1
|
Pompa-Pernía A, Molina S, Cherta L, Martínez-García L, Landaburu-Aguirre J. Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling. MEMBRANES 2024; 14:174. [PMID: 39195426 DOI: 10.3390/membranes14080174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different membrane types: microfiltration (MF), commercial ultrafiltration (c-UF), and recycled ultrafiltration (r-UF) membranes. Performance was assessed using synthetic urban wastewater spiked with PS-NPs, focusing on membrane efficiency, fouling behavior, and microbial community shifts. All aMBR systems achieved high organic matter removal, exceeding a 97% COD reduction in both the control and PS-exposed reactors. While low concentrations of PS-NPs did not significantly impact the sludge settleability or soluble microbial products initially, a higher accumulation increased the carbohydrate concentrations, indicating a protective bacterial response. The microbial community composition also adapted over time under polystyrene stress. All membrane types exhibited substantial NP removal; however, the presence of nano-sized PS particles negatively affected the membrane performance, enhancing the fouling phenomena and increasing transmembrane pressure. Despite this, the r-UF membrane demonstrated comparable efficiency to c-UF, suggesting its potential for sustainable applications. Advanced characterization techniques including pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were employed for NP detection and quantification.
Collapse
Affiliation(s)
- Anamary Pompa-Pernía
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | | | | |
Collapse
|
2
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Torre A, Vázquez-Rowe I, Parodi E, Kahhat R. A multi-criteria decision framework for circular wastewater systems in emerging megacities of the Global South. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169085. [PMID: 38056636 DOI: 10.1016/j.scitotenv.2023.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Lima faces increasing water stress due to demographic growth, climate change and outdated water management infrastructure. Moreover, its highly centralized wastewater management system is currently unable to recover water or other resources. Hence, the primary aim of this study is to identify suitable wastewater treatment alternatives for both eutrophication mitigation and indirect potable reuse (IPR). For eutrophication mitigation, we examined MLE, Bardenpho, Step-feed, HF-MBR, and FS-MBR. For IPR, we considered secondary treatment+UF + RO + AOP or MBR + RO + AOP. These alternatives form part of a WWTP network at a district level, aiding Lima's pursuit of a circular economy approach. This perspective allows reducing environmental impacts through resource recovery, making the system more resilient to disasters and future water shortages. The methods used to assess these scenarios were Life Cycle Assessment for the environmental dimension; Life Cycle Costing for the economic perspective; and Multi-Criteria Decision Analysis to integrate both the quantitative tools aforementioned and qualitative criteria for social and techno-operational dimensions, which combined, strengthen the decision-making process. The decision-making steered towards Bardenpho for eutrophication abatement when environmental and economic criteria were prioritized or when the four criteria were equally weighted, while HF-MBR was the preferred option when techno-operational and social aspects were emphasized. In this scenario, global warming (GW) impacts ranged from 0.23 to 0.27 kg CO2eq, eutrophication mitigation varied from 6.44 to 7.29 g PO4- equivalent, and costs ranged between 0.12 and 0.17 €/m3. Conversely, HF-MBR + RO + AOP showed the best performance when IPR was sought from the outset. In the IPR scenario, GW impacts were significantly higher, at 0.46-0.51 kg CO2eq, eutrophication abatement was above 98 % and costs increased to ca. 0.44 €/m3.
Collapse
Affiliation(s)
- Andre Torre
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ian Vázquez-Rowe
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru.
| | - Eduardo Parodi
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ramzy Kahhat
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| |
Collapse
|
4
|
Fu L, Wang P, Wu C, Zhou Y, Song Y, Guo S, Li Z, Zhou J. Upgrade of the biggest catalytic ozonation wastewater treatment plant in China: From pollution control to carbon reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119421. [PMID: 37939466 DOI: 10.1016/j.jenvman.2023.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Catalytic ozonation is a widely used effective technology in advanced treatment for the removal of refractory organics from wastewater. However, it is also a highly energy-consuming technology, usually accounting for 30%∼40% of the total electricity consumption of a wastewater treatment plant (WWTP). The O3 consumption per unit of COD removed (g-O3/g-COD) is usually higher than 1.5 g-O3/g-COD, and the total carbon emission from catalytic ozonation is usually higher than 393.12 kgCO2 e/m3 of wastewater. In this study, we investigated an energy reduction strategy for the biggest catalytic ozonation WWTP, from laboratory-scale experimentation to corresponding engineering application. Laboratory-scale experiments showed that the mass transfer rate of dissolved O3 to the catalyst surface is crucial for COD removal efficiency. To improve the efficiency of catalytic ozonation, adding effluent backflow is a simple method that can enhance the removal of extracellular polymeric substances (EPS) from the catalyst surface and promote surface exposure. In the pilot-scale experiment (48 m3/d), when the backflow ratio increased from 0% to 100% (the optimal value), the proteins in EPS on the catalyst surface decreased significantly by 66.7%. The corresponding O3 consumption per unit of COD removed was reduced from 2.0 to 1.0 g-O3/g-COD. Furthermore, in the engineering application (52,000 m3/d) with a backflow ratio of 100%, the average effluent COD reduced from 52.0 to 43.3 mg/L, and the O3 consumption per unit of COD removed decreased from 0.98 to 0.69 g-O3/g-COD. In terms of carbon reduction, the indirect carbon emission reduction was approximately 3.0 × 103 t CO2 e/a. This study demonstrates the advantages of catalytic ozonation improvement and provides an engineering model of energy conversation and carbon emission reduction for over 35 similar WWTPs in China.
Collapse
Affiliation(s)
- Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Panxin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yudong Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Shujun Guo
- Jilin Petrochemical Wastewater Treatment Plant, Jilin Petrochemical Company of PetroChina, Jilin, 132000, China
| | - Zhimin Li
- Jilin Petrochemical Wastewater Treatment Plant, Jilin Petrochemical Company of PetroChina, Jilin, 132000, China
| | - Jian Zhou
- Jilin Petrochemical Wastewater Treatment Plant, Jilin Petrochemical Company of PetroChina, Jilin, 132000, China
| |
Collapse
|
5
|
Wang K, Zhang H, Shen Y, Li J, Zhou W, Song H, Liu M, Wang H. Impact of salinity on anaerobic ceramic membrane bioreactor for textile wastewater treatment: Process performance, membrane fouling and machine learning models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118717. [PMID: 37536141 DOI: 10.1016/j.jenvman.2023.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) shows great potential for textile wastewater treatment, but high salinity in the influent may undermine its performance. This study evaluated the impact of salinity on the treatment performance of an upflow anaerobic sludge blanket (UASB) configured AnMBR using a flat sheet ceramic membrane. The salinity was stepwise increased (0, 5, 10 and 20 g/L) in four phases of the AnMBR operation. Results indicated that increased salinity jeopardized the COD removal efficiency of AnMBR from 92% to 73%, but had a marginal effect on dye removal efficacy (90-96%). Low salinity (5 g/L) boosted the biogas production whilst high salinity (>10 g/L) had a negative impact. Additionally, the increase of salinity resulted in the soluble microbial production (SMP) concentration soar and membrane fouling rate increase, peaking at a salinity of 10 g/L (Phase III) and recovering back to a lower level at a salinity of 20 g/L (Phase IV). This indicated a transition occurrence at a salinity of 10 g/L (Phase III). The microbial diversity analyses further suggested a transition from salinity-sensitive microbes (Aminiphilus, Caldatribacterium, Mesotoga, Methanobrevibacter, Methanobacterium, Methanosaeta) to salinity-tolerant microbes (Longilinea, Ignavibacterium, Rhodovarius, Bosea and Flexilinea). This transition can be associated with the increase SMP concentration and more severe membrane fouling in Phase III, which were mitigated after a new equilibrium was reached when the microbial consortium acclimatized to the high salinity. Finally, a machine learning model of the Adaboost algorithm was established to predict COD removal under different salinities. Importantly, this study revealed that AnMBR process performance and membrane operation can be maintained for high salinity textile wastewater treatment with a halophilic microbial community growth under high-salinity selection pressure.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Architecture and Environment, Sichuan University, Chengdu, 610000, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, Zhejiang, China
