1
|
Fortuin J, Hoffmeester LJ, Minnaar LS, den Haan R. Advancing cellulose utilization and engineering consolidated bioprocessing yeasts: current state and perspectives. Appl Microbiol Biotechnol 2025; 109:43. [PMID: 39939397 PMCID: PMC11821801 DOI: 10.1007/s00253-025-13426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Despite the lack of implementation of consolidated bioprocessing (CBP) at an industrial scale, this bioconversion strategy still holds significant potential as an economically viable solution for converting lignocellulosic biomass (LCB) into biofuels and green chemicals, provided an appropriate organism can be isolated or engineered. The use of Saccharomyces cerevisiae for this purpose requires, among other things, the development of a cellulase expression system within the yeast. Over the past three decades, numerous studies have reported the expression of cellulase-encoding genes, both individually and in combination, in S. cerevisiae. Various strategies have emerged to produce a core set of cellulases, with differing degrees of success. While one-step conversion of cellulosic substrates to ethanol has been reported, the resulting titers and productivities fall well below industrial requirements. In this review, we examine the strategies employed for cellulase expression in yeast, highlighting the successes in developing basic cellulolytic CBP-enabled yeasts. We also summarize recent advancements in rational strain design and engineering, exploring how these approaches can be further enhanced through modern synthetic biology tools to optimize CBP-enabled yeast strains for potential industrial applications. KEY POINTS: • S. cerevisiae's lack of cellulolytic ability warrants its engineering for industry. • Advancements in the expression of core sets of cellulases have been reported. • Rational engineering is needed to enhance cellulase secretion and strain robustness. • Insights gained from omics strategies will direct the future development of CBP strains.
Collapse
Affiliation(s)
- Jordan Fortuin
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Lazzlo J Hoffmeester
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Letitia S Minnaar
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
2
|
Tramontina R, Scopel E, Cardoso VGK, Martins M, da Silva MF, Flaibam B, Salvador MJ, Goldbeck R, Damasio A, Squina FM. Hydroxycinnamic Acid Extraction from Multiple Lignocellulosic Sources: Correlations with Substrate Composition and Taxonomy for Flavoring and Antioxidant Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28048-28059. [PMID: 39632368 DOI: 10.1021/acs.jafc.4c08540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The extraction of hydroxycinnamic acids (HCADs) is a strategy for lignocellulosic biomass valorization due to their high value-added nature and the possibility of application as flavoring and antioxidants. This study proposes correlations between the composition and taxonomy of 28 globally available agro-industrial feedstocks with the production of HCADs using chemometric tools. Principal component analysis indicated strong correlations between ferulic acid release and hemicellulose type and content, especially in grass biomasses. Conversely, p-coumaric acid release was mainly correlated with cellulose content across diverse taxonomic origins. Among the evaluated agro-industrial feedstocks, corn-based biomasses were identified as prime sources of ferulic acid after mild alkaline treatment, releasing up to 10.5 g kg-1 and producing hydrolysates with an antioxidant capacity up to 3.3 mmol Trolox equivalents g-1. Notably, sugar cane bagasse was the best source of p-coumaric acid, yielding 4.8 g kg-1. Corn hydrolysates were successfully converted into 4-vinylguaiacol using a genetically modified Saccharomyces cerevisiae strain, achieving high yields of 0.75 g L-1. This work enhances our understanding of HCAD sources and biomass valorization strategies, demonstrating potential applications in the food and cosmetics sectors.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório de Ciências Moleculares, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Eupidio Scopel
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | | | - Manoela Martins
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Marcos Fellipe da Silva
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Bárbara Flaibam
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | | | - Rosana Goldbeck
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | | | - Fabio Marcio Squina
- Laboratório de Ciências Moleculares, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| |
Collapse
|
3
|
de Oliveira Pereira I, Dos Santos ÂA, Guimarães NC, Lima CS, Zanella E, Matsushika A, Rabelo SC, Stambuk BU, Ienczak JL. First- and second-generation integrated process for bioethanol production: Fermentation of molasses diluted with hemicellulose hydrolysate by recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2024; 121:1314-1324. [PMID: 38178588 DOI: 10.1002/bit.28648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L-1 h-1, 0.39 g g-1 of ethanol yield, and 44.5 g L-1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co-fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co-fermentation employing a recombinant yeast.
