2-naphthol wastewater, the homogeneous electro-Fenton process was considered as an effective method but some disadvantages greatly restrict its application. The three-dimensional electro-Fenton (3D-EF) system using a nano zero-valent iron-supported biochar (NZVIs-BC) particle electrode and a Cu-supported stainless steel electrode (Cu-SSE) was proposed to avoid the disadvantages of the homogeneous electro-Fenton. In this work, the 3D-EF system was developed, which consisted of a Cu-SSE (cathode), a graphite rod (anode) and a NZVIs-BC particle electrode. The effect of the ratio of ferrous sulfate heptahydrate (FS) to rice straw (RS), CuSO4•5H2O amount, initial pH of 2-naphthol wastewater and current intensity (the output current of the power supply) on the removal rate of 2-naphthol were investigated. It is noteworthy that more than 98.36% of the 2-naphthol in aqueous solution was removed by the 3D-EF system, and only about 60.09% of 2-naphthol was removed by the homogeneous electro-Fenton system. Furthermore, naphthalene, benzoic acid, β-naphthoquinone, 1, 2-naphthalenedione, phenol and aromatic hydrocarbon were the main degradation products of 2-naphthol by the 3D-EF system; the toxicity of 2-naphthol wastewater was also greatly reduced.
Collapse
|
26
|
Design, Synthesis and Adsorption Evaluation of Bio-Based Lignin/Chitosan Beads for Congo Red Removal. MATERIALS 2022; 15:ma15062310. [PMID: 35329763 PMCID: PMC8948826 DOI: 10.3390/ma15062310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
The morphology and intermolecular interaction are two of the most important factors in the design of highly efficient dye adsorbent in the industry. Millimeter-sized, bead-type, bio-based lignin/chitosan (Lig/CS) adsorbent was designed for the removal of Congo red (CR), based on the electrostatic attraction, π-π stacking, and hydrogen bonding, which were synthesized through the emulsification of the chitosan/lignin mixture followed by chemical cross-linking. The effects of the lignin/chitosan mass ratio, initial pH, temperature, concentration, and contact time on the adsorption were thoroughly investigated. The highest adsorption capacity (173 mg/g) was obtained for the 20 wt% Lig/CS beads, with a removal rate of 86.5%. To investigate the adsorption mechanism and recyclability, an evaluation of the kinetic model and an adsorption/desorption experiment were conducted. The adsorption of CR on Lig/CS beads followed the type 1 pseudo-second-order model, and the removal rate for CR was still above 90% at five cycles.
Collapse
|
27
|
Williams NE, Oba OA, Aydinlik NP. Modification, Production, and Methods of KOH‐Activated Carbon. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ndifreke Etuk Williams
- Cyprus International University Department of Basic Sciences and Humanities, Faculty of Arts and Science Mersin 10 99010 Lefkosa Turkey
| | - Oluwasuyi Ayobami Oba
- Cyprus International University Department of Basic Sciences and Humanities, Faculty of Arts and Science Mersin 10 99010 Lefkosa Turkey
| | - Nur Pasaoglulari Aydinlik
- Cyprus International University Department of Basic Sciences and Humanities, Faculty of Arts and Science Mersin 10 99010 Lefkosa Turkey
| |
Collapse
|
28
|
Characterization of Bio-Adsorbents Produced by Hydrothermal Carbonization of Corn Stover: Application on the Adsorption of Acetic Acid from Aqueous Solutions. ENERGIES 2021. [DOI: 10.3390/en14238154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the influence of temperature on textural, morphological, and crystalline characterization of bio-adsorbents produced by hydrothermal carbonization (HTC) of corn stover was systematically investigated. HTC was conducted at 175, 200, 225, and 250 °C, 240 min, heating rate of 2.0 °C/min, and biomass-to-H2O proportion of 1:10, using a reactor of 18.927 L. The textural, morphological, crystalline, and elemental characterization of hydro-chars was analyzed by TG/DTG/DTA, SEM, EDX, XRD, BET, and elemental analysis. With increasing process temperature, the carbon content increased and that of oxygen and hydrogen diminished, as indicated by elemental analysis (C, N, H, and S). TG/DTG analysis showed that higher temperatures favor the thermal stability of hydro-chars. The hydro-char obtained at 250 °C presented the highest thermal stability. SEM images of hydro-chars obtained at 175 and 200 °C indicated a rigid and well-organized fiber structure, demonstrating that temperature had almost no effect on the biomass structure. On the other hand, SEM images of hydro-chars obtained at 225 and 250 °C indicated that hydro-char structure consists of agglomerated micro-spheres and heterogeneous structures with nonuniform geometry (fragmentation), indicating