1
|
Caminiti V, Gupte AP, Favaro L, Casella S, Basaglia M. Valorization of prosecco wine lees for sustainable polyhydroxyalkanoates production by Cupriavidus necator DSM 545 and Hydrogenophaga pseudoflava DSM 1034. N Biotechnol 2025; 88:73-82. [PMID: 40287130 DOI: 10.1016/j.nbt.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Nowadays, in the agricultural and agro-industrial sectors, there is increasing attention on the wine industry. The environmental impact of wine production, particularly in terms of residues generation, is a growing concern. Among generated residues, wine lees, rich in organic matter, phenols compounds, and with low pH, pose environmental challenges due to their disposal requirements. Despite their usage for biogas production and extraction of compounds, such as antioxidants, tartaric acid and ethanol, their potential in bioplastic production, specifically polyhydroxyalkanoates (PHAs), remains largely untapped. This study aims to evaluate the potential use of wine lees as a medium sustaining bacterial growth and PHAs accumulation. Specifically, Cupriavidus necator DSM 545 and Hydrogenophaga pseudoflava DSM 1034, were cultivated in the liquid phase of wine lees obtained from the Prosecco winemaking. On pure distilled wine lees, after mild feedstock pre-treatments, C. necator DSM 545 reached a CDW (cell dry weight) of 2.97 g/L and accumulated PHAs was 1.27 g/L, pair to 42.90 % of CDW. On the same substrate, CDW for H. pseudoflava DSM 1034 was 3.96 g/L and PHAs reached values of 1.60 g/L and 40.42 % CDW. These results obtained on wine lees are similar or even better than those achieved in the control growths of the two strains on pure glucose. This is the first approach for the utilization of wine lees for PHAs production, highlighting their potential use in the PHAs industry, and offering a sustainable alternative for both residues management and bioplastic production.
Collapse
Affiliation(s)
- Viola Caminiti
- University of Padova, Department of Agronomy, Animals, Food, Natural resources and the Environment, Viale dell'Università, 16, Legnaro, PD 35020, Italy.
| | - Ameya Pankaj Gupte
- University of Padova, Department of Agronomy, Animals, Food, Natural resources and the Environment, Viale dell'Università, 16, Legnaro, PD 35020, Italy.
| | - Lorenzo Favaro
- University of Padova, Department of Agronomy, Animals, Food, Natural resources and the Environment, Viale dell'Università, 16, Legnaro, PD 35020, Italy; Stellenbosch University, Department of Microbiology, Private Bag X1, Matieland 7602, South Africa.
| | - Sergio Casella
- University of Padova, Department of Agronomy, Animals, Food, Natural resources and the Environment, Viale dell'Università, 16, Legnaro, PD 35020, Italy.
| | - Marina Basaglia
- University of Padova, Department of Agronomy, Animals, Food, Natural resources and the Environment, Viale dell'Università, 16, Legnaro, PD 35020, Italy.
| |
Collapse
|
2
|
Yang J, Wang J, Yu X, Chen T, Yin J, Tang X. Enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from volatile fatty acids by Halomonas sp. YJ01 with 2-methylcitrate cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123902. [PMID: 39729712 DOI: 10.1016/j.jenvman.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Volatile fatty acids (VFAs) are suitable substrates for synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), wherein propionate is a precursor of PHBV biosynthesis; however, high concentrations are toxic to bacteria. Therefore, VFAs with suitable ratio are needed. Here, with the ratio of acetate: propionate: butyrate being 1:4:2, the maximum PHBV content and the 3HV content were 46.77 wt% and 19.24 mol%, respectively, by Halomonas sp. YJ01. The optimal C/P and C/N ratios for PHBV synthesis were controlled at 800-1000 and 70-90. The carbon source uptake by the strain at higher C/N ratios was mainly used to synthesize PHBV. The metabolic pathway for PHBV biosynthesis with mixed VFAs showed that the 2-methylcitrate cycle (2-MCC) pathway converted propionyl-CoA to pyruvate, which reduced the toxicity of propionate to the strain. Moreover, the strain utilized acetate and butyrate without producing pyruvate, which did not affect the detoxification of the 2-MCC pathway. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) results showed that when the 2-MCC pathway was inhibited, phaC expression decreased 2.74-fold, and the expression of prpB and prpC was down-regulated 2-fold and 6.88-fold, respectively; therefore, propionate toxicity exposure resulted in a significant decrease in PHBV content.