Collapse
Affiliation(s)
- Isabela de Oliveira Pereira
- Department of Chemical Engineering and Food Engineering (EQA), Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ângela A Dos Santos
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Nick C Guimarães
- Department of Chemical Engineering and Food Engineering (EQA), Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cleilton S Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Lorena, Brazil
| | - Eduardo Zanella
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, College of Agriculture Sciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaciane L Ienczak
- Department of Chemical Engineering and Food Engineering (EQA), Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Dygas D, Kręgiel D, Berłowska J. Sugar Beet Pulp as a Biorefinery Substrate for Designing Feed. Molecules 2023; 28:2064. [PMID: 36903310 PMCID: PMC10004680 DOI: 10.3390/molecules28052064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
An example of the implementation of the principles of the circular economy is the use of sugar beet pulp as animal feed. Here, we investigate the possible use of yeast strains to enrich waste biomass in single-cell protein (SCP). The strains were evaluated for yeast growth (pour plate method), protein increment (Kjeldahl method), assimilation of free amino nitrogen (FAN), and reduction of crude fiber content. All the tested strains were able to grow on hydrolyzed sugar beet pulp-based medium. The greatest increases in protein content were observed for Candida utilis LOCK0021 and Saccharomyces cerevisiae Ethanol Red (ΔN = 2.33%) on fresh sugar beet pulp, and for Scheffersomyces stipitis NCYC1541 (ΔN = 3.04%) on dried sugar beet pulp. All the strains assimilated FAN from the culture medium. The largest reductions in the crude fiber content of the biomass were recorded for Saccharomyces cerevisiae Ethanol Red (Δ = 10.89%) on fresh sugar beet pulp and Candida utilis LOCK0021 (Δ = 15.05%) on dried sugar beet pulp. The results show that sugar beet pulp provides an excellent matrix for SCP and feed production.
Collapse
Affiliation(s)
- Dawid Dygas
- Department of Environmental Biotechnology, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Łódź, Poland
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Łódź, Poland
| | - Joanna Berłowska
- Department of Environmental Biotechnology, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Łódź, Poland
| |
Collapse
|
5
|
Lima CS, Neitzel T, Pirolla R, Dos Santos LV, Lenczak JL, Roberto IC, Rocha GJM. Metabolomic profiling of Spathaspora passalidarum fermentations reveals mechanisms that overcome hemicellulose hydrolysate inhibitors. Appl Microbiol Biotechnol 2022; 106:4075-4089. [PMID: 35622124 DOI: 10.1007/s00253-022-11987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms involved in tolerance to inhibitors is the first step in developing robust yeasts for industrial second-generation ethanol (E2G) production. Here, we used ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and MetaboAnalyst 4.0 for analysis of MS data to examine the changes in the metabolic profile of the yeast Spathaspora passalidarum during early fermentation of hemicellulosic hydrolysates containing high or low levels of inhibitors (referred to as control hydrolysate or CH and strategy hydrolysate or SH, respectively). During fermentation of SH, the maximum ethanol production was 16 g L-1 with a yield of 0.28 g g-1 and productivity of 0.22 g L-1 h-1, whereas maximum ethanol production in CH fermentation was 1.74 g L-1 with a yield of 0.11 g g-1 and productivity of 0.01 g L-1 h-1. The high level of inhibitors in CH induced complex physiological and biochemical responses related to stress tolerance in S. passalidarum. This yeast converted compounds with aldehyde groups (hydroxymethylfurfural, furfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) into less toxic compounds, and inhibitors were found to reduce cell viability and ethanol production. Intracellularly, high levels of inhibitors altered the energy homeostasis and redox balance, resulting in lower levels of ATP and NADPH, while that of glycolytic, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways were the most affected, being the catabolism of glucogenic amino acids, the main cellular response to inhibitor-induced stress. This metabolomic investigation reveals interesting targets for metabolic engineering of ethanologenic yeast strains tolerant against multiple inhibitors for E2G production. KEY POINTS: • Inhibitors in the hydrolysates affected the yeast's redox balance and energy status. • Inhibitors altered the glycolytic, pentose phosphate, TCA cycle and amino acid pathways. • S. passalidarum converted aldehyde groups into less toxic compounds.
