1
|
Pu C, Guo J, Zhang J, Liu S, Cao G, Lu G. Nitrogen transformation and bacterial community response in O 3-SBR process for treating nitrogen-containing heterocyclic antibiotics. ENVIRONMENTAL RESEARCH 2025; 269:120924. [PMID: 39855411 DOI: 10.1016/j.envres.2025.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O3) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O3-coupled biological processes remain unclear. This study utilized an O3-coupled sequencing batch reactor (O3-SBR) to evaluate its treatment efficacy on three typical NHAs, namely fluconazole, sulfamethizole, and acyclovir, and explored nitrogen transformation and the effects of oxidation products (NHAs-OPs) on bacterial communities. The results showed that the O3-SBR process was more effective for treating NHAs than using O3 or SBR alone. O3 pretreatment converted nitrogen in difficult-to-degrade NHAs into inorganic nitrogen and other organic nitrogen compounds, improving the biodegradability of NHAs. Subsequently, NHAs-OPs were used as the nitrogen/carbon source for SBR. Unlike the low TN removal rate of 14.4-23.4% observed when treating pure NHAs wastewater, the TN and total organic carbon removal rates of the SBR treating NHAs-OPs wastewater reached 62.4-85.2% and 65.2-86.4%, respectively. High-throughput sequencing analysis revealed that the enhanced efficacy of the SBR process may be attributed to the dominance of bacterial genera adapted to NHAs-OPs within the system. Additionally, the abundance of denitrification functions under NHAs-OPs stress was found to be higher than that of nitrification functions. These results provide new theoretical support for the treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Chuan Pu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Junjie Guo
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Jiayue Zhang
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Siyang Liu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Gang Cao
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China.
| | - Gang Lu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Chang CJ, Chang CW, Lu HP, Hsieh CH, Wu JH. Bioenergetically constrained dynamical microbial interactions govern the performance and stability of methane-producing bioreactors. NPJ Biofilms Microbiomes 2025; 11:31. [PMID: 39971951 PMCID: PMC11840090 DOI: 10.1038/s41522-025-00668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Biogas generation from organic waste by anaerobic bioreactors as renewable energy largely depends on microbial community and species interplays involved. This microbial networking is complex and time-dependent, influencing community succession and reactor performance, but remains unexplored due to the challenges in quantifying dynamics. We employed empirical dynamic modeling to analyze daily networking from a newly established bioreactor converting sucrose to biogas. Over time, microbial interactions within the three trophic (fermentative, syntrophic, and methanogenic) groups varied substantially more than between groups. Notably, versatile syntrophic bacteria like Syntrophorhabdus exhibited stronger interaction strength (0.14 ± 0.22) to hydrogen-dependent methylotrophic Methanomassiliicoccus than strictly syntrophic bacteria associated with butyrate (0.01 ± 0.01 for Syntrophomonas) and propionate (0.00 ± 0.01 for Syntrophobacter). The time-varying interaction networks were closely linked to the system performance dynamics, particularly concerning hydrogen concentrations. As community succession progressed, the stability of interaction network increased through time, accompanied by increased complexity and higher interaction strength. Causal analyses revealed intricate feedback involving catabolic energetics, community structure, and microbial interactions. These feedback mechanisms played a crucial role in regulating anaerobic degradation processes, thereby offering strategies for manipulating microbial interactions to enhance bioreactor stability and efficiency.
Collapse
Affiliation(s)
- Chao-Jui Chang
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Chang
- Institute of Fishery Sciences and Department of Life Science, National Taiwan University, Taipei, Taiwan.
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
- Institute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
- National Center for Theoretical Sciences, Taipei, Taiwan.
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Tavares Paula C, Takeda PY, Lelis Giglio G, Damianovic MHRZ. Nitrogen removal from multi-electrolyte saline wastewater via mainstream anammox in warm climate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124271. [PMID: 39864155 DOI: 10.1016/j.jenvman.2025.124271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
High salts concentrations in wastewater hinder its biological treatment. Recent research has investigated the inhibitory effect of salinity on the anammox process, mainly focusing on NaCl. Thus, the inhibition caused by multi-electrolytes salinity on freshwater anammox bacteria remains unclear. In this study, the anammox process was evaluated for the treatment of multi-electrolyte saline wastewater (NaCl, MgCl2, and CaCl2) during 684 days in three operational phases. In Phase 1, the anammox inoculum was successfully adapted from sidestream (232 mgN.L-1) to mainstream (60 mgN.L-1) conditions, with no damage to the reactor performance, at an hydraulic retention time of 1.4 h. In Phase 2, salinity was gradually increased in the synthetic medium to adapt the freshwater anammox bacteria. The anammox bacteria tolerated a total salinity of 0.72 wt% (in g.L-1: 4.7 NaCl, 2.0 MgCl2, and 0.6 CaCl2), achieving an 84.3 ± 0.8% nitrogen removal efficiency. The presence of salts favored the Ca. Jettenia genus over Ca. Brocadia after long-term exposure to salinity. Finally, in Phase 3, anaerobically pre-treated saline wastewater (0.72 wt%) was applied to the anammox reactor. The presence of residual organic matter (53 mgCOD.L-1; COD/N of 0.86) resulted in partial deviation of the metabolic pathway from anammox to, especially, nitrite heterotrophic denitrification, resulting in the accumulation of ammonia-N in the effluent. Even so, the anammox process was predominant, being responsible for 83% of the nitrogen removal. The presence of both organic matter and salinity led to a shift in dominance from the Ca. Jettenia genus to Ca. Brocadia.
Collapse
Affiliation(s)
- Carolina Tavares Paula
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Paula Yumi Takeda
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
| | - Guilherme Lelis Giglio
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| |
Collapse
|
4
|
Wang M, He J, Dong X, Zhang R. Effect of gradual increase of salt on performance and microbial community during granulation process. J Environ Sci (China) 2025; 147:404-413. [PMID: 39003058 DOI: 10.1016/j.jes.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.
Collapse
Affiliation(s)
- Mengfei Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiangke Dong
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ruimiao Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Xu J, Liu S, Zhou J, Li L, Bi X, Han W, Wu D. Response of aerobic granular sludge to salinity fluctuations in formation, stability and microbial community structures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176471. [PMID: 39322072 DOI: 10.1016/j.scitotenv.2024.176471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aerobic granular sludge (AGS) exhibits excellent resistance to adverse environment due to its unique layered structure. However, the mechanism about how salinity fluctuations in municipal wastewater impact AGS formation and its physicochemical properties has not been thoroughly revealed. In this study, AGS was cultivated under additional 0 % salinity (R1), additional 1.5 % constant salinity (R2), and additional 0-1.5 % fluctuant salinity (R3), respectively. The results indicate that increased salinity can enhance extracellular polymeric substances (EPS) production and improve sludge settleability, thereby facilitate AGS formation. However, the AGS experienced frequent environmental conversion between dehydration and swell due to salinity fluctuations, resulting in higher content of loosely-bond EPS and low settleability, which delayed the maturation of AGS for over 14 days. Additional salinity significantly inhibited the nitrification process, but the formation of AGS promoted the recovery of ammonia oxidation activity and facilitated the construction of short-range nitrification denitrification processes, resulting in over 16.0 % higher total nitrogen removal efficiency than R1. The microbial community analysis revealed that Thauera played an important role in the granulation process under salinity stress, due to its salt tolerance and EPS secretion abilities. As expected, the formation of AGS enhanced the salt resistance of microorganisms, allowing for the enrichment of functional bacteria, such as Flavobacterium and Candidatus_Competibacter. Generally, microorganisms required extended adaptation periods to cope with salinity fluctuations. Nevertheless, the resulting AGS proved stable and efficient wastewater treatment performance.
Collapse
Affiliation(s)
- Jie Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Shichang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Jiazhong Zhou
- Qingdao Key Laboratory of Green and Low Carbon Biofilm and Water Environment Restoration, Qingdao SPRING Water Treatment Co. Ltd., China
| | - Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266580, China
| | - Wenjie Han
- Qingdao Key Laboratory of Green and Low Carbon Biofilm and Water Environment Restoration, Qingdao SPRING Water Treatment Co. Ltd., China
| | - Di Wu
- Qingdao Key Laboratory of Green and Low Carbon Biofilm and Water Environment Restoration, Qingdao SPRING Water Treatment Co. Ltd., China.
| |
Collapse
|
6
|
Ma X, Zhai T, Wang X, Cai C, Qiu D, Yin R, Li J, Liu G. Salinity-induced variations in bacterial composition and co-occurrence patterns within Salicornia-based constructed wetlands in mariculture. CHEMOSPHERE 2024; 363:142795. [PMID: 38986781 DOI: 10.1016/j.chemosphere.2024.142795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Constructed wetlands use vegetation and microorganisms to remove contaminants like nitrogen and phosphorus from water. For mariculture, the impact of salinity on the efficiency of wastewater treatment of wetlands is unneglectable. However, little is known about their impact on the microbiome in constructed wetlands. Here, we set four salinity levels (15, 22, 29, and 36) in Salicornia constructed wetlands, and the experiment was conducted for a period of 72 days. The 15 group exhibited the highest removal rates of nitrogen compounds and phosphate, compared to the other salinity groups, the nosZ gene exhibited significantly higher expression in the 22 group (p < 0.05), indicated that microorganisms in 22 salinity have higher denitrification abilities. The three dominant phyla identified within the microbiomes were Proteobacteria, known for their diverse metabolic capabilities; Cyanobacteria, important for photosynthesis and nitrogen fixation; and Firmicutes, which include many fermenters. The ecological network analysis revealed a 'small world' model, characterized by high interconnectivity and short path lengths between microbial species, and had higher co-occurrence (45.13%) observed in this study comparing to the Erdös-Réyni random one (32.35%). The genus Microbulbifer emerged as the sole connector taxon, pivotal for integrating different microbial communities involved in nitrogen removal. A negative correlation was observed between salinity levels and network complexity, as assessed by the number of connections and diversity of interactions within the microbial community. Collectively, these findings underscore the critical role of microbial community interactions in optimizing nitrogen removal in constructed wetlands, with potential applications in the design and management of such systems for improved wastewater treatment in mariculture.
