1
|
Guo M, Zheng X, Zheng S, Luo X, Wang Z. High organic volumetric loading rates triggered heterotrophic nitrification in wastewater biological nutrient removal systems. BIORESOURCE TECHNOLOGY 2025; 421:132132. [PMID: 39900121 DOI: 10.1016/j.biortech.2025.132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
This study confirmed the importance of a higher chemical oxygen demand (COD) volumetric loading rate (CODLR) for triggering heterotrophic nitrification in a lab-scale anoxic/microaerobic biological nutrient removal system for sewage treatment by analyzing the ammonia-oxidizing activities, nitrogen mass balance, and ammonia-oxidizing bacterial communities at four CODLR levels: 0.50 (Phase A), 0.75, 1.10, and 1.50 (Phase D) kg COD m-3 d-1. A higher CODLR led to a significant increase in the potential heterotrophic nitrification activity by 0.4, 0.9, 1.1, and 1.6 mg NH4±-N/g mixed liquor suspended solids h-1, respectively, contributing 7 %, 14 %, 17 %, and 21 % of the ammonia oxidization in the anoxic/microaerobic system. Furthermore, nitrogen balance analysis revealed that heterotrophic nitrifying bacteria contributed 4 % and 12 % of the ammonia oxidization in the anoxic/microaerobic system during Phases A and D, respectively, and that a more plentiful organic carbon supply in the microaerobic zone stimulated heterotrophic nitrification during Phase D.
Collapse
Affiliation(s)
- Mengya Guo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Xiangnan Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Xiaojie Luo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Zhixuan Wang
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Li X, Hu X, Zhao X, Wang F, Zhao Y. Modeling and optimization of triclosan biodegradation by the newly isolated Bacillus sp. DL4: kinetics and pathway speculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35567-35580. [PMID: 38730220 DOI: 10.1007/s11356-024-33096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024]
Abstract
Triclosan is a widely used antibacterial agent and disinfectant, and its overuse endangered ecological safety and human health. Therefore, reducing residual TCS concentrations in the environment is an urgent issue. Bacillus sp. DL4, an aerobic bacterium with TCS biodegradability, was isolated from pharmaceutical wastewater samples. Response surface methodology (RSM) and artificial neural network (ANN) were carried out to optimize and verify the different condition variables, and the optimal growth conditions of strain DL4 were obtained (35 °C, initial pH 7.31, and 5% v/v). After 48 h of cultivation under the optimal conditions, the removal efficiency of strain DL4 on TCS was 95.89 ± 0.68%, which was consistent with the predicted values from RSM and ANN models. In addition, higher R2 value and lower MSE and ADD values indicated that the ANN model had a stronger predictive capability than the RSM model. Whole genome sequencing results showed that many functional genes were annotated in metabolic pathways related to TCS degradation (e.g., amino acid metabolism, xenobiotics biodegradation and metabolism, carbohydrate metabolism). Main intermediate metabolites were identified during the biodegradation process by liquid chromatography-mass spectrometry (LC-MS), and a possible pathway was hypothesized based on the metabolites. Overall, this study provides a theoretical foundation for the characterization and mechanism of TCS biodegradation in the environment by Bacillus sp. DL4.
Collapse
Affiliation(s)
- Xuejie Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, People's Republic of China
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Xiaomin Hu
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China.
