1
|
K Benny C, Chakraborty S. Mechanistic investigation of azo dye removal from carbon-deficient dyeing wastewater using horizontal-vertical constructed wetlands. CHEMOSPHERE 2024; 364:143148. [PMID: 39168387 DOI: 10.1016/j.chemosphere.2024.143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Azo dye degradation can be achieved by simulating a series of anaerobic and aerobic conditions within the constructed wetland (CW) system. The current investigation evaluated the effectiveness of a baffled horizontal-vertical CW system, planted with Typha angustifolia, simulating anaerobic-aerobic conditions to treat carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 (RY145) azo dye. In the absence of an available carbon source in dyeing wastewater, an optimum quantity of sodium acetate was supplemented as the substrate for microbial degradation of RY145. Influent dyeing wastewater characteristics were 5555 ADMI colour, 461 mg/L chemical oxygen demand (COD) and 39 mg/L total nitrogen (TN). During the operation period, the CW system achieved 97% colour, 87% COD, 95% ammonium nitrogen (NH4+-N) and 71% TN removals at 4 d hydraulic retention time (HRT). Favourable environmental conditions, such as low redox conditions and substrate availability in horizontal CW, contributed to a significant reduction in colour (96%). Most TN reduction (67%) happened in horizontal CW by denitrification and plant assimilation. The metagenomic study revealed that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were responsible for pollutant degradation within horizontal CW. The UV-visible spectra and high-resolution liquid chromatograph mass spectrometer (HR-LCMS) analysis confirmed that dye degradation intermediates generated from the breakage of azo bonds were eliminated in vertical CW with high redox conditions. The results of the phytotoxicity and fish toxicity experiments demonstrated a substantial toxicity reduction in the CW system-treated effluent.
Collapse
Affiliation(s)
- Christy K Benny
- Department of Civil Engineering, IIT Guwahati, Guwahati, India.
| | | |
Collapse
|
2
|
Yue W, Chen Y, Sui Q, Zheng L, Ritigala T, Wei Y. The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. MEMBRANES 2024; 14:142. [PMID: 38921509 PMCID: PMC11206136 DOI: 10.3390/membranes14060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications.
Collapse
Affiliation(s)
- Wenhui Yue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Huang R, Geng M, Gao S, Yin X, Tian J. In-depth insight into improvement of simultaneous nitrification and denitrification/biofouling control by increasing sludge concentration in membrane reactor: performance, microbial assembly and metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 393:130013. [PMID: 37956947 DOI: 10.1016/j.biortech.2023.130013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen 518021, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Yin
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
4
|
Wang R, You H, Xie B, Zhang G, Zhu J, Li W, Dong X, Qin Q, Wang M, Ding Y, Tan H, Jia Y, Li Z. Performance analysis of microbial fuel cell - membrane bioreactor with reduced graphene oxide enhanced polypyrrole conductive ceramic membrane: Wastewater treatment, membrane fouling and microbial community under high salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167827. [PMID: 37839487 DOI: 10.1016/j.scitotenv.2023.167827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
The application of membrane bioreactor (MBR) in high salinity wastewater treatment was mainly hindered by membrane fouling. Microbial fuel cell (MFC)-MBR coupling system was established to alleviate membrane fouling and save energy. Reduced graphene oxide/polypyrrole ceramic membrane (rGO/PPy CM) with high conductivity and stability was innovatively placed in MFC-MBRs as both cathode and filter, with PPy CM, rGO/PPy CM and CM placed in other reactors. MFC-MBR (rGO/PPy) and MFC-MBR (PPy) achieved higher pollutant removal efficiencies (90.73 % and 90.45 % for TOC, 87.22 % and 86.56 % for NH4+-N, respectively) and superior anti-fouling performance (1.86 and 1.93 kPa/d for average membrane fouling rates) than both conventional MBRs (CMBRs). The stable voltage generation was around 287 and 242 mV, respectively. Through high throughput sequencing, electric field showed a positive correlation with the abundance and activity of most dominant phylum (Bacteroidetes, Chloroflexi, Actinobacteria, and Firmicutes) and functional genes (amoA, hao, narG, napA, nirK, norB, and nosZ), thereby improving pollutant removal efficiency. The higher conductivity of rGO/PPy CM resulted in enhanced electric field intensity, leading to superior performance of anti-fouling and pollutant removal. This study inventively explored the effects of conductive membrane property on electricity generation performance, microbial community, pollutant removal and membrane fouling, providing theoretical support for the selection of electrode materials in MFC-MBR.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Guoyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Weirun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinan Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Qiqing Qin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Mengying Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Haili Tan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| |
