1
|
Du G, Dong Z, Wang Z, Pan M, Zhang Y, Xiang W, Li S. Production of avermectins by Streptomyces avermitilis through solid-state fermentation using agro-industrial waste. BIORESOURCE TECHNOLOGY 2025; 431:132625. [PMID: 40328353 DOI: 10.1016/j.biortech.2025.132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
The natural products (NPs) avermectins from Streptomyces show exceptional insecticidal activity and become the most widely produced and used biopesticides in the world. Avermectins are produced by submerged fermentation (SmF), generating significant amount of effluent, exhaust gas and solid waste. We therefore endeavored to establish a green and sustainable alternative through solid-state fermentation (SSF) using agro-industrial waste. We determined the optimal culture medium composition and fermentation style through SSF. The maximum concentration of avermectin B1a (3.83 mg/gds) was obtained with a substrate mixture containing wheat bran, corn cob, earthworm cast, sugarcane bagasse, cane molasses, ammonium sulfate and CoCl2 in shallow trays cultivated for 14 days at 28 °C by repeated-batch SSF, and the initial moisture content and inoculum size was set as 78.5 % and 25 %, respectively. Economic analysis demonstrated that avermectin production cost generated from the fermentation process by SSF was 8.38 % lower than that by SmF. Moreover, avermectin SSF products could be directly used as microbial pesticides for biological control of underground pests and nematodes. This is the first report on avermectin production via SSF, demonstrating great potential in industrial and agricultural applications. Our work also provides guidance to produce other NPs through SSF in other Streptomyces species.
Collapse
Affiliation(s)
- Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhuoxu Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China.
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Costa S, Summa D, Radice M, Vertuani S, Manfredini S, Tamburini E. Lactic acid production by Lactobacillus casei using a sequence of seasonally available fruit wastes as sustainable carbon sources. Front Bioeng Biotechnol 2024; 12:1447278. [PMID: 39157446 PMCID: PMC11327009 DOI: 10.3389/fbioe.2024.1447278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: Lactic acid (LA) production from fossil resources is unsustainable owing to their depletion and environmental concerns. Thus, this study aimed to optimize the production of LA by Lactobacillus casei in a cultured medium containing fruit wastes (FWs) from agro-industries and second cheese whey (SCW) from dairy production, supplemented with maize steep liquor (MSL, 10% v/v) as the nitrogen source. Methods: The FWs were selected based on seasonal availability [early summer (early ripening peach), full summer (melon), late summer (pear), and early autumn (apple)] and SCW as annual waste. Small-scale preliminary tests as well as controlled fermenter experiments were performed to demonstrate the potential of using various food wastes as substrates for LA fermentation, except for apple pomace. Results and discussion: A 5-cycle repeated batch fermentation was conducted to optimize waste utilization and production, resulting in a total of 180.56 g/L of LA with a volumetric productivity of 0.88 g/L∙h. Subsequently, mechanical filtration and enzymatic hydrolysis were attempted. The total amount of LA produced in the 5-cycle repeated batch process was 397.1 g/L over 288 h, achieving a volumetric productivity of 1.32 g/L∙h. These findings suggest a promising biorefinery process for low-cost LA production from agri-food wastes.
Collapse
Affiliation(s)
- Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Daniela Summa
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Radice
- Faculty of Earth Sciences, Dep. Ciencia de La Tierra, Universidad Estatal Amazónica, Puyo, Ecuador
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Liu H, Zhen F, Wu D, Wang Z, Kong X, Li Y, Xing T, Sun Y. Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio. BIORESOURCE TECHNOLOGY 2023; 387:129678. [PMID: 37579859 DOI: 10.1016/j.biortech.2023.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this study, repeated-batch fermentation was used to convert fruit and vegetable waste to lactate and volatile fatty acids (VFAs), which are essential carbon sources for medium-chain fatty acids (MCFAs) production. The effect of cycle time and replacement ratio on acidification in long-term fermentation was investigated. The results showed that they had a significant impact on product yield, productivity, and type of products. Considering the yield, productivity, and lactate/VFAs ratio, a replacement ratio of 30% and a cycle time of 2 d may be more suitable for further production of MCFAs. Its productivity and lactate/VFAs ratio were 4.07 ± 0.24 g/(L·d) and 5 ± 0.6, respectively. The lactic acid bacteria, such as Enterococcus (63%) and Lactobacillus (33%), stabilized in the reactor, resulting in the generation of both lactate and VFAs by heterolactic fermentation. The present study demonstrated a new strategy with the potential to recover high-value products from organic waste streams.