Collapse
Affiliation(s)
- Jincan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Jing Wang
- Zhejiang Institute of Hydraulics & Estuary, Hangzhou, 310017, PR China
| | - Xiaoqin Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
3
|
Yuan Q, Chen S, Chen Y, Zhang X, Lou Y, Li X, Liang Q, Zhang Y, Sun Y. Evaluating AGS efficiency in PHA synthesis and extraction integrated with nutrient removal: The impact of COD concentrations. CHEMOSPHERE 2024; 368:143708. [PMID: 39515542 DOI: 10.1016/j.chemosphere.2024.143708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As natural and biodegradable biopolymers, Polyhydroxyalkanoates (PHA) were synthetized by aerobic granules sludge (AGS) in a sequential batch reactor in this study. The effect of different COD concentrations on PHA accumulation and nutrients removal were investigated. At the same time, different pretreatment methods for PHA extraction, including NaClO pretreatment for extracellular polymeric substances (EPS) removal, Na2CO3 pretreatment for EPS recovery, and grinding pretreatment to reduce particle size and augment the surface area available for interaction with the extraction solvent, were compared. The results showed that the PHA yield increased more than 2 times (from 91.1 to 233.3 mgPHA/gCDW (cell dry weight)) when COD concentration increased from 800 to 1600 mg/L. Polyhydroxybutyrate (PHB) and polyhydroxyvalerate (PHV) both accounted for half of the total, while PHB fraction rose to 71% when COD concentration went up to 1600 mg/L. The PHB can be consumed 3 times faster than PHV. High COD concentration (1600 mg/L) adversely impacted the structure stability of AGS and the phosphorus removal efficiency, while the system consistently exhibited robust nitrogen removal capabilities, with ammonium and TN removal efficiencies exceeding >90%. The dominant bacteria shifted from Flavobacterium to Halomona and Hydrogenophaga as the COD concentration increased. In terms of PHA extraction, Na2CO3 pretreatment, which was used for EPS recovery, had the best PHA recovery with nearly 100% purity and EPS removal efficiency compared with NaClO and grinding pretreatments.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yun Chen
- Thunip Co., Ltd., Beijing, 100084, China
| | - Xinyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuqing Lou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xueting Li
- Thunip Co., Ltd., Beijing, 100084, China
| | - Qian Liang
- Thunip Co., Ltd., Beijing, 100084, China
| | - Yanping Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
Huang Z, Liang B, Wang F, Ji Y, Gu P, Fan X, Li Q. Response surface optimization of poly-β-hydroxybutyrate synthesized by Bacillus cereus L17 using acetic acid as carbon source. Int J Biol Macromol 2023; 247:125628. [PMID: 37392926 DOI: 10.1016/j.ijbiomac.2023.125628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
A strain of Bacillus that can tolerate 10 g/L acetic acid and use the volatile fatty acids produced by the hydrolysis and acidification of activated sludge to produce polyhydroxyalkanoate was screened from the activated sludge of propylene oxide saponification wastewater. The strain was identified by 16S rRNA sequencing and phylogenetic tree analysis and was named Bacillus cereus L17. Various characterization methods showed that the polymer synthesized by strain L17 is poly-β-hydroxybutyrate, which has low crystallinity, good ductility and toughness, high thermal stability and a low polydispersity coefficient. It has wide thermoplastic material operating space as well as industrial and medicinal applications. The optimal fermentation conditions were determined by single factor optimization. Then, Plackett-Burman and Box-Behnken design experiments were carried out according to the single factor optimization results, and the response surface optimization was completed. The final results were: initial pH 6.7, temperature 25 °C, and loading volume 124 mL. The verification experiment showed that the yield of poly-β-hydroxybutyrate after optimization increased by 35.2 % compared to that before optimization.