Collapse
|
5
|
Homyok P, Rongsayamanont C, Wongkiew S, Limpiyakorn T. Sludge floc characteristics and microbial community in high-rate activated sludge and high-rate membrane bioreactor for organic recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167387. [PMID: 37777134 DOI: 10.1016/j.scitotenv.2023.167387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
High-rate activated sludge (HRAS) and high-rate membrane bioreactor (HRMBR) are considered as potential processes for organic recovery through bioflocculation and biosorption of particulate COD and colloidal COD with sludge flocs. In this study, bioflocculation and biosorption, in terms of sludge floc characteristics and microbial community, in HRAS and HRMBR was investigated in relation to organic recovery performance for low strength wastewater treatment. HRAS and HRMBR were operated at two different solids retention times (SRTs) of 2 and 0.8 days. Reducing the SRT of HRAS from 2.0 to 0.8 days resulted in failure in total COD (tCOD) removal efficiency (from 79 ± 2 to 34 ± 13 %) and lowering organic recovery (from 40.8 to 15.7 %). This contrasted with HRMBR, which showed high tCOD removal efficiency (84 ± 2 and 84 ± 1 %) and organic recovery (43.4 and 46.3 %) at both SRTs of 2.0 and 0.8 days. Analysis of sludge floc characteristics showed that the lower organic recovery of the HRAS operated at an SRT of 0.8 days could be associated with poor bioflocculation and biosorption, as evidenced by relatively larger floc size, higher extracellular polymeric substance, higher protein/polysaccharide ratio, and higher zeta potential value of the sludge. These characteristics were in contrast to the HRMBR operated at an SRT of 0.8 days, that exhibited the highest organic recovery among the reactors studied. The microbial taxa Bdellovibrio, Clostridium sensu stricto 9, Hyphomicrobium, and Ideonella could play a role in the poor bioflocculation and biosorption in HRAS. Rhodanobacter, Enterobacter, Terrimonas, Nakamurella, and Mizugakiibacter may be associated with bioflocculation and biosorption and organic recovery in HRMBR. The results of this study enhanced our understanding on the relationships between the microbial community, sludge floc characteristics, and organic recovery performance of HRAS and HRMBR for future optimization of the systems.
Collapse
Affiliation(s)
- Pratamaporn Homyok
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiwat Rongsayamanont
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Sheng Q, Lu Y, Yuan S, Li X, Dai X, Guo Y, Dong B. Effect of nitrite on hydrolysis-acidification, biogas production and microbial community in semi-continuous two-phase anaerobic digestion of sewage sludge. J Environ Sci (China) 2023; 126:434-444. [PMID: 36503770 DOI: 10.1016/j.jes.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/17/2023]
Abstract
Previous study found that the pre-treatment of sewage sludge with nitrite improves the biogas production during the mono/two-phase anaerobic digestion (AD) using batch biochemical methane potential tests. In this study, the effects of nitrite on hydrolysis-acidification, biogas production, volatile solids destruction and microbial composition in semi-continuous two-phase AD of sewage sludge were investigated. The addition of nitrite promotes sludge organic matter solubilization (+484%) and VFAs production (+98.9%), and causes an increase in the VS degradation rate during the AD process (+8.7%). The comparison of biogas production from the acidogenic and methanogenic reactors with or without the addition of nitrite implies that the nitrite has no significant effect on the overall biogas production of two-phase sludge AD process. High-throughput sequencing analysis shows that the microbial communities of bacteria and archaea in two-phase AD reactors significantly changes after the addition of nitrite. Vulcanibacillus (bacteria) and Candidatus Methanofastidiosum (archaea) become the dominant genera in the acidogenic and methanogenic reactors with the nitrite respectively. These findings provide new insights about using nitrite to promote the organic matter degradation of sewage sludge in a semi-continuous two-phase AD system.