| | - Xin Zhao
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Fan Wang
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| | - Yan Zhao
- School of Resource & Civil Engineering, Northeastern University, No. 11, Lane 3, Wenhua Road, P.O. Box 265, Shenyang, 110819, People's Republic of China
| |
Collapse
|
3
|
Zhong Y, Lin D, Li S, Wang Q, Liu H, Ma L, Liu H. Enhanced nitrogen removal via Yarrowia lipolytica-mediated nitrogen and related metabolism of Chlorella pyrenoidosa from wastewater. Front Bioeng Biotechnol 2023; 11:1159297. [PMID: 37425353 PMCID: PMC10325826 DOI: 10.3389/fbioe.2023.1159297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
We investigated the optimum co-culture ratio with the highest biological nitrogen removal rate, revealing that chemical oxygen demand, total nitrogen (TN), and ammoniacal nitrogen (NH3-N) removal was increased in the Chlorella pyrenoidosa and Yarrowia lipolytica co-culture system at a 3:1 ratio. Compared with the control, TN and NH3-N content in the co-incubated system was decreased within 2-6 days. We investigated mRNA/microRNA (miRNA) expression in the C. pyrenoidosa and Y. lipolytica co-culture after 3 and 5 days, identifying 9885 and 3976 differentially expressed genes (DEGs), respectively. Sixty-five DEGs were associated with Y. lipolytica nitrogen, amino acid, photosynthetic, and carbon metabolism after 3 days. Eleven differentially expressed miRNAs were discovered after 3 days, of which two were differentially expressed and their target mRNA expressions negatively correlated with each other. One of these miRNAs regulates gene expression of cysteine dioxygenase, hypothetical protein, and histone-lysine N-methyltransferase SETD1, thereby reducing amino acid metabolic capacity; the other miRNA may promote upregulation of genes encoding the ATP-binding cassette, subfamily C (CFTR/MRP), member 10 (ABCC10), thereby promoting nitrogen and carbon transport in C. pyrenoidosa. These miRNAs may further contribute to the activation of target mRNAs. miRNA/mRNA expression profiles confirmed the synergistic effects of a co-culture system on pollutant disposal.
Collapse
Affiliation(s)
- Yuming Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Danni Lin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sufen Li
- Institute of Water Environment Engineering, Xinhua College of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Liang E, Ali A, Su J, Xu L, Huang T, Yang Y, Liu Y. Treatment of micro-polluted water with low C/N ratio by immobilized bioreactor using PVA/sintered ores@sponge cube: Performance effects and potential removal pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162003. [PMID: 36737021 DOI: 10.1016/j.scitotenv.2023.162003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of industrial products containing lead (Pb2+) and tetracycline (TC) medications led to the combined pollution of nitrate, Pb2+, and TC in water. A novel biomaterial containing polyvinyl alcohol (PVA) and sponge cube with sintered ores (PVA/sintered ores@sponge cube) was prepared to ensure the maximum NO3--N removal efficiency (96.21 %) of the bioreactor under the hydraulic retention time (HRT) of 7.0 h, pH of 6.0, and the carbon to nitrogen (C/N) of 1.5 that had the ability to remove TC and Pb2+ synergistically. Composite pollutants slightly decreased denitrification performance in the combined pollution system on account of the addition of sintered ores. Results of scanning electron microscopy (SEM) showed that the sintered ores in the biocarrier induced denitrification and the adsorption of bio‑iron oxides were involved in the removal of TC and Pb2+. The simultaneous removal of composite pollutants during denitrification was facilitated by extracellular polymeric substances (EPS) as revealed by Fourier transform infrared spectroscopy (FTIR) and fluorescence excitation-emission matrix (EEM). In addition, high-throughput sequencing results showed that Zoogloea had the highest proportion in the bioreactor.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Nicula NO, Lungulescu EM, Rimbu GA, Culcea A, Csutak O. Nutrient and organic pollutants removal in synthetic wastewater by Pseudomonas aeruginosa and Chryseobacterium sp./biofilter systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:881. [PMID: 36229564 DOI: 10.1007/s10661-022-10589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nutrient and organic pollution raise serious problems for aquatic ecosystems through the accumulation of organic carbon, the reduction of light penetration, and the loss of submerged aquatic vegetation. The over-enrichment of water with nitrogen and phosphorus leads to an imbalance in nutrient ratios, creating favorable conditions for toxic algal blooms, formation of oxygen-depleted water, etc. Thus, developing new technological solutions to reduce their amount is imperative. The present study investigates the capacity of Pseudomonas aeruginosa and Chryseobacterium sp. bacterial strains to form biofilm on solid support (biofilter), both individually and in tandem, using various analytical techniques. Also, the biofilm/biofilter systems' efficiency in removing nutrients such as nitrate, nitrite, ammonium, and phosphate ions from municipal wastewaters is assessed. The results showed a reduction of nutrient pollution of up to 91%, 98%, 55%, and 71% for nitrite, nitrate, ammonium, and phosphate ions. A reduction of about 78% of COD was also observed. The results were obtained in the absence of an additional aeration process, thus having a great potential for reducing total costs of wastewater treatment and developing ecological systems for wastewater management.