Collapse
Affiliation(s)
- Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
5
|
Saito K, Reddy MV, Sarkar O, Kumar AN, Choi D, Chang YC. Quantification of the Monomer Compositions of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxyvalerate) by Alkaline Hydrolysis and Using High-Performance Liquid Chromatography. Bioengineering (Basel) 2023; 10:bioengineering10050618. [PMID: 37237688 DOI: 10.3390/bioengineering10050618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
With the growing interest in bioplastics, there is an urgent need to develop rapid analysis methods linked to production technology development. This study focused on the production of a commercially non-available homopolymer, poly(3-hydroxyvalerate) (P(3HV)), and a commercially available copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), through fermentation using two different bacterial strains. The bacteria Chromobacterium violaceum and Bacillus sp. CYR1 were used to produce P(3HV) and P(3HB-co-3HV), respectively. The bacterium Bacillus sp. CYR1 produced 415 mg/L of P(3HB-co-3HV) when incubated with acetic acid and valeric acid as the carbon sources, whereas the bacterium C. violaceum produced 0.198 g of P(3HV)/g dry biomass when incubated with sodium valerate as the carbon source. Additionally, we developed a fast, simple, and inexpensive method to quantify P(3HV) and P(3HB-co-3HV) using high-performance liquid chromatography (HPLC). As the alkaline decomposition of P(3HB-co-3HV) releases 2-butenoic acid (2BE) and 2-pentenoic acid (2PE), we were able to determine the concentration using HPLC. Moreover, calibration curves were prepared using standard 2BE and 2PE, along with sample 2BE and 2PE produced by the alkaline decomposition of poly(3-hydroxybutyrate) and P(3HV), respectively. Finally, the HPLC results obtained by our new method were compared using gas chromatography (GC) analysis.
Collapse
Affiliation(s)
- Kyo Saito
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - M Venkateswar Reddy
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Omprakash Sarkar
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - DuBok Choi
- Faculty of Advanced Industry Convergence, Chosun University, Kwangju 61452, Republic of Korea
| | - Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| |
Collapse
|
6
|
Song L, Yang D, Liu R, Liu S, Dai X. The dissolution of polysaccharides and amino acids enhanced lactic acid production from household food waste during pretreatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161068. [PMID: 36565887 DOI: 10.1016/j.scitotenv.2022.161068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
A large amount of household food waste (HFW) is produced yearly, resulting in environmental problems and financial burdens. Bio-production of lactic acid (LA), a high value-added platform chemical, from HFW by anaerobic fermentation is a promising way of resource recovery. However, the LA production yield from HFW is low. This paper compared several pretreatment methods (hydrothermal pretreatment, chemical pretreatment, and combined hydrothermal and chemical pretreatment) to improve LA production from HFW. The result showed that the combined pretreatment (alkali-thermal pretreatment at pH 10 and 120 °C) significantly increased the LA production than single hydrothermal and chemical pretreatment. The pretreatment process promoted the dissolution of organics, especially the polysaccharides and amino acids, and further influenced the LA production by Lactobacillus rhamnosus ATCC 7469. Among the amino acids, aspartic acid (Asp), threonine (Thr), glutamic acid (Glu), glycine (Gly), alanine (Ala), cystine (Cys), valine (Val), isoleucine (Ile), arginine (Arg), and proline (Pro) significantly correlated with LA concentration.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
8