that cellulose and hemi-cellulose were decomposed. EDX analysis showed that carbon content of hydro-chars increases and that of oxygen diminish, as process temperature increases. The diffractograms (XRD) identified the occurrence of peaks of higher intensity of graphite (C) as the temperature increased, as well as a decrease of peaks intensity for crystalline cellulose, demonstrating that higher temperatures favor the formation of crystalline-phase graphite (C). The BET analysis showed 4.35 m2/g surface area, pore volume of 0.0186 cm3/g, and average pore width of 17.08 μm. The solid phase product (bio-adsorbent) obtained by hydrothermal processing of corn stover at 250 °C, 240 min, and biomass/H2O proportion of 1:10, was activated chemically with 2.0 M NaOH and 2.0 M HCl solutions to investigate the adsorption of CH3COOH. The influence of initial acetic acid concentrations (1.0, 2.0, 3.0, and 4.0 mg/mL) was investigated. The kinetics of adsorption were investigated at different times (30, 60, 120, 240, 480, and 960 s). The adsorption isotherms showed that chemically activated hydro-chars were able to recover acetic acid from aqueous solutions. In addition, activation of hydro-char with NaOH was more effective than that with HCl.
Collapse
|
29
|
Öztürk A, Çetintaş S, Bingöl D. The use of pomegranate seed activated by mechanochemical process as a novel adsorbent for the removal of anionic dyestuffs: response surface method approach. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1771321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ayşe Öztürk
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| | - Seda Çetintaş
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| | - Deniz Bingöl
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
30
|
Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Sun Y, Li X, Wang T, Ji Y, Yue Y, Li Y, Wang S. Novel multi-hydroxyl containing organo-vermiculite for effective removal of 2-Naphthol: adsorption studies and model calculations. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1972009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yaxun Sun
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa, China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, China
| | - Xin Li
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa, China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
| | - Tingting Wang
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa, China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China
| | - Yihang Yue
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa, China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, China
| | - Yong Li
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa, China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, China
| | - Shifeng Wang
- Department of Physics, Innovation Center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa, China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, China
| |
Collapse
|
32
|
Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules 2021; 26:molecules26165063. [PMID: 34443648 PMCID: PMC8398246 DOI: 10.3390/molecules26165063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Over the past decade, biochar (BC) has received significant attention in many environmental applications, including water purification, since it is available as a low-cost by-product of the energetic valorisation of biomass. Biochar has many intrinsic characteristics, including its porous structure, which is similar to that of activated carbon (AC), which is the most widely used sorbent in water treatment. The physicochemical and performance characteristics of BCs are usually non-homogenously investigated, with several studies only evaluating limited parameters, depending on the individual perspective of the author. Within this review, we have taken an innovative approach to critically survey the methodologies that are generally used to characterize BCs and ACs to propose a comprehensive and ready-to-use database of protocols. Discussion about the parameters of chars that are usually correlated with adsorption performance in water purification is proposed, and we will also consider the physicochemical properties of pollutants (i.e., Kow). Uniquely, an adsorption efficiency index BC/AC is presented and discussed, which is accompanied by an economic perspective. According to our survey, non-homogeneous characterization approaches limit the understanding of the correlations between the pollutants to be removed and the physicochemical features of BCs. Moreover, the investigations of BC as an adsorption medium necessitate dedicated parallel studies to compare BC characteristics and performances with those of ACs.