Collapse
Affiliation(s)
- Qian Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiqing Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yali Guo
- Shanghai Investigation Design & Research Institute Co. Ltd., Shanghai 200335, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Investigation Design & Research Institute Co. Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| |
Collapse
|
7
|
Shivaram KB, Bhatt P, Applegate B, Simsek H. Bacteriophage-based biocontrol technology to enhance the efficiency of wastewater treatment and reduce targeted bacterial biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160723. [PMID: 36496019 DOI: 10.1016/j.scitotenv.2022.160723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment is an essential process for public health and a sustainable ecosystem. Inadequate wastewater treatment can lead to the release of organic and inorganic pollutants and pathogenic bacteria into the receiving waters which could be further utilized for recreation purposes. The interaction between bacteriophage and bacteria in a wastewater treatment plant plays a major role in maintaining the treatment process. Phage therapy has been proposed as an alternative to conventional treatment methods as bacteriophages can be used on specific targets and leave useful bacteria unharmed. The bacterial species, which are responsible for bulking, foaming, and biofilm formation in a wastewater treatment plant (WWTP) have been identified and their respective phages are isolated to control their growth. Phages with lytic life cycles are preferred to lysogenic. Lytic phages can kill the specific target as they lyse the cell, infect most of the hosts, and have an immediate effect on controlling problems caused by bacteria in a WWTP. The bacteriophages such as T7, SPI1, GTE7, PhaxI, MAG1, MAG2, ϕPh_Se01, ϕPh_Se02, and Bxb1 have been investigated for the removal of bacterial biofilms from wastewater. Novel experimental setups have improved the efficiency of phage therapy in small-scale and pilot-scale experiments. Much more in-depth knowledge of the microbial community and their interaction would help promote the usage of phage therapy in large-scale wastewater treatments. This paper has covered the recent advancements in phage therapy as an effective biocontrol of pathogenic bacteria in the wastewater treatment process and has looked at certain shortcomings that have to be improved.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
8
|
Liang Z, Han H, Yi J, Dai X. Modified integrated fixed-film activated sludge process: Advanced nitrogen removal for low-C/N domestic wastewater. CHEMOSPHERE 2022; 307:135827. [PMID: 35944692 DOI: 10.1016/j.chemosphere.2022.135827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Actual low-C/N domestic wastewater was treated using the high-concentration powder carrier bio-fluidized bed (HPB) process comparing diatomite and Fe-C as the carriers. The total nitrogen removal efficiencies were increased from 50.08% to 65.40% and 78.58%, respectively. The diatomite HPB process increased the relative abundance of autotrophic N-cycle bacteria to more than twofold and the sludge size. Therefore, the contributions for nitrogen removal by anammox and simultaneous nitrification-denitrification were increased. The Fe-C HPB process improved the nitrogen removal efficiency mainly by increasing the biodegradability and activities of electron transfer system and key enzymes. The key device (hydrocyclone separator) of the HPB process significantly improved the recovery efficiency of the carriers. It also improved the capacity of microbial aggregations for adsorbing pollutants. Furthermore, it reduced the relative abundance of filamentous bacteria. This study demonstrated the feasibility and mechanism of the HPB process for improving the nitrogen removal efficiency for low-C/N wastewater.
Collapse
Affiliation(s)
- Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
9
|
Dong D, Liu Q, Wang X, Hu H, Wu B, Ren H, Wang J. Regulation of exogenous acyl homoserine lactones on sludge settling performance: Monitoring via ultrasonic time-domain reflectometry. CHEMOSPHERE 2022; 303:135019. [PMID: 35605729 DOI: 10.1016/j.chemosphere.2022.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Despite extensive studies, a comprehensive solution for sludge bulking has not yet been found. This study improves the sludge settling performance via quorum sensing (QS) by adding exogenous acyl homoserine lactones (AHLs). First, a novel approach based on ultrasonic time-domain reflectometry, which can automatically and in-situ assess a sludge volume index (SVI), was developed using the displacement in the ultrasonic spectra as a feasible indicator (R2 = 0.98, p < 0.01). Next, the effects of typical AHLs, i.e., 3OC6-HSL, C12-HSL, and 3OC14-HSL, on sludge settling properties were investigated. Results indicated that the three AHLs significantly promoted the sludge settleability by 1.90, 2.03, and 1.62 times, respectively. The regulation mechanisms were investigated from the perspective of sludge physicochemical properties and biological community interactions. The draining degree of water to extracellular polymeric substances (EPS) significantly increased (p < 0.05) with all three AHLs. Meanwhile, the hydrophobic tryptophan content increased with the addition of 3OC6-HSL and C12-HSL. Hence, EPS hydrophobicity was promoted, which is conducive to microbial aggregation. In addition, molecular ecological networks of activated sludge (AS) indicated that bacterial community structures were more complex and species interactions were more intense when adding 3OC6-HSL and C12-HSL. Meanwhile, additional keystones were identified, with the proportion of QS species increasing by 63.6% and 22.2%, respectively. Exogenous 3OC6-HSL eventually decreased the gross relative abundance of filamentous bacteria by 2.37%. Overall, appropriate AHLs could enhance community stability and microbial cooperation by strengthening the communication hub role of QS species, thereby suppressing the overgrowth of filamentous bacteria and improving the sludge settleability. This study provides an effective strategy to determine the appropriate AHL to rapidly eliminate filamentous bulking problems.