Collapse
Affiliation(s)
- Cleilton Santos Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| | - Thiago Neitzel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.,Program in Bioenergy, Faculty of Food Engineering, State University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Renan Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil
| | - Leandro Vieira Dos Santos
- Senai Innovation Institute for Biotechnology, São Paulo, SP, 01130-000, Brazil.,Genetics and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, 13083-862, Brazil
| | - Jaciane Lutz Lenczak
- Department of Chemical Engineering and Food Engineering, University Campus - CTC, Federal University of Santa Catarina (UFSC), R. Do Biotério Central, Córrego Grande, s/n Florianópolis, SC, 88040-900, Brazil
| | - Inês Conceição Roberto
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil
| | - George J M Rocha
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Estrada Municipal Do Campinho, s/n, Campinho, Lorena, SP, 12602-810, Brazil. .,Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Rua Giuseppe Máximo Scolfaro 10.000, Campinas, SP, 13083-100, Brazil.
| |
Collapse
|
6
|
Pereira IDO, Dos Santos ÂA, Gonçalves DL, Purificação M, Guimarães NC, Tramontina R, Coutouné N, Zanella E, Matsushika A, Stambuk BU, Ienczak JL. Comparison of Spathaspora passalidarum and recombinant Saccharomyces cerevisiae for integration of first- and second-generation ethanol production. FEMS Yeast Res 2021; 21:6363686. [PMID: 34477865 DOI: 10.1093/femsyr/foab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
First-generation ethanol (E1G) is based on the fermentation of sugars released from saccharine or starch sources, while second-generation ethanol (E2G) is focused on the fermentation of sugars released from lignocellulosic feedstocks. During the fractionation process to release sugars from hemicelluloses (mainly xylose), some inhibitor compounds are released hindering fermentation. Thus, the biggest challenge of using hemicellulosic hydrolysate is selecting strains and processes able to efficiently ferment xylose and tolerate inhibitors. With the aim of diluting inhibitors, sugarcane molasses (80% of sucrose content) can be mixed to hemicellulosic hydrolysate in an integrated E1G-E2G process. Cofermentations of xylose and sucrose were evaluated for the native xylose consumer Spathaspora passalidarum and a recombinant Saccharomyces cerevisiae strain. The industrial S. cerevisiae strain CAT-1 was modified to overexpress the XYL1, XYL2 and XKS1 genes and a mutant ([4-59Δ]HXT1) version of the low-affinity HXT1 permease, generating strain MP-C5H1. Although S. passalidarum showed better results for xylose fermentation, this yeast showed intracellular sucrose hydrolysis and low sucrose consumption in microaerobic conditions. Recombinant S. cerevisiae showed the best performance for cofermentation, and a batch strategy at high cell density in bioreactor achieved unprecedented results of ethanol yield, titer and volumetric productivity in E1G-E2G production process.
Collapse
Affiliation(s)
- Isabela de Oliveira Pereira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ângela Alves Dos Santos
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Davi L Gonçalves
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Marcela Purificação
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick Candiotto Guimarães
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Robson Tramontina
- Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP 13083-852, Brazil.,Brazilian Biorenewable Laboratory, National Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil
| | - Natalia Coutouné
- Brazilian Biorenewable Laboratory, National Center for Research in Energy and Materials, Campinas, SP 13083-100, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP 13083-852, Brazil
| | - Eduardo Zanella
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Hiroshima 739-0046, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Jaciane Lutz Ienczak
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
7
|
Collograi KC, Pereira IDO, Neitzel T, Martinez-Jimenez FD, da Costa AC, Ienczak JL. Secretome analysis as a tool to elucidate bacterial contamination influence during second-generation ethanol production in a Melle-Boinot process. FEMS Yeast Res 2021; 21:6152288. [PMID: 33640963 DOI: 10.1093/femsyr/foab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
Melle-boinot fermentation process can be used to increase the ethanol productivity in second-generation ethanol process (2G). However, bacterial contamination can result in decreased ethanol production and sugars consumption. The available literature on microbial contamination in the 2G at the secretome level, microbial interactions and their impacts on ethanol production are scarce. In this context, the cultivation of Spathaspora passalidarum was studied in pure and co-culture with Lactobacillus fermentum under conditions that mimic the Melle-boinot process. Glucose consumption and ethanol production by S. passalidarum were not affected by bacterial contamination. Xylose consumption was higher in pure culture (11.54 ± 2.62, 16.23 ± 1.76 and 6.50 ± 1.68 g) than in co-culture fermentation (11.89 ± 0.38, 7.29 ± 0.49 and 5.54 ± 2.63 g) in cycle 2. The protein profile of the fermented broth was similar in pure and co-culture fermentation. The low effect of L. fermentum on fermentation and protein profile may be associated with the inhibition of the bacteria by the low nutrient fermentation broth, with centrifugation and/or with sulfuric acid washing. Thereby, considering that research on microbial contamination in the 2G fermentation process is very limited, particularly at the omics level, these findings may contribute to the lignocellulosic biomass fermentation industry.
