1
|
Asunis F, Dessì P, Gioannis GD, Muntoni A. VFA extraction through silicone membrane fosters PHA production from nutrient-rich biowaste. BIORESOURCE TECHNOLOGY 2025; 426:132314. [PMID: 40023336 DOI: 10.1016/j.biortech.2025.132314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
This study presents a novel four-stage process for polyhydroxyalkanoates (PHA) production from nutrient-rich sheep cheese whey (CW). The key advancement was the integration of a volatile fatty acid (VFA) extraction stage into the conventional three-stage PHA production process. Application of membrane separation to fermented cheese whey resulted in the generation of a "retentate" stream containing both organic acids and nutrients, suitable for microbial culture selection, and a VFA-rich but nutrient deprived "permeate" stream, ideal for PHA accumulation. Thus, the carbon-to-nitrogen (C/N) ratio was optimized for both the selection and accumulation stages, which is crucial for efficient PHA production and for eliminating the need for exogenous nitrogen addition. The integrated process resulted in significantly higher yields (0.55 vs 0.26 gC-PHA gC-OA-1) and PHA content (37% vs 28%) than the control, where fermented cheese whey was directly used as feedstock for the accumulation stage. The results highlight the potential of this approach for optimizing PHA production from sub-optimal, nutrient-rich substrates.
Collapse
Affiliation(s)
- Fabiano Asunis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza d'Armi 1, 09123 Cagliari, Italy.
| | - Paolo Dessì
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Giorgia De Gioannis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza d'Armi 1, 09123 Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza d'Armi 1, 09123 Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| |
Collapse
|
2
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
3
|
Vale AC, Leite L, Pais V, Bessa J, Cunha F, Fangueiro R. Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres. Polymers (Basel) 2024; 16:3602. [PMID: 39771455 PMCID: PMC11679467 DOI: 10.3390/polym16243602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted.
Collapse
Affiliation(s)
- Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Liliana Leite
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
4
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
5
|
Grana M, Marreiros BC, Carvalheira M, Ficara E, Reis MAM. Polyhydroxyalkanoates production from cheese whey under near-seawater salinity conditions. N Biotechnol 2024; 84:53-63. [PMID: 39326786 DOI: 10.1016/j.nbt.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Treating saline streams presents considerable challenges due to their adverse effects on conventional biological processes, thereby leading to increased expenses in managing those side streams. With this in consideration, this study explores into the potential for valorizing fermented cheese whey (CW), a by-product of the dairy industry, into polyhydroxyalkanoates (PHA) using mixed microbial cultures (MMC) under conditions of near-seawater salinity (30 gNaCl/L). The selection of a PHA-accumulating MMC was successfully achieved using a sequential batch reactor operated under a feast and famine regime, with a hydraulic retention time of 14.5 h, a variable solids retention time of 3 and 4.5 days, and an organic loading rate (OLR) of 60 Cmmol/(L d). The selected culture demonstrated efficient PHA production rates and yields, maintaining robust performance even under high salinity conditions. During PHA accumulation, a maximum PHA content in biomass of 56.4 % wt. was achieved for a copolymer P(3HB-co-3HHx) with a 3HHx content of 7 %. Additionally, to asses the capacity of the culture to produce polymers with different compositions, valeric acid was supplemented to the real fermented feedstock which resulted in the production of terpolymers P(3HB-co-3HV-co-3HHx) with varied monomeric content and a higher maximum PHA content of 62 % wt. Additionally, this study highlights the potential utilization of seawater as alternative to freshwater for PHA production, thereby enhancing circular economy principles and promoting environmental sustainability.
Collapse
Affiliation(s)
- Matteo Grana
- Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Bruno C Marreiros
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| | - Mónica Carvalheira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Elena Ficara
- Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
6
|
Hernández-Herreros N, Rivero-Buceta V, Pardo I, Prieto MA. Production of poly(3-hydroxybutyrate)/poly(lactic acid) from industrial wastewater by wild-type Cupriavidus necator H16. WATER RESEARCH 2024; 249:120892. [PMID: 38007895 DOI: 10.1016/j.watres.2023.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The massive production of urban and industrial wastes has created a clear need for alternative waste management processes. One of the more promising strategies is to use waste as raw material for the production of biopolymers such as polyhydroxyalkanoates (PHAs). In this work, a lactate-enriched stream obtained by anaerobic digestion (AD) of wastewater (WW) from a candy production plant was used as a feedstock for PHA production in wild-type Cupriavidus necator H16. Unexpectedly, we observed the accumulation of poly(3-hydroxybutyrate)/poly(lactic acid) (P(3HB)/PLA), suggesting that the non-engineered strain already possesses the metabolic potential to produce these polymers of interest. The systematic study of factors, such as incubation time, nitrogen and lactate concentration, influencing the synthesis of P(3HB)/PLA allowed the production of a panel of polymers in a resting cell system with tailored lactic acid (LA) content according to the GC-MS of the biomass. Further biomass extraction suggested the presence of methanol soluble low molecular weight molecules containing LA, while 1 % LA could be detected in the purified polymer fraction. These results suggested that the cells are producing a blend of polymers. A proteomic analysis of C. necator resting cells under P(3HB)/PLA production conditions provides new insights into the latent pathways involved in this process. This study is a proof of concept demonstrating that LA can polymerize in a non-modified organism and paves the way for new metabolic engineering approaches for lactic acid polymer production in the model bacterium C. necator H16.
Collapse
Affiliation(s)
- Natalia Hernández-Herreros
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Isabel Pardo
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Patil TD, Ghosh S, Agarwal A, Patel SKS, Tripathi AD, Mahato DK, Kumar P, Slama P, Pavlik A, Haque S. Production, optimization, scale up and characterization of polyhydoxyalkanoates copolymers utilizing dairy processing waste. Sci Rep 2024; 14:1620. [PMID: 38238404 PMCID: PMC10796949 DOI: 10.1038/s41598-024-52098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.