| | - Haoliang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiale Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wu Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hualong Song
- Shaoxing Water Treatment Development Co., Ltd, Shaoxing, 312074, Zhejiang, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
7
|
Chakraborty S, Bashir Y, Sirotiya V, Ahirwar A, Das S, Vinayak V. Role of bacterial quorum sensing and quenching mechanism in the efficient operation of microbial electrochemical technologies: A state-of-the-art review. Heliyon 2023; 9:e16205. [PMID: 37215776 PMCID: PMC10199210 DOI: 10.1016/j.heliyon.2023.e16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Microbial electrochemical technologies (METs) are a group of innovative technologies that produce valuables like bioelectricity and biofuels with the simultaneous treatment of wastewater from microorganisms known as electroactive microorganisms. The electroactive microorganisms are capable of transferring electrons to the anode of a MET through various metabolic pathways such as direct (via cytochrome or pili) or indirect (through transporters) transfer. Though this technology is promising, the inferior yield of valuables and the high cost of reactor fabrication are presently impeding the large-scale application of this technology. Therefore, to overcome these major bottlenecks, a lot of research has been dedicated to the application of bacterial signalling, for instance, quorum sensing (QS) and quorum quenching (QQ) mechanisms in METs to improve its efficacy in order to achieve a higher power density and to make it more cost-effective. The QS circuit in bacteria produces auto-inducer signal molecules, which enhances the biofilm-forming ability and regulates the bacterial attachment on the electrode of METs. On the other hand, the QQ circuit can effectively function as an antifouling agent for the membranes used in METs and microbial membrane bioreactors, which is imperative for their stable long-term operation. This state-of-the-art review thus distinctly describes in detail the interaction between the QQ and QS systems in bacteria employed in METs to generate value-added by-products, antifouling strategies, and the recent applications of the signalling mechanisms in METs to improve their yield. Further, the article also throws some light on the recent advancements and the challenges faced while incorporating QS and QQ mechanisms in various types of METs. Thus, this review article will help budding researchers in upscaling METs with the integration of the QS signalling mechanism in METs.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Yasser Bashir
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| |
Collapse
|
8
|
Wang K, Ye Q, Shen Y, Wang Y, Hong Q, Zhang C, Liu M, Wang H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. MEMBRANES 2023; 13:194. [PMID: 36837697 PMCID: PMC9960794 DOI: 10.3390/membranes13020194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactors (MBRs) are frequently used to treat municipal wastewater, but membrane fouling is still the main weakness of this technology. Additionally, the low carbon-nitrogen (C/N) ratio influent has been shown to not only increase the membrane fouling, but also introduce challenges to meet the effluent discharge standard for nitrogen removal. Herein, the authors addressed the challenges by adding cost-effective biochar. The results suggested that the biochar addition can enable membrane fouling alleviation and nitrogen removal improvement. The reduced membrane fouling can be ascribed to the biochar adsorption capacity, which facilitates to form bigger flocs with carbon skeleton in biochar as a core. As a result, the biochar addition significantly altered the mixed liquor suspension with soluble microbial product (SMP) concentration reduction of approximately 14%, lower SMP protein/polysaccharide ratio from 0.28 ± 0.02 to 0.22 ± 0.03, smaller SMP molecular weight and bigger sludge particle size from 67.68 ± 6.9 μm to 113.47 ± 4.8 μm. The nitrogen removal is also dramatically improved after biochar addition, which can be due to the initial carbon source release from biochar, and formation of aerobic-anaerobic microstructures. Microbial diversity analysis results suggested more accumulation of denitrification microbes including norank_f__JG30-KF-CM45 and Plasticicumulans. Less relative abundance of Aeromonas after biochar addition suggested less extracellular polymer substance (EPS) secretion and lower membrane fouling rate.
Collapse
Affiliation(s)
- Kanming Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoqiao Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yajing Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiankun Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenlong Zhang
- Ningbo Communications Planning Institute Co., Ltd., Ningbo 315100, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Xue M, Gao H, Dong X, Zhan M, Yang G, Yu R. Promotion and mechanisms of Bdellovibrio sp. Y38 on membrane fouling alleviation in membrane bioreactor. ENVIRONMENTAL RESEARCH 2022; 212:113593. [PMID: 35660406 DOI: 10.1016/j.envres.2022.113593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling is a major bottleneck limiting the widespread application of membrane bioreactors (MBR). In this study, Bdellovibrio sp. Y38, an obligate bacteriophage bacterium of Bdellovibrio-and-like organisms (BALOs), was enriched into highly concentrated culture medium (106-107 PFU/mL), and daily dosed into the MBR to investigate its effects on membrane fouling mitigation. The strain Y38 prolonged the membrane fouling cycle from 73 days to 90 days, indicating its membrane fouling alleviation potentials. The concentration of BALOs was increased 625 times higher than the control group after the whole operation, resulting in the concentration of chemical oxygen demand and nucleic acids in the liquid phase of the MBR system being significantly increased by 169.8 ± 1.5% and 126.7 ± 2.2%, respectively. The biomass growth rate was reduced by 27.2 ± 0.7% from day 0 to day 54. These results indicated the predation potential of Bdellovibrio sp. Y38 on the microorganisms in the sludge. The improvement of homogenized sludge and filtration and settling performance by the strain Y38 alleviated the membrane fouling. Compared with the control group, the macromolecular proteins in SMP and EPS were partially declined, and the polysaccharide in EPS decreased by 14.0 ± 3.9%, and the ratios of protein content to polysaccharide content (PN/PS) in SMP and EPS significantly increased by 35.6 ± 16.8% and 57.8 ± 6.1% at the middle stage, respectively, indicating the strain Y38 could alleviate membrane fouling by reducing and modifying SMP and EPS. Furthermore, the relative abundance of γ-proteobacteria decreased from 13.2% to 5.1% at the pre-middle stage, and Planctomycetes decreased from 1.5% to 0.8% at the end-stage, which were probably responsible for the membrane fouling mitigation. In addition, the strain Y38 had few impacts on the water treatment performance of MBR. There findings provide a promising strategy for in situ membrane pollution mitigation via exogenous additions of BALOs.
Collapse
Affiliation(s)
- Mengting Xue
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaona Dong
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Guangping Yang
- Nanjing Chinair Envir Sci-Tech Co., Ltd., Nanjing, Jiangsu, 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
10
|
Yang Y, Bar-Zeev E, Oron G, Herzberg M, Bernstein R. Biofilm Formation and Biofouling Development on Different Ultrafiltration Membranes by Natural Anaerobes from an Anaerobic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10339-10348. [PMID: 35786926 DOI: 10.1021/acs.est.2c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofouling in anaerobic membrane bioreactors (AnMBRs) has not been studied widely. Moreover, the effect of membrane surface properties on biofilm formation beyond initial deposition is controversial. We investigated biofouling with polyvinyldifluoride, polyacrylonitrile, and zwitterion-modified polyethersulfone ultrafiltration membranes having different properties during 72 h filtration using natural anaerobes isolated from AnMBR and analyzed biofilm characteristics by physicochemical and molecular techniques. A decrease in membrane performance was positively correlated with biofilm formation on polyvinyldifluoride and polyacrylonitrile membranes, and as expected, physical cleaning effectively mitigated biofilm on hydrophilic and low-roughness membranes. Surprisingly, while the biofilm on the hydrophilic and low-surface roughness zwitterion-modified membrane was significantly impaired, the impact on transmembrane pressure was the highest. This was ascribed to the formation of a soft compressible thin biofilm with high hydraulic resistance, and internal clogging and pore blocking due to high pore-size distribution. Anaerobe community analysis demonstrated some selection between the bulk and biofilm anaerobes and differences in the relative abundance of the dominant anaerobes among the membranes. However, correlation analyses revealed that all membrane properties studied affected microbial communities' composition, highlighting the system's complexity. Overall, our findings indicate that the membrane properties can affect biofilm formation and the anaerobic microbial population but not necessarily alleviate biofouling.