Collapse
Affiliation(s)
- Deyuan Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xiaoyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
10
|
Huang L, Li Z, Wang G, Han J, Hou Y, Zhang N. Composite hydrolytic acidification - aerobic MBBR process for treating traditional Chinese medicine wastewater. Biodegradation 2022; 33:509-528. [PMID: 35948760 DOI: 10.1007/s10532-022-09995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Traditional Chinese medicine (TCM) wastewater is characterized by high organic content, unstable water quality and quantity and low biodegradability. In this paper, the hydrolytic acidification reactor-aerobic moving bed biofilm (MBBR) process was used to degrade TCM wastewater. Besides, a small pilot study was conducted. The appropriate operating parameters: hydraulic retention time (HRT) of the hydrolytic reactor was 16 h, HRT of MBBR was 30 h, dissolved oxygen of MBBR was 6 mg/L, sludge return ratio of MBBR was 100%. The hydrolytic reactor was started for 25 days. MBBR was run in series with the hydrolytic reactor after 24 days of separate operation. The start-up of the composite reactor was completed after another 26 days. The average removal efficiencies of chemical oxygen demand and ammonia nitrogen were 92% and 70%. The hydrolytic reactor was effective in decomposing macromolecules and MBBR had a strong ability to degrade pollutants through the excitation-emission-matrix spectra. The evolution pattern of the dominant bacterial genera and the surface morphology of sludge were studied by scanning electron microscopy and high-throughput sequencing analysis. It could be seen that the surface morphology of the biological filler was suitable for the growth and reproduction of microorganisms.
Collapse
Affiliation(s)
- Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Zhe Li
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China.
| | - Jingfu Han
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Yue Hou
- School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ning Zhang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| |
Collapse
|
11
|
Yang Y, Deng W, Hu Y, Chen R, Wang XC. Gravity-driven high flux filtration behavior and microbial community of an integrated granular activated carbon and dynamic membrane bioreactor for domestic wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153930. [PMID: 35202693 DOI: 10.1016/j.scitotenv.2022.153930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
A gravity-driven dynamic membrane bioreactors (DMBR) with GAC addition (G-DMBR) was operated under constant pressure filtration mode (using 20 cm water head) for real domestic wastewater treatment. During the stable operation period, the treatment performance, DM filtration behavior and mechanism as well as microbial properties were studied and compared with a control DMBR (C-DMBR). Both DMBRs showed stable removal of chemical oxygen demand (COD) and ammonia (NH4+-N) with average removal rates over 88% and 98%, respectively. GAC addition effectively enhanced dynamic membrane (DM) permeability with a stable flux of 17 to 65 L/m2h, which was approximately four times higher than that in the C-DMBR without GAC addition. Filtration resistance analysis indicated the DM formation can be divided to three stages: the formation of the initial DM layer, the development of mature DM layer and dynamic equilibrium stage of the DM layer. Filtration model analysis illustrated that added GAC could be the skeleton of the DM, resulting in a more porous and incompressible DM layer. Additionally, microbial community analysis revealed that in the G-DMBR several fouling-causing phyla including Proteobacteria reduced while other phyla preferring attached growth such as Bacteroidetes and Gemmatimonadetes increased. Thus, adding GAC to the DMBR can be an effective strategy for achieving stable and high-flux operation by modifying DM properties and regulating DM formation process and structure.
Collapse
Affiliation(s)
- Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Weihang Deng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China.