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Metal-free catalysis for organic micropollutant degradation in waste activated sludge via poly(3-hydroxybutyrate) biopolymers using Cupriavidus sp. L7L coupled with peroxymonosulfate. BIORESOURCE TECHNOLOGY 2022; 361:127680. [PMID: 35878764 DOI: 10.1016/j.biortech.2022.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study employed a novel and environment-friendly biopolymer/oxidant catalytic system, viz., poly(3-hydroxybutyrate)/peroxymonosulfate (PHB/PMS), for pretreating wastewater sludge for the first time. Under optimal conditions, i.e., 3.1 × 10-4 M of PMS and 3.3 g/L of PHB at pH = 6.0, the PAHs in the sludge matrix was decreased by 79 % in 12 h. Increase in salinity (75 % synthetic seawater) achieved 83 % of PAHs degradation. Functional groups (CO) of the biopolymer matrix were active centers for biopolymer-mediated electron transfer that produced reactive oxygen species (SO4-, HO, and 1O2) for adsorption and catalytic oxidation of PAHs in the sludge. Functional metagenomic analysis revealed the main genus, Conexibacter (phylum, Actinobacteria) exhibited PAH-degrading function with high efficiency in the biodegradation of PAHs from sludge pretreated with PHB/PMS. Coupling chemical oxidation and biostimulation using bacterial polymer-based biomaterials is effective and beneficial for pretreating wastewater sludge toward circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9:bioengineering9050225. [PMID: 35621503 PMCID: PMC9137849 DOI: 10.3390/bioengineering9050225] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Collapse
|
10
|
Xie J, Zou X, Chang Y, Chen C, Ma J, Liu H, Cui MH, Zhang TC. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community. BIORESOURCE TECHNOLOGY 2021; 342:125959. [PMID: 34852439 DOI: 10.1016/j.biortech.2021.125959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 μm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 μm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 μm cathode were stimulated.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ji Ma
- Jiangsu Sujing Group Co., Ltd, Suzhou 215122, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept, University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| |
Collapse
|
11
|
Wang K, Zhang R. Production of Polyhydroxyalkanoates (PHA) by Haloferax mediterranei from Food Waste Derived Nutrients for Biodegradable Plastic Applications. J Microbiol Biotechnol 2021; 31:338-347. [PMID: 33203825 PMCID: PMC9706037 DOI: 10.4014/jmb.2008.08057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of microbial polyesters that are used as biodegradable plastics in replacement of conventional plastics for various applications. However, the high production cost is the barrier for PHA market expansion. This study aimed to utilize food waste as low-cost feedstock to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei. The effects of acetate (Ac), propionate (Pr), butyrate (Bu), and the short-chain carboxylates derived from food waste were examined on the microbial growth and PHBV production. Results showed that a mixture of carboxylates provided a 55% higher PHBV yield than glucose. The food-waste-derived nutrients achieved the yields of 0.41 to 0.54 g PHBV/g Ac from initial loadings of 450 mg/l to 1,800 mg/l Ac of total carboxylates. And the consumption of individual carboxylate varied between different compositions of the carbon source. The present study demonstrates the potential of using food waste as feedstock to produce PHBV by Haloferax mediterranei, which can provide economic benefits to the current PHA industry. Meanwhile, it will also help promote organic waste reduction in landfills and waste management in general.
Collapse
Affiliation(s)
- Ke Wang
- Biological and Agricultural Engineering Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ruihong Zhang
- Biological and Agricultural Engineering Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA,Corresponding author Phone: +1-530-754-9530 Fax: +1-530-752-2640 E-mail:
| |
Collapse
|
12
|
Ochoa-Segundo EI, González-Torres M, Cabrera-Wrooman A, Sánchez-Sánchez R, Huerta-Martínez BM, Melgarejo-Ramírez Y, Leyva-Gómez G, Rivera-Muñoz EM, Cortés H, Velasquillo C, Vargas-Muñoz S, Rodríguez-Talavera R. Gamma radiation-induced grafting of n-hydroxyethyl acrylamide onto poly(3-hydroxybutyrate): A companion study on its polyurethane scaffolds meant for potential skin tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111176. [PMID: 32806310 DOI: 10.1016/j.msec.2020.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.