Collapse
Affiliation(s)
- Yang Yang
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Gideon Oron
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
11
|
Ahsani M, Oghyanous FA, Meyer J, Ulbricht M, Yegani R. PVDF membranes modified with diblock copolymer PEO-b-PMMA as additive: Effects of copolymer and barrier pore size on filtration performance and fouling in a membrane bioreactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
13
|
Zhang N, Lee HJ, Wu Y, Ganzoury MA, de Lannoy CF. Integrating biofouling sensing with fouling mitigation in a two-electrode electrically conductive membrane filtration system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
He H, Xin X, Qiu W, Li D, Liu Z, Ma J. Role of nano-Fe 3O 4 particle on improving membrane bioreactor (MBR) performance: Alleviating membrane fouling and microbial mechanism. WATER RESEARCH 2022; 209:117897. [PMID: 34861438 DOI: 10.1016/j.watres.2021.117897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
This study would investigate the effect of nano-Fe3O4 particles on the performance of membrane bioreactor (MBR), including membrane fouling, membrane rejection and microbial community. It can effectively alleviate membrane fouling and improve the effluent quality in MBR by bio-effect rather than nanoparticle adsorption. The lowest membrane fouling resistance was achieved at R4-MBR (sludge and membrane surface with nano-Fe3O4), which decreased by 46.08%. Meanwhile, R3-MBR (sludge with nano-Fe3O4) had the lowest concentration of COD in effluent which was below 20 mg/L in the stable phase of MBR operation. After applying nano-Fe3O4, the content of extracellular polymeric substances (EPS) and soluble microbial products (SMP) were both reduced with a lower molecular weight. From the microbial community analysis, the abundance of Proteobacteria increased from 25.06 to 45.11% at the phylum level in R3-MBR. It contributed to removing organic substances in MBRs. Moreover, the nano-Fe3O4 restricted Bacteroidetes growth, especially in R4-MBR, leading to a more excellent performance of membrane flux. Besides, the applied nano-Fe3O4 promoted the abundance of Quorum Quenching (QQ) microorganism, and declined the percentage of Quorum Sensing (QS) bacteria. Then, a lower content of N-Acyl-l-Homoserine Lactones (AHLs) in containing nano-Fe3O4 sludge. That was also prone to control membrane fouling. Overall, this study indicates the nano-Fe3O4 particle is appropriate for elevating MBR performance, such as membrane fouling and effluent quality, by bio-effect.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Chen C, Sun M, Chang J, Liu Z, Zhu X, Xiao K, Song G, Wang H, Liu G, Huang X. Unravelling temperature-dependent fouling mechanism in a pilot-scale anaerobic membrane bioreactor via statistical modelling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Masigol M, Radaha EL, Kannan AD, Salberg AG, Fattahi N, Parameswaran P, Hansen RR. Polymer Surface Dissection for Correlated Microscopic and Compositional Analysis of Bacterial Aggregates during Membrane Biofouling. ACS APPLIED BIO MATERIALS 2022; 5:134-145. [PMID: 35014824 DOI: 10.1021/acsabm.1c00971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multispecies biofilms are a common limitation in membrane bioreactors, causing membrane clogging, degradation, and failure. There is a poor understanding of biological fouling mechanisms in these systems due to the limited number of experimental techniques useful for probing microbial interactions at the membrane interface. Here, we develop a new experimental method, termed polymer surface dissection (PSD), to investigate multispecies assembly processes over membrane surfaces. The PSD method uses photodegradable polyethylene glycol hydrogels functionalized with bioaffinity ligands to bind and detach microscale, microbial aggregates from the membrane for microscopic observation. Subsequent exposure of the hydrogel to high resolution, patterned UV light allows for controlled release of any selected aggregate of desired size at high purity for DNA extraction. Follow-up 16S community analysis reveals aggregate composition, correlating microscopic images with the bacterial community structure. The optimized approach can isolate aggregates with microscale spatial precision and yields genomic DNA at sufficient quantity and quality for sequencing from aggregates with areas as low as 2000 μm2, without the need of culturing for sample enrichment. To demonstrate the value of the approach, PSD was used to reveal the composition of microscale aggregates of different sizes during early-stage biofouling of aerobic wastewater communities over PVDF membranes. Larger aggregates exhibited lower diversity of bacterial communities, and a shift in the community structure was found as aggregate size increased to areas between 25,000 and 45,000 μm2, below which aggregates were more enriched in Bacteroidetes and above which aggregates were more enriched with Proteobacteria. The findings demonstrate that community succession can be observed within microscale aggregates and that the PSD method is useful for identification and characterization of early colonizing bacteria that drive biofouling on membrane surfaces.
Collapse
Affiliation(s)
- Mohammadali Masigol
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Esther L Radaha
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Arvind D Kannan
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Abigail G Salberg
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Niloufar Fattahi
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryan R Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
17
|
Roles of initial bacterial attachment and growth in the biofouling development on the microfiltration membrane: From viewpoints of individual cell and interfacial interaction energy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
The Influence of Different Operation Conditions on the Treatment of Mariculture Wastewater by the Combined System of Anoxic Filter and Membrane Bioreactor. MEMBRANES 2021; 11:membranes11100729. [PMID: 34677495 PMCID: PMC8539745 DOI: 10.3390/membranes11100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022]
Abstract
The mariculture wastewater treatment performance for the combined system of anoxic filter and membrane bioreactor (AF-MBR) was investigated under different hydraulic retention times (HRTs), influent alkalinity, and influent ammonia nitrogen load. The results showed that the removal efficiencies of TOC and total nitrogen were slightly better at the HRT of 8 h than at other HRTs, and the phosphate removal efficiency decreased with the increase of HRT. With the increase of influent alkalinity, the removal of TOC and phosphate did not change significantly. With the increase of influent alkalinity from 300 mg/L to 500 mg/L, the total nitrogen removal efficiency of AF-MBR was improved, but the change of the removal efficiency was not obvious when the alkalinity increased from 500 mg/L to 600 mg/L. When the influent concentration of ammonia nitrogen varied from 20 mg/L to 50 mg/L, the removal efficiencies of TOC, phosphate, and total nitrogen by AF-MBR were stable. An interesting finding was that in all the different operation conditions examined, the treatment efficiency of AF-MBR was always better than that of the control MBR. The concentrations of NO3−-N in AF-MBR were relatively low, whereas NO3−-N accumulated in the control MBR. The reason was that the microorganisms attached to the carrier and remained fixed in the aerobic and anoxic spaces, so that there was a gradual enrichment of bacteria characterized by slow growth in a high-salt environment. In addition, the microorganisms could gather and grow on the carrier forming a biofilm with higher activity, a richer and more stable population, and enhanced ability to resist a load impact.
Collapse
|
19
|
Fraile S, Briones M, Revenga-Parra M, de Lorenzo V, Lorenzo E, Martínez-García E. Engineering Tropism of Pseudomonas putida toward Target Surfaces through Ectopic Display of Recombinant Nanobodies. ACS Synth Biol 2021; 10:2049-2059. [PMID: 34337948 PMCID: PMC8397431 DOI: 10.1021/acssynbio.1c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/15/2022]
Abstract
Gram-negative bacteria are endowed with complex outer membrane (OM) structures that allow them to both interact with other organisms and attach to different physical structures. However, the design of reliable bacterial coatings of solid surfaces is still a considerable challenge. In this work, we report that ectopic expression of a fibrinogen-specific nanobody on the envelope of Pseudomonas putida cells enables controllable formation of a bacterial monolayer strongly bound to an antigen-coated support. To this end, either the wild type or a surface-naked derivative of P. putida was engineered to express a hybrid between the β-barrel of an intimin-type autotransporter inserted in the outer membrane and a nanobody (VHH) moiety that targets fibrinogen as its cognate interaction partner. The functionality of the thereby presented VHH and the strength of the resulting cell attachment to a solid surface covered with the cognate antigen were tested and parametrized with Quartz Crystal Microbalance technology. The results not only demonstrated the value of using bacteria with reduced OM complexity for efficient display of artificial adhesins, but also the potential of this approach to engineer specific bacterial coverings of predetermined target surfaces.