Collapse
Affiliation(s)
- Tejaswini Dhanaji Patil
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Saptaneel Ghosh
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Aparna Agarwal
- Department of Food and Nutrition Science, Lady Irwin College, Delhi University, New Delhi, 110001, India
| | | | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, CASS Food Research Centre, Deakin University, Burwood, VIC, 3125, Australia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Ales Pavlik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut-1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman-13306, United Arab Emirates
| |
Collapse
|
8
|
Mishra P, Panda B. Polyhydroxybutyrate (PHB) accumulation by a mangrove isolated cyanobacteria Limnothrix planktonica using fruit waste. Int J Biol Macromol 2023; 252:126503. [PMID: 37633558 DOI: 10.1016/j.ijbiomac.2023.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cyanobacterial polyhydroxybutyrate (PHB) is preferred over bacteria for low-cost production due to its photoautotrophic nature and lower carbon requirement. Considering its impact on the environment and circular economy, the valorization of fruit waste is the need of the hour. In the present study, fruit peels of banana, orange, pea, jackfruit, watermelon and waste flowers were tried as carbon sources for mangrove-isolated cyanobacteria Limnothrix planktonica to accumulate PHB. Alterations in the ASN-III culture medium and the introduction of untreated and pre-treated (acid/alkali-treated) peels as carbon sources are tried to enhance PHB. Banana peel showed the maximum PHB accumulation potential of 25.73 mg/L on the 12th day of incubation, followed by jackfruit (22.46 mg/L) and watermelon peels (20.72 mg/L); whereas, commercial carbon sources showed lower PHB accumulation up to 19.26 mg/L and 18.21 mg/L with fructose and glucose respectively. PHB accumulation was boosted to 5-fold higher (39.39 mg/L) in NP deficiency medium along with banana peel supplement, as compared to photoautotrophic conditions (8.49 mg/L) after the 9th day of incubation. Additionally, the PHB obtained by using the fruit wastes has a higher molecular weight than the PHB accumulated during photoautotrophic conditions. Optimization of parameters using fruit wastes and characterization of PHB would lead to its potential use.
Collapse
Affiliation(s)
- Prateeksha Mishra
- Environmental Biology Research Laboratory, Department of Botany, Utkal University, Bhubaneswar, Odisha, India
| | - Bhabatarini Panda
- Environmental Biology Research Laboratory, Department of Botany, Utkal University, Bhubaneswar, Odisha, India; Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
9
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Clagnan E, Adani F. Influence of feedstock source on the development of polyhydroxyalkanoates-producing mixed microbial cultures in continuously stirred tank reactors. N Biotechnol 2023; 76:90-97. [PMID: 37220837 DOI: 10.1016/j.nbt.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are the new frontier of bioplastic production; however, research is needed to develop and characterise efficient mixed microbial communities (MMCs) for their application with a multi-feedstock approach. Here, the performance and composition of six MMCs developed from the same inoculum on different feedstocks were investigated through Illumina sequencing to understand community development and identify possible redundancies in terms of genera and PHA metabolism. High PHA production efficiencies (>80% mg CODPHA mg-1 CODOA-consumed) were seen across all samples, but differences in the organic acids (OAs) composition led to different ratios of the monomers poly(3-hydroxybutyrate) (3HB) to poly(3-hydroxyvalerate) (3HV). Communities differed across all feedstocks, with enrichments in specific PHA-producing genera, but analysis of potential enzymatic activity identified a certain degree of functional redundancy, possibly leading to the general high efficiency seen in PHA production from all feedstocks. Leading PHAs producers across all feedstocks were identified in genera such as Thauera, Leadbetterella, Neomegalonema and Amaricoccus.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| | - Fabrizio Adani
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
11
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
12
|
Che L, Jin W, Zhou X, Han W, Chen Y, Chen C, Jiang G. Current status and future perspectives on the biological production of polyhydroxyalkanoates. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lin Che
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wenbiao Jin
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Xu Zhou
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wei Han
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Yidi Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
13
|
Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Food losses (FL) and waste (FW) occur throughout the food supply chain. These residues are disposed of on landfills producing environmental issues due to pollutants released into the air, water, and soil. Several research efforts have focused on upgrading FL and FW in a portfolio of added-value products and energy vectors. Among the most relevant research advances, biotechnological upgrading of these residues via fermentation has been demonstrated to be a potential valorization alternative. Despite the multiple investigations performed on the conversion of FL and FW, a lack of comprehensive and systematic literature reviews evaluating the potential of fermentative processes to upgrade different food residues has been identified. Therefore, this article reviews the use of FL and FW in fermentative processes considering the composition, operating conditions, platforms, fermentation product application, and restrictions. This review provides the framework of food residue fermentation based on reported applications, experimental, and theoretical data. Moreover, this review provides future research ideas based on the analyzed information. Thus, potential applications and restrictions of the FL and FW used for fermentative processes are highlighted. In the end, food residues fermentation must be considered a mandatory step toward waste minimization, a circular economy, and the development of more sustainable production and consumption patterns.
Collapse
|
14
|
Production efficiency and properties of poly(3hydroxybutyrate-co-3hydroxyvalerate) generated via a robust bacterial consortium dominated by Zoogloea sp. using acidified discarded fruit juices as carbon source. Int J Biol Macromol 2023; 226:1500-1514. [PMID: 36511266 DOI: 10.1016/j.ijbiomac.2022.11.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In the current study, a mixed microbial culture (MMC) of polyhydroxyalkanoates (PHAs) producers was developed under nutrient stress and was assessed as biocatalyst for the production of high-yielding PHAs from fermented (acidified) discarded fruit juices (DFJ). The structure of the MMC was analyzed periodically to determine its microbial dynamics, revealing that Zoogloae sp. dominated throughout the operation of the system. The efficiency of PHAs production from the MMC was further optimized in batch mode by altering the ratio of C to N, the ratio of carbon sources (propionate and butyrate), and the initial pH, and subsequently different fermentation mixtures of acidified DFJ were assessed as substrates at optimal conditions. Upon solvent extraction, the properties of recovered PHAs were analyzed, showing that in all cases P(3HB-co-3HV) was produced, with Tm ranging from 90.5 to 168.8 °C, and maximum obtained yields 54.61 ± 4.31 % and 43.27 ± 2.13 %, from synthetic substrates and DFJ, respectively. Overall, it was shown that the developed MMC can be efficiently applied as biocatalyst for the exploitation of sugary wastewaters, such as DFJ, towards bio-based and biodegradable plastics bearing the required properties to substitute fossil plastics, into the concept of a circular economy.
Collapse
|
15
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
16
|
Devadarshini D, Mohapatra S, Pati S, Maity S, Rath CC, Jena PK, Samantaray D. Evaluation of PHAs production by mixed bacterial culture under submerged fermentation. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Process Development of Polyhydroxyalkanoates Production by Halophiles Valorising Food Waste. Bioengineering (Basel) 2022; 9:bioengineering9110630. [DOI: 10.3390/bioengineering9110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) is an emerging biodegradable plastic family that can replace a broad spectrum of conventional thermoplastics and is promising in the sustainable process development and valorization of organic waste. This study established a novel production system of PHA from food waste through halophilic microbial fermentation with spent medium recycling. The essential processing parameters for batch cultivation of Haloferax mediterranei were optimized for food waste substrate (a 40 g/L loading and 2.5 vvm of aeration), which achieved a yield of 0.3 g PHA/g COD consumed. A batch bioreactor system was developed, which produced 7.0 ± 0.7 g/L cell dry mass and 4.5 ± 0.2 g/L PHA with a 20% dissolved oxygen (DO) level. A DO above 50% saturation resulted in faster cell growth and similar cell mass production but 25% less PHA production. The spent saline medium, treated with H2O2 and rotary evaporation, was successfully reused for four consecutive batches and provided consistent PHA concentrations and product qualities.