Collapse
Affiliation(s)
- Nicoleta-Oana Nicula
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
- Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, Romania
| | - Eduard-Marius Lungulescu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania.
| | - Gimi A Rimbu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
| | - Andreea Culcea
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, Bucharest, Romania.
| |
Collapse
|
6
|
Xia Y, Zhu L, Geng N, Lu D, Xu C, Withana PA, Vithanage M, Khan E, Ok YS. Nitrogen transformation in slightly polluted surface water by a novel biofilm reactor: Long-term performance and microbial population characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154623. [PMID: 35307444 DOI: 10.1016/j.scitotenv.2022.154623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
This study proposes a modular floating biofilm reactor (MFBR) for in situ nitrogen removal from slightly polluted water in rivers using enriched indigenous microorganisms. Its main structure is a 60 cm × 60 cm × 90 cm rectangular reactor filled with hackettens. After a 96-day startup, the removal efficiencies of ammonia-N and total N (TN) reached 80% and 25%, respectively, with a hydraulic retention time (HRT) of 10 h, whereas those in a control reactor (without biofilm) were only 4.9% and 0.2%, respectively. The influences of HRT and dissolved oxygen (DO) were also investigated. As a key factor, HRT significantly affected the removal efficiencies of ammonia-N and TN. When HRT was close to the actual value for a river studied (2.4 min), the removal efficiencies of ammonia-N and TN were only 8.7% and 3.1%, respectively. Aeration increased the concentration of DO in water, which enhanced nitrification but inhibited denitrification. When HRT was 2.4 min, aeration intensity was 20 L/min; the ammonia-N and TN removal rates were 9.5 g/(m2·d) and 11.3 g/(m2·d), respectively. The results of microbial community analysis indicated that the microorganisms forming the biofilm were indigenous bacteria. The findings demonstrated a concept-proof of MFBR, which may be evaluated in scaling up investigation for developing a new methodology for nitrogen removal from slightly polluted surface water in plain river networks.
Collapse
Affiliation(s)
- Yinfeng Xia
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China; Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Lifang Zhu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Nan Geng
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Debao Lu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Cundong Xu
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Piumi Amasha Withana
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA.
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Luo K, Chen L, Du L, Zhao Y, Chen Q. Response of the aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 to low temperature and zinc oxide nanoparticles stress. BIORESOURCE TECHNOLOGY 2022; 354:127162. [PMID: 35429594 DOI: 10.1016/j.biortech.2022.127162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Performance and molecular changes of an aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 have been investigated under different temperatures and ZnO nanoparticles (NPs) exposures. Strain HA-2 removed 95.7% of total nitrogen (TN) and 24.6% of phosphorus at 10 °C, which was attributed to the joint up-regulation of intracellular energy metabolism and ribosome. Moreover, with the increase of ZnO NPs from 0 to 100 mg/L, TN and phosphurs removal efficiencies decreased from 95.7% to 44.5% and 24.6% to 6.8% at 10 °C, respectively, whereas phosphorus removal rate increased from 10.5% to 24.5% at 20 °C. Further transcriptomics and proteomics revealed that significant down-regulation of purine and amino acid metabolisms was the main reason for the inhibitory effect at 10 °C, while the up-regulation of antioxidant pathways and functional genes expressions was responsible for the promoted phosphorus accumulation at 20 °C. This study provides a potential solution for improving biological nutrients removal processes in winter months.