Collapse
Affiliation(s)
- Eric Ivan Ochoa-Segundo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Maykel González-Torres
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | | | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Eric M Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | - Hernán Cortés
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Susana Vargas-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 76230, Mexico
| | | |
Collapse
|
13
|
Cui T, Wang Y, Wang X, Zhang Y, Han W, Li J, Sun X, Shen J, Wang L. Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA). BIORESOURCE TECHNOLOGY 2020; 306:123115. [PMID: 32160580 DOI: 10.1016/j.biortech.2020.123115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
On account of the recalcitrant and highly toxicity of organonitrile substrates, traditional processes are limited by HCN poisoning thus inefficient. This article proposed a novel anaerobic fluidized bed reactor with electric field activation (AFBR-EFA) which had a 260-day continuous operation. The operation aims to explore the practicability of the enhanced reduction of isophthalonitrile (IPN), with emphasis on the optimum operation parameters and synergistic effect between electric field and anaerobic processes. The results showed that relatively higher voltage (1.0 V < V < 1.6 V) had a positive impact on reduction enhancement. High removal could be obtained at high initial concentration, low methanol dosage and short HRT which indicated that tolerance to shock loading was significantly enhanced in AFBR-EFA. Furthermore, EFA visibly motivated the enrichment of electrochemically active bacteria and various autotrophic IPN degradation-related species. The significantly efficient performance makes the potential for full-scale application of the AFBR-EFA markedly improved, particularly for treating hard-biodegraded contaminants.
Collapse
Affiliation(s)
- Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xueye Wang
- Nanjing Yuanheng Environmental Research Institute Co. LTD, China
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Kedves A, Sánta L, Balázs M, Kesserű P, Kiss I, Rónavári A, Kónya Z. Chronic responses of aerobic granules to the presence of graphene oxide in sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121905. [PMID: 31874760 DOI: 10.1016/j.jhazmat.2019.121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
The chronic responses of aerobic granular sludge (AGS) to the presence of graphene oxide nanoparticles (GO NPs) (5, 15, 25, 35, 45, 55, 65, 75, 85, and 95 mg/L of GO NPs for 7 days) during biological wastewater treatment processes were investigated. Bioreactor performance, extracellular polymeric substance (EPS) secretion, and microbial community characteristics were assessed. The results showed that the effects of GO NPs on bioreactor performances were dependent on the dose applied and the duration for which it was applied. At concentrations of 55, 75, and 95 mg/L, GO NPs considerably inhibited the efficiency of organic matter and ammonia removal; however, nitrite and nitrate removal rates were unchanged. Biological phosphorus removal decreased even when only low concentrations of GO NPs were used. The secretion of EPS, which could alleviate the toxicity of GO NPs, also changed. The increased amount of nanoparticles also resulted in significant changes to the bacterial community structure. Based on the amplicon sequencing of 16S rRNA genes, Paracoccus sp., Klebsiella sp., and Acidovorax species were identified as the most tolerant strains.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Levente Sánta
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Margit Balázs
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Péter Kesserű
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - István Kiss
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary.
| |
Collapse
|
15
|
Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int J Biol Macromol 2020; 146:596-619. [DOI: 10.1016/j.ijbiomac.2019.12.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
16
|
Anburajan P, Naresh Kumar A, Sabapathy PC, Kim GB, Cayetano RD, Yoon JJ, Kumar G, Kim SH. Polyhydroxy butyrate production by Acinetobacter junii BP25, Aeromonas hydrophila ATCC 7966, and their co-culture using a feast and famine strategy. BIORESOURCE TECHNOLOGY 2019; 293:122062. [PMID: 31494436 DOI: 10.1016/j.biortech.2019.122062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The study aimed to evaluate biopolymer production using two bacterial strains, Acinetobacter junii BP25 and Aeromonas hydrophila ATCC 7966, and their co-culture. Batch experiments were evaluated using acetate and butyrate as carbon sources in feast and famine strategy. Feast phase was studied using carbon, nitrates and phosphate in the ratio of 100:8:1 and famine phase was limited with the phosphate and nitrates. Co-culture resulted in highest specific growth rate (0.30 h-1) in the feast phase and the famine phase accounted the maximum polyhydroxybutyrate (PHB) accumulation (2.46 g PHB/L), followed by Acinetobacter junii BP25 (0.25 h-1 and 1.82 g PHB/L) and Aeromonas hydrophila ATCC 7966 (0.17 h-1 and 1.12 g PHB/L). Fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR) structural analysis confirmed as PHB. PHB production using the co-culture could be integrated with biohydrogen process using volatile fatty acids (VFA) as a carbon source in the biorefinery framework.