Collapse
Affiliation(s)
- Karen Cristina Collograi
- School of Chemical Engineering, State University of Campinas- UNICAMP, 500 Albert Einstein Av, Campinas, SP 13083-852, Brazil
| | - Isabela de Oliveira Pereira
- Chemical Engineering and Food Engineering Department, Santa Catarina Federal University, CP 476, Florianópolis, SC 88040-900, Brazil
| | - Thiago Neitzel
- Brazilian Biorenewables National Laboratory (LNBR), National Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Máximo Scolfaro Street, Campinas, SP 13083-970, Brazil.,Ph. D. Program in Bioenergy - Faculty of Food Engineering, State University of Campinas- UNICAMP, 80 Monteiro Lobato St, Campinas, SP 13083-872, Brazil
| | - Fernan David Martinez-Jimenez
- School of Chemical Engineering, State University of Campinas- UNICAMP, 500 Albert Einstein Av, Campinas, SP 13083-852, Brazil.,Brazilian Biorenewables National Laboratory (LNBR), National Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Máximo Scolfaro Street, Campinas, SP 13083-970, Brazil
| | - Aline Carvalho da Costa
- School of Chemical Engineering, State University of Campinas- UNICAMP, 500 Albert Einstein Av, Campinas, SP 13083-852, Brazil
| | - Jaciane Lutz Ienczak
- Chemical Engineering and Food Engineering Department, Santa Catarina Federal University, CP 476, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
8
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
9
|
Asunis F, De Gioannis G, Dessì P, Isipato M, Lens PNL, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111240. [PMID: 32866754 DOI: 10.1016/j.jenvman.2020.111240] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
With an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues. This review critically analyses the different treatment options available for energy and materials recovery from cheese whey, their combinations and perspectives for implementation. Thus, instead of focusing on a specific valorisation platform, in the present review the most relevant aspects of each strategy are analysed to support the integration of different routes, in order to identify the most appropriate treatment train.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Paolo Dessì
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Marco Isipato
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy
| |
Collapse
|
10
|
Nosrati-Ghods N, Harrison ST, Isafiade AJ, Tai SL. Analysis of ethanol production from xylose using Pichia stipitis in microaerobic conditions through experimental observations and kinetic modelling. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Miyamoto RY, José AHM, Lopes MM, Rodrigues RC. Effectiveness of Baffled Flasks on the Growth of Scheffersomyces stipitis CBS 6054 Inoculum for Ethanol Production in Corncob Hemicellulosic Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Renan Y. Miyamoto
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Alvaro H. M. José
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Milena M. Lopes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rita C.L.B. Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
12
|
Biazi L, Martínez-Jimenez F, Bonan C, Soares L, Morais E, Ienczak J, Costa A. A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng 2020; 43:1509-1519. [DOI: 10.1007/s00449-020-02344-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 01/04/2023]
|
14
|
Tramontina R, Brenelli LB, Sousa A, Alves R, Zetty Arenas AM, Nascimento VM, Rabelo SC, Freitas S, Ruller R, Squina FM. Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms. Enzyme Microb Technol 2019; 135:109490. [PMID: 32146936 DOI: 10.1016/j.enzmictec.2019.109490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/07/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Bioproducts production using monomeric sugars derived from lignocellulosic biomass presents several challenges, such as to require a physicochemical pretreatment to improve its conversion yields. Hydrothermal lignocellulose pretreatment has several advantages and results in solid and liquid streams. The former is called hemicellulosic hydrolysate (HH), which contains inhibitory phenolic compounds and sugar degradation products that hinder microbial fermentation