Collapse
|
33
|
Abstract
Recently, due to the escalating usage of non-renewable fossil fuels such as coal, natural gas and petroleum coke in electricity and power generation, and associated issues with pollution and global warming, more attention is being paid to finding alternative renewable fuel sources. Thermochemical and hydrothermal conversion processes have been used to produce biochar and hydrochar, respectively, from waste renewable biomass. Char produced from the thermochemical and hydrothermal decomposition of biomass is considered an environmentally friendly replacement for solid hydrocarbon materials such as coal and petroleum coke. Unlike thermochemically derived biochar, hydrochar has received little attention due to the lack of literature on its production technologies, physicochemical characterization, and applications. This review paper aims to fulfill these objectives and fill the knowledge gaps in the literature relating to hydrochar. Therefore, this review discusses the most recent studies on hydrochar characteristics, reaction mechanisms for char production technology such as hydrothermal carbonization, as well as hydrochar activation and functionalization. In addition, the applications of hydrochar, mainly in the fields of agriculture, pollutant adsorption, catalyst support, bioenergy, carbon sequestration, and electrochemistry are reviewed. With advancements in hydrothermal technologies and other environmentally friendly conversion technologies, hydrochar appears to be an appealing bioresource for a wide variety of energy, environmental, industrial, and commercial applications.
Collapse
|
34
|
Chen K, Feng Q, Ma D, Huang X. Hydroxyl modification of silica aerogel: An effective adsorbent for cationic and anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Pauletto PS, Moreno-Pérez J, Hernández-Hernández LE, Bonilla-Petriciolet A, Dotto GL, Salau NPG. Novel biochar and hydrochar for the adsorption of 2-nitrophenol from aqueous solutions: An approach using the PVSDM model. CHEMOSPHERE 2021; 269:128748. [PMID: 33139043 DOI: 10.1016/j.chemosphere.2020.128748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Two new adsorbents, namely avocado-based hydrochar and LDH/bone-based biochar, were developed, characterized, and applied for adsorbing 2-nitrophenol. The pore volume and surface diffusion model (PVSDM) was numerically solved for different geometries and applied to interpret the adsorption decay curves. Both adsorbents presented interesting textural and physicochemical characteristics, which achieved maximum adsorption capacities of 761 mg/g for biochar and 562 mg/g for hydrochar. The adsorption equilibrium data were well fitted by Henry isotherm. Besides, thermodynamic investigation revealed endothermic adsorption with the occurrence of electrostatic interactions. PVSDM predicted the adsorption decay curves for different adsorbent geometries at different initial concentrations of 2-nitrophenol. The surface diffusion was the main intraparticle mass transport mechanism. Furthermore, the external mass transfer and surface diffusion coefficients increased with the increase of 2-nitrophenol concentration.
Collapse
Affiliation(s)
- P S Pauletto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| | - J Moreno-Pérez
- Instituto Tecnológico de Aguascalientes, Aguascalientes, 20256, Mexico.
| | | | | | - G L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| | - N P G Salau
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
36
|
Wang Y, Xiong Z, Xie X, Li H, Yao C. Synthesis of Poly(cyclotriphosphazene-co-3,3'-sulfonyldianilide) Microspheres and Their Adsorption of Anionic (Congo Red) Dye. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Seaf El-Nasr TA, Gomaa H, Emran MY, Motawea MM, Ismail ARAM. Recycling of Nanosilica from Agricultural, Electronic, and Industrial Wastes for Wastewater Treatment. WASTE RECYCLING TECHNOLOGIES FOR NANOMATERIALS MANUFACTURING 2021:325-362. [DOI: 10.1007/978-3-030-68031-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
38
|
Li F, Zimmerman AR, Hu X, Gao B. Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar. CHEMOSPHERE 2020; 260:127610. [PMID: 32683020 DOI: 10.1016/j.chemosphere.2020.127610] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Pristine hydrochar is a carbonaceous material that can sorb hexavalent chromium (Cr(VI)), a kind of toxic pollutants and difficult to removal, from aqueous solution but its capacity is limited. With the goal of improving this ability, two modified hydrochars were produced by co-hydrothermal carbonization (200 °C, 7h) of bamboo sawdust with zinc chloride (ZnCl2) or aluminum chloride (AlCl3). Compared to the pristine hydrochar, the ZnCl2-and AlCl3-modified hydrochars were more fully carbonized (higher C content and lower H/C) and had higher surface area (increased by 26 and 4.3 times, respectively) and larger pore volume (increased by 43 and 5.5 times, respectively). Due to these improved properties, the Cr(VI) maximum adsorption capacity (modeled via Langmuir isotherms) of ZnCl2-and AlCl3-modified hydrochar increased by 3.4 and 2.8 times, respectively. In addition, Cr(VI) adsorption kinetic of modified hydrochar was well fitted by the pseudo-second-order model. Cr sorption capacity increased at low pH and ion strengths, suggesting the potential roles of electrostatic interaction and ion exchange mechanisms. These results indicate that hydrochars modified by ZnCl2 and AlCl3 treatment are promising in environmental applications that require Cr(VI) removal.