Collapse
Affiliation(s)
- Huiliang Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Di Wu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
4
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Guo Y, Li C, Zhao H, Gao M, Wang Q. The Performance of Microfiltration Process for Purifying Lactic Acid in the Fermented Broth of Kitchen Waste. MEMBRANES 2023; 13:280. [PMID: 36984667 PMCID: PMC10054447 DOI: 10.3390/membranes13030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Fermentation broth is plentiful with lactic acid, an important chemical applied in many fields, such as food processing, the chemical industry, and cosmetics. However, the purification of the lactic acid from the broth is still troublesome, when considering the economy. This study first investigated the purification performance of microfiltration (MF) membrane technology for a fermentation broth from kitchen waste. The effect of operation pressure, broth pH, and membrane flushing mode on the membrane filtration performance were investigated. In addition, the change in filtration performance over the increase in cycle time was also investigated. The results showed that under the optimum pressure of 100 KPa, pH of 6.0, and a backflushing mode with deionized water for 3 min, the best performance was achieved, with chroma removal, turbidity removal, protein removal and total sugar removal efficiencies of 60, 92.8, 57.64 and 32.93%, respectively. The results indicated that the MF process could be a desirable broth purification process to some extent, and it is promising in actual application. The MF process combined with other post-purification processes will form the ideal process system, which should be explored in future research.
Collapse
Affiliation(s)
- Yan Guo
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenglong Li
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hongjun Zhao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Department of Environmental Engineering, Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China
| |
Collapse
|
6
|
Waste cooking oil: new efficient carbon source for natamycin production by Streptomyces gilvosporeus Z8. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Abstract
The aim of the present study is the isolation and characterization of the lactic acid bacteria from idly batter, a traditional Indian fermented product. To achieve the aim, 10 idly batter samples were selected from different regions of Kadapa district. In the primary isolation and screening process, 50 lactic-acid-producing bacteria were isolated, and from them, six strains were selected based on their lactic acid yielding capacity for further evaluation. The selected cultures were studied for their phenotypic characters, and all cultures were Gram positive, cocci, and catalase negative. All the six strains were tested for their growth and lactic acid production at above 35 °C, and finally, one strain that showed good growth at 50 °C was selected for further characterization. Molecular characterization by 16S rRNA gene analysis and BLAST analysis revealed 99% similarity with Pediococcus pentosaceus Ni1142. The isolated culture was named as Pediococcus sp. HLV1, and the sequence was submitted to the NCBI databank as accession number MH921241. The isolated strain is able to utilize a wide range of carbohydrate substrates including glucose, fructose, sucrose, lactose, maltose, and xylose. The major fermentation product from glucose is lactic acid. Pediococcus sp. HLV1 showed optimum growth and production of lactic acid with glucose as carbon source (10%) and yeast extract as nitrogen source (0.3%) at pH 7.0 and 40 °C. As well-known probiotic bacteria, the isolated Pediococcus spp. also showed antimicrobial activity against both Gram-positive and Gram-negative bacteria and more specifically inhibited Gram-positive Bacillus. Using the above optimal conditions, lactic acid from a fresh mango peel extract was studied, and at the end of the fermentation, 5.2% (v/v) of lactic acid was produced. In conclusion, the isolated LAB Pediococcus sp. strain HLV1 is able to grow and produce lactic acid at a high temperature (45 °C) and to survive at 50 °C. Mango peel, a by-product of mango pulp industries, can be utilized as one of the economically cheap feedstocks for industrial production of lactic acid by the Pediococcus sp. strain HLV1.