Collapse
|
18
|
Gottardo M, Bolzonella D, Adele Tuci G, Valentino F, Majone M, Pavan P, Battista F. Producing volatile fatty acids and polyhydroxyalkanoates from foods by-products and waste: A review. BIORESOURCE TECHNOLOGY 2022; 361:127716. [PMID: 35926558 DOI: 10.1016/j.biortech.2022.127716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Dairy products, extra virgin olive oil, red and white wines are excellent food products, appreciated all around the world. Their productions generate large amounts of by-products which urge for recycling and valorization. Moreover, another abundant waste stream produced in urban context is the Organic Fraction of Municipal Solid Wastes (OFMSW), whose global annual capita production is estimated at 85 kg. The recent environmental policies encourage their exploitation in a biorefinery loop to produce Volatile Fatty Acids (VFAs) and polyhydroxyalkanoates (PHAs). Typically, VFAs yields are high from cheese whey and OFMSW (0.55-0.90 gCOD_VFAs/gCOD), lower for Olive Mill and Winery Wastewaters. The VFAs conversion into PHAs can achieve values in the range 0.4-0.5 gPHA/gVSS for cheese whey and OFMSW, 0.6-0.7 gPHA/gVSS for winery wastewater, and 0.2-0.3 gPHA/gVSS for olive mill wastewaters. These conversion yields allowed to estimate a huge potential annual PHAs production of about 260 M tons.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - Giulia Adele Tuci
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Pavan
- Department of Environmental Sciences, Informatics and Statistics, Cà Foscari University of Venice, Via Torino 155, 30170 Mestre-Venice, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
19
|
Montiel-Jarillo G, Morales-Urrea DA, Contreras EM, López-Córdoba A, Gómez-Pachón EY, Carrera J, Suárez-Ojeda ME. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers (Basel) 2022; 14:polym14193938. [PMID: 36235886 PMCID: PMC9573287 DOI: 10.3390/polym14193938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The use of mixed microbial cultures (MMC) and organic wastes and wastewaters as feed sources is considered an appealing approach to reduce the current polyhydroxyalkanoates (PHAs) production costs. However, this method entails an additional hurdle to the PHAs downstream processing (recovery and purification). In the current work, the effect of a sodium hypochlorite (NaClO) pre-treatment coupled with dimethyl carbonate (DMC) or chloroform (CF) as extraction solvents on the PHAs recovery efficiency (RE) from MMC was evaluated. MMC were harvested from a sequencing batch reactor (SBR) fed with a synthetic prefermented olive mill wastewaster. Two different carbon-sources (acetic acid and acetic/propionic acids) were employed during the batch accumulation of polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from MMC. Obtained PHAs were characterized by 1H and 13C nuclear magnetic resonance, gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. The results showed that when a NaClO pre-treatment is not added, the use of DMC allows to obtain higher RE of both biopolymers (PHB and PHBV), in comparison with CF. In contrast, the use of CF as extraction solvent required a pre-treatment step to improve the PHB and PHBV recovery. In all cases, RE values were higher for PHBV than for PHB.
Collapse
Affiliation(s)
- Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Diego A. Morales-Urrea
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| | - Edgardo M. Contreras
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Alex López-Córdoba
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia
| | - Edwin Yesid Gómez-Pachón
- Grupo de Investigación en Diseño, Innovación y Asistencia Técnica de Materiales Avanzados-DITMAV, Escuela de Diseño Industrial, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Duitama 150461, Colombia
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| |
Collapse
|
20
|
Nian L, Wang M, Sun X, Zeng Y, Xie Y, Cheng S, Cao C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:2304-2339. [PMID: 36123805 DOI: 10.1080/10408398.2022.2122924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Sun
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yan Zeng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Valorization of Brewery Waste through Polyhydroxyalkanoates Production Supported by a Metabolic Specialized Microbiome. Life (Basel) 2022; 12:life12091347. [PMID: 36143384 PMCID: PMC9505892 DOI: 10.3390/life12091347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Raw brewers’ spent grain, a by-product of beer production, is produced at a large scale and is usually used as animal feed or is landfilled. However, its composition shows that this feedstock has the potential for other applications, such as bioplastics production (e.g., polyhydroxyalkanoates). In this way, the aim of this work was to assess the use of raw brewers’ spent grain for polyhydroxyalkanoates production, adding new value to this feedstock. The results confirm the potential of raw brewers’ spent grain to produce polyhydroxyalkanoates, as the population was enriched in the microorganisms able to accumulate these biopolymers. These results will contribute to society’s knowledge and competence via the development of a treatment process for brewery waste of both environmental (productive waste treatment) and economic interest (production of biopolymers), which will certainly attract its application to the brewery industry worldwide. Abstract Raw brewers’ spent grain (BSG), a by-product of beer production and produced at a large scale, presents a composition that has been shown to have potential as feedstock for several biological processes, such as polyhydroxyalkanoates (PHAs) production. Although the high interest in the PHA production from waste, the bioconversion of BSG into PHA using microbial mixed cultures (MMC) has not yet been explored. This study explored the feasibility to produce PHA from BSG through the enrichment of a mixed microbial culture in PHA-storing organisms. The increase in organic loading rate (OLR) was shown to have only a slight influence on the process performance, although a high selectivity in PHA-storing microorganisms accumulation was reached. The culture was enriched on various PHA-storing microorganisms, such as bacteria belonging to the Meganema, Carnobacterium, Leucobacter, and Paracocccus genera. The enrichment process led to specialization of the microbiome, but the high diversity in PHA-storing microorganisms could have contributed to the process stability and efficiency, allowing for achieving a maximum PHA content of 35.2 ± 5.5 wt.% (VSS basis) and a yield of 0.61 ± 0.09 CmmolPHA/CmmolVFA in the accumulation assays. Overall, the production of PHA from fermented BSG is a feasible process confirming the valorization potential of the feedstock through the production of added-value products.