Collapse
Affiliation(s)
- Sofía Fraile
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Briones
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mónica Revenga-Parra
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Esteban Martínez-García
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Dang BT, Bui XT, Itayama T, Ngo HH, Jahng D, Lin C, Chen SS, Lin KYA, Nguyen TT, Nguyen DD, Saunders T. Microbial community response to ciprofloxacin toxicity in sponge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145041. [PMID: 33940712 DOI: 10.1016/j.scitotenv.2021.145041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
This study aims to offer insights into how ciprofloxacin (CIP) impact bacterial community structures in the Sponge-MBR process when CIP is spiked into hospital wastewater. We found that the CIP toxicity decreased richness critical phylotypes such as phylum class ẟ-, β-, ɣ-proteobacteria, and Flavobacteria that co-respond to suppress denitrification and cake fouling to 37% and 28% respectively. Cluster analysis shows that the different community structures were formed under the influence of CIP toxicity. CIP decreased attached growth biomass by 2.3 times while increasing the concentration of permeate nitrate by 3.8 times, greatly affecting TN removal by up to 26%. Ammonia removal was kept stable by inflating the ammonia removal rate (p < 0.003), with the wealthy Nitrospira genus guaranteeing the nitrification activity. In addition, we observed an increasing richness of Chloroflexi and Planctomycetes, which may play a role in fouling reduction in the Sponge-MBR. Therefore, if the amount of antibiotics in hospital wastewater continues to increase, it is so important to extend biomass retention for denitrification recovery.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Deokjin Jahng
- Department of Environmental Engineering and Energy, Myongji University, Republic of Korea
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Thanh-Tin Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Todd Saunders
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
21
|
Mannina G, Alliet M, Brepols C, Comas J, Harmand J, Heran M, Kalboussi N, Makinia J, Robles Á, Rebouças TF, Ni BJ, Rodriguez-Roda I, Victoria Ruano M, Bertanza G, Smets I. Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework. BIORESOURCE TECHNOLOGY 2021; 329:124828. [PMID: 33621928 DOI: 10.1016/j.biortech.2021.124828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Joaquim Comas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | - Marc Heran
- IEM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nesrine Kalboussi
- Université de Carthage, Institut National ds Sciences Appliquées et de Technologie & Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, Laboratoire de Modélisation Mathématique et Numérique dans les sciences d'ingénieur, Tunis, Tunisia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ángel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | | | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ignasi Rodriguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - María Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria (ETSE-UV), Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Giorgio Bertanza
- Departament of Civil, Environmental, Architectural Engineering and Mathematics, Brescia University, via Branze 43, 25123 Brescia, Italy
| | - Ilse Smets
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, 3001 Heverlee, Belgium
| |
Collapse
|
22
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|
23
|
Bongartz P, Bator I, Baitalow K, Keller R, Tiso T, Blank LM, Wessling M. A scalable bubble-free membrane aerator for biosurfactant production. Biotechnol Bioeng 2021; 118:3545-3558. [PMID: 34002856 DOI: 10.1002/bit.27822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022]
Abstract
The bioeconomy is a paramount pillar in the mitigation of greenhouse gas emissions and climate change. Still, the industrialization of bioprocesses is limited by economical and technical obstacles. The synthesis of biosurfactants as advanced substitutes for crude-oil-based surfactants is often restrained by excessive foaming. We present the synergistic combination of simulations and experiments towards a reactor design of a submerged membrane module for the efficient bubble-free aeration of bioreactors. A digital twin of the combined bioreactor and membrane aeration module was created and the membrane arrangement was optimized in computational fluid dynamics studies with respect to fluid mixing. The optimized design was prototyped and tested in whole-cell biocatalysis to produce rhamnolipid biosurfactants from sugars. Without any foam formation, the new design enables a considerable higher space-time yield compared to previous studies with membrane modules. The design approach of this study is of generic nature beyond rhamnolipid production.
Collapse
Affiliation(s)
- Patrick Bongartz
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.,Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kristina Baitalow
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany
| | - Robert Keller
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Aachen, Germany.,DWI Leibniz - Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
24
|
Huang J, Wu X, Liang Z, Yu Y, Liu G. Water flushing irremovable biofilms on support material in dynamic membrane bioreactor: Formation, composition, and microbial community. CHEMOSPHERE 2021; 271:129813. [PMID: 33556632 DOI: 10.1016/j.chemosphere.2021.129813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Dynamic membrane bioreactors mainly rely on the in-situ formed biofilms on support materials to reject fine particles in water. The development of irremovable biofilms on support materials can decrease the cleaning efficiency when removing the unwanted biofilms with low permeability by water flushing. In the present study, the initial formed biofilms on support materials at 5-day solids retention time (SRT) were removable by water flushing. After repeated cleaning with off-line water flushing during operation, however, irremovable biofilms were developed gradually inside the mesh pores and thus, rapid rising in transmembrane pressure occurred in every one to three days. At 20-day SRT, the biofilms formed on support materials with the same operation time were still removable. Therefore, both low SRT and repeated water flushing promoted the formation of irremovable biofilms on support materials. Further study found that the composition and microbial community between the irremovable and removable biofilms were significantly different, which differentiated the biofilm adhesion and removability. The irremovable biofilms had a greater faction of proteins (49.0%) and β-d-glucopyranose polysaccharides (17.8%) in extracellular polymeric substance (EPS), while the removable biofilms had a greater fraction of α-d-glucopyranose polysaccharides. After repeated cleaning with off-line water flushing during operation, Nitrospiraceae was selectively enriched in the irremovable biofilms at a relative abundance of 39.1%, which could have resulted in the particular EPS matrix that strengthened the biofilm adhesion.
Collapse
Affiliation(s)
- Ju Huang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No 18 Ruihe Road, Guangzhou, 510530, China
| | - Xianwei Wu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, 510611, China
| | - Yang Yu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, And Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Jang Y, Kim HS, Ham SY, Park JH, Park HD. Investigation of critical sludge characteristics for membrane fouling in a submerged membrane bioreactor: Role of soluble microbial products and extracted extracellular polymeric substances. CHEMOSPHERE 2021; 271:129879. [PMID: 33736214 DOI: 10.1016/j.chemosphere.2021.129879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Membrane bioreactors (MBRs) are considered a promising tool for resource recovery in wastewater treatment. Nevertheless, membrane fouling is an inevitable phenomenon that deteriorates the MBR performance. Although many studies have attempted to elucidate the effect of sludge characteristics on MBR fouling, they posed certain limitations. Most of the previous studies focused on the initial sludge or employ the results of short-term batch tests without long-term transmembrane pressure (TMP) profiles in the interpretation of fouling behaviors. This study was conducted considering these limitations to determine the sludge characteristics most closely related to long-term TMP profiles and to identify their role in fouling behaviors. In long-term TMP profiles, critical time (tc; time to TMP jump) and fouling rates (the increase in the TMP slope) were used as fouling indexes, which were used to correlate with average values of sludge characteristics before and after experiments. According to the results, the concentration of the total soluble microbial product (SMP) and extracted extracellular polymeric substance (eEPS) in sludge significantly increased by 1.9 times and up to 28 times after experiment. The increase in the SMP and eEPS caused early TMP jumps and resulted in low-fouling rates by increasing particle size. Owing to the increase in the SMP and eEPS concentration, the origin of fouling potential was shifted from suspended solids to colloids and soluble materials. Fouling resistance caused by soluble material increased by up to 11.38 times.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Han-Shin Kim
- Korean Peninsula Infrastructure Cooperation Team, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Gyeonggi-do, 10223, Republic of Korea.