products from pentose sugars. Here, we developed and applied a novel enzyme process to detoxify HH. Initially, the design of experiments with different redox activities enzymes was carried out. The enzyme mixture containing the peroxidase (from Armoracia rusticana) together with superoxide dismutase (from Coptotermes gestroi) are the most effective to detoxify HH derived from sugarcane bagasse. Butanol fermentation by the bacteria Clostridium saccharoperbutylacetonicum and ethanol production by the yeast Scheffersomyces stipitis increased by 24.0× and 2.4×, respectively, relative to the untreated hemicellulosic hydrolysates. Detoxified HH was analyzed by chromatographic and spectrometric methods elucidating the mechanisms of phenolic compound modifications by enzymatic treatment. The enzyme mixture degraded and reduced the hydroxyphenyl- and feruloyl-derived units and polymerized the lignin fragments. This strategy uses biocatalysts under environmentally friendly conditions and could be applied in the fuel, food, and chemical industries.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório Nacional de Biorrenováveis (LNBR) Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Programa em Biociências e Tecnologia de Produtos Bioativos (BTPB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lívia Beatriz Brenelli
- Laboratório Nacional de Biorrenováveis (LNBR) Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Amanda Sousa
- Laboratório Nacional de Biorrenováveis (LNBR) Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | - Ana Maria Zetty Arenas
- Laboratório Nacional de Biorrenováveis (LNBR) Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Programa em Bioenergia, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, (UNICAMP), Campinas, SP, Brazil
| | - Viviane Marcos Nascimento
- Laboratório Nacional de Biorrenováveis (LNBR) Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Sarita Cândida Rabelo
- Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, São Paulo, Brazil
| | - Sindélia Freitas
- Laboratório Nacional de Biorrenováveis (LNBR) Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Programa em Bioenergia, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, (UNICAMP), Campinas, SP, Brazil; Faculdade de Engenharia Química (FEQ), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Roberto Ruller
- Laboratório de Bioquimica Geral e de Microorganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil; Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
| | - Fabio Marcio Squina
- Programa em Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
15
|
Li Y, Zhai R, Jiang X, Chen X, Yuan X, Liu Z, Jin M. Boosting Ethanol Productivity of Zymomonas mobilis 8b in Enzymatic Hydrolysate of Dilute Acid and Ammonia Pretreated Corn Stover Through Medium Optimization, High Cell Density Fermentation and Cell Recycling. Front Microbiol 2019; 10:2316. [PMID: 31636624 PMCID: PMC6787488 DOI: 10.3389/fmicb.2019.02316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
The presence of toxic degradation products in lignocellulosic hydrolysate typically reduced fermentation rates and xylose consumption rate, resulting in a decreased ethanol productivity. In the present study, Zymomonas mobilis 8b was investigated for high cell density fermentation with cell recycling to improve the ethanol productivity in lignocellulosic hydrolysate. The fermentation performances of Z. mobilis 8b at various conditions were first studied in yeast extract-tryptone medium. It was found that nutrient level was essential for glucose and xylose co-fermentation by Z. mobilis 8b and high cell density fermentation with cell recycling worked well in yeast extract-tryptone medium for 6 rounds fermentation. Z. mobilis 8b was then studied in enzymatic hydrolysates derived from dilute acid (DA) pretreated corn stover (CS) and ammonia pretreated CS for high cell density fermentation with cell recycling. Ethanol productivity obtained was around three times higher compared to traditional fermentation. Ethanol titer and metabolic yield were also enhanced with high cell density fermentation. Z. mobilis 8b cells showed high recyclability in ammonia pretreated CS hydrolysate.