Collapse
|
22
|
Haldar D, Shabbirahmed AM, Singhania RR, Chen CW, Dong CD, Ponnusamy VK, Patel AK. Understanding the management of household food waste and its engineering for sustainable valorization- A state-of-the-art review. BIORESOURCE TECHNOLOGY 2022; 358:127390. [PMID: 35636679 DOI: 10.1016/j.biortech.2022.127390] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Increased urbanization and industrialization accelerated demand for energy, large-scale waste output, and negative environmental consequences. Therefore, the implementation of an effective solid-waste-management (SWM) policy for the handling of food waste is of great importance. The global food waste generation is estimated at about 1.6 gigatons/yr which attributes to an economic revenue of 750 billion USD. It can be converted into high-value enzymes, surfactants, Poly-hydroxybutyrate, biofuels, etc. However, the heterogeneous composition of food with high organic load and varying moisture content makes their transformation into value-added products difficult. This review aims to bring forth the possibilities and repercussions of food waste management. The socio-economic challenges related to SWM are comprehensively discussed particularly in terms of environmental concern. The engineering aspect in the collection, storage, and biotransformation of food waste into useful value-added products such as biofuels, advanced biomaterials, bioactive compounds, and platform chemicals are critically reviewed for efficient food waste management.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | | | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
23
|
Li J, Li D, Su Y, Yan X, Wang F, Yu L, Ma X. Efficient and economical production of polyhydroxyalkanoate from sustainable rubber wood hydrolysate and xylose as co-substrate by mixed microbial cultures. BIORESOURCE TECHNOLOGY 2022; 355:127238. [PMID: 35489568 DOI: 10.1016/j.biortech.2022.127238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Using co-substrate to accumulate polyhydroxyalkanoate (PHA) is an efficient approach to reduce production cost and improve yield of PHA. In the study, PHA was biosynthesized under full aerobic mode by using rubber wood hydrolysate and xylose co-substrate as the carbon source. The effects of co-substrate on PHA production, microbial community and carbon conversion were explored. The results showed that proper addition of xylose was beneficial for the synthesis of PHA and monomer 3-hydroxyvalerate (3HV). Higher conversion yield of substrate-to-PHA (YPHA/S) of 0.933 g COD PHA/g COD S and PHA content of 43.6 g PHA/100 g VSS were gained at co-substrate ratio of 1:1. Likewise, under this condition, PHA production also reached the highest value of 1849 mg COD/L (1088 mg/L). Moreover, the addition of xylose created a favorable screening of PHA dominant strains, improved the conversion of carbon source, and saved 72.3% of feedstock consumption.
Collapse
Affiliation(s)
- Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yuhang Su
- College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing 350300, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lili Yu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaojun Ma
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China; College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
24
|
Boccalon E, Gorrasi G. Functional bioplastics from food residual: Potentiality and safety issues. Compr Rev Food Sci Food Saf 2022; 21:3177-3204. [PMID: 35768940 DOI: 10.1111/1541-4337.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Plastic pollution and food waste are two global issues with much in common. Plastic containers were introduced as a practical and easy remedy to improve food preservation and reduce the risk of creating waste, but ironically, to address one problem, another has been made worse. The spread of single-use containers has dramatically increased the amount of plastic that has to be discarded, and the most urgent task is now to find a solution to what has become part of the problem. An innovative way around it consists of promoting the valorization of food residues by turning them into novel materials for packaging. Although the results are promising, the aim of completely replacing plastics with biodegradable materials still seems far from being achieved. This review illustrates the main strategies adopted thus far to produce new bioplastic materials and composites from waste resources and focuses on the pros and cons of the food recovery process to look for the aspects that represent an obstacle to the development of the circular food economy on an industrial scale.
Collapse
Affiliation(s)
- Elisa Boccalon
- Department of Industrial Engineering, University of Salerno, Salerno, Fisciano, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Salerno, Fisciano, Italy
| |
Collapse
|
25
|
Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
26
|
Khatami K, Perez-Zabaleta M, Cetecioglu Z. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114337. [PMID: 34972045 DOI: 10.1016/j.jenvman.2021.114337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Polyhydroxyalkanoates (PHAs), as bio-based plastics, promise a transition from petroleum products to green and sustainable alternatives. However, their commercial production is yet impeded by high production costs. In this study, we assessed synthetic culture in mono and co-culture modes for bacterial PHA production. It was demonstrated that volatile fatty acids (VFAs) derived from food waste and primary sludge are cheap carbon sources for maintaining high production yields in the synthetic cultures. The maximum obtained PHA was 77.54 ± 5.67% of cell dried weight (CDW) (1.723 g/L) from Cupriavidus necator and 54.9 ± 3.66% of CDW (1.088 g/L) from Burkholderia cepacia. The acquired results are comparable to those in literature using sugar substrates. Comparatively, lower PHA productions were obtained from the co-cultivations ranging between 36-45 CDW% (0.39-0.48 g/L). Meanwhile, the 3-hydroxyvalerate content in the biopolymers were increased up to 21%.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
27
|
Usmani Z, Sharma M, Gaffey J, Sharma M, Dewhurst RJ, Moreau B, Newbold J, Clark W, Thakur VK, Gupta VK. Valorization of dairy waste and by-products through microbial bioprocesses. BIORESOURCE TECHNOLOGY 2022; 346:126444. [PMID: 34848333 DOI: 10.1016/j.biortech.2021.126444] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Waste is an inherent and unavoidable part of any process which can be attributed to various factors such as process inefficiencies, usability of resources and discarding of not so useful parts of the feedstock. Dairy is a burgeoning industry following the global population growth, resulting in generation of waste such as wastewater (from cleaning, processing, and maintenance), whey and sludge. These components are rich in nutrients, organic and inorganic materials. Additionally, the presence of alkaline and acidic detergents along with sterilizing agents in dairy waste makes it an environmental hazard. Thus, sustainable valorization of dairy waste requires utilization of biological methods such as microbial treatment. This review brings forward the current developments in utilization and valorization of dairy waste through microbes. Aerobic and anaerobic treatment of dairy waste using microbes can be a sustainable and green method to generate biofertilizers, biofuels, power, and other biobased products.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland
| | - Monika Sharma
- Department of Botany, Shri Awadh Raz Singh Smarak Degree College, Gonda, Uttar Pradesh, India
| | - Richard J Dewhurst
- Dairy Research Centre, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Benoît Moreau
- Laboratoire de "Chimie verte et Produits Biobasés", Haute Ecole Provinciale du Hainaut- Département AgroBioscience et Chimie, 11, rue de la Sucrerie, 7800 Ath, Belgique
| | | | - William Clark
- Zero Waste Scotland, Moray House, Forthside Way, Stirling FK8 1QZ, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
28
|
Gupta S, Nadda AK, Gupta A, Singh J, Mulla SI, Sharma S. Transforming Wastes into High Value-Added Products: An Introduction. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Acedos MG, Moreno-Cid J, Verdú F, González JA, Tena S, López JC. Exploring the potential of slaughterhouse waste valorization: Development and scale-up of a new bioprocess for medium-chain length polyhydroxyalkanoates production. CHEMOSPHERE 2022; 287:132401. [PMID: 34600930 DOI: 10.1016/j.chemosphere.2021.132401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The progressive increase of slaughterhouse waste production requires actions for both addressing an environmental issue and creating additional value within a biorefinery concept. In this regard, some of these animal by-products exhibit a significant content of fatty acids that could be efficiently converted into bioplastics such as polyhydroxyalkanoates (PHAs) by adequately performing substrate screening with producing bacterial strains and applying affordable pretreatments. One of the main challenges also relies on the difficulty to emulsify these fat-rich substrates within culture broth and make the fatty acids accessible for the producing bacteria. In this work, the potential of two fat-rich animal by-products, grease trap waste (GTW) and tallow-based jelly (TBJ), as inexpensive carbon sources for microbial growth and PHA production was evaluated for the first time. Upon substrate screening, using different pseudomonadal strains (P. resinovorans, P. putida GPo1, P. putida KT2440) and pretreatment conditions (autoclave-based, thermally-treated or saponified substrates), the highest growth and mcl-PHA production performance was obtained for P. resinovorans, thus producing up to 47% w/w mcl-PHA simply using hygienized GTW. The novel bioprocess described in this study was successfully scaled up to 5 and 15 L, resulting in CDW concentrations of 5.9-12.8 g L-1, mcl-PHA contents of 33-62% w/w and PHA yields of 0.1-0.4 gPHA g-1fatty acids, greatly depending on the substrate dosing strategy used and depending on culture conditions. Moreover, process robustness was confirmed along Test Series by the roughly stable monomeric composition of the biopolymer produced, mainly formed by 3-hydroxyoctanoate and 3-hydroxydecanoate. The research here conducted is crucial for the cost-effectiveness of mcl-PHA production along this new slaughterhouse waste-based biorefinery concept.