| | - So-Young Ham
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jeong-Hoon Park
- Jeju Regional Division, Korea Institute of Industrial Technology (KITECH), Cheju, 63243, Republic of Korea.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
26
|
Wang Q, Zhang T, Wu G, Xu Q. Deciphering acyl-homoserine lactones-mediated quorum sensing on geotextile bio-clogging in municipal solid waste and bottom ash co-disposal landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:136-143. [PMID: 33621757 DOI: 10.1016/j.wasman.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bottom ash co-disposed in landfills accelerates geotextile clogging and decreases landfill stability. As the main contributor to clogging, bio-clogging may be associated with quorum sensing (QS) in microbial communities. This study investigated the potential roles of acyl-homoserine lactones (AHLs)-mediated QS in geotextile bio-clogging under different landfill conditions, including municipal solid waste landfill and bottom ash co-disposal landfill. The unit area of geotextile bio-clogging mass in the municipal solid waste landfill (MSW_G) ranged from 5.2 × 10-3 to 8.2 × 10-3 g/cm2, while it was in the range of 8.4 × 10-3 to 1.2 × 10-2 g/cm2 in the bottom ash co-disposal landfill (BA_G). Two types of AHLs were detected and the total AHLs content in the MSW_G (1,616.9 ± 103.8 ng/g VSS) was half of that in the BA_G (3,233.0 ± 646.8 ng/g VSS). High contents of the AHLs could increase bio-clogging. The bio-clogging was also attributed to QS genes and extracellular polymeric substances (EPS). EPS aggregation was stimulated due to the higher Ca2+ and Mg2+ in the BA_G. These results suggested that the co-disposal of bottom ash could increase the AHLs content, resulting in accelerated bio-clogging.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tianqi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway, Ireland
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
27
|
Cirik K, Gocer S. Performance of anaerobic membrane bioreactor treating landfill leachate. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:383-393. [PMID: 33312567 PMCID: PMC7721753 DOI: 10.1007/s40201-019-00376-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/15/2019] [Indexed: 06/03/2023]
Abstract
BACKGROUND Landfill leachate has been known as non-biodegradable/hardly-biodegradable wastewater, which contains significant amount of soluble organic and inorganic compounds. However, membrane bioreactor (MBR) technology have become a more viable treatment option for complex and recalcitrant compounds compared to activated sludge systems. METHODS This study aims at evaluating the performance of anaerobic membrane bioreactor (AnMBR) for the treatment of middle/old-aged landfill leachate (LFL).AnMBR was operated at different hydraulic retention times (HRTs) (48-12 h) and relaxation and backwashing (30 min-5 min, 5 min-0.5 min) periods. Additionally, Air stripping (pH 8, 24 g lime/L, 1.4 L/s air flow rate) as a pretreatment was evaluated prior to AnMBR. RESULTS Air stripping removed about 90%, 25%, and 64% NH4 +, COD (Chemical Oxygen Demand) and color (RES620), respectively. The best results were obtained in combined air stripping-AnMBR operation corresponding to 95%, and 83% overall removals of color, and COD removals, respectively. Maximum methane yield and COD removal rate in AnMBR were 0.35 L methane/g COD removed and 5 gCOD removed /L.d, respectively. CONCLUSION Pretreatment provided higher AnMBR flux that reached to 5.5LMH but increased fouling frequency due to the calcium precipitates in AnMBR which was verified with SEM-EDX analysis. Additionally, DEHP and DINP were not detected in permeate indicating AnMBR was successful for removing these micropollutants. This study showed that pretreatment clearly increased methane yield and COD removal rate.
Collapse
Affiliation(s)
- Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46100 Kahramanmaras, Turkey
| | - Serdar Gocer
- Department of Environmental Engineering, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
28
|
Fouling Mitigation by Cationic Polymer Addition into a Pilot-Scale Anaerobic Membrane Bioreactor Fed with Blackwater. Polymers (Basel) 2020; 12:polym12102383. [PMID: 33081226 PMCID: PMC7602741 DOI: 10.3390/polym12102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly translated to AnMBRs because the extent and nature of membrane fouling under anaerobic and aerobic conditions are different. Our research focused on the long-term effect of dosing the cationic polymer Adifloc KD451 to a pilot AnMBR, fed with source-separated domestic blackwater. A single dosage of Adifloc KD451 at 50 mg L-1 significantly enhanced the filtration performance in the AnMBR, revealed by a decrease in both fouling rate and total filtration resistance. Nevertheless, FE addition had an immediate negative effect on the specific methanogenic activity (SMA), but this was a reversible process that had no adverse effect on permeate quality or chemical oxygen demand (COD) removal in the AnMBR. Moreover, the FE had a long-term positive effect on AnMBR filtration performance and sludge filterability. These findings indicate that dosing Adifloc KD451 is a suitable strategy for fouling mitigation in AnMBRs because it led to a long-term improvement in filtration performance, while having no significant adverse effects on permeate quality or COD removal.
Collapse
|
29
|
Abstract
The integration of membranes inside a catalytic reactor is an intensification strategy to combine separation and reaction steps in one single physical unit. In this case, a selective removal or addition of a reactant or product will occur, which can circumvent thermodynamic equilibrium and drive the system performance towards a higher product selectivity. In the case of an inorganic membrane reactor, a membrane separation is coupled with a reaction system (e.g., steam reforming, autothermal reforming, etc.), while in a membrane bioreactor a biological treatment is combined with a separation through the membranes. The objective of this article is to review the latest developments in membrane reactors in both inorganic and membrane bioreactors, followed by a report on new trends, applications, and future perspectives.
Collapse
|
30
|
Song J, Yin Y, Li Y, Gao Y, Liu Y. In-situ membrane fouling control by electrooxidation and microbial community in membrane electro-bioreactor treating aquaculture seawater. BIORESOURCE TECHNOLOGY 2020; 314:123701. [PMID: 32629382 DOI: 10.1016/j.biortech.2020.123701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Ammonia and nitrite in aquaculture recirculating seawater need to be strictly controlled to avoid deleterious effects on aquatic organisms. However, traditional biological approach can hardly meet the standard due to the short hydraulic retention time (HRT) and nitrite accumulation. A Membrane Electro-Bioreactor (MEBR) was developed for ammonia removal enhancement and in-situ electrochemical membrane fouling mitigation. The fouling mechanism was first found to proceed via the standard filtration model. The flux decrease was mainly caused by an internal pore clogging phenomenon. Membrane fouling resistance was enhanced by increasing anode potential from 0 to 1.4 V vs. SCE (Saturated Calomel Electrode). The ammonia removal rate in the MEBR was above 95% (HRT: 2 h, after day-13) and membrane fouling was mitigated that operation duration was extended by 71.4%. Higher total proportion of Proteobacteria, Bacteroidetes, Planctomycetes and Actinobacteria was obtained in the MEBR, suggesting higher nitrification and nitrogen removal potentials.