Collapse
Affiliation(s)
- Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang, 233100, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA; Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Anhui Laimujia Biotechnology Co., Ltd., Huaiyuan, 233000, China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Xin Hu
- Center of Material Analysis, Nanjing University, Nanjing, 210093, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
39
|
Barrera LA, Escobosa AC, Nevarez A, Ahsan MA, Alsaihati LS, Noveron JC. Nanoparticle-templated conversion of glucose to a high surface area biocarbon for the removal of organic pollutants in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1370-1379. [PMID: 33079716 DOI: 10.2166/wst.2020.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While extensive work has been done on the generation of adsorbents by carbonization of large polymeric structures, few works are currently available for the use of monomeric carbon molecules as precursors during carbonization. In this work we report the formation of a carbon adsorbent material from the carbonization of glucose in the presence of zinc oxide (ZnO) nanoparticle templates. Carbonization at 1,000 °C under inert atmosphere yields a product with Brunauer-Emmett-Teller (BET) surface area of 1,228.19 m2/g and 14.77 nm average pore diameter. Adsorption capacities against methylene blue, 2-naphthol and bisphenol-A at pH 7 were found to be 539 mg/g, 737 mg/g and 563 mg/g, respectively. Our material demonstrates a strong fit with the Langmuir isotherm, and adsorption kinetics show regression values near unity for the pseudo-second order kinetic model. A flow adsorption column was implemented for the remediation of tap water containing 20 mg/L methylene blue and found to quantitatively purify 11.5 L of contaminated water.
Collapse
Affiliation(s)
- Luis A Barrera
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902 USA E-mail:
| | - Alma C Escobosa
- Chemical & Materials Science Department, New Mexico State University, 1780 E. University Ave., Las Cruces, NM 88003 USA
| | - Aileen Nevarez
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902 USA E-mail:
| | - Md Ariful Ahsan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902 USA E-mail:
| | - Laila S Alsaihati
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902 USA E-mail:
| | - Juan C Noveron
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79902 USA E-mail:
| |
Collapse
|
40
|
Li F, Zimmerman AR, Hu X, Yu Z, Huang J, Gao B. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl 2. CHEMOSPHERE 2020; 254:126866. [PMID: 32348923 DOI: 10.1016/j.chemosphere.2020.126866] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrochar, the product of hydrothermal carbonization of biomass, is a sustainable alternative to other carbonaceous environmental sorbents. However, its use has been limited due to its low surface area. A one-pot biomass/metal salt co-hydrothermal synthesis method might improve its sorptive properties while retaining its efficient production characteristic. Thus, bamboo sawdust and zinc chloride (ZnCl2) were combined in a hydrothermal reactor (200 °C, 7 h) for preparing modified hydrochar. Compared to the non-modified hydrochar, the hydrochar produced with the addition of ZnCl2 during hydrothermal treatment was more fully carbonized (C content increased from 54% to 64%), of higher surface area after acid washing (30 versus 1.7 m2 g-1), and enriched in O-containing functional groups and of greater aromaticity (according to FTIR and XRD analysis). Because of these improved properties, Methylene blue adsorption capacity of the modified hydrochar increased by nearly 90% and by 257% after it was rinsed with acid. This study highlights the potential of this one-pot co-hydrothermal treatment of biomass in presence of metal salt to provide a simple and effective hydrochar with properties suitable for environmental remediation and water treatment.