Collapse
Affiliation(s)
- Miguel G Acedos
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Moreno-Cid
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Fuensanta Verdú
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - José Antonio González
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Sara Tena
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Carlos López
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
30
|
Sustainability Challenges and Future Perspectives of Biopolymer. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Saratale RG, Cho SK, Saratale GD, Kumar M, Bharagava RN, Varjani S, Kadam AA, Ghodake GS, Palem RR, Mulla SI, Kim DS, Shin HS. An Overview of Recent Advancements in Microbial Polyhydroxyalkanoates (PHA) Production from Dark Fermentation Acidogenic Effluents: A Path to an Integrated Bio-Refinery. Polymers (Basel) 2021; 13:polym13244297. [PMID: 34960848 PMCID: PMC8704710 DOI: 10.3390/polym13244297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Global energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.g., volatile fatty acids (VFAs)] has potential as a reliable and sustainable carbon substrate for polyhydroxyalkanoate (PHA) synthesis. PHA, an important alternative to petrochemical based polymers has attracted interest recently, owing to its biodegradability and biocompatibility. This review illustrates methods for the conversion of acidogenic effluents (VFAs), such as acetate, butyrate, propionate, lactate, valerate, and mixtures of VFAs, into the value-added compound PHA. In addition, the review provides a comprehensive update on research progress of VFAs to PHA conversion and related enhancement techniques including optimization of operational parameters, fermentation strategies, and genetic engineering approaches. Finally, potential bottlenecks and future directions for the conversion of VFAs to PHA are outlined. This review offers insights to researchers on an integrated biorefinery route for sustainable and cost-effective bioplastics production.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea; (R.G.S.); (A.A.K.)
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggido, Korea; (S.-K.C.); (G.S.G.)
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea;
- Correspondence:
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University, Vidya Vihar 226 025, Uttar Pradesh, India;
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India;
| | - Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea; (R.G.S.); (A.A.K.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggido, Korea; (S.-K.C.); (G.S.G.)
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Seoul 10326, Korea;
| | - Sikandar I. Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India;
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea;
| |
Collapse
|
32
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
33
|
Cabrera F, Torres-Aravena Á, Pinto-Ibieta F, Campos JL, Jeison D. On-Line Control of Feast/Famine Cycles to Improve PHB Accumulation during Cultivation of Mixed Microbial Cultures in Sequential Batch Reactors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312611. [PMID: 34886335 PMCID: PMC8656583 DOI: 10.3390/ijerph182312611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022]
Abstract
Production of polyhydroxyalkanoates (PHA) has generated great interest as building blocks for bioplastic production. Their production using mixed microbial cultures represents an interesting alternative, since it enables the use of organic wastes as a carbon source. Feast/famine strategy is a common way to promote selection of microorganisms with PHA accumulation capacity. However, when using waste sources, changes in substrate concentration are expected, that may affect performance and efficiency of the process. This study showed how the dissolved oxygen level can be used for online control of the cycle time, ensuring that the desired feast/famine ratio is effectively applied. An operation strategy is presented and validated, using sequential batch reactors fed with acetate as the carbon source. Production of polyhydroxybutyrate (PHB) was studied, which is the expected type of PHA to be synthetized when using acetate as substrate. Two reactors were operated by applying the proposed control strategy, to provide F/F ratios of 0.2 and 0.6, respectively. A third reactor was operated with a fixed cycle time, for comparison purposes. Results showed that the reactor that operated at an F/F ratio of 0.6 promoted higher biomass productivity and PHB content, as a result of a better use of available time, preventing unnecessary long famine times. The application of the tested strategy is a simple a reliable way to promote a better performance of feast/famine-based bioreactors involving mixed microbial cultures for PHB production.
Collapse
Affiliation(s)
- Francisco Cabrera
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 01090, Temuco 4810101, Chile;
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile;
| | - Álvaro Torres-Aravena
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
| | - Fernanda Pinto-Ibieta
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile;
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar 2562340, Chile;
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Correspondence:
| |
Collapse
|
34
|
Khattab AM, Esmael ME, Farrag AA, Ibrahim MIA. Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization. Int J Biol Macromol 2021; 190:319-332. [PMID: 34411615 DOI: 10.1016/j.ijbiomac.2021.08.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The demand for the production of biodegradable plastics has significantly increased. Bioplastics have become an essential alternative to the threats of the daily consumable plastics, sourced from fossil fuels, to the environment. Polyhydroxyalkonates (PHAs) are a ubiquitous group of bioderived and biodegradable plastics, however their production is limited by the costs associated mainly with the carbon sources. Herein, this study aims to reduce the PHAs production cost by using a by-product from the dairy industry, i.e., cheese whey (CW), as a sole carbon source. The developed process recruits an aquatic isolate, Bacillus flexus Azu-A2, and is optimized via studying various parameters using the shaking flasks technique. The results showed that the maximum PHA production (0.95 g L-1) and PHA content (20.96%, w/w), were obtained after incubation period 72 h at 45 °C, 100 rpm agitation rate, 50% CWS concentration, pH 8.5, and 1.0 g L-1 ammonium chloride. Physiochemically, Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and energy-dispersive X-ray (EDX) techniques, emphasized the type of the extracted PHA as polyhydroxybutyrate (PHB). The thermal properties of PHB were measured using differential scanning calorimetry (DSC), recording melting transition temperature (Tm) at 170.96 °C. Furthermore, a scanning electron microscope (SEM) visualized a homogenous microporous structure for the thin PHB biofilm. In essence, this study highlights the ability of Bacillus flexus Azu-A2 to produce a good yield of highly purified PHB at reduced production cost from dairy CW. Consequently, the current study paves the way for an improved whey management strategy.