Collapse
Affiliation(s)
- Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Tangfang Zhai
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Xinyuan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Chen Cai
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Denggao Qiu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Rui Yin
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Jiayu Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Gang Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ocean Academy, Zhejiang University, Zhoushan, China.
| |
Collapse
|
7
|
Cui N, Cai M, Zhang X, Zeng R, Zhou L, Chen G, Zou G. Nitrogen removal performance and mechanism in constructed wetlands under saline conditions: Role of Canna indica inoculated with Piriformospora indica. BIORESOURCE TECHNOLOGY 2024; 408:131218. [PMID: 39106905 DOI: 10.1016/j.biortech.2024.131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
The phytopromotional root endophytic fungus Piriformospora indica was introduced into the wetland plant Canna indica L. to explore its impact on nitrogen (N) removal in constructed wetlands (CWs) to treat normal and saline (0.9 % NaCl) wastewater. P. indica colonization increased total nitrogen, NH4+-N, and NO3--N removal efficiencies under normal and saline conditions, with NO3--N removal rates significantly increasing by 17.5 % under saline conditions (P<0.05). N removal by plant uptake improved by 26.1 % and 27.7 % under normal and saline conditions due to P. indica-mediated growth-promoting effects. Salt-tolerant denitrifiers and nitrifiers guaranteed the dominant role of microbial degradation in N removal under saline conditions. P. indica inoculation considerably improved the contribution of Nocardioides and Nitrosomnas to dissimilatory/assimilatory nitrate reduction and nitrification genes, respectively. These findings elucidate the mechanisms and potential applications of P. indica-mediated phytoremediation in practical wastewater treatment under varying salty conditions.
Collapse
Affiliation(s)
- Naxin Cui
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Xu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Rong Zeng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd, PR China
| | - Li Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China.
| |
Collapse
|
8
|
Doménech-Pascual A, Carrasco-Barea L, Gich F, Boadella J, Freixinos Campillo Z, Gómez Cerezo R, Butturini A, Romaní AM. Differential response of bacteria and fungi to drought on the decomposition of Sarcocornia fruticosa woody stems in a saline stream. Environ Microbiol 2024; 26:e16661. [PMID: 38849711 DOI: 10.1111/1462-2920.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.
Collapse
Affiliation(s)
| | - Lorena Carrasco-Barea
- Plant Physiology Unit, Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Frederic Gich
- Molecular Microbial Ecology Group (gEMM-IEA), Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Judit Boadella
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | | | - Rosa Gómez Cerezo
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Andrea Butturini
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
9
|
Yan Z, Han X, Wang H, Jin Y, Song X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121075. [PMID: 38723502 DOI: 10.1016/j.jenvman.2024.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.
Collapse
Affiliation(s)
- Zixuan Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haodi Wang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingfu Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Chen S, Liu C, Cao G, Li K, Huang J. Effect of salinity on biological nitrogen removal from wastewater and its mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24713-24723. [PMID: 38499924 DOI: 10.1007/s11356-024-32417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
The nitrogen discharge from saline wastewater will cause significant pollution to the environment. As a high-efficiency and low-cost treatment method, biological treatment has a promising application prospect in the removal of nitrogen from high-salt wastewater. However, the inhibitory effect of high salt on microorganisms increases the difficulty of its treatment. This review discusses the influence of salinity on the nitrogen removal process, considering both traditional and novel biological techniques. Common methods to enhance the effectiveness of biological nitrogen removal processes and their mechanisms of action in engineering practice and research, including sludge acclimation and inoculation of halophilic bacteria, are also introduced. An outlook on the future development of biological nitrogen removal processes for high-salt wastewater is provided to achieve environmentally friendly discharge of high-salt wastewater.
Collapse
Affiliation(s)
- Shiqi Chen
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing, 210098, China.
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China.
| | - Guoxun Cao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Ke Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Junliang Huang
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Lv H, Liang C, Liu W, Chen N, Li X, Wang Q, Yao X, Wang J, Zhu L, Wang J. Multi-level biological effects of diverse alkyl chains phthalate esters on cotton seedlings (Gossypium hirsutum L.): Insights into individual, physiological-biochemical and molecular perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132352. [PMID: 37619280 DOI: 10.1016/j.jhazmat.2023.132352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phthalate esters (PAEs) are organic contaminants that pose environmental threat and safety risks to soil health and crop production. However, the ecological toxicity of different PAEs to cotton and the underlying mechanisms are not clear. This study investigated the ecotoxic effects and potential mechanisms of different alkyl-chain PAEs, including dioctyl phthalate (DOP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) on cotton seedlings at multiple levels. The results showed that PAEs significantly hindered the growth and development of cotton. The chlorophyll content decreased by 1.87-31.66 %, accompanied by non-stomatal photosynthetic inhibition. The antioxidant system was activated by the three PAEs in cotton seedlings, while the osmotic potential was boosted intracellularly. Additionally, PAEs significantly interfered with functional gene expression and exhibited genotoxicity. Risk assessment results indicated that the ecotoxicity was DOP >DBP >DEP, with a "dose-response" relationship. The affinity between the three PAEs and catalase increased as the alkyl chain length increased, further supporting the toxicity sequence. Surprisingly, the bioconcentration factors of short-chain DEP were 8.07 ± 5.89 times and 1837.49 ± 826.83 times higher than those of long-chain DBP and DOP, respectively. These results support the ecological risk assessment of PAEs in cotton and provide new insights into determining the toxicity levels of different PAEs.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Wenrong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, Ningyang, Tai'an, Shandong 271400, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
12
|
Zhang M, Sun S, Gu X, Peng Y, Yan P, Huang JC, He S, Bai X, Tian Y, Hu Y. Efficient nitrogen removal pathways and corresponding microbial evidence in tidal flow constructed wetlands for saline water treatment. ENVIRONMENTAL RESEARCH 2023; 234:116548. [PMID: 37414392 DOI: 10.1016/j.envres.2023.116548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The artificial tidal wetlands ecosystem was believed to be a useful device in treating saline water, and it played a significant part in global nitrogen cycles. However, limited information is available on nitrogen-cycling pathways and related contributions to nitrogen loss in tidal flow constructed wetlands (TF-CWs) for saline water treatment. This study operated seven experimental tidal flow constructed wetlands to remove nitrogen from saline water at salinities of 0-30‰. Stable and high NH4+-N removal efficiency (∼90.3%) was achieved, compared to 4.8-93.4% and 23.5-88.4% for nitrate and total nitrogen (TN), respectively. Microbial analyses revealed the simultaneous occurrence of anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA), nitrification and denitrification, contributing to nitrogen (N) loss from the mesocosms. The absolute abundances were 5.54 × 103-8.35 × 107 (nitrogen functional genes) and 5.21 × 107-7.99 × 109 copies/g (16S rRNA), while the related genera abundances ranged from 1.81% to 10.47% (nitrate reduction) and from 0.29% to 0.97% (nitrification), respectively. Quantitative response relationships showed ammonium transformation were controlled by nxrA, hzsB and amoA, and nitrate removal by nxrA, nosZ and narG. Collectively, TN transformation were determined by narG, nosZ, qnorB, nirS and hzsB through denitrification and anammox pathways. The proportion of nitrogen assimilation by plants was 6.9-23.4%. In summary, these findings would advance our understanding of quantitative molecular mechanisms in TF-CW mesocosms for treating nitrogen pollution that caused algal blooms in estuarine/coastal ecosystems worldwide.
Collapse
Affiliation(s)
- Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xiaohui Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Yang Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, PR China
| |
Collapse
|
13
|
Han X, Tang R, Liu C, Yue J, Jin Y, Yu J. Rapid, stable, and highly-efficient development of salt-tolerant aerobic granular sludge by inoculating magnetite-assisted mycelial pellets. CHEMOSPHERE 2023; 339:139645. [PMID: 37495046 DOI: 10.1016/j.chemosphere.2023.139645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Long cultivation time hinders the industrial applications of aerobic granular sludge (AGS) in treatment of hypersaline wastewater. Mycelial pellets (MPs) have been used to efficiently strengthen the flocculent sludge aggregation and accelerate the formation of AGS. However, the MPs-based AGS was easily crushed or fragmented into several small pieces/granules that brought the uncertainty and extended the transition process to form mature AGS. In this study, magnetite was used to strengthen MPs (halotolerant fungus Cladosporium tenuissimum NCSL-XY8), and co-culture and adsorption type of magnetite-assisted mycelial pellets (CMMPs and AMMPs) were prepared and used for acceleration of salt-tolerant aerobic granular sludge (SAGS) cultivation under 3% salinity conditions. Compared to inoculating MPs, the inoculation of either CMMPs or AMMPs could stably transition to mature SAGS without evident fragmentation, which obviously increased the certainty and stability of SAGS formation. Also, highly-efficient simultaneous nitrogen and carbon removal (∼98% TOC and ∼80% TN removal) could be reached in 8 days. Typically, the granules maintained perfect characteristics (D50 > 1300 μm, D10 > 350 μm, SVI30 < 45 mL/g, and SVI30/SVI5 = 1.0) during the whole cultivation/transition processes (Day 0-55) by using the inoculum of CMMPs. ITS rDNA sequencing revealed the inoculated fungus Cladosporium tenuissimum played key roles in the formation of SAGS. All the phenomena indicated the rapid, stable, and highly-efficient start-up of SAGS could be successfully realized by inoculating CMMPs.