Collapse
Affiliation(s)
- Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang, 233100, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Xin Hu
- Center of Material Analysis, Nanjing University, Nanjing, 210093, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning, 530011, China; College of Civil Engineering and Architecture Guangxi University, Nanning, 530004, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
41
|
An L, Si C, Bae JH, Jeong H, Kim YS. One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution. Int J Biol Macromol 2020; 159:222-230. [DOI: 10.1016/j.ijbiomac.2020.05.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
42
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|
43
|
Rebekah A, Bharath G, Naushad M, Viswanathan C, Ponpandian N. Magnetic graphene/chitosan nanocomposite: A promising nano-adsorbent for the removal of 2-naphthol from aqueous solution and their kinetic studies. Int J Biol Macromol 2020; 159:530-538. [PMID: 32442573 DOI: 10.1016/j.ijbiomac.2020.05.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023]
Abstract
In this study, magnetic/graphene/chitosan nanocomposite (MGCH) is prepared through facile solvothermal process and employed as an adsorbent for the removal of 2-naphthol from aqueous solution. The physico-chemical characteristic results of FESEM, Raman, FTIR, XRD and VSM confirms that the MGCH nanocomposite is effectively prepared. The FESEM and EDS analysis reveals that the high density of spherical-like Fe3O4 nanoparticles and chitosan are successfully assembled on the surfaces of the graphene sheets. VSM result of MGCH composite exhibited higher saturation magnetization of 46.5 emu g-1 and lower coercivity (Hc) of 50 Oe. This result discloses that MGCH possesses enough response required for the separation from aqueous solution. The batch mode adsorption studies demonstrates that MGCH based adsorbent showed almost 99.8% adsorption of 2-naphthol with a maximum adsorption capacity of 169.49 mg g-1 at pH 2. Moreover, the kinetic studies of the samples are performed by fitting adsorption models to ensure the nature of the adsorption system. This work proves that MGCH nanocomposite can be used as high-performance adsorbent for removing of phenolic pollutants from contaminated wastewater.
Collapse
Affiliation(s)
- A Rebekah
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, India
| | - G Bharath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mu Naushad
- Department of Chemistry, College of Science, Building #5, King Saud University, Riyadh 11451, Saudi Arabia
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
44
|
Biochar for Wastewater Treatment—Conversion Technologies and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103492] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biochar as a stable carbon-rich material shows incredible potential to handle water/wastewater contaminants. Its application is gaining increasing interest due to the availability of feedstock, the simplicity of the preparation methods, and their enhanced physico-chemical properties. The efficacy of biochar to remove organic and inorganic pollutants depends on its surface area, pore size distribution, surface functional groups, and the size of the molecules to be removed, while the physical architecture and surface properties of biochar depend on the nature of feedstock and the preparation method/conditions. For instance, pyrolysis at high temperatures generally produces hydrophobic biochars with higher surface area and micropore volume, allowing it to be more suitable for organic contaminants sorption, whereas biochars produced at low temperatures own smaller pore size, lower surface area, and higher oxygen-containing functional groups and are more suitable to remove inorganic contaminants. In the field of water/wastewater treatment, biochar can have extensive application prospects. Biochar have been widely used as an additive/support media during anaerobic digestion and as filter media for the removal of suspended matter, heavy metals and pathogens. Biochar was also tested for its efficiency as a support-based catalyst for the degradation of dyes and recalcitrant contaminants. The current review discusses on the different methods for biochar production and provides an overview of current applications of biochar in wastewater treatment.