Collapse
Affiliation(s)
- Abdelrahman M Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mahmoud E Esmael
- Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ayman A Farrag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed I A Ibrahim
- Laboratory of Marine Chemistry, Marine Environment Division, National Institute of Oceanography and Fisheries, NIOF, Egypt.
| |
Collapse
|
35
|
Kondratyev V, Goryacheva D, Nepomnyaschiy A, Zubkov I, Shishlyannikov S, Sorokoumov P. Quantitative analysis of medium-chain polyhydroxyalkanoates in bacterial cells via gas chromatography-mass spectrometry: classical method revision and optimization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1992581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vadim Kondratyev
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Darya Goryacheva
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Anatoliy Nepomnyaschiy
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Ilya Zubkov
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Sergey Shishlyannikov
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| | - Pavel Sorokoumov
- Department of Biotechnology, All-Russia Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, St. Petersburg, Russia
| |
Collapse
|
36
|
Chang YC, Reddy MV, Imura K, Onodera R, Kamada N, Sano Y. Two-Stage Polyhydroxyalkanoates (PHA) Production from Cheese Whey Using Acetobacter pasteurianus C1 and Bacillus sp. CYR1. Bioengineering (Basel) 2021; 8:bioengineering8110157. [PMID: 34821723 PMCID: PMC8614810 DOI: 10.3390/bioengineering8110157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Cheese whey (CW) can be an excellent carbon source for polyhydroxyalkanoates (PHA)-producing bacteria. Most studies have used CW, which contains high amounts of lactose, however, there are no reports using raw CW, which has a relatively low amount of lactose. Therefore, in the present study, PHA production was evaluated in a two-stage process using the CW that contains low amounts of lactose. In first stage, the carbon source existing in CW was converted into acetic acid using the bacteria, Acetobacter pasteurianus C1, which was isolated from food waste. In the second stage, acetic acid produced in the first stage was converted into PHA using the bacteria, Bacillus sp. CYR-1. Under the condition of without the pretreatment of CW, acetic acid produced from CW was diluted at different folds and used for the production of PHA. Strain CYR-1 incubated with 10-fold diluted CW containing 5.7 g/L of acetic acid showed the higher PHA production (240.6 mg/L), whereas strain CYR-1 incubated with four-fold diluted CW containing 12.3 g/L of acetic acid showed 126 mg/L of PHA. After removing the excess protein present in CW, PHA production was further enhanced by 3.26 times (411 mg/L) at a four-fold dilution containing 11.3 g/L of acetic acid. Based on Fourier transform infrared spectroscopy (FT-IR), and 1H and 13C nuclear magnetic resonance (NMR) analyses, it was confirmed that the PHA produced from the two-stage process is poly-β-hydroxybutyrate (PHB). All bands appearing in the FT-IR spectrum and the chemical shifts of NMR nearly matched with those of standard PHB. Based on these studies, we concluded that a two-stage process using Acetobacter pasteurianus C1 and Bacillus sp. CYR-1 would be applicable for the production of PHB using CW containing a low amount of lactose.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
- Correspondence: ; Tel.: +81-143-46-5757
| | - Motakatla Venkateswar Reddy
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; or
| | - Kazuma Imura
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Rui Onodera
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Natsumi Kamada
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
| | - Yuki Sano
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| |
Collapse
|
37
|
Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life (Basel) 2021; 11:life11080807. [PMID: 34440551 PMCID: PMC8398495 DOI: 10.3390/life11080807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable polymers that are considered able to replace synthetic plastic because their biochemical characteristics are in some cases the same as other biodegradable polymers. However, due to the disadvantages of costly and non-renewable carbon sources, the production of PHA has been lower in the industrial sector against conventional plastics. At the same time, first-generation sugar-based cultivated feedstocks as substrates for PHA production threatens food security and considerably require other resources such as land and energy. Therefore, attempts have been made in pursuit of suitable sustainable and affordable sources of carbon to reduce production costs. Thus, in this review, we highlight utilising waste lignocellulosic feedstocks (LF) as a renewable and inexpensive carbon source to produce PHA. These waste feedstocks, second-generation plant lignocellulosic biomass, such as maize stoves, dedicated energy crops, rice straws, wood chips, are commonly available renewable biomass sources with a steady supply of about 150 billion tonnes per year of global yield. The generation of PHA from lignocellulose is still in its infancy, hence more screening of lignocellulosic materials and improvements in downstream processing and substrate pre-treatment are needed in the future to further advance the biopolymer sector.
Collapse
|
38
|
Asunis F, De Gioannis G, Francini G, Lombardi L, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 132:31-43. [PMID: 34304020 DOI: 10.1016/j.wasman.2021.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Cheese whey (CW) is the main by-product of the dairy industry and is often considered one of the main agro-industrial biowaste streams to handle, especially within the European Union, where the diary activities play an essential role in the agrarian economy. In the paper, Life Cycle Assessment (LCA) is used to analyse the feasibility of producing polyhydroxyalkanoates (PHA) as the main output of an innovative CW valorisation route which is benchmarked against a conventional anaerobic digestion (AD) process. To this aim, the LCA inventory data are derived from lab-scale PHA accumulation tests performed on real CW, while data from the literature of concern are used for modelling both the PHA extraction from the accumulating biomass and for the alternative CW valorisation through AD. The comparison shows that AD would have better environmental performances than the baseline PHA production scenario. For example, the climate change indicator values result 44.8 and -35.7 kg CO2 eq./t CW for the baseline PHA recovery and AD, respectively. LCA proved to be a useful tool to highlight the weak points of innovative processes and suggest proper improvements. Once improved and again analysed through the LCA, the PHA production process from CW shows that environmental performance comparable to AD may be achieved. With reference, again, to the climate change indicator the value can be reduced to -50.3 kg CO2 eq./t CW for the improved PHA production process.