Collapse
Affiliation(s)
- Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Lei Du
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
8
|
Zhang DW, Zheng JT, Zheng J, Zhao MK, Wang ML, Zhang SH. Pilot study on the treatment of low carbon and nitrogen ratio municipal sewage by A1/O2/A3/A4/O5 sludge-membrane coupling process with multi-point inflow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:609-621. [PMID: 34341919 DOI: 10.1007/s11356-021-15721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
A new multi-point inflow pre-anoxic/oxic/anaerobic/anoxic/oxic (A1/O2/A3/A4/O5) sludge-membrane coupling process and pilot plant were developed and designed to solve the problem of nitrogen and phosphorus removal of low carbon and nitrogen (C/N) ratio domestic sewage in southern China. The removal effect and transformation rule of organic matter, nitrogen, and phosphorus in the system were studied by changing the distribution ratio of multi-point influent. The average C/N ratio of the influent was 2.09 and the influent distribution ratio was 1:1. When the temperature was 16-25 °C, the average concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH4+- N), total nitrogen (TN), and total phosphorus (TP) in the effluent were 21.31 (±2.65), 0.60 (±0.24), 12.76 (±1.09), and 0.34 (±0.05) mg/L, respectively, and their average removals are 87.3 (±1.2)%, 98.7 (±0.4)%, 74.1 (±1.3)%, and 88.1 (±0.4)% respectively. When the low temperature was 12-15 °C, the average removals were 78.6 (±1.1)%, 90.5 (±1.3)%, 73.7 (±1.13)%, and 86.6 (±1.7)%, respectively. Compared with the traditional anaerobic/anoxic/aerobic (A2O) process under the same conditions, the TN removal was increased by 15.4%, and the TP removal was increased by 22.2%. This system has obvious advantages in treating wastewater with low C/N ratio, thereby solving the problem wherein the effluent of biological phosphorus removal from low C/N ratio domestic sewage was difficult when it was lower than 0.5 mg/L.
Collapse
Affiliation(s)
- De-Wei Zhang
- Anhui University of Technology, Ma'anshan, Anhui, China.
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma'anshan, Anhui, China.
- BAF Engineering Technology Research Center of Anhui Province, Ma'anshan, Anhui, China.
| | - Jun-Tian Zheng
- Anhui University of Technology, Ma'anshan, Anhui, China
- BAF Engineering Technology Research Center of Anhui Province, Ma'anshan, Anhui, China
| | - Jun Zheng
- Anhui University of Technology, Ma'anshan, Anhui, China
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma'anshan, Anhui, China
- BAF Engineering Technology Research Center of Anhui Province, Ma'anshan, Anhui, China
| | - Meng-Ke Zhao
- Anhui University of Technology, Ma'anshan, Anhui, China
- BAF Engineering Technology Research Center of Anhui Province, Ma'anshan, Anhui, China
| | - Meng-Lin Wang
- Anhui University of Technology, Ma'anshan, Anhui, China
| | - Shi-Hua Zhang
- Anhui University of Technology, Ma'anshan, Anhui, China
| |
Collapse
|
9
|
Chen H, Zhou W, Zhu S, Liu F, Qin L, Xu C, Wang Z. Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification. BIORESOURCE TECHNOLOGY 2021; 322:124507. [PMID: 33338941 DOI: 10.1016/j.biortech.2020.124507] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Strain C-13, identified as an Acinetobacter sp. by homology searches, exhibited efficient simultaneous heterotrophic nitrification-aerobic denitrification phosphorus removal (SNDPR) abilities by nitrogen balance analysis and further confirmation of successful amplification of functional genes ppk, napA, and nirS. In addition, strain C-13 could utilize NH4+-N, NO3--N, and NO2--N as nitrogen sources, among which NH4+-N was indicated to be an excellent nitrogen source for assimilation and heterotrophic nitrification. Besides, the optimum conditions for nutrient removal were determined as follows: sodium acetate as the sole carbon source, C/N/P ratio of 100/10/2, pH = 7.5, and temperature of 30 °C. Meanwhile, the strain also showed the traditional features, such as release and the excess uptake of phosphate under anaerobic/aerobic conditions, with the highest phosphorus content of 5.01% after cultivation. Strain C-13 presents promising prospects for application in biologicalnutrient removal in wastewater treatment.