Collapse
Affiliation(s)
- Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Roent Dune Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong-Jun Yoon
- Intelligent Sustainable Materials R&BD Group, Korea Institute of Industrial Technology (KITECH), Cheonan, Chungnam 31056, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
Banu JR, Kumar MD, Gunasekaran M, Kumar G. Biopolymer production in bio electrochemical system: Literature survey. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T. Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng 2019; 128:203-208. [DOI: 10.1016/j.jbiosc.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
|
19
|
Aljuraifani AA, Berekaa MM, Ghazwani AA. Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. Microbiologyopen 2019; 8:e00755. [PMID: 30350356 PMCID: PMC6562131 DOI: 10.1002/mbo3.755] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
Twenty-six different bacterial strains were isolated from samples taken from different locations Dammam, Saudi Arabia, for screening of their polyhydroxyalkanoate (PHA) production capability. The initial screening was conducted by staining with Sudan Black B and Nile Red, followed by examination under fluorescence and electron microscopes to characterize PHA granule formation. The PHA-producing bacterial isolates were identified using 16S rRNA gene analyses; the most potent bacterial strain was identified as Pseudomonas sp. strain-P(16). The PHA production capability of this strain in the presence of different low-cost carbon sources, such as rice bran, dates, and soy molasses, was analyzed. PHA production in the presence of rice bran, dates, and soy molasses was 90.9%, 82.6%, and 91.6%, respectively.
Collapse
Affiliation(s)
- Amal A. Aljuraifani
- Biology Department, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Mahmoud M. Berekaa
- Environmental Health Department, College of Public HealthImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Azzah A. Ghazwani
- Biology Department, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| |
Collapse
|
20
|
Microbiomes and chemical components of feed water and membrane-attached biofilm in reverse osmosis system to treat membrane bioreactor effluents. Sci Rep 2018; 8:16805. [PMID: 30429505 PMCID: PMC6235981 DOI: 10.1038/s41598-018-35156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022] Open
Abstract
Reverse osmosis (RO) system at a stage after membrane bioreactor (MBR) is used for the wastewater treatment and reclamation. One of the most serious problems in this system is membrane fouling caused by biofilm formation. Here, microbiomes and chemical components of the feed water and membrane-attached biofilm of RO system to treat MBR effluents were investigated by non-destructive confocal reflection microscopy, excitation-emission fluorescence spectroscopy and high-throughput sequencing of 16S rRNA genes. The microscopic visualization indicated that the biofilm contained large amounts of microbial cells (0.5 ± 0.3~3.9 ± 2.3 µm3/µm2) and the extracellular polysaccharides (3.3 ± 1.7~9.4 ± 5.1 µm3/µm2) and proteins (1.0 ± 0.2~1.3 ± 0.1 µm3/µm2). The spectroscopic analysis identified the humic and/or fulvic acid-like substances and protein-like substances as the main membrane foulants. High-throughput sequencing showed that Pseudomonas spp. and other heterotrophic bacteria dominated the feed water microbiomes. Meanwhile, the biofilm microbiomes were composed of diverse bacteria, among which operational taxonomic units related to the autotrophic Hydrogenophaga pseudoflava and Blastochloris viridis were abundant, accounting for up to 22.9 ± 4.1% and 3.1 ± 0.4% of the total, respectively. These results demonstrated that the minor autotrophic bacteria in the feed water played pivotal roles in the formation of polysaccharide- and protein-rich biofilm on RO membrane, thereby causing membrane fouling of RO system.