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| |
Collapse
|
12
|
Effect of Operating Parameters and Energy Expenditure on the Biological Performance of Rotating Biological Contactor for Wastewater Treatment. ENERGIES 2022. [DOI: 10.3390/en15103523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The rotating biological contactor (RBC) is resistant to toxic chemical and shock loadings, and this results in significant organic and nutrient removal efficiencies. The RBC system offers a low-energy footprint and saves up to 90% in energy costs. Due to the system’s low-energy demand, it is easily operable with renewable energy sources, either solar or wind power. An RBC was employed to degrade pollutants in domestic wastewater through biodegradation mechanisms in this study. The high microbial population in the RBC bioreactor produced excellent biological treatment capacity and higher effluent quality. The results showed that the RBC bioreactor achieved an average removal efficiency of 73.9% of chemical oxygen demand (COD), 38.3% of total nitrogen (TN), 95.6% of ammonium, and 78.9% of turbidity. Investigation of operational parameters, disk rotational speed, HRT, and SRT, showed the biological performance impact. Disk rotational speed showed uniform effluent quality at 30–40 rpm, while higher values of disk rotational speed (>40 rpm) resulted in lower effluent quality in COD, TN, and turbidity. The longer hydraulic retention time and sludge retention time (SRT) facilitated higher biological performance efficiency. The longer SRTs enabled the higher TN removal efficiency because of the higher quantity of microbial biomass retention. The longer SRT also resulted in efficient sludge-settling properties and reduced volume of sludge production. The energy evaluation of the RBC bioreactor showed that it consumed only 0.14 kWh/m3, which is significantly lower than the conventional treatment methods; therefore, it is easily operable with renewable energy sources. The RBC is promising substitute for traditional suspended growth processes as higher microbial activity, lower operational and maintenance costs, and lower carbon foot print enhanced the biological performance, which aligns with the stipulations of ecological evolution and environment-friendly treatment.
Collapse
|
13
|
Aydin S, Ünlü İD, Arabacı DN, Duru ÖA. Evaluating the effect of microalga Haematococcus pluvialis bioaugmentation on aerobic membrane bioreactor in terms of performance, membrane fouling and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:149908. [PMID: 34634718 DOI: 10.1016/j.scitotenv.2021.149908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, considering the enhancement potential of microalgae and MBRs for wastewater treatment, the microalgae Haematococcus pluvialis, which is a freshwater species of Chlorophyta with a high capacity to synthesize astaxanthin, was bioaugmented into an aerobic MBR to investigate its potential on treatment of antibiotics in wastewater, reducing membrane biofouling, and impact on the microbial community structure. For this purpose, two control MBRs, with and without antibiotics, alongside an MBR bioaugmented with H. pluvialis, were set under mesophilic conditions, using inoculum from a local wastewater treatment facility and synthetic wastewater. The common antibiotics sulfamethoxazole (SMX), tetracycline (TET) and erythromycin (ERY) were selected to investigate removal efficiencies by Haematococcus pluvialis in an MBR for this study. In the bioaugmented reactor, membrane biofouling was delayed by 33% and chemical oxygen demand removal increased by 6%. The highest removal of antibiotics was observed for TET with a 20% enhancement from 69.75% (C2) to 89.73% (HP). The results also suggested that H. pluvialis reconstructed indigenous and biofilm microbial communities in MBR. The biodegradation network was modified and the relative abundance of Proteobacteria increased, while Firmicutes and Bacteroidetes were significantly reduced.
Collapse
Affiliation(s)
- Sevcan Aydin
- Department of Biology, Biotechnology Section, Istanbul University, Vezneciler, 34134 Istanbul, Turkey.
| | - İlayda Dilara Ünlü
- Department of Bioengineering, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Duygu Nur Arabacı
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34469 Istanbul, Turkey
| | - Özlem Ateş Duru
- Department of Nutrition and Dietetics, Nişantaşı University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
14
|
Cao L, Zhang Y, Ni L, Feng X. A novel loosely structured nanofiltration membrane bioreactor for wastewater treatment: Process performance and membrane fouling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Huang H, Yang C, He C, Hu X, Hu Z, Wang W. Combining biofilm and membrane flocculation to enhance simultaneous nutrients removal and membrane fouling reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148922. [PMID: 34265619 DOI: 10.1016/j.scitotenv.2021.148922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The stability and processing capacity of membrane bioreactor can be improved with long sludge retention time. However, phosphorus removal will be markedly reduced under long sludge retention time and membrane fouling will be aggravated. Adding aluminum (Al) salt is a common way to achieve chemical phosphorus removal and membrane fouling reduction. But, accumulated Al will cause the decline of metabolic activity of activated sludge. In this study, biofilm-membrane flocculation reactor was proposed to enhance simultaneous nutrients removal and membrane fouling reduction. It showed that the removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in biofilm-membrane flocculation reactor were 95.7%, 96.7%, 87.4%, and 97.2%, respectively. Compared with the control group, accumulated Al increased extracellular polymeric substances (EPS) secretion by 1.9%-35.4%, biofilm biomass by 12.4%-26.1%, and the activities of ammonia oxidation bacteria (AOB) and nitrite oxidation bacteria (NOB) in the biofilm increased by 42.9% and 65.9%, respectively. The relative abundance of Nitrospira, Dechloromonas, and Terrimonas in the biofilm increased by 1.78%, 3.01%, and 2.88%, respectively, which was conducive to facilitating the nitrification. Therefore, biofilm-membrane flocculation reactor is a promising way for enhancing simultaneous nutrients removal and membrane fouling reduction.