Collapse
Affiliation(s)
- Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of China Academy of Sciences, Beijing 100049, China
| | - Weizheng Zhou
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Fen Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of China Academy of Sciences, Beijing 100049, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
10
|
Dong X, He Y, Peng X, Jia X. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. BIORESOURCE TECHNOLOGY 2021; 319:124134. [PMID: 32966969 DOI: 10.1016/j.biortech.2020.124134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. In this study, the effects of TCS on phosphate removal and bacterial community shifts of activated sludge, especially on functional bacteria variation, were investigated. Compared with the control group (R-control), the treatment group (R-TCS) with 100 μg/L TCS inhibited the microbial growth. In addition, the phosphorus removal efficiency of PO43--P and total phosphorus removal rates declined by 15.99% and 7.81%, respectively. Proteobacteria gradually dominated the microorganisms. The growths of Proteobacteria and Bacteroidetes were inhibited when 150 μg/L of TCS was added. Moreover, the differences in the microbial community structures of the R-control and R-TCS groups gradually expanded, no obvious difference was observed in the final stage, and the interrelationships of microbes in the latter weakened. The long-term addition of TCS impairs the growth of polyphosphate-accumulating organisms (PAOs).
Collapse
Affiliation(s)
- Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Li H, Zhong Y, Huang H, Tan Z, Sun Y, Liu H. Simultaneous nitrogen and phosphorus removal by interactions between phosphate accumulating organisms (PAOs) and denitrifying phosphate accumulating organisms (DPAOs) in a sequencing batch reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140852. [PMID: 32702541 DOI: 10.1016/j.scitotenv.2020.140852] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
The identification of phosphate-accumulating organisms (PAOs), denitrifying phosphate-accumulating organisms (DPAOs) and their relationship is a key pathway for optimizing nitrate and phosphate removal efficiency in activated sludge. In this study, the acclimatization of microorganisms in sequencing batch reactor were performed with anaerobic/aerobic (A/O) and anaerobic/anoxic (A/A) cycles, the biomass changes of PAOs and DPAOs and the correlations were then discussed. The results indicated that after acclimatization, the nutrient removal efficiencies reached to 85.34% (COD), 93.64% (PO43--P) and 92.34% (NO3--N), respectively, with NO3--N:PO43-P of 1.5:1. The successful enrichment of PAOs and DPAOs (reached 97.9%) was verified by the change of relative metabolic activities, which was further proved by the change of bacterial diversity. The number of Candidatus Accumulibacter, Zoogloea, and Dechloromonas all increased at A/O and A/A stages while the number of Acinetobacter only increased at A/O stage. So Accumulibacter sp. was DPAO while Acinetobacter sp. was only PAO in this process, and genera Accumulibacter, Dechloromonas and Zoogloea greatly coordinated in denitrification and accumulating phosphorous though RDA and chord plot. This was worthy of attention and development to explore enhanced biological phosphorus removal (EBPR) in practical wastewater treatment via improving identification of bacterial species and symbiosis of bacteria community.
Collapse
Affiliation(s)
- Huankai Li
- Innovative Institute of Animal Healthy Breeding, Department of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Yuming Zhong
- Innovative Institute of Animal Healthy Breeding, Department of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hui Huang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Zexing Tan
- Innovative Institute of Animal Healthy Breeding, Department of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yan Sun
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong 510650, China
| | - Hui Liu
- Innovative Institute of Animal Healthy Breeding, Department of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
12
|
Chen F, Xiao Y, Wu X, Zhong Y, Lu Q, Zhou W. Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture. RSC Adv 2020; 10:20794-20800. [PMID: 35517726 PMCID: PMC9054309 DOI: 10.1039/d0ra03090b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
The main aim of this work was to evaluate the feasibility of microalgae-assisted aquaculture and explore the relevant mechanisms. In this regard, our work explored the pollution problems in traditional aquaculture and studied the contribution of microalgae to eutrophication control, oxygen gas production and feed replacement. Besides, potential protection mechanisms of microalgae-assisted aquaculture were studied by bacterial community profile analysis and microscope observation. The results showed that microalgae performed well in nutrient assimilation and oxygen production, thus slowing down the eutrophication and preventing oxygen depletion in aquaculture. Study of the mechanisms revealed that microalgae-assisted aquaculture contained much fewer pathogens and a microalgal biofilm was formed to prevent the eutrophication caused by sludge degradation. It is expected that the findings in this work can support the further development of microalgae-assisted aquaculture and promote the industry upgrade.