Collapse
Affiliation(s)
- Fabiano Asunis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; IGAG - CNR, Istituto di Geologia Ambientale e Geoingegneria - Consiglio Nazionale delle Ricerche, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giovanni Francini
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Lidia Lombardi
- Niccolò Cusano University of Rome, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - Daniela Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
39
|
Melendez-Rodriguez B, Reis MAM, Carvalheira M, Sammon C, Cabedo L, Torres-Giner S, Lagaron JM. Development and Characterization of Electrospun Biopapers of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Derived from Cheese Whey with Varying 3-Hydroxyvalerate Contents. Biomacromolecules 2021; 22:2935-2953. [PMID: 34133120 PMCID: PMC8382252 DOI: 10.1021/acs.biomac.1c00353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/07/2021] [Indexed: 11/28/2022]
Abstract
In the present study, three different newly developed copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 20, 40, and 60 mol % contents in 3-hydroxyvalerate (3HV) were produced by the biotechnological process of mixed microbial cultures (MMCs) using cheese whey (CW), a by-product from the dairy industry, as feedstock. The CW-derived PHBV copolyesters were first purified and then processed by solution electrospinning, yielding fibers of approximately 2 μm in cross-section in all cases. The resultant electrospun PHBV mats were, thereafter, post-processed by annealing at different temperatures, below their maximum of melting, selected according to their 3HV content in order to obtain continuous films based on coalesced fibers, so-called biopapers. The resultant PHBV films were characterized in terms of their morphology, crystallinity, and mechanical and barrier properties to assess their potential application in food packaging. The CW-derived PHBV biopapers showed high contact transparency but a slightly yellow color. The fibers of the 20 mol % 3HV copolymer were seen to contain mostly poly(3-hydroxybutyrate) (PHB) crystals, the fibers of the 40 mol % 3HV copolymer a mixture of PHB and poly(3-hydroxyvalerate) (PHV) crystals and lowest crystallinity, and the fibers of the 60 mol % 3HV sample were mostly made of PHV crystals. To understand the interfiber coalesce process undergone by the materials during annealing, the crystalline morphology was also assessed by variable-temperature both combined small-angle and wide-angle X-ray scattering synchrotron and Fourier transform infrared experiments. From these experiments and, different from previously reported biopapers with lower 3HV contents, all samples were inferred to have a surface energy reduction mechanism for interfiber coalescence during annealing, which is thought to be activated by a temperature-induced decrease in molecular order. Due to their reduced crystallinity and molecular order, the CW-derived PHBV biopapers, especially the 40 mol % 3HV sample, were found to be more ductile and tougher. In terms of barrier properties, the three copolymers performed similarly to water and limonene, but to oxygen, the 40 mol % sample showed the highest relative permeability. Overall, the materials developed, which are compatible with the Circular Bioeconomy organic recycling strategy, can have an excellent potential as barrier interlayers or coatings of application interest in food packaging.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel
Materials and Nanotechnology Group, Institute of Agrochemistry and
Food Technology (IATA), Spanish Council
for Scientific Research (CSIC), Paterna 46980, Spain
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE,
Chemistry Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Monica Carvalheira
- UCIBIO-REQUIMTE,
Chemistry Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Chris Sammon
- Materials
and Engineering Research Institute, Sheffield
Hallam University, Sheffield S1 1WB, United Kingdom
| | - Luis Cabedo
- Polymers
and Advanced Materials Group (PIMA), Universitat
Jaume I (UJI), Castellón 12071, Spain
| | - Sergio Torres-Giner
- Novel
Materials and Nanotechnology Group, Institute of Agrochemistry and
Food Technology (IATA), Spanish Council
for Scientific Research (CSIC), Paterna 46980, Spain
| | - Jose Maria Lagaron
- Novel
Materials and Nanotechnology Group, Institute of Agrochemistry and
Food Technology (IATA), Spanish Council
for Scientific Research (CSIC), Paterna 46980, Spain
| |
Collapse
|
40
|
Jayakrishnan U, Deka D, Das G. Regulation of volatile fatty acid accumulation from waste: Effect of inoculum pretreatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1019-1031. [PMID: 33259657 DOI: 10.1002/wer.1490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The study investigates the implications of waste feedstock, inoculum origin, and pretreatment on volatile fatty acids accumulation (VFA). The acidogenic fermentation of the feedstocks, rice mill effluent (RME), and brewery effluent (BE) was studied using untreated and pretreated (cyclic heat-acid shock) brewery anaerobic sludge as inoculum. The pretreatment was successful in refining and stabilizing VFA production from the feedstocks. The fermentation of RME with pretreated sludge had an enhanced acetate yield of 0.37 ± 0.02 mgCOD/mgCOD, even to odd ratio of 20.97 ± 0.08 mg/mg and the highest butyrate yield of 0.39 ± 0.01 mgCOD/mgCOD compared to untreated system. The pretreated system had stability in COD and pH profile, while VFA content depends on the origin of inoculum. Pretreatment inhibited the carbon sinks and augmented acetate-butyrate type metabolism with stable performance. The fermentation of RME by pretreated sludge produced a higher even-numbered VFAs and enhanced even to odd ratio in comparison with fermentation of BE, thereby affecting polymer composition and property. PRACTITIONER POINTS: The pretreated system had stable acidification, chemical oxygen demand, and pH profile. The pretreated system had higher acetate and butyrate yield compared to the untreated system. Rice mill effluent acidified with pretreated sludge had the highest even to odd ratio, 20.97 mg/mg. The even to odd ratio for acidification of brewery effluent was insignificant. Pretreatment, the origin of sludge, and the effluent had a regulatory effect on acidification.
Collapse
Affiliation(s)
| | - Deepmoni Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopal Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
41
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
42
|
Abstract
Abstract
Polyhydroxyalkanoates (PHAs) are linear semicrystalline polyesters produced naturally by a wide range of microorganisms for carbon and energy storage. PHAs can be used as replacements for petroleum-based polyethylene (PE) and polypropylene (PP) in many industrial applications due to their biodegradability, excellent barrier, mechanical, and thermal properties. The overall industrial applications of PHAs are still very limited due to the high production cost and high stiffness and brittleness. Therefore, new novel cost-effective production method must be considered for the new generation of PHAs. One approach is based on using different type feedstocks and biowastes including food byproducts and industrial and manufacturing wastes, can lead to more competitive and cost-effective PHAs products. Modification of PHAs with different function groups such as carboxylic, hydroxyl, amine, epoxy, etc. is also a relatively new approach to create new functional materials with different industrial applications. In addition, blending PHA with biodegradable materials such as polylactide (PLA), poly(ε-caprolactone) (PCL), starch, and distiller’s dried grains with solubles (DDGS) is another approach to address the drawbacks of PHAs and will be summarized in this chapter. A series of compatibilizers with different architectures were successfully synthesized and used to improve the compatibility and interfacial adhesion between PHAs and PCL. Finer morphology and significantly improvement in the mechanical properties of PHA/PCL blends were observed with a certain type of block compatibilizer. In addition, the improvement in the blend morphology and mechanical properties were found to be strongly influenced by the compatibilizer architecture.