Collapse
|
8
|
Mejía-Avellaneda LF, Suárez H, Jiménez H, Mesa L. Challenges and opportunities for the production of lactic acid bacteria inoculants aimed for ensiling processes. Crit Rev Biotechnol 2021; 42:1028-1044. [PMID: 34706613 DOI: 10.1080/07388551.2021.1988508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of bacterial inoculants for ensiling based on lactic acid bacteria (LAB) to obtain conserved forages has become an alternative for the improvement of milk and meat productivity in cattle, specifically by optimizing the nutritional and microbial quality of animal feed. LAB inoculant production involves microbial and technological aspects such as biomass obtention, the use of cocultures, the inclusion of probiotics, the production of antimicrobial peptides, operational methods used in bioreactors, and the formulation of the end product to be commercialized to farmers. This review explores the technical aspects of the manufacture of bacterial inoculants, from the main features desired in LAB for ensiling purposes to the alternatives of the bioprocess involved.
Collapse
Affiliation(s)
- Luis Fernando Mejía-Avellaneda
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Sede Central, Mosquera, Colombia.,Instituto de Ciencia y Tecnología de Alimentos (ICTA) - Facultad de Ciencias Agrarias - Universidad Nacional de Colombia, Colombia
| | - Héctor Suárez
- Instituto de Ciencia y Tecnología de Alimentos (ICTA) - Facultad de Ciencias Agrarias - Universidad Nacional de Colombia, Colombia
| | - Hugo Jiménez
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Sede Central, Mosquera, Colombia
| | - Leyanis Mesa
- Departamento de Bioproductos, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Sede Central, Mosquera, Colombia
| |
Collapse
|
9
|
Masís-Meléndez F, Segura-Montero F, Quesada-González A. Control of septage sanitization by limes and lactic acid fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112203. [PMID: 33735674 DOI: 10.1016/j.jenvman.2021.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Considering low-cost and effective fecal sludge (FS) treatment alternatives is essential to avoid risk to human health and to ensure safe disposal in landfills and soils. This research assesses optimal pH adjustment of two techniques for sanitizing de-watered FS from a septic sewage-treatment plant. The preliminary analysis evaluated the efficiency of lactic acid fermentation (LAF) by two lactic acid strains: Lactobacillus casei and Lactobacillus acidophilus. The homofermentative strain was chosen to evaluate three supplementary sugars: smashed carrot, sugarcane-derived molasses, and anhydrous dextrose. Lime treatment was examined using two materials, CaO, 105% calcium carbonate equivalent (CCE), and Ca(OH)2, 75% CCE. Four samples were retrieved from a passive thermal drying bed, two characterized by its available nutrient content; all samples were analyzed for the pathogenic profile, and total coliforms (TC) were selected as indicators. For LAF, an inoculating rate of Lactobacillus casei 10 g/100 g sludge was found effective in decreasing the pH below 4.0 after 30 days of fermentation, using 22% w/w dextrose/septage and 20% w/w molasses/septage, where molasses contains 20.7% of soluble sugars. In the case of lime treatment, the pH was fitted by a power-law relationship to the rate of lime applied in a septage with an initial pH lower than 7.0. A Langmuir type equation fitted better the liming of two septages with initial pHs above 7.0. The rate of lime CaO 10% w/w was observed to increase the pH above critical value, 12, after 1 h and 24 h. Analysis confirmed the total elimination of TC in samples with pH < 4.0 and pH > 12, contrasting the respective controls. Rates of CaO considering the initial pH of the FS are recommended in order to reach pH 12. Septage sanitization can be completed using either CaO or lactic acid fermentation with molasses; selecting the ideal method will rely on cost-benefit analysis. Sanitization can be considered as well to improve safety soil nutrient recycling practices.
Collapse
Affiliation(s)
- Federico Masís-Meléndez
- Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Escuela de Química, Costa Rica; Instituto Tecnológico de Costa Rica, Centro de Investigación y de Servicios Químicos y Microbiológicos, CEQIATEC, Costa Rica.