Collapse
Affiliation(s)
- Jing Song
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yanming Yin
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yihan Li
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yifei Gao
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Ying Liu
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
| |
Collapse
|
31
|
Deng L, Guo W, Ngo HH, Wang XC, Hu Y, Chen R, Cheng D, Guo S, Cao Y. Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: Sludge characteristics and microbial community. BIORESOURCE TECHNOLOGY 2020; 312:123612. [PMID: 32526665 DOI: 10.1016/j.biortech.2020.123612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The feasibility of a novel bioflocculant (GemFloc™) for membrane fouling mitigation in membrane bioreactor (MBR) was investigated during real municipal wastewater treatment. When compared to the conventional MBR (CMBR), suspended sludge in the MBR with GemFloc™ (G-MBR) showed less soluble microbial products (SMP), higher ratios of proteins to polysaccharides in SMP (SMPP/SMPC) and loosely bound extracellular polymeric substances (LB-EPS). Adding GemFloc™ also enlarged floc size (> 200 µm), and increased tightly bound EPS levels, zeta potential and relative hydrophobicity of sludge flocs, further reduced cake layer and pore blocking resistances. Moreover, more diverse microbial community and enrichment of fouling reduction microbes such as Arenimonas and Flavihumibacter were observed in the G-MBR, together with less abundant microbes (e.g. Sphaerotilus and Povalibacter) which could aggravate membrane fouling. Therefore, GemFloc™ has high capability in improving sludge characteristics, mitigating membrane fouling and increasing diversity of special functional bacterial community in MBR.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shengquan Guo
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yunyang Cao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
32
|
|
33
|
Noormohamadi A, Homayoonfal M, Mehrnia MR, Davar F. Employing magnetism of Fe 3O 4 and hydrophilicity of ZrO 2 to mitigate biofouling in magnetic MBR by Fe 3O 4-coated ZrO 2/PAN nanocomposite membrane. ENVIRONMENTAL TECHNOLOGY 2020; 41:2683-2704. [PMID: 30741624 DOI: 10.1080/09593330.2019.1579870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of this research is benefiting from the synergistic effect of the simultaneous presence of Fe3O4 and ZrO2 in the form of Fe3O4-coated ZrO2 (Fe3O4@ZrO2) nanoparticles within the structure of PAN membrane to reduce membrane fouling. The role of Fe3O4 nanoparticles in increasing the pore size and magnetic saturation as well as the role of ZrO2 in decreasing surface roughness and hydrophobicity can mitigate membrane fouling in magnetic-assisted membrane bioreactors. For this purpose, Fe3O4, ZrO2, and Fe3O4@ZrO2 nanoparticles were embedded into PAN membrane structure and magnetic (M nM), hydrophilic (H nM), and magnetic-hydrophilic (HM nM) membranes were synthesized. H 1M (1ZrO2/PAN) membrane with a contact angle of 31 degrees, M 1N (1Fe3O4/PAN) with a pore size of 90 nm, and H 3M (3ZrO2/PAN) membrane with an RMS roughness of 13.5 nm were the most hydrophilic, porous, and smoothest membranes, respectively. High sensitivity to magnetic field along with high porosity, high hydrophilicity and low surface roughness simultaneously exist within the structure of MHMs membranes, such that MH 1M (1Fe3O4@ZrO2/PAN) indicated 116% greater flux, 121% greater flux recovery, and 85% less total filtration resistance in comparison with the blank membrane in magnetic membrane bioreactor, at a magnetic field intensity of 120 mT and MLSS = 10,000 mg/l. As an overall conclusion, the output of this research was compared with other research in term of normalized flux. Results reveal that at MLSS = 10,000 mg/l, HRT = 8 h and TMP = 0.3 bar, MH 1M membrane has normalized flux equal to 1.56 g/m2 h bar which is an acceptable value compared to normalized flux reported by other researchers.
Collapse
Affiliation(s)
- Amin Noormohamadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
34
|
Zhang X, Guo Y, Wang T, Wu Z, Wang Z. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. WATER RESEARCH 2020; 176:115749. [PMID: 32247996 DOI: 10.1016/j.watres.2020.115749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 05/09/2023]
Abstract
Biofouling remains to be one of major obstacles in membrane bioreactors (MBRs), calling for the development of antibiofouling membranes. Silver nanoparticles (AgNPs), being a kind of broad spectrum bactericidal agent, have been widely used for modifying membrane; however, uncontrollable release of AgNPs and thus a short lifetime of modified membranes are thorny issues for the AgNPs-modified membranes. In this study, silica nanopollens were used as AgNPs nanocarriers for membrane modification (ASNP-M), which could improve silver delivery efficacy, avoid agglomeration and control Ag+ release towards bacteria. At a silver loading of 107.7 ± 10.9 μg Ag/cm2, ASNP-M effectively inhibited growth of Escherichia coli and Staphylococcus aureus, with an Ag+ release rate of 0.5 μg/(cm2 d). Long-term MBR tests showed that ASNP-M exhibited a significantly reduced transmembrane pressure increase rate of 0.88 ± 0.34 kPa/d which was much lower than that of two control membranes, i.e., pristine membrane (M0) (2.32 ± 0.86 kPa/d) and Ag@silica nanospheres (without spikes) modified membrane (ASNS-M) (2.25 ± 1.28 kPa/d). No significant adverse influences on the pollutant removal were also observed in the reactor. Foulants analysis revealed that biofilm of ASNP-M was thinner and comprised of mainly dead cells, and only organic matter with strong adhesion properties was allowed to attach onto the membrane surface. Bacterial community analysis suggested that the incorporation of Ag@silica nanopollens inhibited colonization of bacteria which are capable of causing membrane biofouling (e.g., Proteobacteria and Actinobacteria). These findings highlight the potential of the antibiofouling membrane to be used in MBRs for wastewater treatment and reclamation.
Collapse
Affiliation(s)
- Xingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yu Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
35
|
Rood B, Zhang C, Inniss E, Hu Z. Forward osmosis with an algal draw solution to concentrate municipal wastewater and recover resources. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:689-697. [PMID: 31642156 DOI: 10.1002/wer.1262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to concentrate and recover resources from municipal wastewater with a novel forward osmosis (FO) system. The FO system used synthetic seawater as the draw solution (DS) to extract water from the feed solution (FS) (synthetic raw municipal wastewater). Because ammonium passed through the FO membrane from the FS to the DS, we cultivated an algal strain (Chlorella vulgaris) in the DS to remove and recover ammonium. For three consecutive FO cycles, the algal FO system removed 35.4% of the ammonium from the DS, increased the concentrations of COD and PO 4 3 - - P in the FS by 43.0%, and achieved a water flux of 11.59 ± 0.49 L m-2 hr-1 . Throughout the FO cycles, the algal biomass concentration of the DS stayed at 606 ± 29 mg COD/L due to simultaneous algal growth and DS dilution. This FO process may be feasible to implement for full-scale applications to concentrate wastewater and recover resources. PRACTITIONER POINTS: A novel forward osmosis (FO) system with an algal draw solution (DS) concentrated municipal wastewater and recovered resources (ammonium). Ammonium but not organic matter or phosphate diffused across the FO membrane from the feed solution (FS) to the DS. The algal FO system increased COD/phosphate concentration in the FS by 43.0% and removed 35.4% of ammonium from the DS. The water fluxes in the algal FO system and the control were 11.59 and 12.02 L m-2 hr-1 , respectively. The novel algal FO process has the potential to improve full-scale efficiency by concentrating municipal wastewater and recovering nutrients.
Collapse
Affiliation(s)
- Brent Rood
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| | - Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| | - Enos Inniss
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
36
|
Sano T, Koga Y, Ito H, Duc LV, Hama T, Kawagoshi Y. Effects of structural vulnerability of flat-sheet membranes on fouling development in continuous submerged membrane bioreactors. BIORESOURCE TECHNOLOGY 2020; 304:123015. [PMID: 32088629 DOI: 10.1016/j.biortech.2020.123015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The relationship between fouling development in a continuous laboratory-scale membrane reactor (MBR/Lab) and the membrane material was investigated using flat-sheet membranes prepared from four materials (polyvinylidene difluoride (PVDF), polyethersulfone, chlorinated polyvinyl chloride, and polytetrafluoroethylene). Further, the characteristics of the suspension liquid in MBR/Lab were compared with those of samples from actual wastewater treatment plants. It was found that, in addition to the membrane material's own characteristics, the structural vulnerability of the membranes had a determining effect on fouling development. The PVDF membrane showed the highest transmembrane pressure during MBR operation and its surface experienced significant damage because of the shearing stress caused by aeration, resulting in the penetration of the membrane by the fouling compounds. The characteristics of suspension liquid in MBR/Lab were almost similar to those in the MBR at a night-soil treatment plant and the aeration tank of a sewage treatment plant.