Collapse
Affiliation(s)
- Ying Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaoxiao Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiangxue Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xinchuan Yuan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zhihua Liu
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
16
|
Zhao C, Sinumvayo JP, Zhang Y, Li Y. Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng 2019; 55:111-119. [DOI: 10.1016/j.ymben.2019.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
|
17
|
Farias D, Maugeri Filho F. Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Collograi KC, da Costa AC, Ienczak JL. Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum. Appl Microbiol Biotechnol 2019; 103:5039-5050. [DOI: 10.1007/s00253-019-09779-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
|
19
|
Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnol Lett 2019; 41:753-761. [DOI: 10.1007/s10529-019-02674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
|
20
|
Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must. Antonie van Leeuwenhoek 2019; 112:1177-1187. [PMID: 30830509 DOI: 10.1007/s10482-019-01250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
The presence of microbial contaminants is common in the sugarcane ethanol industry and can decrease process yield, reduce yeast cell viability and induce yeast cell flocculation. To evaluate the effect of microbial contamination on the fermentation process, we compared the use of sterilized and non-sterilized sugarcane must in the performance of Saccharomyces cerevisiae with similar fermentation conditions to those used in Brazilian mills. Non-sterilized sugarcane must had values of 103 and 108 CFU mL-1 of wild yeast and bacterial contamination, respectively; decreased total reducing sugar (TRS); and increased lactic and acetic acids, glycerol and ethanol concentrations during storage. During fermentation cycles with sterilized and non-sterilized sugarcane must, S. cerevisiae viability did not change, whereas ethanol yield varied from 74.1 to 80.2%, but it did not seem to be related to must microbial contamination. Ethanol productivity decreased throughout the fermentation cycles and was more pronounced in the last two fermentation cycles with non-sterilized must, but that may be related to the decrease in must TRS. High values of the ratio of total acid production per ethanol were reported at the end of the last two fermentation cycles conducted with non-sterilized must. Additionally, the values of wild yeast contamination increased from 102 to 103 CFU mL-1 and bacterial contamination increased from 104 to 106 CFU mL-1 when comparing the first and last fermentation cycles with non-sterilized must. In addition to the increase in microbial contamination and acid concentration, ethanol yield and yeast viability rates were not directly affected by the microbial contamination present in the non-sterilized sugarcane must.
Collapse
|
21
|
Nosrati-Ghods N, Harrison STL, Isafiade AJ, Tai SL. Ethanol from Biomass Hydrolysates by Efficient Fermentation of Glucose and Xylose - A Review. CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201800009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nosaibeh Nosrati-Ghods
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Adeniyi J. Isafiade
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Siew L. Tai
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
22
|
Lopes MR, Batista TM, Franco GR, Ribeiro LR, Santos ARO, Furtado C, Moreira RG, Goes-Neto A, Vital MJS, Rosa LH, Lachance MA, Rosa CA. Scheffersomyces stambukii f.a., sp. nov., a d-xylose-fermenting species isolated from rotting wood. Int J Syst Evol Microbiol 2018; 68:2306-2312. [PMID: 29786499 DOI: 10.1099/ijsem.0.002834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two isolates representing a new species of Scheffersomyces were isolated from rotting wood samples collected in an Amazonian forest ecosystem in Brazil. Analysis of the sequences of the D1/D2 domains showed that this new species is phylogenetically related to Scheffersomyces NYMU 15730, a species without a formal description, and the two are in an early emerging position with respect to the xylose-fermenting subclade containing Scheffersomyces titanus and Scheffersomyces stipitis. Phylogenomic analyses using 474 orthologous genes placed the new species in an intermediary position between Scheffersomyces species and the larger genus Spathaspora and the Candida albicans/Lodderomyces clade. The novel species, Scheffersomyces stambukii f.a., sp. nov., is proposed to accommodate these isolates. The type strain of Scheffersomyces stambukii sp. nov. is UFMG-CM-Y427T (=CBS 14217T). The MycoBank number is MB 824093. In addition, we studied the xylose metabolism of this new species.