Collapse
Affiliation(s)
- Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Rui Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
14
|
Yue J, Han X, Jin Y, Yu J. Potential of direct granulation and organic loading rate tolerance of aerobic granular sludge in ultra-hypersaline environment. ENVIRONMENTAL RESEARCH 2023; 228:115831. [PMID: 37024036 DOI: 10.1016/j.envres.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
Salt-tolerant aerobic granular sludge (SAGS) technology has shown potentials in the treatment of ultra-hypersaline high-strength organic wastewater. However, the long granulation period and salt-tolerance acclimation period are still bottlenecks that hinder SAGS applications. In this study, "one-step" development strategy was used to try to directly cultivate SAGS under 9% salinity, and the fastest cultivation process was obtained under such high salinity compared to the previous papers with the inoculum of municipal activated sludge without bioaugmentation. Briefly, the inoculated municipal activated sludge was almost discharged on Day 1-10, then fungal pellets appeared and it gradually transitioned to mature SAGS (particle size of ∼4156 μm and SVI30 of 57.8 mL/g) from Day 11 to Day 47 without fragmentation. Metagenomic revealed that fungus Fusarium played key roles in the transition process probably because it functioned as structural backbone. RRNPP and AHL-mediated systems might be the main QS regulation systems of bacteria. TOC and NH4+-N removal efficiencies maintained at ∼93.9% (after Day 11) and ∼68.5% (after Day 33), respectively. Subsequently, the influent organic loading rate (OLR) was stepwise increased from 1.8 to 11.7 kg COD/m3·d. It was found that SAGS could maintain intact structure and low SVI30 (< 55 mL/g) under 9% salinity and the OLR of 1.8-9.9 kg COD/m3·d with adjustment of air velocity. TOC and NH4+-N (TN) removal efficiencies could maintain at ∼95.4% (below OLR of 8.1 kg COD/m3·d) and ∼84.1% (below nitrogen loading rate of 0.40 kg N/m3·d) in ultra-hypersaline environment. Halomonas dominated the SAGS under 9% salinity and varied OLR. This study confirmed the feasibility of direct aerobic granulation in ultra-hypersaline environment and verified the upper OLR boundary of SAGS in ultra-hypersaline high-strength organic wastewater treatment.
Collapse
Affiliation(s)
- Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Wang Y, Zhu T, Wong YJ, Zhang K, Chang M. Treatment performance of multistage active biological process (MSABP) reactor for saline sauerkraut wastewater: acclimatization, optimization and improvement. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02877-2. [PMID: 37103579 DOI: 10.1007/s00449-023-02877-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The wastewater with a high concentration of organics and salt is a major contaminant in the production of sauerkraut. In this study, a multistage active biological process (MSABP) system was constructed to treat sauerkraut wastewater. The key process parameters of the MSABP system were analyzed and optimized by response surface methodology. The optimization results indicated that the most optimal removal efficiencies and removal loading rates of chemical oxygen demand (COD) and NH4+-N were 87.9%, 95.5%, 2.11 kg·m-3·d-1 and 0.12 kg·m-3·d-1, respectively, with hydraulic retention time (HRT) of 2.5 d and pH of 7.3. Meanwhile, this system could also be improved for the further treatment of COD and total nitrogen by effluent recycle and ozone oxidation. The COD and total nitrogen removal efficiencies of the modified MSABP system were 99.9% and 60.2%, respectively. In addition, the modified system could also reduce the potential harm from high concentrations of NO2--N.
Collapse
Affiliation(s)
- Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China
- DongYuan Environment S&T, 400-19, Zhihui 2 Road, Hunnan District, Shenyang, 110004, China
| | - Yong Jie Wong
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan
- Department of Bioenvironmental Design, Faculty of Bioenvironmental Science, Kyoto University of Advance Science, Kyoto, 606-8501, Japan
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, People's Republic of China
| | - Mingdong Chang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110819, China.
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, 520-0811, Japan.
| |
Collapse
|
16
|
Niu X, Han X, Jin Y, Yue J, Zhu J, Xie W, Yu J. Aerobic granular sludge treating hypersaline wastewater: Impact of pH on granulation and long-term operation at different organic loading rates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117164. [PMID: 36603256 DOI: 10.1016/j.jenvman.2022.117164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
pH is one of the major parameters that influence the granulation and long-term operation of aerobic granular sludge (AGS). In hypersaline wastewater, the impact of pH on granulation and the extent of organic loading rate (OLR) that AGS can withstand under different pH are still not clear. In this study, AGS was cultivated at 3% salinity in three sequencing batch reactors with influent pH values of 5.0, 7.0, and 9.0, respectively, and the OLR was stepwise increased from 2.4 to 16.8 kg COD/m3·d after the granules maturation. The results showed the satisfactory granulation and organic removal under different influent pH conditions, in which the granulation was completed on day 43, 23, and 23, respectively. Neutral influent was the most appropriate for development of salt-tolerant aerobic granular sludge (SAGS), while acidic environment induced the formation of fluffy filamentous granules, and alkaline environment weakened the granule stability. Metagenomic analysis revealed the similar microbial community of neutral and alkaline conditions, with the predominance of genus Paracoccus_f__Rhodobacteraceae. While in acidic environment, fungus Fusarium formed the skeleton of filamentous granules and functioned as the carrier of bacteria including Azoarcus and Pararhodobacter. With the elevation of OLR, SAGSs were found to maintain the compact structure under OLRs of 2.4, 7.2, and 2.4 kg COD/m3·d, and obtain high TOC removal (>95.0%) under OLRs of 7.2, 14.4, and 14.4 kg COD/m3·d, respectively. For hypersaline high-strength organic wastewater, satisfactory TOC removal could also be obtained at broad pH ranges (5.0-9.0), in which neutral environment was the most suitable and acidic environment was the worst. This study contributed to a better understanding of SAGS granulation and treatment of hypersaline high-strength organic wastewater with different pH values.
Collapse
Affiliation(s)
- Xueying Niu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingyi Zhu
- PetroChina Planning & Engineering Institute, 3 Zhixinxi Road, Beijing, 100083, China
| | - Weihong Xie
- PetroChina Planning & Engineering Institute, 3 Zhixinxi Road, Beijing, 100083, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
17
|
Pan Y, She D, Shi Z, Cao T, Xia Y, Shan J. Salinity and high pH reduce denitrification rates by inhibiting denitrifying gene abundance in a saline-alkali soil. Sci Rep 2023; 13:2155. [PMID: 36750752 PMCID: PMC9905596 DOI: 10.1038/s41598-023-29311-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Denitrification, as the main nitrogen (N) removal process in farmland drainage ditches in coastal areas, is significantly affected by saline-alkali conditions. To elucidate the effects of saline-alkali conditions on denitrification, incubation experiments with five salt and salt-alkali gradients and three nitrogen addition levels were conducted in a saline-alkali soil followed by determination of denitrification rates and the associated functional genes (i.e., nirK/nirS and nosZ Clade I) via N2/Ar technique in combination with qPCR. The results showed that denitrification rates were significantly decreased by 23.83-50.08%, 20.64-57.31% and 6.12-54.61% with salt gradient increasing from 1 to 3‰, 8‰, and 15‰ under 0.05‰, 0.10‰ and 0.15‰ urea addition conditions, respectively. Similarly, denitrification rates were significantly decreased by 44.57-63.24% with an increase of the salt-alkali gradient from 0.5 to 8‰. The abundance of nosZ decreased sharply in the saline condition, while a high salt level significantly decreased the abundance of nirK and nirS. In addition, the increase of nitrogen concentration attenuated the reduction of nirK, nirS and nosZ gene abundance. Partial least squares regression (PLSR) models demonstrated that salinity, dissolved oxygen (DO) in the overlying water, N concentration, and denitrifying gene abundance were key determinants of the denitrification rate in the saline environment, while pH was an additional determinant in the saline-alkali environment. Taken together, our results suggest that salinity and high pH levels decreased the denitrification rates by significantly inhibiting the abundance of the denitrifying genes nirK, nirS, and nosZ, whereas increasing nitrogen concentration could alleviate this effect. Our study provides helpful information on better understanding of reactive N removal and fertilizer application in the coastal areas.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China. .,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China.