Collapse
Affiliation(s)
- Toshio Sano
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshiki Koga
- City of Kitakyushu, 1-1 Jonai, Kokurakita-ku, Kitakyushu 803-8501, Japan
| | - Hiroaki Ito
- Center for Water Cycle, Marine Environment and Disaster Management (CWMD), Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| | - Luong Van Duc
- Center for Water Cycle, Marine Environment and Disaster Management (CWMD), Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| | - Takehide Hama
- Center for Water Cycle, Marine Environment and Disaster Management (CWMD), Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| | - Yasunori Kawagoshi
- Center for Water Cycle, Marine Environment and Disaster Management (CWMD), Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
37
|
A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. MEMBRANES 2020; 10:membranes10020024. [PMID: 32033001 PMCID: PMC7073750 DOI: 10.3390/membranes10020024] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
Compared with the traditional activated sludge process, a membrane bioreactor (MBR) has many advantages, such as good effluent quality, small floor space, low residual sludge yield and easy automatic control. It has a promising prospect in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle to the wide application of MBR. This paper aims at summarizing the new research progress of membrane fouling mechanism, control, prediction and detection in the MBR systems. Classification, mechanism, influencing factors and control of membrane fouling, membrane life prediction and online monitoring of membrane fouling are discussed. The research trends of relevant research areas in MBR membrane fouling are prospected.
Collapse
|
38
|
Mannina G, Cosenza A, Rebouças TF. A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge. BIORESOURCE TECHNOLOGY 2020; 297:122401. [PMID: 31761624 DOI: 10.1016/j.biortech.2019.122401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy consumption in MBR. The simultaneous variation of the investigated factors (scenario 4) exacerbates direct and indirect GHG emissions for both CAS and MBR. Indeed, during scenario 4 a maximum direct GHG emissions of 0.94 kgCO2eq m-3 and 1.56 kgCO2eq m-3 for CAS and MBR, respectively, was obtained.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineeering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Alida Cosenza
- Engineeering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Taise Ferreira Rebouças
- Engineeering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| |
Collapse
|
39
|
Considering a membrane bioreactor for the treatment of vegetable oil refinery wastewaters at industrially relevant organic loading rates. Bioprocess Biosyst Eng 2020; 43:981-995. [PMID: 31993797 DOI: 10.1007/s00449-020-02294-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
The present study aims to shed more light on the use of membrane bioreactors (MBRs) for the treatment of vegetable oil refinery wastewaters (VORWs). A MBR was operated for 157 days in which it was fed with real VORW of varying composition at a range of organic loading rates (0.20 ± 0.05-3.79 ± 0.29 kg COD m-3 day-1). The hitherto unconsidered fate of VORW constituents through the biological process was followed using gas chromatography/mass spectrometry analysis. This analysis revealed that only 19% of the identified feed constituents remained in the MBR effluent whereas ten new compounds were formed. Linear correlation analysis attributed the effluent residual COD to soluble microbial products (SMP) and non-readily biodegradable recalcitrant oily compounds. Trend of change of MLSS, mixed liquor viscosity and SMP with increasing OLR suggested that when MBR is operated under industrial conditions for the VORW treatment, the mixed liquor fouling propensity potentially increases with increasing OLR in the range studied.
Collapse
|
40
|
Amini M, Shekari Z, Akbari A, Naslhajian H, Sheykhi A, Karimi E, Gautam S, Chae KH. Novel thin film nanocomposite membranes incorporated with polyoxovanadate nanocluster for high water flux and antibacterial properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mojtaba Amini
- Department of Chemistry, Faculty of ScienceUniversity of Maragheh Maragheh Iran
| | - Zahra Shekari
- Department of Chemistry, Faculty of ScienceUniversity of Maragheh Maragheh Iran
| | - Ali Akbari
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular MedicineUrmia University of Medical Sciences Urmia Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine InstituteUrmia University of Medical Sciences Urmia Iran
| | - Hadi Naslhajian
- Department of Chemistry, Faculty of ScienceUniversity of Maragheh Maragheh Iran
| | - Ayda Sheykhi
- Department of Chemistry, Faculty of ScienceUniversity of Maragheh Maragheh Iran
| | - Esmaeil Karimi
- Department of Soil Science, Faculty of AgricultureUniversity of Maragheh Maragheh Iran
| | - Sanjeev Gautam
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh 160‐014 India
| | - Keun Hwa Chae
- Advanced Analysis CenterKorea Institute of Science and Technology Seoul 136‐791 South Korea
| |
Collapse
|
41
|
Dang BV, Taylor RA, Charlton AJ, Le-Clech P, Barber TJ. Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems. IEEE Rev Biomed Eng 2020; 13:261-279. [DOI: 10.1109/rbme.2019.2933339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Hong PN, Noguchi M, Matsuura N, Honda R. Mechanism of biofouling enhancement in a membrane bioreactor under constant trans-membrane pressure operation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Yang S, Zhang Q, Lei Z, Wen W, Huang X, Chen R. Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors. BIORESOURCE TECHNOLOGY 2019; 294:122137. [PMID: 31536858 DOI: 10.1016/j.biortech.2019.122137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Concerning the lack of comprehensive study on the impact of powdered and granular activated carbon (PAC and GAC) on AnMBR, their impact on treatment performance, mixed liquor and cake layer properties and membrane fouling behaviors were further investigated. High COD removal efficiencies (>90%) and COD converting to CH4 rates (>70%) were achieved. GAC greatly increased extracellular polymeric substances (EPS) production in mixed liquor, but significantly reduced biosolids deposited on membrane surface; while PAC largely increased proteins and polysaccharides on membrane surface. In addition, PAC decreased, whereas GAC increased particle sizes. Fouling rates showed PAC and GAC addition effectively alleviated membrane fouling at HRT 8 h, and GAC remarkably postponed the occurrence of the transmembrane pressure jump and extended membrane service time. This study clarified the roles of GAC and PAC on membrane fouling control over long-term operation, which provides the basis for decision-making in practical application.
Collapse
Affiliation(s)
- Shuming Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qian Zhang
- Architecture Design and Research Institute, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Wen Wen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xingyuan Huang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
44
|
Huang S, Shi X, Bi X, Lee LY, Ng HY. Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. BIORESOURCE TECHNOLOGY 2019; 292:121852. [PMID: 31386944 DOI: 10.1016/j.biortech.2019.121852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Membrane fouling is considered as a main drawback for MBR technology especially treating industrial wastewater. Therefore, this study aimed to investigate the effect of fouling in membrane bioreactor (MBR) treating pharmaceutical wastewater with the addition of ferric hydroxide. Two identical lab-scale MBRs, namely, a control MBR (Co-MBR) and an enhanced MBR dosed with ferric hydroxide (Fe-MBR), were operated in parallel. The results demonstrate membrane fouling was retarded by 35% with the addition of iron. Further exploration of membrane fouling mechanisms showed iron addition resulted in increase in biomass floc size, enhancement of bacteria activity and reduction of dissolved organic concentration, especially carbohydrate, biopolymer and low molecular weight compounds concentrations in mixed liquor. There was also lower abundance of bacterial associated with biofilm formation in the Fe-MBR compared with the Co-MBR. These findings collectively contributed to the positive impacts on membrane fouling mitigation.
Collapse
Affiliation(s)
- Shujuan Huang
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore
| | - How Yong Ng
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore.
| |
Collapse
|
45
|
Xu F, Zhao C, Lee CH, Wang W, Xu Q. Anti-Biofouling Performance of an Immobilized Indigenous Quorum Quenching Bacterium Bacillus cereus HG10 and Its Influence on the Microbial Community in a Bioreactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193777. [PMID: 31597309 PMCID: PMC6802356 DOI: 10.3390/ijerph16193777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
Quorum quenching-membrane bioreactors (QQ-MBRs) have been studied widely in recent decades. However, limited information is known about the influence of QQ on the microbial community. In this study, the indigenous QQ bacterium Bacillus cereus HG10 was immobilized and used to control biofouling in a bioreactor. QQ beads caused extracellular polymeric substance reduction and significantly hindered biofilm formation on a submerged membrane. Community profiling of 16S rRNA gene amplicons revealed that QQ beads dramatically altered the bacterial community structure in activated sludge but not in biofilm. Bacterial structure in the presence of QQ beads showed a clear divergence from that of the control groups at phylum, class, order, family, and genus taxonomic ranks. A significant enrichment of several bacterial genera, including Acinetobacter, Aeromonas, Delftia, Bacillus, and Pseudomonas, and depletion of over 12 bacterial genera were observed. These findings would contribute to a better understanding of why and how immobilized QQ bacteria impair membrane biofouling in QQ-MBRs.