| | - Fabiola Segura-Montero
- Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Carrera de Ingeniería Ambiental, Costa Rica
| | - Andrea Quesada-González
- Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Escuela de Química, Costa Rica; Instituto Tecnológico de Costa Rica, Centro de Investigación y de Servicios Químicos y Microbiológicos, CEQIATEC, Costa Rica
| |
Collapse
|
10
|
Wang Z, Sundara Sekar B, Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124551. [PMID: 33360113 DOI: 10.1016/j.biortech.2020.124551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
11
|
Zhang F, Liu J, Han X, Gao C, Ma C, Tao F, Xu P. Kinetic characteristics of long-term repeated fed-batch (LtRFb) l-lactic acid fermentation by a Bacillus coagulans strain. Eng Life Sci 2020; 20:562-570. [PMID: 33304229 PMCID: PMC7708950 DOI: 10.1002/elsc.202000043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Application of degradable plastics is the most critical solution to plastic pollution. As the precursor of biodegradable plastic PLA (polylactic acid), efficient production of l-lactic acid is vital for the commercial replacement of traditional plastics. Bacillus coagulans H-2, a robust strain, was investigated for effective production of l-lactic acid using long-term repeated fed-batch (LtRFb) fermentation. Kinetic characteristics of l-lactic acid fermentation were analyzed by two models, showing that cell-growth coupled production gradually replaces cell-maintenance coupled production during fermentation. With the LtRFb strategy, l-lactic acid was produced at a high final concentration of 192.7 g/L, on average, and a yield of up to 93.0% during 20 batches of repeated fermentation within 487.5 h. Thus, strain H-2 can be used in the industrial production of l-lactic acid with optimization based on kinetic modeling.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jiongqin Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xiao Han
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Chao Gao
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoP. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoP. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciencesand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
12
|
Rapid and Enhanced Liquefaction of Pulp from Mango (Mangifera indica L.) cv. Totapuri Using Ultrasound-Assisted Enzyme Pretreatment. Processes (Basel) 2020. [DOI: 10.3390/pr8060718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of ultrasound and enzyme pretreatment (with pectinase, amylase, and cellulase) on the physicochemical properties (yield, viscosity, total soluble solids, and total phenolics) of mango juice was evaluated through a set of six experiments. Ultrasonication treatment alone showed no influence on juice yield (54.6 ± 1.1%). However, the combined uses of ultrasonication with a pectinase or the enzyme mixture significantly increased the yield (94.1 ± 1.4% and 80.0 ± 2.1%, respectively) and decreased the enzyme pretreatment time (from 2 h to 1 h). Pectinase treatment assisted by ultrasonication was more effective with regard to juice yield, viscosity reduction, and the clarity of the juice than the enzyme mixture treatment with ultrasonication. Ultrasonication alone significantly increased the amount of total phenolics (65.5 ± 1.0 mg/100 mL) and showed a slight reduction of viscosity and improvement of clarity compared to the control.
Collapse
|
13
|
Sun Y, Yang Y, Liu H, Wei C, Qi W, Xiu Z. Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis DUT1805. Bioprocess Biosyst Eng 2020; 43:1717-1724. [PMID: 32388689 DOI: 10.1007/s00449-020-02364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/25/2020] [Indexed: 11/24/2022]
Abstract
Simultaneous liquefaction, saccharification, and fermentation (SLSF) has attracted much attention for the production of bio-based chemicals, including L-lactic acid, due to its high efficiency and low cost. In this study, a lactic acid-producing bacterium with high tolerance of temperature up to 55 °C was isolated and characterized as Enterococcus faecalis DUT1805. Various strategies of stepwise controlled temperature were proposed and investigated for glucose utilization. The results indicated that E. faecalis DUT 1805 exhibited an optimal temperature at 50 °C, which could achieve temperature compatibility of enzyme, saccharification, and fermentation, and decrease the possibility of contamination by the other microorganisms during the large-scale fermentation. To reduce the cost of raw material and operation for lactic acid production, aging paddy rice with hull (APRH) was used in L-lactic acid production by simultaneous liquefaction, saccharification, and fermentation (SLSF). An open SLSF operation at 50 °C and pH 6.5, and 17% (w/v) solid loading in 5 L bioreactors was demonstrated with the lactic acid titer, yield, and productivity of 73.75 g/L, 87% to initial starch, and 2.17 g/(L h), respectively.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Yong Yang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Huihui Liu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Chuanxiang Wei
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Wenbin Qi
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China.