Collapse
Affiliation(s)
- Haibo Huang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Chuanhe Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China.
| | - Xukun Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China; Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China.
| |
Collapse
|
16
|
|
17
|
Ryu J, Jung J, Park K, Song W, Choi B, Kweon J. Humic acid removal and microbial community function in membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126088. [PMID: 34229409 DOI: 10.1016/j.jhazmat.2021.126088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
A membrane bioreactor with humic acid substrate (MBR-H) was operated to investigate organic removal and membrane performance. Approximately, 60% of chemical oxygen demand removal was observed in MBR-H. The biosorption capacity reached to the maximum value of 29.2 mg g-1 in the experiments with various activated sludge concentrations and the amount adsorbed on the newly produced microbes was limited. To understand key functions of microorganisms in the biodegradation of humic acid, the microbial community was examined. The dominant phylum was changed from Actinobacteria at the raw sludge to Proteobacteria at the MBR-H. Especially, great increases of β-, γ-, and δ-Proteobacteria in the MBR-H indicated that those class of Proteobacteria played a vital role in humic acid removal. Investigation at the genus level showed enrichment of Stenotrophobacter in the MBR-H, which indicated the presence of metabolites in the proposed humic substance degradation pathway. In addition, the bacteria producing extracellular polymeric substances were increased in the MBR-H. Substantial variation of microbial community function was occurred in the MBR to degrade humic acid. Operational parameters in MBRs might be sought to maintain water permeability and to obtain preferable condition to evolution of microbial consortia for degradation of the refractory organic matter.
Collapse
Affiliation(s)
- JunHee Ryu
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - JaeHyun Jung
- HANSU Technical Service Ltd., Bundang Techno-Park, 145 Yatap-Dong, Bundang-Gu, Sungnam-City, Kyunggi-Do 13510, Republic of Korea.
| | - KiYoung Park
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - WonJung Song
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - ByeongGyu Choi
- Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Republic of Korea.
| | - JiHyang Kweon
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Fakhri H, Arabacı DN, Ünlü İD, Yangin-Gomec C, Ovez S, Aydin S. Addition of Trichocladium canadense to an anaerobic membrane bioreactor: evaluation of the microbial composition and reactor performance. BIOFOULING 2021; 37:711-723. [PMID: 34378470 DOI: 10.1080/08927014.2021.1949002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactors are powerful systems for wastewater treatment and the removal of toxic compounds. However, membrane biofouling stands in the way of their widespread usage. In this study, the saprophytic fungus Trichocladium canadense was used as the bioaugmentor in an anaerobic membrane bioreactor (AnMBR) and its impact on membrane biofouling, biogas production, the microbial communities of the reactor and removal of the common antibiotics erythromycin (ERY), sulfamethoxazole (SMX) and tetracycline (TET) from synthetic wastewater was investigated. The results indicated that through bioaugmentation with 20% T. canadense, membrane biofouling was slowed by 25%, the chemical oxygen demand removal increased by 16% and a higher efficiency removal of ERY and SMX was achieved. The presence of T. canadense significantly increased the abundance and diversity of the biofilm archaeal community and the bacterial phylum Firmicutes, a known bio-foulant.