Collapse
|
21
|
Jiang X, Shen J, Xu K, Chen D, Mu Y, Sun X, Han W, Li J, Wang L. Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation. WATER RESEARCH 2018; 130:291-299. [PMID: 29245151 DOI: 10.1016/j.watres.2017.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Due to highly recalcitrant and toxicological nature of pyridine, the conventional anaerobic bioprocess is often limited by low removal rate and poor process stability. In this study, an electricity-assisted anaerobic system was developed in order to enhance biodegradation of pyridine from wastewater. The results showed that the performance and stability of the anaerobic reactor was remarkably improved for pyridine biodegradation with the applied direct current of 0.3 mA, where the efficiencies of pyridine and total organic carbon removal as well as NH4+-N formation were as high as 100.0%, 96.1 ± 1.2% and 60.1 ± 2.1% respectively. The compact biofilm due to electrical stimulation as well as the microaerobic environment in the bioanode might promote pyridine bio-mineralization in the anaerobic reactor. Moreover, the species related to pyridine biodegradation (Desulfovibrio, Dokdonella, Hydrogenophaga, and Paracoccus) were enriched in the anodic biofilm, which would be another reason for better reactor performance. This study demonstrated that electrical stimulation would be a potential alternative for the enhancement of pyridine removal from wastewater in anaerobic systems.
Collapse
Affiliation(s)
- Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kaichun Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
22
|
Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:215-230. [PMID: 28987985 DOI: 10.1016/j.jenvman.2017.09.083] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/26/2023]
Abstract
The search for new materials that replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). The present paper reviews the challenges of scaling-up PHA production from waste streams during the period from 2014 to 2016, focusing on the feasibility of the alternatives and the most promising alternatives to its scaling-up. The reviewed research studies mainly focus on reducing costs or obtaining more valuable polymers. In the future, the integration of PHA production into processes such as wastewater treatment plants, hydrogen production or biodiesel factories could enhance its implementation at industrial scale.
Collapse
Affiliation(s)
- Santiago Rodriguez-Perez
- Molecular Biology and Biochemical Engineering Department, Universidad Pablo de Olavide, Ed. 22 Ctra. deUtrera, km. 1, Seville, Spain
| | - Antonio Serrano
- Instituto de Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. deUtrera, km. 1, Seville, Spain
| | - Alba A Pantión
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain
| | - Bernabé Alonso-Fariñas
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain.
| |
Collapse
|
23
|
Gahlawat G, Soni SK. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. BIORESOURCE TECHNOLOGY 2017; 243:492-501. [PMID: 28692918 DOI: 10.1016/j.biortech.2017.06.139] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Glycerol is a by-product of many industrial processes and huge amounts of it are generated in the form of waste, thereby necessitating a search for the method of its disposal. An interesting solution is the valorization of crude glycerol into value added product such as polyhydroxyalkanoates (PHAs). The feasibility of producing PHAs by Cupriavidus necator was evaluated using crude glycerol (WG). Various cultivation strategies were designed for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by adding different organic acids as precursors at different concentrations levels. Batch cultivation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production showed accumulation of 6.76g/L biomass containing 4.84g/L copolymer on WG with a maximum 3-hydroxyvalerate content of 24.6mol%. PHAs extraction using a non-toxic and recyclable solvent, 1,2 propylene carbonate, showed the highest recovery yield (90%) and purity (93%) at 120°C temperature and 30min incubation. This is the first report on jatropha based glycerol valorization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production coupled with extraction using non-toxic solvent.
Collapse
Affiliation(s)
- Geeta Gahlawat
- Department of Microbiology, Panjab University, Chandigarh 160014, India.