Collapse
Affiliation(s)
- Fufeng Chen
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Yan Xiao
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Xiongwei Wu
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Yuqing Zhong
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Qian Lu
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| |
Collapse
|
13
|
Li J, Wang L, Lu Q, Zhou W. Toxicity alleviation for microalgae cultivation by cationic starch addition and ammonia stripping and study on the cost assessment. RSC Adv 2019; 9:38235-38245. [PMID: 35541807 PMCID: PMC9075837 DOI: 10.1039/c9ra03454d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Aiming at promoting microalgae-based anaerobically digested swine manure (AD-SM) treatment, this work evaluated the feasibility of removing turbidity and ammonia in swine manure by cationic starch addition and air bubbling-driven ammonia stripping. It was observed that turbidity and ammonia toxicity were two main factors limiting algae growth. Addition of cationic starch effectively reduced turbidity of AD-SM by 77.10% in 40 min. 6 L min−1 air flow rate and 5 h stripping time were regarded as good conditions for ammonia stripping. An economic analysis was conducted to assess the feasibility of this pretreatment strategy in a pilot scale system and results indicated that unit energy input and freshwater consumption were 0.036 kW h g−1 dry biomass and 0.76 L g−1 dry biomass, respectively, much lower than those of a high dilution strategy. So it is a more promising and feasible way to pretreat AD-SM with low dilution by turbidity removal and ammonia stripping. Aiming at promoting microalgae-based anaerobically digested swine manure (AD-SM) treatment, this work evaluated the feasibility of removing turbidity and ammonia in swine manure by cationic starch addition and air bubbling-driven ammonia stripping.![]()
Collapse
Affiliation(s)
- Jun Li
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Lin Wang
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Qian Lu
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University Nanchang 330031 China
| |
Collapse
|
14
|
Lu Q, Han P, Chen F, Liu T, Li J, Leng L, Li J, Zhou W. A novel approach of using zeolite for ammonium toxicity mitigation and value-added Spirulina cultivation in wastewater. BIORESOURCE TECHNOLOGY 2019; 280:127-135. [PMID: 30769323 DOI: 10.1016/j.biortech.2019.02.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Owning to the ammonium toxicity, some ammonium-rich wastewater may not be used for algae cultivation. To overcome this problem, herein, a novel approach of using zeolite to mitigate ammonium toxicity in wastewater for value-added Spirulina production was proposed. Synthetic zeolite was used as medium for ammonium adsorption in wastewater and subsequently as slow-releaser providing nitrogen to Spirulina growth. The optimal conditions for ammonium adsorption include pH value of 8.0, zeolite dose of 300 g/L, and adsorption time of 9 h. The results showed that in terms of biomass production and ammonium recovery, zeolite-based pretreatment has great advantages over some conventional pretreatment technologies. After algae-assisted desorption treatment, ammonium adsorption capacity of zeolite increased back to 1.21 mg/g. In a real-world application, this work will provide a feasible and sustainable approach to remediate ammonium-rich wastewater, produce value-added Spirulina biomass, and recycle used zeolite, further promoting the industrialization of algae-based wastewater remediation.