| |
Collapse
|
14
|
Ma X, Gao M, Yin Z, Zhu W, Liu S, Wang Q. Lactic acid and animal feeds production from Sophora flavescens residues by Rhizopus oryzae fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Xu X, Zhang W, Gu X, Guo Z, Song J, Zhu D, Liu Y, Liu Y, Xue G, Li X, Makinia J. Stabilizing lactate production through repeated batch fermentation of food waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 300:122709. [PMID: 31901771 DOI: 10.1016/j.biortech.2019.122709] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Bio-valorization of organic waste streams, such as food waste and waste activated sludge, to lactic acid (LA) has recently drawn much attention. It offers an opportunity for resource recovery, alleviates environmental issues and potentially turns a profit. In this study, both stable and high LA yield (0.72 ± 0.15 g/g total chemical oxygen demand) and productivity rate (0.53 g/L•h) were obtained through repeated batch fermentation. Moreover, stable solubilization and increase in the critical hydrolase activities were achieved. Depletions of ammonia and phosphorus were correlated with the LA production. The relative abundance of the key LA bacteria genera (i.e., Alkaliphilus, Dysgonomonas, Enterococcus and Bifidobacterium) stabilized in the repeated batch reactor at a higher level (44.5 ± 2.53%) in comparison with the batch reactor (26.2 ± 4.74%). This work show a practical way for the sustainable valorization of organic wastes to LA by applying the repeated batch mode during biological treatment.
Collapse
Affiliation(s)
- Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xia Gu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhichao Guo
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Daan Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
16
|
Techno-Economic Analysis of Bio-Based Lactic Acid Production Utilizing Corn Grain as Feedstock. Processes (Basel) 2020. [DOI: 10.3390/pr8020199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactic acid is an important chemical with numerous commercial applications that can be fermentatively produced from biological feedstocks. Producing lactic acid from corn grain could complement the use of already existing infrastructure for corn grain-based ethanol production with a higher value product. The objective of this study was to evaluate the techno-economic feasibility of producing 100,000 metric tons (t) of lactic acid annually from corn grain in a biorefinery. The study estimated the resources (equipment, raw materials, energy, and labor) requirements and costs to produce lactic acid from bacteria, fungi and yeast-based fermentation pathways. Lactic acid production costs were $1181, $1251 and $844, for bacteria, fungi and yeast, respectively. Genetically engineered yeast strains capable of producing lactic acid at low pH support significantly cheaper processes because they do not require simultaneous neutralization and recovery of lactic acid, resulting in lower requirements for chemical, equipment, and utilities. Lactic acid production costs were highly sensitive to sugar-to-lactic-acid conversion rates, grain price, plant size, annual operation hours, and potential use of gypsum. Improvements in process efficiencies and lower equipment and chemical costs would further reduce the cost of lactic acid production from corn grain.
Collapse
|
17
|
Liu X, Yan Y, Zhao P, Song J, Yu X, Wang Z, Xia J, Wang X. Oil crop wastes as substrate candidates for enhancing erythritol production by modified Yarrowia lipolytica via one-step solid state fermentation. BIORESOURCE TECHNOLOGY 2019; 294:122194. [PMID: 31585340 DOI: 10.1016/j.biortech.2019.122194] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Oil crop wastes are attractive feedstocks in microbial processes due to their low cost. However, the product yields can be limited by their undesirable nitrogen surplus. Present study proposed a one-step solid state fermentation (SSF) method for producing erythritol from unrefined oil crop wastes using a modified strain Y. lipolytica M53-S. Enhanced erythritol production (185.4 mg/gds) was obtained from peanut press cake mixed with 40% sesame meal and 10% waste cooking oil. The process was performed at pH 4.0 in 5 L flasks, with initial moisture content, NaCl addition, and inoculum size of 70%, 0.02 g/gds, and 7.5 × 104 cells/gds, respectively. This procedure showed advantages in terms of lower material cost than that of submerged fermentation and shorter culture cycle (96 h) than other SSF processes. In repeated-batch fermentation, erythritol was continuously produced for seven cycles. This study presents a feasible approach in developing an efficient erythritol cultivation from nitrogen-rich wastes.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.