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China
| | - Taohong Cao
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.,Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing, 210098, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
18
|
Zhang Y, Shi K, Cui H, Han J, Wang H, Ma X, Li Z, Zhang L, Nie S, Ma C, Wang A, Liang B. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129926. [PMID: 36099740 DOI: 10.1016/j.jhazmat.2022.129926] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Changshui Ma
- Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
19
|
Chen J, Liang J, Li C, Dai J, Mai W, Wei Y. An enriched ammonia-oxidizing microbiota enables high removal efficiency of ammonia in antibiotic production wastewater. CHEMOSPHERE 2023; 310:136854. [PMID: 36243093 DOI: 10.1016/j.chemosphere.2022.136854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
High ammonia concentration hinders the efficient treatment of antibiotic production wastewater (APW). Developing effective ammonia oxidation wastewater treatment strategies is an ideal approach for facilitating APW treatment. Compared with traditional nitrification strategies, the partial nitrification process is more eco-friendly, less energy-intensive, and less excess sludge. The primary limiting factor of the partial nitrification process is increasing ammonia-oxidizing bacteria (AOB) while decreasing nitrite-oxidizing bacteria (NOB). In this study, an efficient AOB microbiota (named AF2) was obtained via enrichment of an aerobic activated sludge (AS0) collected from a pharmaceutical wastewater treatment plant. After a 52-day enrichment of AS0 in 250 mL flasks, the microbiota AE1 with 69.18% Nitrosomonas microorganisms was obtained. Subsequent scaled-up cultivation in a 10 L fermenter led to the AF2 microbiota with 59.22% Nitrosomonas. Low concentration of free ammonia (FA, < 42.01 mg L-1) had a negligible effect on the activity of AF2, and the nitrite-nitrogen accumulation rate (NAR) of AF2 was 98% when FA concentration was 42.01 mg L-1. The specific ammonia oxidation rates (SAORs) at 30 °C and 15 °C were 3.64 kg NH4+-N·kg MLVSS-1·d-1 and 1.43 kg NH4+-N·kg MLVSS-1·d-1 (MLVSS: mixed liquor volatile suspended solids). The SAOR was 0.52 kg NH4+-N·kg MLVSS-1·d-1 when the NaCl concentration was increased from 0 to 20 g L-1, showing that AF2 functioning was stable in a high-level salt environment. The ammonia oxidation performance of AF2 was verified by treating abamectin and lincomycin production wastewater. The NARs of AF2 used for abamectin and lincomycin production wastewater treatment were >90% and the SAORs were 2.39 kg NH4+-N·kg MLVSS-1·d-1 and 0.54 kg NH4+-N·kg MLVSS-1·d-1, respectively, which was higher than the traditional biological denitrification process. In summary, AF2 was effective for APW treatment via enhanced ammonia removal efficiency, demonstrating great potential for future industrial wastewater treatment.
Collapse
Affiliation(s)
- Jiamin Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jiawei Liang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Research Center for Eco-friendly Wastewater Purifying Engineering Technology of Henan Province, Henan Junhe Environmental Protection Technology CO.LTD, Zhengzhou, Henan, 450001, PR China
| | - Chenjing Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jihua Dai
- Research Center for Eco-friendly Wastewater Purifying Engineering Technology of Henan Province, Henan Junhe Environmental Protection Technology CO.LTD, Zhengzhou, Henan, 450001, PR China
| | - Wenning Mai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, PR China.
| |
Collapse
|
20
|
Ou D, Hu C, Liu Y. Metagenomics unraveled the characteristics and microbial response to hypersaline stress in salt-tolerant aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115950. [PMID: 35988403 DOI: 10.1016/j.jenvman.2022.115950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the salt-tolerant aerobic granular sludge (SAGS) was cultivated with the increased salinity (0-9% NaCl), showing oval shape, and clear outline. The related sludge characteristics in the formation process of SAGS as well as the effects of salinity on the performance (removal ability, sludge biomass and EPS component) of SAGS were evaluated. Increased salinity accelerated the formation of SAGS, and resulted in the excess secretion of EPS. Relationship between EPS and settling capacity of SAGS was determined, with the increase of salinity, SVI decreased linearly and the sedimentation performance of granular sludge was enhanced. Pearson correlation analysis showed that shorter settling time (3 min) and longer anaerobic influent time (30 min) were beneficial to the operation of SAGS reactor. Metagenomics results showed that the SAGS was dominated by Candida, Halomonas and other salt-tolerant bacteria, the enrichment of these salt-tolerant microbes played an important role in maintaining the stability of granular sludge system and improving the overall salt-tolerant performance. Compared with S9 samples, the proteome regulation in S0 sample was more active and the abundance of Cell motility related proteins was 5 times higher than that in S9 samples. Extracellular structure related proteins was more active in S9, and its abundance was 3.6 times that of S0.
Collapse
Affiliation(s)
- Dong Ou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
21
|
Duan FA, Wang J, Ismail S, Sung S, Cui Z, Ni SQ. Hydroxypropyl-β-cyclodextrin improves the removal of polycyclic aromatic hydrocarbons by aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2022; 43:3262-3268. [PMID: 33944678 DOI: 10.1080/09593330.2021.1921045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as polar organic pollutants, their potential harm to the environment has caused widespread concern. This study describes a simple method to prepare modified aerobic granular sludge (AGS) by hydroxypropyl-β-cyclodextrin (HP-β-CD). Using HP-β-CD modified AGS as the adsorbent, the removal of specific PAHs: Fluoranthene (Fla) reached 95% comparing to 80% of the unmodified AGS. The removal of Fla was related to initial concentration, temperature and ion concentration (Na+, Mg2+). The removal efficiency of Fla reached 96.27%, 94.26% and 93.69%, when initial concentration of Fla was 10, 15 and 20 μmol/L. At temperatures of 15°C, 30°C and 45°C, the removal efficiency of Fla (15 μmol/L) gradually improved from 87.20% to 94.84% and 95.73%. The presence of Na+ and Mg2+ ions led to the deterioration of PAHs removal. With the increase of Na+ and Mg2+ concentrations, the removal efficiency of modified AGS on PAHs decreased by 3.9% and 6.5%, respectively. These findings indicate the potential application of cyclodextrins as the active sites of a complex modified polymer network for PAHs wastewater treatment.
Collapse
Affiliation(s)
- Fu-Ang Duan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Juan Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
- Environmental Engineering Department, Zagazig University, Zagazig, Egypt
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, Hilo, HI, USA
| | - Zhaojie Cui
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
22
|
Zhang M, Han F, Chen H, Yao J, Li Q, Li Z, Zhou W. The effect of salinity on ammonium-assimilating biosystems in hypersaline wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154622. [PMID: 35306073 DOI: 10.1016/j.scitotenv.2022.154622] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The ammonium-assimilating biosystem is a promising solution to improve the susceptible biological nitrogen removal (BNR) and to achieve nitrogen recovery in saline wastewater treatment. However, the treatment performance and functional stability of ammonium-assimilating biosystems have not been fully illuminated in hypersaline wastewater. In this study, although the dramatic decrease of removal efficiency of NH4+-N and PO43--P was observed in ammonium-assimilating biosystems under the salinity from 3% to 7%, the direction of nitrogen conversions through assimilation was insusceptible to high salinity. The extremely low concentrations of nitrite and nitrate accumulation and abundances of nitrification functional genes confirmed that the process of nitrification was negligible in all biosystems. Ammonium-assimilating biosystems maintained robustness and functional stability in hypersaline wastewater. The increase of salinity stimulated the production of EPS and changed the microbial community by enriching Proteobacteria and halophilic genera. We anticipate that the ammonium-assimilating biosystem could be a promising strategy for hypersaline wastewater treatment and future practical applications.
Collapse
Affiliation(s)
- Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Fei Han
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Hao Chen
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Jingye Yao
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Qinyang Li
- School of Environmental Science and Engineering, Shandong University, 250100 Jinan, China
| | - Zhe Li
- School of Civil Engineering, Shandong University, 250061 Jinan, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, 250061 Jinan, China.
| |
Collapse
|
23
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Insight into halotolerance of a robust heterotrophic nitrifying and aerobic denitrifying bacterium Halomonas salifodinae. BIORESOURCE TECHNOLOGY 2022; 351:126925. [PMID: 35272037 DOI: 10.1016/j.biortech.2022.126925] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Studies toward biotreating hypersaline wastewater containing different salts and halotolerant mechanism of robust strains are important but still rare. Here an isolated bacterium Halomonas salifodinae can perform simultaneous nitrification and denitrification (SND) at 15% salinity, showing high nitrogen removal efficiencies of over 98% via response surface methodology optimization. Besides NaCl, this robust strain had high resistance to other salts (KCl, Na2SO4, and K2SO4) and can efficiently remove nitrogen in saline wastewater containing heavy metals such as Fe(II), Mn(II), Zn(II), Cr(VI), Ni(II), and Cu(II). After repeated-batch culturing at different salinities, the treated strains with different halotolerant capabilities were used as single strain model to study halotolerant mechanism via metabolic analysis. The halotolerant bacterium can convert D-proline and glutamic acid to glutamine as well as lactulose to trehalose. The accumulated intracellular compatible solutes can resist high osmotic pressure and bound water molecule in hypersaline wastewater to accomplish high-efficiency SND processes.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
24
|
Xu A, Yu D, Qiu Y, Chen G, Tian Y, Wang Y. A novel process of salt tolerance partial denitrification and anammox (ST-PDA) for treating saline wastewater. BIORESOURCE TECHNOLOGY 2022; 345:126472. [PMID: 34864184 DOI: 10.1016/j.biortech.2021.126472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 05/12/2023]
Abstract
In the study, the salt-tolerant partial denitrification and Anammox (ST-PDA) process was established, meanwhile, the feasibility of salinity inhibition model as the boundary control method and the subsequent operation performance were studied. Study indicated that the performance of salt-tolerant PD sludge was the optimum under the 10 g·L-1 salinity, and AnAOB also maintained high activity at the salinity. Haldane and Aiba models verified that NO3--N (substrate) and FNA (product) would have negative consequences for performance of ST-PDA system. However, the effect of FNA would be eliminated by self-alkalization in the denitrification process. A 90% nitrogen removal rate was achieved and the average effluent total nitrogen of 17.8 mg·L-1 was maintained in the system. The high throughput sequencing revealed that the species richness decreased with the salinity increased, while Thauera played a major role in nitrogen removal in saline environment. The study provides a novel insights for salt-containing industrial wastewater.