Collapse
Affiliation(s)
- Qian Lu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Pei Han
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Fufeng Chen
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Tonggui Liu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Jun Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Lijian Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Jingjing Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| |
Collapse
|
15
|
Lin Z, Wang Y, Huang W, Wang J, Chen L, Zhou J, He Q. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery. BIORESOURCE TECHNOLOGY 2019; 277:27-36. [PMID: 30658333 DOI: 10.1016/j.biortech.2019.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Advanced nutrient removal of municipal wastewater has insufficient carbon source, and resource recovery is neglected. In this study, a single-stage biofilter based on denitrifying phosphorus removal (DPR) was proposed for advanced nutrient removal and phosphorus recovery, which was operated under alternating anoxic/anaerobic mode with no extracellular carbon source in anoxic period. The results showed that the biofilter achieved efficient and stable performance with low carbon consumption (C/N ≈ 3.7). The average removal efficiency of NO3--N, TN and PO43--P were 74.81%, 71.08% and 91.15%, respectively. DPR primarily occurred in the middle of the filtration bed and nutrient removal was driven by intracellular polymers, which was the main carbon source. High-throughput sequencing indicated that Dechloromonas was enriched and contributed to DPR while Zoogloea was responsible for endogenous denitrification. Denitrifying polyphosphate accumulating organisms and endogenous denitrifiers synergistically enhanced the nutrient removal capacity. The study further provides research perspectives for improving nutrient removal.
Collapse
Affiliation(s)
- Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiale Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Li Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
16
|
Sengar A, Aziz A, Farooqi IH, Basheer F. Development of denitrifying phosphate accumulating and anammox micro-organisms in anaerobic hybrid reactor for removal of nutrients from low strength domestic sewage. BIORESOURCE TECHNOLOGY 2018; 267:149-157. [PMID: 30014993 DOI: 10.1016/j.biortech.2018.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Low strength domestic sewage was treated in an Anaerobic Hybrid Reactor. The first phase was focused on the enhancement of denitrifying phosphate accumulating organisms (DPAOs) for the concurrent removal of nitrogen and phosphate. 16S rRNA gene confirmed the presence of Flavobacterium spp. and Pseudomonasalcaligenes spp. which are dominant DPAOs. The second phase was the anaerobic ammonium oxidation (anammox) enrichment phase, and it exhibited much higher chemical oxygen demand (87%) and nitrogen removal (90%) as compared to the first phase. However, it had failed to remove the phosphate from the system. In case of anammox, the dominant specie detected was Candidatus Brocadia, along with minor counts of Candidatus Jettenia and Anammoxoglobus Propionicus. Apart from that, ammonia oxidizing bacteria (Nitrosomonas europaea, Nitrosomonas nitrosa) and methanogens (Methanosaeta, Methanobacterium) were also detected in the system. This study showed the feasibility of anammox species over DPAOs in treating domestic sewage.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Aziz
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Izharul Haq Farooqi
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Farrukh Basheer
- Department of Civil Engineering, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
17
|
Ni L, Wang Y, Lin X, Yan Y, Zhang Y, Wang W. Enhancement of the adaptability of anammox granules to zinc shock by appropriate organic carbon treatment. BIORESOURCE TECHNOLOGY 2018; 268:496-504. [PMID: 30114669 DOI: 10.1016/j.biortech.2018.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 05/27/2023]
Abstract
Heavy metals, which are commonly present in high ammonia-containing wastewater, can cause inhibitory effects to anammox reaction. This study proposes a novel approach to enhance the adaptability of anammox granules to heavy metal [Zn(II)] shock by organic carbon (sodium acetate, NaAc) treatment, paying special attention to optimization of the treatment dosage and duration. For granules treated with 200 mg chemical oxygen demand (COD)/L NaAc for 2 d, the activity recovery (six cycles) efficiency after Zn(II) (40 mg/L) shock reached 127.4%. The extracellular polymeric substance (EPS) production increased by 168% and heterotrophic bacteria mildly proliferated (increased by 14%) in such granules compared with the control. The dramatic recovery capacity was likely due to the entrapment and barrier function of EPS and the outer-layer proliferated heterotrophic bacteria. This finding offers a useful process to enable maximum adaptability of anammox granules from heavy metals shocks, allowing anammox technology to be more widely applied.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Ximao Lin
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
18
|
Lu Q, Chen P, Addy M, Zhang R, Deng X, Ma Y, Cheng Y, Hussain F, Chen C, Liu Y, Ruan R. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. BIORESOURCE TECHNOLOGY 2018; 249:99-107. [PMID: 29040866 DOI: 10.1016/j.biortech.2017.09.175] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH3-N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities.