| | - Yubo Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Pusu Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jie Song
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhipeng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| |
Collapse
|
18
|
Reddy LV, Veda AS, Wee YJ. Utilization of banana crop residue as an agricultural bioresource for the production of acetone-butanol-ethanol by Clostridium beijerinckii YVU1. Lett Appl Microbiol 2019; 70:36-41. [PMID: 31631376 DOI: 10.1111/lam.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 11/30/2022]
Abstract
This study aimed to produce acetone-butanol-ethanol (ABE) using lignocellulosic crop residues as renewable bioresources. Butanol production from banana crop residue (BCR) was studied using a newly isolated solventogenic Clostridium beijerinckii YVU1. BCR is one of the abundant lignocellulosic substrates available in tropical countries containing 4·3 ± 3·5% cellulose, 28·5 ± 3·0% hemicellulose and 20·3 ± 2·6% lignin. The sequential dilute alkali and acid pretreatments solubilized 69% of lignin and 73% of hemicellulose. Ten percent (w/v) of pretreated substrate was subjected to enzymatic saccharification with cellulase, and it was found to release 0·481 ± 0·035 g glucose per g pretreated biomass. In the batch fermentation process, 20·5 g l-1 ABE (14·0 g l-1 of butanol, 5·4 g l-1 of acetone and 1·1 g l-1 of ethanol) was obtained. The executed fermentation process yielded 0·39 g ABE per g hydrolysate with 0·14 g l-1 h-1 of volumetric productivity. On the basis of the results, we believe that sequential alkali and acid pretreatment on the enzymatic hydrolysis for butanol production is indeed a technology with the potential to be applied and newly isolated. C. beijerinckii YVU1 is also a potential candidate organism for butanol production agricultural residues. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that a banana crop residue (BCR) can be successfully utilized as an inexpensive and alternative bioresource for the production of acetone-butanol-ethanol (ABE). The sequential pretreatment of BCR with alkali and acid solubilized lignin and hemicellulose leading to high glucose release during enzymatic hydrolysis. A newly isolated Clostridium beijerinckii YVU1 was able to produce comparable amount of ABE with previous reports. Therefore, we can state that the utilization of BCR as substrate for C. beijerinckii YVU1 leads to an economical bioprocess for the microbial production of ABE.
Collapse
Affiliation(s)
- L Veeranjaneya Reddy
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Department of Microbiology, Yogi Vemana University, Kadapa, India
| | - A Shree Veda
- Department of Microbiology, Yogi Vemana University, Kadapa, India
| | - Y-J Wee
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
19
|
Effective biorefinery approach for lactic acid production based on co-fermentation of mixed organic wastes by Enterococcus durans BP130. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Zhou X, Zhang Y, Shen Y, Zhang X, Xu S, Shang Z, Xia M, Wang M. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD +/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. BIORESOURCE TECHNOLOGY 2019; 279:209-217. [PMID: 30735930 DOI: 10.1016/j.biortech.2019.01.144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
The bioprocess for producing androstenedione (AD) from phytosterols by using Mycobacterium neoaurum is hindered by nicotinamide adenine dinucleotides (NAD+ and NADH) ratio imbalance, insoluble substrate, and lengthy biotransformation period. This study aims to improve the efficiency of AD production through a combined application of cofactor, solvent, and fermentation engineering technologies. Through the enhanced type II NADH dehydrogenase (NDH-II), the NAD+/NADH ratio and ATP levels increased; the release of reactive oxygen species decreased by 42.32%, and the cell viability improved by 54.17%. In surfactant-waste cooking oil-water media, the conversion of phytosterol increased from 23.92% to 94.98%. Repeated batch culture successfully reduced the biotransformation period from 30 to 17 days, the productivity was 13.75 times more than the parent strain. This study is the first to improve the productivity of AD by enhancing NDH-II and provides a new strategy to increase the accumulation of NAD+-dependent metabolites during biotransformation.
Collapse
Affiliation(s)
- Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China.
| | - Xiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuangping Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhihua Shang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China.