Collapse
Affiliation(s)
- Hadi Fakhri
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Duygu Nur Arabacı
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, Istanbul, Turkey
| | - İlayda Dilara Ünlü
- Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Cigdem Yangin-Gomec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Suleyman Ovez
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
19
|
Dang BT, Bui XT, Itayama T, Ngo HH, Jahng D, Lin C, Chen SS, Lin KYA, Nguyen TT, Nguyen DD, Saunders T. Microbial community response to ciprofloxacin toxicity in sponge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145041. [PMID: 33940712 DOI: 10.1016/j.scitotenv.2021.145041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
This study aims to offer insights into how ciprofloxacin (CIP) impact bacterial community structures in the Sponge-MBR process when CIP is spiked into hospital wastewater. We found that the CIP toxicity decreased richness critical phylotypes such as phylum class ẟ-, β-, ɣ-proteobacteria, and Flavobacteria that co-respond to suppress denitrification and cake fouling to 37% and 28% respectively. Cluster analysis shows that the different community structures were formed under the influence of CIP toxicity. CIP decreased attached growth biomass by 2.3 times while increasing the concentration of permeate nitrate by 3.8 times, greatly affecting TN removal by up to 26%. Ammonia removal was kept stable by inflating the ammonia removal rate (p < 0.003), with the wealthy Nitrospira genus guaranteeing the nitrification activity. In addition, we observed an increasing richness of Chloroflexi and Planctomycetes, which may play a role in fouling reduction in the Sponge-MBR. Therefore, if the amount of antibiotics in hospital wastewater continues to increase, it is so important to extend biomass retention for denitrification recovery.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Deokjin Jahng
- Department of Environmental Engineering and Energy, Myongji University, Republic of Korea
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Thanh-Tin Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Todd Saunders
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
20
|
Zhou L, Ou P, Zhao B, Zhang W, Yu K, Xie K, Zhuang WQ. Assimilatory and dissimilatory sulfate reduction in the bacterial diversity of biofoulant from a full-scale biofilm-membrane bioreactor for textile wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145464. [PMID: 33571768 DOI: 10.1016/j.scitotenv.2021.145464] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Assimilatory and dissimilatory sulfate reduction (ASR and DSR) are the core bacterial sulfate-reducing pathways involved in wastewater treatment. It has been reported that sulfate-reducing activities could happen within biofoulants of membrane bioreactors during wastewater treatment. Biofoulants are mainly microbial products contributing membrane fouling and subsequent rising energy consumption in driving membrane filtration. Biofoulants from a full-scale biofilm-membrane bioreactor (biofilm-MBR) treating textile wastewater were investigated in this study. During a 10-month operation, sulfate concentrations in the effluent of the biofilm-MBR gradually decreased alongside with the creeping up sulfite concentrations when biofoulants were also building up on membrane modules. Sulfide had no apparent increases in the effluent during this period. Metagenomic analysis revealed diverse microbial communities residing in the biofoulants. Further analysis on their genetic traits revealed abundant ASR's and DSR's functional genes. A plethora of sulfate-reduction bacteria (SRB), including the well-known Desulfovibrio, Desulfainum, Desulfobacca, Desulfobulbus, Desulfococcus, Desulfonema, Desulfosarcina, Desulfobacter, Desulfobacula, Desulfofaba, Desulfotigum, Desulfatibacillum, Desulfatitalea, Desulfobacterium, were detected in the biofoulants. They were believed to play some important carbon and sulfur-cycling roles in our study. Based on metagenomic analysis, we also deduced that ASR was a functionally more important sulfate-reducing route because of the high abundance of assimilatory sulfate reductases detected. Also, the "AMP (adenosine monophosphate)→sulfite" step was a key reaction shared by both ASR and DSR in the biofoulant. This step might be responsible for the sulfite accumulation in the biofilm-MBR effluent. Overall, ASR functional genes in the biofoulants were more abundant. But the bacteria possessing complete DSR pathways caused the sulfide production in the biofilm-MBR.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, Shenzhen 518055, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
21
|