Collapse
Affiliation(s)
- Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanyan Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
25
|
Mahmood MZ, Bibi S, Shahzad M, Fakhar A, Rafique M, Qayyum A. Mechanisms of microbes to combat salinity in soil by producing secondary metabolites. ARABIAN JOURNAL OF GEOSCIENCES 2022; 15:45. [DOI: 10.1007/s12517-021-09371-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
|
26
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. BIORESOURCE TECHNOLOGY 2021; 341:125818. [PMID: 34455251 DOI: 10.1016/j.biortech.2021.125818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Biotreatment of hypersaline wastewater requires robust strains with high resistance to activity inhibition and even bacterium death, which remains a worldwide challenge. Here Halomonas salifodinae, a simultaneous nitrification and denitrification (SND) bacterium, was isolated by performing repeated-batch acclimation, showing efficient nitrogen removal at 0-15% salinity and low activity inhibition prominently superior to that of other strains such as Pseudomonas sp. and Acinetobacter sp. Community analysis as well as comparison of microbial activity at different salinities revealed an increased relative abundance of halotolerant populations by stimulating their salt tolerance during the repeated-batch process. For single or mixed nitrogen sources at 15% salinity, the SND efficiencies of the isolated strain reached above 95%. The high activities were attributed to the key enzymes AMO and HAO for nitrification as well as NAP and NIR for denitrification. The findings provide a promising acclimation pathway to obtain robust bacteria for biotreatment of hypersaline wastewater.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
27
|
Dong L, Ge Z, Qu W, Fan Y, Dai Q, Wang J. Characteristics and mechanism of heterotrophic nitrification/aerobic denitrification in a novel Halomonas piezotolerans strain. J Basic Microbiol 2021; 62:124-134. [PMID: 34796543 DOI: 10.1002/jobm.202100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 11/06/2022]
Abstract
A strain was isolated from an activated sludge system and identified as Halomonas piezotolerans HN2 in this study, which is the first strain in H. piezotolerans with the capability of heterotrophic nitrification and aerobic denitrification. Strain HN2 showed the maximum nitrogen removal rate of 9.10 mg/L/h by utilizing ammonium at the salinity of 3.0%. Under saline environment, HN2 could remove nitrogen efficiently in neutral and slightly alkaline environments, with the carbon sources of sodium succinate and sodium citrate and the C/N ratio of 15-20, and the maximum removal efficiencies of ammonium, nitrite, and nitrate were 100%, 96.35%, and 99.7%, respectively. The genomic information revealed the presence of amoA, napA, and nosZ genes in strain HN2, and the target bands of nirS were obtained via a polymerase chain reaction. Therefore, we inferred that ammonium was mainly utilized for the growth of strain HN2 through assimilation, and another part of the initial ammonium was converted into nitrate through nitrification, and then into gaseous nitrogen through denitrification. This report indicated the potential application of strain HN2 and other nitrifying and denitrifying Halomonas strains in the removal of nitrogen pollution in marine-related environments and also implies the important role of Halomonas in the nitrogen cycle process of the ocean.
Collapse
Affiliation(s)
- Lingxi Dong
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Zhewen Ge
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yingping Fan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Qiuping Dai
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China.,Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
28
|
Chen Y, Hu T, Xiong W, Fan A, Wang S, Su H. Enhancing robustness of activated sludge with Aspergillus tubingensis as a protective backbone structure under high-salinity stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113302. [PMID: 34293671 DOI: 10.1016/j.jenvman.2021.113302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/03/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
High salt seriously destroys the stable interactions among key functional species of activated sludge, which in turn limits the performance of high-salinity wastewater biological treatment. In this study, pelletized Aspergillus tubingensis (AT) was used as a protective backbone structure for activated sludge under high-salinity stress, and a superior salt-tolerant AT-based aerobic granular sludge (AT-AGS) was developed. Results showed that the COD and NH4+-N removal efficiencies of salt-domesticated AT-AGS were 11.83% and 7.18% higher than those of salt-domesticated flocculent activated sludge (FAS) at 50 gNaCl/L salinity. Compared to the salt-domesticated FAS, salt-domesticated AT-AGS showed stronger biomass retention capacity (with a MLVSS concentration of 7.92 g/L) and higher metabolic activity (with a dehydrogenase activity of 48.06 mgTF/gVSS·h). AT modified the extracellular polymeric substances pattern of microbes, and the total extracellular polysaccharide content of AT-AGS (80.7 mg/gVSS) was nearly twice than that of FAS (46.3 mg/gVSS) after salt-domestication, which demonstrated that extracellular polysaccharide played a key role in keeping the system stable. The high-throughput sequencing analysis illustrated that AT contributed to maintain the microbial richness and diversity of AT-AGS in high-salt environment, and Marinobacterium (with a relative abundance of 32.04%) became the most predominant genus in salt-tolerant AT-AGS. This study provided a novel insight into enhancing the robustness of activated sludge under high-salinity stress.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tenghui Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Aili Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China; Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing, 100029, People's Republic of China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China; Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
29
|
Dinh NT, Nguyen TH, Mungray AK, Duong LD, Phuong NT, Nguyen DD, Chung WJ, Chang SW, Tuan PD. Biological treatment of saline domestic wastewater by using a down-flow hanging sponge reactor. CHEMOSPHERE 2021; 283:131101. [PMID: 34182628 DOI: 10.1016/j.chemosphere.2021.131101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/29/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effect of salinity on the removal of organic matter and nitrogen concentrations in bioreactor was investigated using a hybrid bench scale down-flow hanging sponge (DHS) system for 145 days of operation. The reactor had three identical sections that were filled to 30% volume with Bio-Bact to serve as attached media. The DHS reactor was fed with domestic wastewater that was mixed with increasing concentration of sodium chloride from 0.5 to 3.0% stepwise. The influent and effluent concentrations of BOD5, CODCr, NH4+-N, and TN were analyzed to evaluate the performance of the DHS reactor during the operational period. Results indicate that when salinity was increased from 0.5 to 3.0%, the removal efficiency gradually decreased from 80.3% to 61.5% for CODCr, 76.4%-65.0% for BOD5, 64.1%-48.4% for NH4+-N, and 50%-36% for TN. Besides, the changes in biofilm characteristics with increasing salinity were observed during the operational period. The results indicate that salinity has a significant influence on the removal of organic matters and nitrogen transformation in the biofilm of the bioreactor. Even so, the DHS reactor revealed a good potential for treating saline wastewater.
Collapse
Affiliation(s)
- Nga T Dinh
- Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment, Viet Nam.
| | - T Hiep Nguyen
- Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment, Viet Nam
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - La Duc Duong
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen-Tri Phuong
- Département de Chimie, Biochimie et Physique, Université Du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC, G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea.
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Phan D Tuan
- Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment, Viet Nam
| |
Collapse
|
30
|
Shafiq M, Zeb L, Jawad M, Chi Z. Treatment of Saline Organic-Rich Fermentation Wastewater by Marine Chlorella sp. for Value-Added Biomass Production. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Shafiq
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| | - Muhammad Jawad
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
31
|
Shi X, Li J, Wang X, Zhang X, Tang L. Effect of the gradual increase of Na 2SO 4 on performance and microbial diversity of aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112696. [PMID: 33984643 DOI: 10.1016/j.jenvman.2021.112696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology in treating saline wastewater. The effects of sodium sulfate on contaminant removal performance and sludge characteristics of AGS were studied. The results showed that under the stress of sodium sulfate, AGS kept good removal performance of ammonia nitrogen (NH+ 4-N), chemical oxygen demand (COD), and total nitrogen (TN), with removal efficiency reaching 98.7%, 91.5% and 62.7%, respectively. When sodium sulfate reached 14700 mg/L, nitrite oxidizing bacteria (NOB) were inhibited and nitrite accumulation occurred, but it had little impact on total phosphorus (TP) removal. Under the stress of sodium sulfate, compactness and settling performance of AGS was enhanced. The microbial community greatly varied and the microbial diversity of aerobic granular sludge has decreased under the stress of sodium sulfate. The study reveals that AGS has great potential in application on treating saline wastewater.