| |
Collapse
|
21
|
Alves De Oliveira R, Alexandri M, Komesu A, Venus J, Vaz Rossell CE, Maciel Filho R. Current Advances in Separation and Purification of Second-Generation Lactic Acid. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1590412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Regiane Alves De Oliveira
- Laboratory of Optimization, Department of Process and Product Development, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alexandri
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | - Andrea Komesu
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | | | - Rubens Maciel Filho
- Laboratory of Optimization, Department of Process and Product Development, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
22
|
Bio-detoxification Bacteria Isolated from Dye-Polluted Soils Promote Lactic Acid Production from Ammonia Pretreated Corn Stover. Appl Biochem Biotechnol 2019; 189:129-143. [PMID: 30906971 DOI: 10.1007/s12010-019-02993-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Agro-stovers are the most abundant substrates for producing lactic acid, which has great potential application in the production of biodegradable and biocompatible polylactic acid polymers. However, chemical pretreatments on agro-stovers generate inhibitors that repress the subsequent lactic acid fermentation. In this study, three bacterial strains (Enterococcus faecalis B101, Acinetobacter calcoaceticus C1, and Pseudomonas aeruginosa CS) isolated from dye-polluted soils could utilize phenolic inhibitor mimics (vanillin, 4- hydroxybenzaldehyde, or syringaldehyde) from alkaline pretreated corn stovers as a sole carbon source. Lactic acid titer increased from 27.42 g/L (Bacillus coagulans LA204 alone) to 44.76 g/L (CS and LA204) using 50 g/L glucose with 1 g/L 4-hydroxybenzaldehyde added. Lactic acid production from 50 g/L ammonia pretreated corn stover was increased nearly twofold by inoculating phenolic degradation bacteria and lactic acid bacteria (C1& Lactobacillus pentosus FL0421). In the control (FL0421 alone), only 16.98 g/L of lactic acid was produced. The isolated and identified strains degraded the phenolic compounds and increased the lactic acid production from glucose and ammonia pretreated corn stover. These characteristics of the strains support industrial application with efficient in situ detoxification of phenolic compounds during lactic acid production from agro-stovers using simultaneous saccharification and fermentation (SSF).
Collapse
|
23
|
Zeng X, Miao W, Zeng H, Zhao K, Zhou Y, Zhang J, Zhao Q, Tursun D, Xu D, Li F. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues. BIORESOURCE TECHNOLOGY 2019; 273:377-385. [PMID: 30453252 DOI: 10.1016/j.biortech.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
At present, submerged fermentation (SmF) is the unique approach for natamycin production. This study aims to propose a strategy for natamycin production through solid-state fermentation (SSF). The maximum natamycin concentration (9.62 mg·gds-1) was obtained with a substrate mixture containing wheat bran, rapeseed cake, rice hull and crude glycerol in a 5 L flask at 28 °C, and the initial moisture content and inoculum size was set as 70% and 15%, individually. A 30 L scale-up fermentation showed similar parameters and produced 9.27 mg·gds-1 natamycin at the 8th day. Besides, natamycin could be continuously produced by repeated-batch fermentation for 5 cycles through SSF. Compared to SmF, SSF led to a 50.05% cost reduction of raw materials, less energy consumption and waste water discharge, which was of great significance in industrial fermentation. To our best knowledge, this is the first report on natamycin production through SSF process.
Collapse
Affiliation(s)
- Xin Zeng
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Wenyun Miao
- Family Planning Service Center, Rizhao Maternal and Child Care Service Hospital, 28(#) Weihai Road, Rizhao 276826, People's Republic of China
| | - Huawei Zeng
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Kuo Zhao
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Yaling Zhou
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Juan Zhang
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Qinxue Zhao
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Delinur Tursun
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China.
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China.