Collapse
|
45
|
Chen W, Ma H, Xing B. Electrospinning of multifunctional cellulose acetate membrane and its adsorption properties for ionic dyes. Int J Biol Macromol 2020; 158:S0141-8130(20)33121-4. [PMID: 32376250 DOI: 10.1016/j.ijbiomac.2020.04.249] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/04/2023]
Abstract
Electrospinning of cellulose acetate with appropriated solvent system is the most straightforward method for fabricating micro- and nanofibers. To simultaneously and effectively remove both cationic and anionic dyes, a novel cost-effective multifunctional cellulose acetate (CA) fibers membrane was prepared by electrospinning followed by deacetylation, carboxymethylation and polydopamine (PDA) coating. The adsorption properties of PDA@DCA-COOH membrane were evaluated with methylene blue (MB) and Congo red (CR) as the ionic representatives for their removal. The results indicated that carboxyl, hydroxyl and amine multifunctional groups had been successfully grafted on the surface of the nanofibers with the maximum adsorption capacities of 69.89 and 67.31 mg g-1 for MB and CR, respectively, in the individual systems. The effect of co-existed dyes, inorganic salts and surfactants on the uptake of MB and CR in the simulated real complex system was strongly depended on the initial pH and ionic strength of the solution. The excellent adsorption capacities of the composite membrane were due to strong electrostatic attraction through the abundant functional groups on PDA@DCA-COOH surface. Based on its excellent recycling performance and adsorption property, PDA@DCA-COOH has a promising potential as an effective adsorbent in water treatment.
Collapse
Affiliation(s)
- Wenjuan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, China
| | - Hongzhu Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
46
|
Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. Int J Biol Macromol 2020; 151:322-332. [DOI: 10.1016/j.ijbiomac.2020.02.181] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 11/20/2022]
|
47
|
Parra-Marfíl A, Ocampo-Pérez R, Collins-Martínez VH, Flores-Vélez LM, Gonzalez-Garcia R, Medellín-Castillo NA, Labrada-Delgado GJ. Synthesis and characterization of hydrochar from industrial Capsicum annuum seeds and its application for the adsorptive removal of methylene blue from water. ENVIRONMENTAL RESEARCH 2020; 184:109334. [PMID: 32199318 DOI: 10.1016/j.envres.2020.109334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 05/14/2023]
Abstract
Chili seeds (CS) represent one of the most abundant residues in Mexico due to the high production and consumption. In this work, CS were used as raw material for the production of low-cost adsorbents for the removal of methylene blue from water. The adsorbents were synthesized from a hydrothermal treatment (based on a surface response experiment design) and characterized texturally by assessing changes in their properties. The mass yield (%R), carbon content (%C), and the second order adsorption rate constant (k2) were derived in relation to a list of input variables (e.g., the reaction temperature, residence time, and water/biomass ratio). Accordingly, those output variables were affected most sensitively by temperature and/or residence time, while changes of the water/biomass ratio were insignificant. Besides, an increase in the reaction temperature favored the degradation of the lignocellulosic material with increases in the carbon fixation. The adsorption capacity of methylene blue (MB) by the hydrochars depended drastically on the oxygen/carbon ratio. As such, the maximum adsorption capacity value of 145 mg g-1 was attained at the initial MB concentration of ~3000 μM (optimal oxygen/carbon value of 0.43). On the other hand, the maximum partition coefficient (KD) was estimated as 2.96 μM-1 mg g-1 with the initial/equilibrium concentrations of 20.5/6.93 μM. The performance evaluation between different studies, when made in terms of KD, suggests that the tested hydrochar should be one of the best adsorbents to treat methylene blue, especially at near-real environmental conditions (e.g., below micromolar levels).