Collapse
Affiliation(s)
- Samy A. Madbouly
- School of Engineering , Behrend College, Pennsylvania State University , Erie , PA 16563 , USA
| |
Collapse
|
43
|
Wen Q, Liu S, Liu Y, Chen Z. Effect of inoculum and organic loading on mixed culture polyhydroxyalkanoate production using crude glycerol as the substrate. Int J Biol Macromol 2021; 182:1785-1792. [PMID: 34058210 DOI: 10.1016/j.ijbiomac.2021.05.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Two different sources of activated sludge were inoculated to select and enrich polyhydroxyalkanoate (PHA) producing culture from crude glycerol. The results showed that the sludge taken from the wastewater treatment plant with higher microbial diversity could enrich PHA producing culture with higher PHA synthesis capacity (25.93%) and specific PHA storage rate (0.27 mg COD/(mg·h)) in a short enrichment time, comparing to the sludge taken from the enriched PHA-producing culture using VFAs as the substrate. The enrichment performance under different organic loadings were investigated and similar microbial community composition, good operating stability and high PHA accumulation (SBR#1, 36.59%; SBR#2, 36.33%) was observed at 2000 mg COD/(L·d) when crude glycerol was used as the substrate. The maximum content of PHA was affected by the concentration of glycerol. Gardnerella was for the first time found to be the dominant genus in the PHA production system using crude glycerol. The research would guide the application of using crude glycerol resources for PHA production.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaojiao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
44
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
45
|
Dutt Tripathi A, Paul V, Agarwal A, Sharma R, Hashempour-Baltork F, Rashidi L, Khosravi Darani K. Production of polyhydroxyalkanoates using dairy processing waste - A review. BIORESOURCE TECHNOLOGY 2021; 326:124735. [PMID: 33508643 DOI: 10.1016/j.biortech.2021.124735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Bio-plastics are eco-friendly biopolymers finding tremendous application in the food and pharmaceutical industries. Bio-plastics have suitable physicochemical, mechanical properties, and do not cause any type of hazardous pollution upon disposal but have a high production cost. This can be minimized by screening potential bio-polymers producing strains, selecting inexpensive raw material, optimized cultivation conditions, and upstream processing. These bio-plastics specifically microbial-produced bio-polymers such as polyhydroxyalkanoates (PHAs) find application in food industries as packaging material owing to their desirable water barrier and gas permeability properties. The present review deals with the production, recovery, purification, characterization, and applications of PHAs. This is a comprehensive first review will also focus on different strategies adopted for efficient PHA production using dairy processing waste, its biosynthetic mechanism, metabolic engineering, kinetic aspects, and also biodegradability testing at the lab and pilot plant level. In addition to that, the authors will be emphasizing more on novel PHAs nanocomposites synthesis strategies and their commercial applicability.
Collapse
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Uttar Pradesh, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, Sikandra Road, New Delhi 110001, India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Fataneh Hashempour-Baltork
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran
| | - Ladan Rashidi
- Department of Food and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute, Karaj, Iran
| | - Kianoush Khosravi Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P. O. Box: 19395-4741, Tehran, Iran.
| |
Collapse
|
46
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
47
|
Asunis F, De Gioannis G, Dessì P, Isipato M, Lens PNL, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111240. [PMID: 32866754 DOI: 10.1016/j.jenvman.2020.111240] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
With an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues. This review critically analyses the different treatment options available for energy and materials recovery from cheese whey, their combinations and perspectives for implementation. Thus, instead of focusing on a specific valorisation platform, in the present review the most relevant aspects of each strategy are analysed to support the integration of different routes, in order to identify the most appropriate treatment train.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Paolo Dessì
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Marco Isipato
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy
| |
Collapse
|
48
|
Jayakrishnan U, Deka D, Das G. Influence of inoculum variation and nutrient availability on polyhydroxybutyrate production from activated sludge. Int J Biol Macromol 2020; 163:2032-2047. [PMID: 32949626 DOI: 10.1016/j.ijbiomac.2020.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Carbon recovery through polyhydroxybutyrate (PHB) production can create a value-added waste management system. Activated sludge as inoculum enables PHB production using cheap and renewable carbons source, bringing PHB at par to conventional plastics. The PHB accumulating potential of activated sludge needs to be improved to realize the objective. The interaction between the origin of activated sludge, petroleum refinery sludge and brewery sludge, and nitrogen availability was explored to effect culture enrichment, improve PHB accumulation, and polymer characteristics through aerobic dynamic feeding. Consequently, nitrogen excess and limitation enrichment of both sludges produced mix microbial culture with adequate PHB storage of 7.8 ± 0.05%, 14.4 ± 0.04%, 14.4 ± 0.04%, 13.4 ± 0.02% respectively. Batch accumulation revealed higher PHB accumulation of 76.1 ± 0.03% and 71.7 ± 0.05% under nitrogen limitation for PRS and BS enriched under nitrogen excess condition compared to any other combination. The higher decomposition temperature of 285 °C, 293 °C, and a lower melting point of 168 °C, 165 °C with a higher molecular weight of 4.3x105g/mol and semi-crystalline arrangement indicates the potential applications for extracted PHB. PHB production enhanced under nitrogen limited conditions with culture enriched under nitrogen excess condition. However, similar PHB storage, physiochemical property, and overlapping microbial community show an insignificant effect of sludge origin on PHB production.
Collapse
Affiliation(s)
- U Jayakrishnan
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Deepmoni Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
49
|
Defatted Chlorella biomass as a renewable carbon source for polyhydroxyalkanoates and carotenoids co-production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Ranganathan S, Dutta S, Moses JA, Anandharamakrishnan C. Utilization of food waste streams for the production of biopolymers. Heliyon 2020; 6:e04891. [PMID: 32995604 PMCID: PMC7502569 DOI: 10.1016/j.heliyon.2020.e04891] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/07/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023] Open
Abstract
Uncontrolled decomposition of agro-industrial waste leads to extensive contamination of water, land, and air. There is a tremendous amount of waste from various sources which causes serious environmental problems. The concern in the disposal problems has stimulated research interest in the valorization of waste streams. Valorization of the wastes not only reduces the volume of waste but also reduces the contamination to the environment. Waste from food industries has great potential as primary or secondary feedstocks for biopolymer production by extraction or fermentation with pre-treatment or without pre-treatment by solid-state fermentation to obtain fermentable sugars. Various types of waste can be used as substrates for the production of biomaterials but recently more focus has been observed on the agro-industrial wastes which have a high rate of production worldwide. This review collates in detail the different food wastes used for biopolymer, technologies for the production and characterization of the biopolymers, and their economic/technical viability.
Collapse
Affiliation(s)
- Saranya Ranganathan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|