| |
Collapse
|
24
|
Cubas-Cano E, González-Fernández C, Ballesteros M, Tomás-Pejó E. Lactobacillus pentosus
CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor. Biotechnol Prog 2018; 35:e2739. [DOI: 10.1002/btpr.2739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Enrique Cubas-Cano
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit; 28935 Móstoles Spain
| | | | - Mercedes Ballesteros
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit; 28935 Móstoles Spain
- CIEMAT, Biofuels Unit; 28040 Madrid Spain
| | - Elia Tomás-Pejó
- IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit; 28935 Móstoles Spain
| |
Collapse
|
25
|
Wang H, Sun X, Wang L, Wu H, Zhao G, Liu H, Wang P, Zheng Z. Coproduction of menaquinone-7 and nattokinase by Bacillus subtilis using soybean curd residue as a renewable substrate combined with a dissolved oxygen control strategy. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Ahmed SA, Abdel-Naby MA, Abdel-Fattah AF. APPLICABILITY OF WOOL COVALENT BONDED Bacillus circulans 25 CELLS FOR MILK-CLOTTING ENZYME PRODUCTION BY BATCH, REPEATED BATCH AND CONTINUOUS PROCESS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180353s20170175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Eş I, Mousavi Khaneghah A, Barba FJ, Saraiva JA, Sant'Ana AS, Hashemi SMB. Recent advancements in lactic acid production - a review. Food Res Int 2018; 107:763-770. [DOI: 10.1016/j.foodres.2018.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
28
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Pejin J, Radosavljević M, Kocić-Tanackov S, Mladenović D, Djukić-Vuković A, Mojović L. Fed-batch l
-(+)-lactic acid fermentation of brewer's spent grain hydrolysate. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jelena Pejin
- Faculty of Technology; University of Novi Sad; Bulevar cara Lazara 1 21 000 Novi Sad Serbia
| | - Miloš Radosavljević
- Faculty of Technology; University of Novi Sad; Bulevar cara Lazara 1 21 000 Novi Sad Serbia
| | - Sunčica Kocić-Tanackov
- Faculty of Technology; University of Novi Sad; Bulevar cara Lazara 1 21 000 Novi Sad Serbia
| | - Dragana Mladenović
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| | | | - Ljiljana Mojović
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| |
Collapse
|
30
|
Lactic acid production from recycled paper sludge: Process intensification by running fed-batch into a membrane-recycle bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Tan J, Abdel-Rahman MA, Numaguchi M, Tashiro Y, Zendo T, Sakai K, Sonomoto K. Thermophilic Enterococcus faecium QU 50 enabled open repeated batch fermentation for l-lactic acid production from mixed sugars without carbon catabolite repression. RSC Adv 2017. [DOI: 10.1039/c7ra03176a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermophilic lactic acid bacterium enabled homo-l-lactic acid fermentation from hexose/pentose without carbon catabolite repression, and open repeated production by immobilization.
Collapse
Affiliation(s)
- J. Tan
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - M. A. Abdel-Rahman
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - M. Numaguchi
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Y. Tashiro
- Laboratory of Soil and Environmental Microbiology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - T. Zendo
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - K. Sakai
- Laboratory of Soil and Environmental Microbiology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - K. Sonomoto
- Laboratory of Microbial Technology
- Division of Systems Bioengineering
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| |
Collapse
|
32
|
Xu D, Yao H, Xu Z, Wang R, Xu Z, Li S, Feng X, Liu Y, Xu H. Production of ε-poly-lysine by Streptomyces albulus PD-1 via solid-state fermentation. BIORESOURCE TECHNOLOGY 2017; 223:149-156. [PMID: 27792924 DOI: 10.1016/j.biortech.2016.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to produce ε-poly-lysine (ε-PL) by Streptomyces albulus PD-1 through solid-state fermentation (SSF) using agro-industrial residues. Maximum ε-PL production (86.62mg/g substrate) was obtained a mixed substrate of rapeseed cake and wheat bran (2:1, w/w) supplemented with glucose (4%, w/w), (NH4)2SO4 (3%, w/w), with an initial moisture content of 65%, initial pH of 7.0 and inoculum size of 13% v/w, incubated at 30°C for 8days. The results of scanning electron microscopy indicated that the filamentous thallus could penetrate the substrate surface. Moreover, repeated-batch SSF was successfully conducted 8 times using 10% substrate as seeds for the next fermentation cycle, and the results suggest that repeated-batch SSF is more efficient because of the shortened lag phase. To the best of our knowledge, this is the first report on ε-PL production using the SSF process.
Collapse
Affiliation(s)
- Delei Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haiqing Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoxian Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Youhua Liu
- Fujian Inspecton and Research Institute for Food Quality, Fuzhou, Fujian 350108, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
33
|
Ma K, Hu G, Pan L, Wang Z, Zhou Y, Wang Y, Ruan Z, He M. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. BIORESOURCE TECHNOLOGY 2016; 219:114-122. [PMID: 27479802 DOI: 10.1016/j.biortech.2016.07.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 05/13/2023]
Abstract
A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Liwei Pan
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Zichao Wang
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yi Zhou
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China.
| |
Collapse
|
34
|
Abdel-Rahman MA, Sonomoto K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 2016; 236:176-92. [DOI: 10.1016/j.jbiotec.2016.08.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
|
35
|
Jackson E, López-Gallego F, Guisan J, Betancor L. Enhanced stability of l -lactate dehydrogenase through immobilization engineering. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|