Collapse
Affiliation(s)
- Fangfang Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Chang Zhao
- Shenzhen Engineering Laboratory for Recycled Eco-efficient Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Xili University Town, Shenzhen 518055, China.
| | - Chuang Hak Lee
- Fairylands Environmental Sci-Tech (Shenzhen) Crop. Ltd., Shenzhen 518055, China.
| | - Wenzhao Wang
- Shenzhen Engineering Laboratory for Recycled Eco-efficient Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Xili University Town, Shenzhen 518055, China.
- Fairylands Environmental Sci-Tech (Shenzhen) Crop. Ltd., Shenzhen 518055, China.
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Recycled Eco-efficient Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Xili University Town, Shenzhen 518055, China.
| |
Collapse
|
46
|
Emaminejad SA, Avval SS, Bonakdarpour B. Gaining deeper insights into the bioflocculation process occurring in a high loaded membrane bioreactor used for the treatment of synthetic greywater. CHEMOSPHERE 2019; 230:316-326. [PMID: 31108443 DOI: 10.1016/j.chemosphere.2019.04.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In the present study, a high loaded membrane bioreactor (HL-MBR) operated at a hydraulic retention time (HRT) of 1.5 h, and three different sludge retention times (SRTs) in the range of 0.5-2 days, was used for the treatment of synthetic greywater. The chemical oxygen demand (COD) removal efficiency of the system was in the range 87-89% at all SRTs. Bioflocculation efficiency (defined as the percentage of suspended COD in the concentrate stream), COD bio-oxidation, total extracellular polymeric substances (EPS), tightly bound (TB) EPS and the ratio of EPS protein (EPSp) to carbohydrate (EPSc) increased when SRT was increased from 0.5 to 2 days. Sludge supernatant soluble microbial products (SMP) increased with increase in SRT from 0.5 to 2 days, while the effluent SMP was negligible. Particle size distribution analyses revealed a bimodal distribution at an SRT of 0.5 days, and normal distributions at other SRTs. Furthermore, depending on the value of the F/M ratio, different SRTs in the range of 0.5-2 days had either positive or negative effects on the mean particle size. Linear correlation analyses were performed using the data obtained during both transient and steady-state operations of the HL-MBR system. TB-EPS and EPSp showed strong correlations with the biofloccultaion efficiency, whereas loosely bound (LB) EPS correlated with soluble COD removal. TB-EPS and EPSc had negative correlations with the energy recovery potential of the system. The trend of change of parameters affecting membrane fouling intensity with SRT suggested that, in the range studied, the lowest rate of membrane fouling would be expected at SRT of 0.5 days.
Collapse
Affiliation(s)
- Seyed Aryan Emaminejad
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| | - Shirin Saffar Avval
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran.
| |
Collapse
|
47
|
Biomass Characteristics and Their Effect on Membrane Bioreactor Fouling. Molecules 2019; 24:molecules24162867. [PMID: 31394820 PMCID: PMC6720906 DOI: 10.3390/molecules24162867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022] Open
Abstract
Biomass characteristics are regarded as particularly influential for fouling in Membrane Bio-Reactors (MBRs). They primarily include the Mixed Liquor Suspended Solids (MLSS), the colloids and the Extracellular Polymeric Substances (EPS). Among them, the soluble part of EPS, which is also known as Soluble Microbial Products (SMP), is the most significant foulant, i.e., it is principally responsible for membrane fouling and affects all fundamental fouling indices, such as the Trans-Membrane Pressure (TMP) and the membrane resistance and permeability. Recent research in the field of MBRs, tends to consider the carbohydrate fraction of SMP (SMPc) the most important characteristic for fouling, mainly due to the hydrophilic and gelling properties, which are exhibited by polysaccharides and allow them to be easily attached on the membrane surface. Other wastewater and biomass characteristics, which affect indirectly membrane fouling, include temperature, viscosity, dissolved oxygen (DO), foaming, hydrophobicity and surface charge. The main methods employed for the characterization and assessment of biomass quality, in terms of filterability and fouling potential, can be divided into direct (such as FDT, SFI, TTF100, MFI, DFCM) or indirect (such as CST, TOC, PSA, RH) methods, and they are shortly presented in this review.
Collapse
|
48
|
Maaz M, Yasin M, Aslam M, Kumar G, Atabani AE, Idrees M, Anjum F, Jamil F, Ahmad R, Khan AL, Lesage G, Heran M, Kim J. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. BIORESOURCE TECHNOLOGY 2019; 283:358-372. [PMID: 30928198 DOI: 10.1016/j.biortech.2019.03.061] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Water shortage, public health and environmental protection are key motives to treat wastewater. The widespread adoption of wastewater as a resource depends upon development of an energy-efficient technology. Anaerobic membrane bioreactor (AnMBR) technology has gained increasing popularity due to their ability to offset the disadvantages of conventional treatment technologies. However there are several hurdles, yet to climb over, for wider spread and scale-up of the technology. This paper reviews fundamental aspects of anaerobic digestion of wastewater, and identifies the challenges and opportunities to the further development of AnMBRs. Membrane fouling and its implications are discussed, and strategies to control membrane fouling are proposed. Novel AnMBR configurations are discussed as an integrated approach to overcome technology limitations. Energy demand and recovery in AnMBRs is analyzed. Finally key issues that require urgent attention to facilitate global penetration of AnMBR technology are highlighted.
Collapse
Affiliation(s)
- Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - A E Atabani
- Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Mubbsher Idrees
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Fatima Anjum
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Rizwan Ahmad
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan; Department of Environmental Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan; Bioenergy & Environmental Sustainable Membrane Technology (BEST) Research Group, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | | | - Marc Heran
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| |
Collapse
|
49
|
Strategy for Flux Enhancement in Biofilm Ceramic Membrane Bioreactor Applying Prepolymerized and Non-Prepolymerized Inorganic Coagulants. WATER 2019. [DOI: 10.3390/w11030446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering new legislative and economic restrictions caused by the water crisis, this work focuses on a more efficient wastewater treatment process, which combines biological treatment in a moving bed biofilm system with a membrane bioreactor (BF-MBR) and coagulation, particularly addressing fouling alleviation in the separation stage. The study justifies the positive impact of coagulant dosing in BF-MBR regarding membrane flux and fouling rate. Statistical techniques connect the results of coagulation and membrane separation experiments with properties of mixed liquor, obtained after biotreatment in the representative pilot plant and characteristics of prepolymerized and non-prepolymerized inorganic coagulants. Research results substantiate the need for a pH-controlled coagulation of mixed liquor in BF-MBR depending on coagulant type, which influences charge, hydrophobicity and size of flocs and organic content of the system. It is suggested, that the adsorption/charge neutralization mechanism dominates in flux enhancement in BF-MBR, giving the best results in the case of prepolymerized aluminium coagulants. Together with high quality of permeate, the application of prepolymerized aluminium chloride of medium basicity entails a tenfold increase in filtration time of the membrane separation cycle and increases net membrane flux by 30–56%. The results of the study are practically significant for the development of an automated control system for BF-MBR, optimizing treatment rates together with membrane separation efficiency.
Collapse
|
50
|
Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling. J Colloid Interface Sci 2019; 535:318-324. [DOI: 10.1016/j.jcis.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023]
|