Collapse
Affiliation(s)
- Qian Lu
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Min Addy
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiangyuan Deng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Fida Hussain
- Faculty of Science and Technology, Qurtuba University of Science and Technology, Peshawar, KP, Pakistan
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA; MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
19
|
Lu Q, Li J, Wang J, Li K, Li J, Han P, Chen P, Zhou W. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium. BIORESOURCE TECHNOLOGY 2017; 244:542-551. [PMID: 28803104 DOI: 10.1016/j.biortech.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids.
Collapse
Affiliation(s)
- Qian Lu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Jun Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Jinghan Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, China
| | - Kun Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Jingjing Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Pei Han
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China
| | - Paul Chen
- Center for Biorefining, Bioproducts and Biosystems Engineering Department, University of Minnesota, Saint Paul, United States
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Lu Q, Liu H, Liu W, Zhong Y, Ming C, Qian W, Wang Q, Liu J. Pretreatment of brewery effluent to cultivate Spirulina sp. for nutrients removal and biomass production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1852-1866. [PMID: 28991800 DOI: 10.2166/wst.2017.363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the low concentration of nitrate and high contents of organics, brewery effluent was not suitable for the cultivation of Spirulina sp. This work changed the nutrient profile of brewery effluent effectively by dilution, addition of nitrate, and anaerobic digestion. The result showed that the optimum dilution rate and NaNO3 addition for brewery effluent were 20% and 0.5 g/L, respectively. Spirulina sp. grown in pretreated brewery effluent produced 1.562 mg/L biomass and reduced concentrations of nutrients to reach the permissible dischargeable limits. In addition, Spirulina sp. grown in pretreated brewery effluent had much higher protein content and oil content. So the appropriate treatment converted brewery effluent into a nutrient balanced medium for algae cultivation and alleviated the potential environmental problems. Pretreatment procedure developed in this work is an effective way to realize the sustainable utilization of brewery effluent and produce algal biomass with valuable nutrients.
Collapse
Affiliation(s)
- Qian Lu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; First two authors contributed equally to this work
| | - Hui Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China; First two authors contributed equally to this work
| | - Wen Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuming Zhong
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Caibing Ming
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wei Qian
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Provincial Engineering and Technology Research Center for Fruit Tree, Guangzhou 510225, China E-mail:
| | - Jianliang Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
21
|
Liu H, Lu Q, Wang Q, Liu W, Wei Q, Ren H, Ming C, Min M, Chen P, Ruan R. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal. BIORESOURCE TECHNOLOGY 2017; 235:59-69. [PMID: 28364634 DOI: 10.1016/j.biortech.2017.03.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Algae were able to grow healthy on bacteria-containing centrate wastewater in a pilot-scale bioreactor. The batch experiment indicated that the co-cultivation of algae and wastewater-borne bacteria improved the removal efficiencies of chemical oxygen demand and total phosphorus in centrate wastewater to 93.01% and 98.78%, respectively. A strain of beneficial aerobic bacteria, Acinetobacter sp., was isolated and its biochemical characteristics were explored. Synergistic cooperation was observed in the growth of algae and Acinetobacter sp. Removal efficiencies of some nutrients were improved significantly by the co-cultivation of algae and Acinetobacter sp. After treatment, residual nutrients in centrate wastewater reached the permissible discharge limit. The cooperation between algae and Acinetobacter sp. was in part attributed to the exchange of carbon dioxide and oxygen between the algae and bacteria. This synergetic relationship between algae and Acinetobacter sp. provided a promising way to treat the wastewater by improving the nutrients removal and biomass production.
Collapse
Affiliation(s)
- Hui Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Guangzhou 510225, China
| | - Qian Lu
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Qin Wang
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wen Liu
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qian Wei
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hongyan Ren
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Caibing Ming
- Department of Environment Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Min
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|