| | | |
Collapse
|
24
|
Tian Q, Zhuang L, Ong SK, Wang Q, Wang K, Xie X, Zhu Y, Li F. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal. WATER RESEARCH 2017; 119:267-275. [PMID: 28477542 DOI: 10.1016/j.watres.2017.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Under decreasing C/N (from 8.8 to 3.5) conditions, an alternating anaerobic/aerobic biofilter (AABF) was used to remove nitrogen and accumulate/recover phosphorus (P) from synthetic wastewater. The AABF was periodically (every 10 days) fed with an additional carbon source (10 L, chemical oxygen demand (COD) = 900 mg L-1 sodium acetate (NaAC) solution) in the anaerobic phase to induce the release of P sequestered in the biofilm. An increase in PHA storage in the biofilm was observed and characterized with TEM and a GC-MS method. The accumulation of P and removal of total nitrogen occurred primarily in the aerobic phase. As the NH4+-N loading rate increased from 0.095 to 0.238 kg m-3 d-1 at a total empty bed retention time (EBRT) of 4.6 h, the TN removal in AABF was reduced from 91.2% to 43.4%, while the P removal or recovery rate remained unaffected. The high-throughput community sequencing analysis indicated that the relative abundance of Candidatus Competibacter, Nitrospira and Arcobacter increased while the Accumulibacter phosphatis decreased with an increase of ammonium loading rate within a short operational period (30 days). A putative N and P removal pattern via simultaneous nitrification and PHA-based denitrification, as well as P accumulation in the biofilm was proposed. The research demonstrated that an efficient N removal and P recovery process, i.e., simultaneous nitrification and denitrification, P accumulation and carbon source-regulated P recovery can be achieved by the symbiotic functional groups in a single biofilm reactor.
Collapse
Affiliation(s)
- Qing Tian
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Linjie Zhuang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, IA, 50011, USA.
| | - Qi Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Kangwei Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Xuehui Xie
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Yanbin Zhu
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Fang Li
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| |
Collapse
|
25
|
Venkateswar Reddy M, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC. Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. BIORESOURCE TECHNOLOGY 2017; 234:99-105. [PMID: 28319778 DOI: 10.1016/j.biortech.2017.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Synthetic wastewater (SW) at various carbon concentrations (5-60g/l) were evaluated for polyhydroxyalkanoates (PHA) production using the bacteria Pseudomonas pseudoflava. Bacteria showed highest PHA production with 20g/l (57±5%), and highest carbon removal at 5g/l (74±6%) concentrations respectively. Structure, molecular weight, and thermal properties of the produced PHA were evaluated using various analytical techniques. Bacteria produced homo-polymer [poly-3-hydroxybutyrate (P3HB)] when only acetate was used as carbon source; and it produced co-polymer [poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV)] by addition of co-substrate propionate. PHA synthase, the enzyme which produce PHA was extracted from two bacterial strains i.e., P. pseudoflava and P. palleronii and its molecular weight was analysed using SDS-PAGE. Protein concentration, and PHA synthase enzyme activity of P. pseudoflava and P. palleronii was carried out using spectrophotometer. Results denoted that P. pseudoflava can be used for degradation of organic carbon persistent in wastewaters and their subsequent conversion into PHA.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Rui Onodera
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuki Nakamura
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuka Yajima
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Young-Cheol Chang
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.
| |
Collapse
|
26
|
Ray S, Kalia VC. Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. BIORESOURCE TECHNOLOGY 2017; 224:743-747. [PMID: 27914782 DOI: 10.1016/j.biortech.2016.11.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Polyhydroxyalkanoate (PHA) production by Bacillus thuringiensis EGU45 was studied by co-metabolism of crude glycerol (CG) (1%, v/v), glucose (0.05-0.5%, w/v) and propionic acid (0.05-0.5%, v/v) under batch (shake flask) culture conditions. Glycerol+PA combination resulted in 15-100mg/L PHA co-polymers with a HV content of 33-81mol%. The addition of NH4Cl (0.5%, w/v) to CG+PA enhanced PHA production by 1.55-fold, with a HV content of 58-70mol%. The time period of incubation of PA to the feed: CG+glucose was optimized to be 3h after initiation of fermentation. The PHA contents were found to be stable at 1900-2050mg/L up scaling from 0.4 to 2.0L feed material. Biochemical characterization through GC-MS of PHA co-polymer revealed the presence of 3-hydroxydecanoate (3-HDD), 3-hydroxyoctadecanoate (3HOD), 3-hydroxyhexadecanoate (3HHD).
Collapse
Affiliation(s)
- Subhasree Ray
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India; Academy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001, India.
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India; Academy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001, India
| |
Collapse
|