Collapse
Affiliation(s)
- Xianbin Shi
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xiaochun Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Liaofan Tang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
32
|
Zhang L, Zhang M, You S, Ma D, Zhao J, Chen Z. Effect of Fe 3+ on the sludge properties and microbial community structure in a lab-scale A 2O process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146505. [PMID: 33770607 DOI: 10.1016/j.scitotenv.2021.146505] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
During biological wastewater treatment, ferric salt (Fe3+) usually serves as an inorganic flocculant to improve the agglomeration and sedimentation of suspended solids, and thus the removal efficiency of pollutants to meet the increasing strictly regulated wastewater discharge standards. In this study, we investigated the effects of Fe3+ on the removal efficiencies of pollutants, sludge properties, dominant flora and metabolic pathways of bacterial community in a classical anaerobic-anoxic-oxic (A2O) process. The results showed that a Fe3+ concentration lower than 10 mg·L-1 could improve the removal efficiencies of chemical oxygen demand (COD) and total nitrogen (TN), while an inhibition effect was exerted at concentration higher than 10 mg·L-1. The maximum removal efficiencies of COD and TN were 97% and 89%, respectively, under the critical Fe3+ concentration of 10 mg·L-1. Total phosphorous (TP) removal was constantly positively correlated with Fe3+ concentration, due to the enhanced adsorption of phosphorus on activated sludge with the increase of surface roughness. Thauera displayed the highest relative abundance, and certain bacteria in Proteobacteria, Dehloromonas and Candidatus-Competibacter exhibited good adaptability to high concentration of Fe3+. In the context of metabolic collaterals, the most abundant functional gene families were identified to be Carbohydrate Metabolism, Amino Acid Metabolism, Cell Motility, Membrane Transport, and Replication and Repair. This study provides an extensive mechanistic insight into the impact of Fe3+ on the A2O process, which is of fundamental significance to exploit the contributions of inorganic salts to biological wastewater treatment.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Mingshuang Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Shijie You
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongmei Ma
- Changchun Power Supply Company, State Grid Jilin Electric Power Co., Ltd, Changchun 130000, China
| | - Juntian Zhao
- Assets Management Department, Northeast Electric Power University, Jilin 132012, China
| | - Zhao Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
33
|
Han F, Zhang M, Liu Z, Shang H, Li Q, Zhou W. Dynamic characteristics of microbial community and soluble microbial products in partial nitrification biofilm system developed from marine sediments treating high salinity wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112586. [PMID: 33865158 DOI: 10.1016/j.jenvman.2021.112586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
High salinity wastewater generally resulted in microorganism death and low treatment efficiency of nutrient in conventional activity sludge system. Marine sediments, containing a huge amount of natural salt-tolerant microorganisms, provide a feasible option for the rapid construction of halophilic biological treatment system. However, the dynamic of native microorganisms and the fate of soluble microbial products (SMP) in halophilic biofilm system developed from marine sediments needs to be further studied. In this study, a partial nitrification system was successfully established by inoculation of marine sediments in sequential batch biofilm reactor. Satisfactory chemical oxygen demand (COD) and NH4+-N removal efficiency (95% and 99%) and nitrite accumulation rate (NAR) (>90%) was achieved for treatment of synthetic seawater blackwater. High cell surface hydrophobicity (CSH) and proteins to polysaccharide ratio of extracellular polymeric substance (EPS) were beneficial to the initial biofilm formation. High-throughput sequencing results revealed Nitrosomonas halophila was the sole ammonia oxidizing bacteria (AOB). Thauera and Paracoccus were the main denitrifying bacteria in three biofilm samples. Excitation emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC) clarified that proteins were significantly degraded than the other two components (humic-like and fulvic acid-like substance). This study will provide a feasible approach for developing halophilic biological treatment system and present an in-depth insight of the dynamic characteristics of SMP in partial nitrification biofilm system.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Hongguo Shang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250002, China.
| |
Collapse
|
34
|
Oliveira AS, Amorim CL, Zlopasa J, van Loosdrecht M, Castro PML. Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor. CHEMOSPHERE 2021; 275:130037. [PMID: 33667767 DOI: 10.1016/j.chemosphere.2021.130037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
An increasing amount of industrial chemicals are being released into wastewater collection systems and indigenous microbial communities in treatment plants are not always effective for their removal. In this work, extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) were used as a natural carrier to immobilize a specific microbial strain, Rhodococcus sp. FP1, able to degrade 2-fluorophenol (2-FP). The produced EPS granules exhibited a 2-FP degrading ability of 100% in batch assays, retaining their original activity after up to 2-months storage. Furthermore, EPS granules were added to an AGS reactor intermittently fed with saline wastewater containing 2-FP. Degradation of 2-FP and stoichiometric fluorine release occurred 8 and 35 days after bioaugmentation, respectively. Chemical oxygen demand removal was not significantly impaired by 2-FP or salinity loads. Nutrients removal was impaired by 2-FP load, but after bioaugmentation, the phosphate and ammonium removal efficiency improved from 14 to 46% and from 25 to 42%, respectively. After 2-FP feeding ceased, at low/moderate salinity (0.6-6.0 g L-1 NaCl), ammonium removal was completely restored, and phosphate removal efficiency increased. After bioaugmentation, 11 bacteria isolated from AGS were able to degrade 2-FP, indicating that horizontal gene transfer could have occurred in the reactor. The improvement of bioreactor performance after bioaugmentation with EPS immobilized bacteria and the maintenance of cell viability through storage are the main advantages of the use of this natural microbial carrier for bioaugmentation, which can benefit wastewater treatment processes.
Collapse
Affiliation(s)
- Ana S Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Jure Zlopasa
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
35
|
Sivasubramanian R, Chen GH, Mackey HR. The effectiveness of divalent cation addition for highly saline activated sludge cultures: Influence of monovalent/divalent ratio and specific cations. CHEMOSPHERE 2021; 274:129864. [PMID: 33979942 DOI: 10.1016/j.chemosphere.2021.129864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Saline wastewaters are prevalent in various industries and pose challenges to stable biological treatment. Increasing monovalent cation concentrations are commonly reported to deteriorate treatment and settling performance, while divalent cations can enhance flocculation and settling. However, many previous studies were performed at relatively low salinities and reports conflict on whether concentrations of monovalent cations, divalent cations, or their ratio (M/D) are most critical. This study investigates whether addition of divalent cations shows the same benefits at high salinity (∼40 g NaCl.L-1) and whether divalent ion concentration or M/D is a better predictor of enhancement. Nine sequencing batch reactors were operated at 0.8 M NaCl or KCl monovalent salt concentration, and the concentration of divalent cations (Ca2+ and Mg2+) was varied. M/D was found to be the critical factor that consistently influenced sludge characteristics. It was particularly important in describing hydrophobicity, sludge volume index (SVI) and specific oxygen uptake rate (SOUR), with rpartial of -0.879, 0.971 and 0.966 respectively in models that had an r2adj greater than 0.93. Lower M/D also increased biomass concentrations and reduced extracellular polysaccharides, the latter which in turn correlated strongly with many shape and surface charge measures. The specific monovalent salt (Na+ or K+) influenced treatment performance, biomass concentrations, hydrophobicity, SOUR, extracellular protein and SVI. The specific divalent cation was only important in describing SVI, where Mg2+ was beneficial. Overall, this study shows that addition of divalent cations can greatly benefit high salinity activated sludge systems by improving the sludge structure, settling and organic removal.
Collapse
Affiliation(s)
- Raghavendran Sivasubramanian
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
36
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
37
|
Dal Ferro N, Pellizzaro A, Fant M, Zerlottin M, Borin M. Uptake and translocation of perfluoroalkyl acids by hydroponically grown lettuce and spinach exposed to spiked solution and treated wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145523. [PMID: 33578170 DOI: 10.1016/j.scitotenv.2021.145523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkylated acids (PFAAs) are ubiquitous xenobiotic substances characterized by high persistence, bioaccumulation potential and toxicity, which have attracted global attention due to their widespread presence in both water and biota. In this study, the main objective was to assess PFAAs uptake and accumulation in lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) when fed with reclaimed wastewaters that are usually discharged onto a surface water body. Lettuce and spinach were grown in hydroponic solutions, exposed to two different municipal wastewater treatment plant (WWTP) effluents and compared with a spiked-PFAAs aqueous solution (nominal concentration of 500 ng L-1 for each perfluoroalkyl acid). Eleven perfluoroalkyl carboxylic acids and three perfluoroalkyl sulfonic acids were determined in the hydroponic solution, as well as quantified at the end of the growing cycle in crop roots and shoots. Water and dry plant biomass extracts were analyzed by liquid chromatography-electrospray ionization tandem spectrometry LC-MS/MS technique. The bioconcentration factor of roots (RCF), shoots (LCF), and the root-shoot translocation factor (TF) were quantified. In general, results showed that PFAAs in crop tissues increased at increasing PFAAs water values. Moreover some PFAAs concentrations (especially PFBA, PFBS, PFHxA, PFHpA, PFHxS) were different in both shoots and roots of lettuce and spinach, regardless of the type of water. The long C-chain PFAAs (≥9) were always below the detection threshold in WWTPs effluents. However, when PFAAs were detected, similar bioconcentration parameters were found between crops regardless the type of water. A sigmoidal RCF pattern was found as the perfluorinated chain length increased, plus a linear TF decrease. Comparing bioconcentration factor results with findings of previous studies, lettuce RCF value of PFCAs with perfluorinated chain length ≤ 9 and PFSAs was up to 10 times greater.
Collapse
Affiliation(s)
- Nicola Dal Ferro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Alessandro Pellizzaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy; Acque del Chiampo S.p.A. - Servizio Idrico Integrato, Via Ferraretta 20, 36071 Arzignano, Italy.
| | - Massimo Fant
- Acque del Chiampo S.p.A. - Servizio Idrico Integrato, Via Ferraretta 20, 36071 Arzignano, Italy
| | - Mirco Zerlottin
- Acque del Chiampo S.p.A. - Servizio Idrico Integrato, Via Ferraretta 20, 36071 Arzignano, Italy
| | - Maurizio Borin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
38
|
Zuo L, Yao H, Chen H, Li H, Jia F, Guo J. The application of glycine betaine to alleviate the inhibitory effect of salinity on one-stage partial nitritation/anammox process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:549-558. [PMID: 32964607 DOI: 10.1002/wer.1457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
One-stage partial nitritation/anammox (PN/A) has been proposed as a sustainable method for removing nitrogen from various wastewater. However, the activities of ammonium-oxidizing bacteria (AOB) and anammox bacteria are often inhibited by the exposure to salinity, thereby hindering their wide application in treating industrial wastewater with high salinity. This study reports that the addition of glycine betaine (GB), which is a compatible solute, could alleviate the inhibitory effects of salinity on both AOB and anammox, thereby improving nitrogen removal performance in a one-stage PN/A system. Short-term tests showed that with an addition of GB higher than 1 mM, the activity of AOB and anammox under salinity of 30 g/L could be increased by at least 45% and 51%, respectively. The half-inhibitory concentration of AOB and anammox rose with increasing GB concentration, with 1 mM GB being the optimal cost-effective dosage. Long-term experiments also demonstrated that 1 mM GB addition could enhance nitrogen removal performance and shorten recovery time by 42.9% under a salinity stress of 30 g/L. Collectively, GB addition was found to be a feasible and effective strategy to the counteract adverse effects of salinity on PN/A process. PRACTITIONER POINTS: Glycine betaine (GB) could improving performance of the PN/A process by alleviating the inhibitory effects of salinity on both AOB and anammox bacteria. A GB concentration of 1 mM was found to be optimum in terms of effectiveness and cost. GB addition was a feasible and effective strategy to remain stabilized in the community structure of PN/A sludge. GB could optimize the nitrogen removal performance and shorten the recovery time of PN/A process under saline stress.