Collapse
Affiliation(s)
- Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thiago M Batista
- Departamento de Bioquímica e Imunologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucas R Ribeiro
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Rennan G Moreira
- Laboratório Multiusuário de Genômica, ICB. C.P. 486, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aristóteles Goes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcos J S Vital
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
23
|
Nakanishi SC, Soares LB, Biazi LE, Nascimento VM, Costa AC, Rocha GJM, Ienczak JL. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate bySpathaspora passalidarumandScheffersomyces stipitis. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26357] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Simone C. Nakanishi
- Departamento de Biotecnologia, Escola de Engenharia de Lorena-USP; Estrada Municipal do Campinho; s/n, Lorena, SP CEP: 12602-810 Lorena SP Brasil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Lauren B. Soares
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Luiz Eduardo Biazi
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
- Faculdade de Engenharia Química, UNICAMP; Cidade Universitária Zeferino Vaz Av. Albert Einstein; Campinas SP Brasil
| | - Viviane M. Nascimento
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Aline C. Costa
- Faculdade de Engenharia Química, UNICAMP; Cidade Universitária Zeferino Vaz Av. Albert Einstein; Campinas SP Brasil
| | - George Jackson M. Rocha
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| | - Jaciane L. Ienczak
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas SP Brasil
| |
Collapse
|
24
|
Tramontina R, Franco Cairo JPL, Liberato MV, Mandelli F, Sousa A, Santos S, Rabelo SC, Campos B, Ienczak J, Ruller R, Damásio ARL, Squina FM. The Coptotermes gestroi aldo-keto reductase: a multipurpose enzyme for biorefinery applications. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:4. [PMID: 28053664 PMCID: PMC5209882 DOI: 10.1186/s13068-016-0688-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/14/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND In nature, termites can be considered as a model biological system for biofuel research based on their remarkable efficiency for lignocellulosic biomass conversion. Redox enzymes are of interest in second-generation ethanol production because they promote synergic enzymatic activity with classical hydrolases for lignocellulose saccharification and inactivate fermentation inhibitory compounds produced after lignocellulose pretreatment steps. RESULTS In the present study, the biochemical and structural characteristics of the Coptotermes gestroi aldo-keto reductase (CgAKR-1) were comprehensively investigated. CgAKR-1 displayed major structural differences compared with others AKRs, including the differences in the amino acid composition of the substrate-binding site, providing basis for classification as a founding member of a new AKR subfamily (family AKR1 I). Immunolocalization assays with anti-CgAKR-1 antibodies resulted in strong fluorescence in the salivary gland, proventriculus, and foregut. CgAKR-1 supplementation caused a 32% reduction in phenolic aldehydes, such as furfural, which act as fermentation inhibitors of hemicellulosic hydrolysates, and improved ethanol fermentation by the xylose-fermenting yeast Scheffersomyces stipitis by 45%. We observed synergistic enzymatic interactions between CgAKR-1 and commercial cellulosic cocktail for sugarcane bagasse saccharification, with a maximum synergism degree of 2.17 for sugar release. Our data indicated that additive enzymatic activity could be mediated by reactive oxygen species because CgAKR-1 could produce hydrogen peroxide. CONCLUSION In summary, we identified the founding member of an AKRI subfamily with a potential role in the termite digestome. CgAKR-1 was found to be a multipurpose enzyme with potential biotechnological applications. The present work provided a basis for the development and application of integrative and multipurpose enzymes in the bioethanol production chain.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
- Programa de Pós Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB)-Instituto de Biologia-CP 6109, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP Brazil
| | - João Paulo L. Franco Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Marcelo V. Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Fernanda Mandelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Amanda Sousa
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
- Programa de Pós Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB)-Instituto de Biologia-CP 6109, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP Brazil
| | - Samantha Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Sarita Cândida Rabelo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Bruna Campos
- Brazilian Biosciences National Laboratory (LNBio), from the Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Jaciane Ienczak
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - André R. L. Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Fabio Marcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| |
Collapse
|
25
|
Ma K, He M, You H, Pan L, Hu G, Cui Y, Maeda T. Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis. RSC Adv 2017. [DOI: 10.1039/c7ra04049k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel process for bioethanol production from lignocellulosic biomass using an inhibitor-tolerant mutant strain of Scheffersomyces stipitis and cell-recycling continuous fermentation.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering
- Dalian University
- Dalian 116622
- PR China
- Key Laboratory of Development and Application of Rural Renewable Energy
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy
- Ministry of Agriculture
- Biomass Energy Technology Research Centre
- Biogas Institute of Ministry of Agriculture
- Chengdu 610041
| | - Huiyan You
- College of Environmental and Chemical Engineering
- Dalian University
- Dalian 116622
- PR China
| | - Liwei Pan
- College of Environmental and Chemical Engineering
- Dalian University
- Dalian 116622
- PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy
- Ministry of Agriculture
- Biomass Energy Technology Research Centre
- Biogas Institute of Ministry of Agriculture
- Chengdu 610041
| | - Yubo Cui
- Department of Environmental Science and Technology
- Dalian Nationalities University
- Dalian 116600
- PR China
| | - Toshinari Maeda
- Department of Biological Functions Engineering
- Graduate School of Life Science and Systems Engineering
- Kyushu Institute of Technology
- Kitakyushu 808-0196
- Japan
| |
Collapse
|