Collapse
Affiliation(s)
- Adriana Parra-Marfíl
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| | - Virginia H Collins-Martínez
- Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chih, C.P. 31136, Mexico
| | - Luisa Ma Flores-Vélez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Gonzalez-Garcia
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. M. Nava 8, San Luis Potosí, SLP 78290, Mexico
| | - Gladis J Labrada-Delgado
- LINAN-IPICYT, Camino a La Presa San José 2055. Col. Lomas 4 Sección, CP 78216, San Luis Potosí, S.L.P, Mexico
| |
Collapse
|
48
|
Jeyavishnu K, Alagesan V. Cereus sp. as potential biosorbent for removal of Congo red from aqueous solution: isotherm and kinetic investigations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:243. [PMID: 32193684 DOI: 10.1007/s10661-020-8197-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Elimination of toxic dyes from industrial effluents before discharge into the environment is very essential to reduce the impact created on the environment. The process of adsorption is widely used for the removal of toxic dyes through suitable adsorbents. In the present study, a novel adsorbent prepared from Cereus sp. for the removal of Congo red from the aqueous solution phase. Adsorption experiment was conducted in batch mode and the effect of adsorbent dose (1-12 g/l), dye concentration (100-250 mg/l), and contact time (5-120 min) was determined. Twelve isotherm models namely Langmuir, Freundlich, Jovanovic, Temkin, Elovich, Dubinin-Radushkevich, Halsey, Hill-Deboer, Flory-Huggins, Flower-Guggenheim, Kiselev, and Harkins-Jura were fitted with the experimental data. Cuticle-removed cladodes (CRC) from biomass gave maximum adsorption capacity of 27.02 mg/g, whereas cuticle (C) resulted in maximum adsorption capacity of 52.63 mg/g according to Langmuir isotherm. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic models were examined. Pseudo-second-order kinetics better fitted for both adsorbents. This is the first exhaustive study to systematically find cuticle portion has better adsorption of Congo red than the cladodes of Cereus sp. The study also highlights that cutin polyesters present in the cuticle might be responsible for higher adsorption of dyes compared with its counterpart CRC. The present study provides the first evidence that cutin polymer can be used for adsorption of Congo red. It significantly contributes to advancement for new biobased materials for monitoring and remediation of water resources contaminated with toxic dyes.
Collapse
Affiliation(s)
- K Jeyavishnu
- School of chemical and biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur, 613401, India
| | - V Alagesan
- School of chemical and biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur, 613401, India.
| |
Collapse
|
49
|
Zolgharnein J, Dermanaki Farahani S, Bagtash M, Amani S. Application of a new metal-organic framework of [Ni 2F 2(4,4'-bipy) 2(H 2O) 2](VO 3) 2.8H 2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization. ENVIRONMENTAL RESEARCH 2020; 182:109054. [PMID: 31887469 DOI: 10.1016/j.envres.2019.109054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The new metal-organic framework of [Ni2F2(4,4'-bipy)2(H2O)2](VO3)2.8H2O was synthesized by a sonochemical method for the adsorptive removal of Congo red (CR) in a batch system. It was characterized by infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), thermogravimetric (TGA), and elemental analyses. Box-Behnken design (BBD) was applied to obtain an appropriate regression model for removal percent (R%) of CR dye. The optimized conditions for three effective factors: adsorbent dosage, temperature, and CR concentration were m = 0.0107 g, T = 45 °C, and Cd = 50 mg.L-1, respectively, while maximum removal percent is 96%. Langmuir isotherm shows that the maximum monolayer adsorption capacity (qmax) is 242.1 mg.g-1. The pseudo-second-order kinetic model better describes the adsorption kinetics behavior. Thermodynamic parameters illustrate that the adsorption process is endothermic and spontaneous chemisorption. The aim of this study is the introduction of a new metal-organic framework that can adsorb Congo red with high adsorption capacity. Therefore, due to synthesis of the new metal-organic framework as a high efficient adsorbent for Congo red removal, and also multivariate optimization of removal conditions, this study outright is novel.
Collapse
Affiliation(s)
- Javad Zolgharnein
- Department of Chemistry, Faculty of Sciences, Arak University, Arak, Islamic Republic of Iran.
| | | | - Maryam Bagtash
- Department of Chemistry, Faculty of Sciences, Arak University, Arak, Islamic Republic of Iran
| | - Saeid Amani
- Department of Chemistry, Faculty of Sciences, Arak University, Arak, Islamic Republic of Iran
| |
Collapse
|
50
|
Awad AM, Jalab R, Benamor A, Nasser MS, Ba-Abbad MM, El-Naas M, Mohammad AW. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112335] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|