Collapse
Affiliation(s)
- Lushen Zuo
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, China
| | - Hui Chen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Qld, Australia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Huayu Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, China
- Advanced Water Management Centre, The University of Queensland, St Lucia, Qld, Australia
| | - Fangxu Jia
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
39
|
Chen D, Wang Z, Zhang M, Wang X, Lu S. Effect of increasing salinity and low C/N ratio on the performance and microbial community of a sequencing batch reactor. ENVIRONMENTAL TECHNOLOGY 2021; 42:1213-1224. [PMID: 31446846 DOI: 10.1080/09593330.2019.1660417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to investigate the effects of increasing salinity on the performance and microbial community structure in a sequencing batch reactor (SBR) treating low C/N ratio wastewater. The SBR was subjected to a gradual increased salinity from 0 wt% to3.0 wt% under low Chemical Oxygen Demand (COD)/N ratio, operating for 80 days. The study results indicated that high salinity decreased the removal efficiency of ammonium (NH4+-N) from 77.09% (1.0 wt%) to 45.7% (3.0wt%). The organic matter removal are not significantly affected by the high salinity. Non-metric Multi-Dimensional Scaling (NMDS) analysis showed that the gradual increased salinity altered the overall bacterial community structure, and low salinity (1wt%) promoted the bacterial diversity, while high salinity (2 and 3 wt%) significantly decreased the bacterial diversity in low C/N ratio activated sludge system. Further analysis revealed that two genera related to nitrification process (unclassified-Nitrosomonadales and g-Nitrospira) were inhibited, while a genus related to organic removal (Piscicoccus) and three genera related to denitrification (Rodobacteraceae, Denitromonas and Hyphomicrobium) increased significantly at a salinity of 3 wt%. This study provides insights of shifts in the bacteria community under the stress of high salinity in low C/N ratio of activated sludge systems.
Collapse
Affiliation(s)
- Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Zhimin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| |
Collapse
|
40
|
Song Y, Mhuantong W, Liu SY, Pisutpaisal N, Wongwilaiwalin S, Kanokratana P, Wang AJ, Jiang CY, Champreda V, Qiu DR, Liu SJ. Tropical and temperate wastewater treatment plants assemble different and diverse microbiomes. Appl Microbiol Biotechnol 2021; 105:853-867. [PMID: 33409607 DOI: 10.1007/s00253-020-11082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 11/24/2022]
Abstract
The diversity and assembly of activated sludge microbiomes play a key role in the performances of municipal wastewater treatment plants (WWTPs), which are the most widely applied biotechnological process systems. In this study, we investigated the microbiomes of municipal WWTPs in Bangkok, Wuhan, and Beijing that respectively represent tropical, subtropical, and temperate climate regions, and also explored how microbiomes assembled in these municipal WWTPs. Our results showed that the microbiomes from these municipal WWTPs were significantly different. The assembly of microbiomes in municipal WWTPs followed deterministic and stochastic processes governed by geographical location, temperature, and nutrients. We found that both taxonomic and phylogenetic α-diversities of tropical Bangkok municipal WWTPs were the highest and were rich in yet-to-be-identified microbial taxa. Nitrospirae and β-Proteobacteria were more abundant in tropical municipal WWTPs, but did not result in better removal efficiencies of ammonium and total nitrogen. Overall, these results suggest that tropical and temperate municipal WWTPs harbored diverse and unique microbial resources, and the municipal WWTP microbiomes were assembled with different processes. Implications of these findings for designing and running tropical municipal WWTPs were discussed. KEY POINTS: • Six WWTPs of tropical Thailand and subtropical and temperate China were investigated. • Tropical Bangkok WWTPs had more diverse and yet-to-be-identified microbial taxa. • Microbiome assembly processes were associated with geographical location.
Collapse
Affiliation(s)
- Yang Song
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuttichai Mhuantong
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Shuang-Yuan Liu
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Nipon Pisutpaisal
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sarunyou Wongwilaiwalin
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Pattanop Kanokratana
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Ai-Jie Wang
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Ying Jiang
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Verawat Champreda
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Dong-Ru Qiu
- China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuang-Jiang Liu
- IMCAS-RCEES joint lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,China-Thailand Joint Laboratory on Microbial Biotechnology, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Magalhães ERB, Costa Filho JDB, Padilha CEA, Silva FL, Sousa MASB, Santos ES. Activated sludge treatment for promoting the reuse of a synthetic produced water in irrigation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:132-141. [PMID: 33296229 DOI: 10.1080/03601234.2020.1852855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Large volumes of produced water are generated as a byproduct in activities of oil and gas exploitation, which can be reused in agriculture after a treatment process. Activated sludge treatment has been successfully used to remove oil from wastewater, but systematic studies on the toxicity of this effluent using this treatment are scarce in the literature. In this study, it was investigated the performance of an activated sludge system in the treatment of a synthetic produced water under different initial conditions in terms of salinity and oil and grease concentration. Furthermore, it was evaluated this effluent phytotoxicity in the germination, and seedling and plant growths of sunflower and corn seeds using untreated and treated synthetic produced water. Results revealed the activated sludge effectiveness in oil and grease and salinity removal from produced water, viz. high removal efficiency of 99.01 ± 0.28 and 91.07 ± 0.39%., respectively. Untreated produced water showed considerable toxic effects on the germination (74.67 ± 2.31% and 82.67 ± 2.31 for sunflower and corn seeds, respectively) and growth stages of sunflower and corn seed plants. The germination percentage was approximately 100% for both types of seed. The seedling and plant growth of the two seeds irrigated with treated produced water had similar performance when used tap water. These results highlighted the potential reuse as an unconventional water resource for plant irrigation of the synthetic produced water treated by an activated sludge process, which technology has showed high removal performance of salinity and oil.
Collapse
Affiliation(s)
- Emilianny R B Magalhães
- Biochemical Engineering Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Northeast Strategic Technologies Center (CETENE), Recife, PE, Brazil
| | - José D B Costa Filho
- Biochemical Engineering Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Carlos E A Padilha
- Biochemical Engineering Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Francinaldo L Silva
- Biochemical Engineering Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Federal Institute of Education, Science, and Technology of Paraiba (IFPB), Picuí, PB, Brazil
| | - Magna A S B Sousa
- Laboratory of Monitoring and Treatment of Oil and Gas Industry Waste (LAMTRE), Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Everaldo S Santos
- Biochemical Engineering Laboratory, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
42
|
Pang H, Ma W, He J, Pan X, Ma Y, Guo D, Yan Z, Nan J. Hydrolase activity and microbial community dynamic shift related to the lack in multivalent cations during cation exchange resin-enhanced anaerobic fermentation of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122930. [PMID: 32464562 DOI: 10.1016/j.jhazmat.2020.122930] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The correlation of the lack in multivalent cations with hydrolase activity and microbial community in anaerobic fermentation of waste activated sludge was investigated in this study. It was demonstrated that considerable solid phase reduction of 41 % (7.87 g/L) was achievable through a cation exchange resin-enhanced anaerobic fermentation of 4 days. The protease and α-glucosidase, especially α-glucosidase, were easily influenced by a lack in multivalent cations. Furthermore, species abundance and diversity of microbial community gradually decreased. Meanwhile, the bacteria community structure presented obvious dynamic shifts. Ruminococcaceae_UCG_009, Bacteroides and Macellibacteroides responsible for organic matter biodegradation and SCFAs production became dominant bacteria in cation exchange resin-enhanced anaerobic fermentation, which was less influenced by the lack in multivalent cations, while the SCFA consumers (e.g. methanogens) were inhibited with reduced abundances due to their susceptibility to the lack in multivalent cations. Redundancy analysis revealed that the lack in multivalent cations were responsible for the microbial community evolution, which was proved by the high Grey relational coefficients (0.747-0.820) and significant negative Spearman coefficients (-0.5798 to -0.9429) between multivalent cation and microbial community. Obviously, the cation exchange resin-induced removal of multivalent cations reduced enzyme activity and modified microbial community structure, which created a beneficial environment for enhancing anaerobic fermentation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Weiwei Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
43
|
Yuan C, Peng Y, Wang B, Li X, Zhang Q. Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process. BIORESOURCE TECHNOLOGY 2020; 313:123698. [PMID: 32585454 DOI: 10.1016/j.biortech.2020.123698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
This study used salinity (0.5 wt%, 0.75 wt%) to accelerate the formation of ammonia oxidizing bacteria (AOB)-enriched aerobic granular sludge in a lab-scale anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) reactor. Results confirmed that the average granule diameter increased from 298.7 to 425.4 µm after 45 days of salinity stress even with low dissolved oxygen. Extracellular polymeric substances increased from 149.5 to 387.7 mg/g VSS after salinity (0.75 wt%) treatment, in turn accelerating granulation. Partial nitrification was maintained under the salinity condition due to the relative high activity and abundance of AOB, and the observed nitrite accumulation ratio averaged 98.9%. Salinity favored glycogen-accumulating organisms over polyphosphate-accumulating organisms (PAOs)/denitrifying-PAOs, with the abundance of Candidatus_Competibacter increasing from 4.86% to 15.34% and the simultaneous partial nitrification-denitrification efficiency increasing from 74.4% to 91.1%, promoting N-removal potential. The P-removal performance was good under 0.5 wt% salinity but was inhibited under 0.75 wt% salinity.
Collapse
Affiliation(s)
- Chuansheng Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
44
|
Wu Z, Guo G, Kumar Biswal B, Dai J, Chen G. Denitrifying sulfur conversion-EBPR (DS-EBPR) process for treatment of seawater-based highly saline wastewater: Evaluation on performance, kinetics and microbial community structure. BIORESOURCE TECHNOLOGY 2020; 313:123574. [PMID: 32512430 DOI: 10.1016/j.biortech.2020.123574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
DS-EBPR is an alternative to the conventional activated sludge process which face great challenge for treatment of seawater-based highly saline wastewater. This study aims to investigate the impacts of long-term (248 days) 20% and 30% seawater fractions and short-term shock of 30%, 40%, 70% and 100% seawater fractions (corresponding to 1.0, 1.4, 2.5 and 3.5% of salinity) on the DS-EBPR performance, kinetics and microbial community structure. Long-term operation with high fraction (30%) of seawater marginally decreased the sulfur conversion and phosphorus uptake, which correlated well with the microbial dynamics. Temporal salinity shock from 1.0% (30% seawater) to 3.5% (100% seawater) remarkably reduced the phosphorus release/uptake by 36-44%, which was partly due to the decrease in the abundance of functional bacteria and chlorapatite (Ca5[PO4]3Cl) forming as P precipitates with 70-100% seawater addition. The formed chlorapatite contributed to approximately 8-26% of total P removal estimated by X-ray photoelectron spectroscopy analysis.
Collapse
Affiliation(s)
- Zhongwei Wu
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ji Dai
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
45
|
Bi C, Yu D, Wang X, Du S, Wang J, Gong X, Du Y, Zhao J. Performance and microbial structure of partial denitrification in response to salt stress: Achieving stable nitrite accumulation with municipal wastewater. BIORESOURCE TECHNOLOGY 2020; 311:123559. [PMID: 32464571 DOI: 10.1016/j.biortech.2020.123559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The effects of inorganic salts on partial denitrification (PD) was investigated in a sequencing batch reactor for simultaneously treating saline nitrate sewage and municipal wastewater. After 230-day operation, a high nitrate-to-nitrite transformation ratio (NTR) of ~ 80% was achieved with the salinity of 1.25 wt% and the initial chemical oxygen demand to nitrate ratio of 3.7. Microbial community analysis revealed that, Thauera was remained predominant in PD system but with a relative abundance decreasing from 53.02% (0.0 wt%) to 42.36% (1.25 wt%). Moreover, as a suitable ratio of nitrite to ammonia (~1.6) in effluent was obtained, it would be a promising method to treat saline nitrate sewage by combing PD with anammox.
Collapse
Affiliation(s)
- Chunxue Bi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Shiming Du
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jun Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiuzhen Gong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yeqi Du
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
46
|
DeFeo ME, Shampoe KV, Carvalho PHV, Silva FAS, Felix TL. In vitro and in situ techniques yield different estimates of ruminal disappearance of barley. Transl Anim Sci 2020; 4:141-148. [PMID: 32704974 PMCID: PMC7200464 DOI: 10.1093/tas/txz170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Objectives were to compare in vitro and in situ disappearance of dry matter (DM), neutral detergent fiber (NDF), and starch of traditional (unprocessed and rolled) and hulless (unprocessed) barley. Experiment 1: three barley sources were compared using in vitro techniques. The sources were: 1) traditional barley that was not processed, 2) traditional barley processed through a roller mill, and 3) hulless barley that was not processed. For in vitro incubation, each barley source was ground through a 1-mm screen. Ground barley sources were weighed into bags (25 micron porosity) and incubated in ruminal fluid from two steers fed 80% rolled corn for 3, 6, 12, 24, 48, or 72 h. Intact bags were assayed for NDF; remaining bags were opened and the residual was removed and analyzed to determine disappearance of DM and starch. Experiment 2: the barley sources used in Exp. 1 were compared using in situ techniques. For in situ analysis, each barley source was ground in a Wiley mill with no screen to mimic mastication. Artificially masticated samples were weighed into Dacron bags (50 ± 10 micron porosity) and incubated in eight ruminally fistulated steers (n = 8) for 3, 6, 12, 24, 48, and 72 h. Residual contents were analyzed to determine in situ disappearance of DM, NDF, and starch. Data were analyzed using the MIXED procedures of SAS (9.4 SAS Institute, Cary, NC) with repeated measures. DM disappearance was greatest (P < 0.05) for hulless barley in vitro and for rolled barley in situ, regardless of time postincubation. For both trials, NDF disappearance was greatest (P < 0.05) for hulless barley, regardless of time postincubation. Starch disappearance at all time points was greatest (P < 0.05) for rolled barley in situ. Starch disappearance was greater (P < 0.05) for hulless barley at 6 h of in vitro incubation compared to rolled and unprocessed barley, whereas starch disappearance in vitro was comparable (P = 0.60) between barley sources. When the grains were compared in vitro, minor differences were noted, presumably because barley sources were finely ground prior to incubation. Compared to in vitro estimates, in situ techniques had greater variation in ruminal degradation estimates. Differences observed between in situ and in vitro techniques are driven largely by differences between the procedures. Although laboratory methods are widely used to estimate ruminal degradation, these techniques did not provide comparable estimates of ruminal degradation of barley.
Collapse
Affiliation(s)
- Mary E DeFeo
- Animal Science Department, The Pennsylvania State University, University Park, PA
| | - Kelsey V Shampoe
- Animal Science Department, The Pennsylvania State University, University Park, PA
| | - Pedro H V Carvalho
- Animal Science Department, The Pennsylvania State University, University Park, PA
| | - Flavia A S Silva
- Animal Science Department, The Pennsylvania State University, University Park, PA
| | - Tara L Felix
- Animal Science Department, The Pennsylvania State University, University Park, PA
| |
Collapse
|
47
|
Liu C, Yu D, Wang Y, Chen G, Tang P, Huang S. A novel control strategy for the partial nitrification and anammox process (PN/A) of immobilized particles: Using salinity as a factor. BIORESOURCE TECHNOLOGY 2020; 302:122864. [PMID: 32007852 DOI: 10.1016/j.biortech.2020.122864] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 05/12/2023]
Abstract
The impact of the addition of salinity on partial nitrification and anammox (PN/A) was investigated in this study. The sludge was immobilized by polyethylene glycol (PEG)-modified polyvinyl alcohol (PVA)-sodium alginate (SA) immobilization technology, and the effective diffusion coefficient (De) of the immobilized particles was measured to be 0.313 × 10-9 m2·s-1, indicating that the system has excellent mass transfer performance. An experiment was carried out by adding NaCl to create a salinity gradient. It was found that the initiation of partial nitrification was achieved at a concentration of 10 g·L-1 NaCl and the nitrite accumulation rate (NAR) reached 81.03%, which could provide sufficient NO2--N for subsequent anammox. Additionally, an anammox reactor operating at the same salinity maintained a stable state after acclimation, and the removal rates of NH4+-N and NO2--N reached 80%. The dominant population in the anammox system was Planctomycetes. Salinity is a feasible factor for controlling the PN/A process.
Collapse
Affiliation(s)
- Chengcheng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Peng Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Shuo Huang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
48
|
Liu R, Wang Q, Li M, Liu J, Zhang W, Lan M, Du C, Sun Z, Zhao D, Li B. Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR. RSC Adv 2020; 10:10178-10187. [PMID: 35498598 PMCID: PMC9050234 DOI: 10.1039/c9ra10574c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The issue of reverse osmosis concentrate (ROC) has attracted significant attention due to its complex and toxic constituents under high salinity conditions. In this work, a three-stage membrane-aerated biofilm reactor (MABR) system was constructed to treat such wastewater without an external carbon source. The effects of operating conditions including aeration pressure, reflux ratio, temperature and hydraulic retention time on the removal performance of the integrated system were evaluated and optimized. Under the optimal operating parameters, the removal efficiencies of COD, NH4 +-N, NO3 --N, and TN reached 69.36%, 80.95%, 54.55%, and 54.36%, respectively. Three-dimensional fluorescence analysis indicated that humic acid was mostly removed from raw water. Moreover, microbial diversity analysis indicated that the microbial community structure of each reactor could be individually modulated to exert different functions and enhance the system performance. The integrated MABR system exhibits great feasibility and potential for the advanced treatment of coal chemical ROC.
Collapse
Affiliation(s)
- Rukang Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Qin Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Mei Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Jun Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Wei Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Meichao Lan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Chunyu Du
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Zhiye Sun
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Dong Zhao
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| | - Baoan Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 PR China
- State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 PR China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University Tianjin 300350 PR China
- Qingdao Institute for Ocean Engineering of Tianjin University, Tianjin University Qingdao 266200 PR China
| |
Collapse
|
49
|
Biotreatment of high-salinity wastewater: current methods and future directions. World J Microbiol Biotechnol 2020; 36:37. [DOI: 10.1007/s11274-020-02815-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
50
|
Chao C, Zhao Y, Keskar J, Ji M, Wang Z, Li X. Simultaneous removal of COD, nitrogen and phosphorus and the tridimensional microbial response in a sequencing batch biofilm reactor: with varying C/N/P ratios. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|