Wang J, Liu Q, Dong D, Hu H, Wu B, Ren H. AHLs-mediated quorum sensing threshold and its response towards initial adhesion of wastewater biofilms. WATER RESEARCH 2021; 194:116925. [PMID: 33609904 DOI: 10.1016/j.watres.2021.116925] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) plays a crucial role during initial biofilm formation, however the QS threshold and the response of biofilm formation towards N-acyl-homoserine lactones (AHLs) remains largely unknown due to the limitation of nondestructive online methods for monitoring bacterial adherence and the complexity of QS system, which limits the application of QS signal reagents in biofilm reactors. In this study, bacterial QS threshold and its response of biofilm formation to AHLs in purely cultured Sphingomonas rubra biofilm as well as in three different wastewater biofilms #1-3 were investigated via real time cell analysis (RTCA). The main perspective was to study the biomass adherence in response to 12 different forms of AHLs at different concentrations. Results showed that bacterial adhesion was significantly improved by exogenous AHLs with the maximum increase of 2.26-, 2.36-, 2.52-, and 2.80- times biomass production in the four respective biofilms. Although the preferred form of AHL differed for various biofilms, the long-chain AHLs (12-14 carbons) resulted in an overall improvement of bacterial adhesion due to their stronger hydrophobicity and hydrolysis resistance. In addition, bacterial QS threshold of AHLs was observed to have a wide range of concentration from 10 ng/L to 10 μg/L. Meanwhile, QS response time to AHLs also showed a significant difference in different biofilms. Biofilm #2 inoculated with bulking sludge had lower QS threshold of 10 ng/L and faster response to most AHLs that is less than 6 h. Thus, considering the improvement of biofilm adhesion by AHLs, 10 ng/L of C12-HSL, 10 ng/L of C12-HSL, and 10 ng/L of C6-HSL were preferentially selected for wastewater biofilms #1-3 respectively. Unexpectedly, adding high-concentration of AHLs detected in sludges did not significantly improved the bacterial adhesion. Infact the addition of these AHLs at low concentrations or even undetected concentrations substantially improved bacterial adhesion, which could be explained by bacterial communities composition. According to the Pearson correlation analysis, 62% of the top 50 most abundant genera in bacterial communities were significantly negatively related to the response time of multiple AHLs, representing their fast QS response. The QS bacteria, Dechloromonas and Nitrospira have fast QS response for C4-HSL and C8-HSL while, Comamonadaceae has fast QS response for 3OC8-HSL, 3OC10-HSL, 3OC12-HSL, and 3OC14-HSL. In contrast, the rest 38% of the top most abundant genera, such as Ferruginibacter, Hyphomicrobium, and Terrimonas quickly responded to only one AHL, showing significant negative relationship with the response time of C6-HSL. Overall, this study provides an effective and convenient means to select appropriate AHL reagents to promote bacterial adhesion in biofilm systems. Moreover, it also suggests that exogenous AHLs may be useful in improving the settling property of bulking sludge.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Deyuan Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| |
Collapse
|
22
|
BouNehme Sawaya C, Harb M. Considering the Prospect of Utilizing Anaerobic Membrane Biofouling Layers Advantageously for the Removal of Emerging Contaminants. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.642280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane biofilm formation has traditionally been perceived as a wholly negative occurrence in membrane filtration-based wastewater treatment systems due to its resultant effect on transmembrane pressure and energy expenditure. This is the case for both membrane bioreactor (MBR) systems, generally, and anaerobic membrane bioreactors (AnMBRs), specifically. Insight gained through recent research, however, has revealed a potentially positive aspect to biofouling in AnMBR systems—namely, the improved removal of certain emerging contaminants (both microbial and chemical) from wastewater that would not otherwise be retained by the microfiltration/ultrafiltration membranes that are commonly used. Although the exact reasons behind this are not yet understood, the biofilm-specific anaerobic microbial communities that develop on membrane surfaces may play a key role in the phenomenon. Mechanisms of biofouling development in AnMBRs have recently been proven distinctly different from those that govern fouling in aerobic MBR systems. Based on these differences, it may be possible to devise operational strategies that promote the development of anaerobic biofilms on membranes while also minimizing transmembrane pressure increases. If achievable, this would serve as a sustainable basis for reducing the release of emerging contaminants such as organic micropollutants (OMPs) and antibiotic resistance genes (ARGs) with treated wastewater effluents.
Collapse
|
23
|
Nilusha RT, Wei Y. New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). MEMBRANES 2021; 11:108. [PMID: 33546268 PMCID: PMC7913466 DOI: 10.3390/membranes11020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater.
Collapse
Affiliation(s)
- Rathmalgodage Thejani Nilusha
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Environment Technology Section, Industrial Technology Institute, 363, Bauddhaloka Mawatha, Colombo 07 00700, Sri Lanka; or
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
| |
Collapse
|
24
|
Aydin S, Can K. Pyophage cocktail for the biocontrol of membrane fouling and its effect in aerobic microbial biofilm community during the treatment of antibiotics. BIORESOURCE TECHNOLOGY 2020; 318:123965. [PMID: 32889121 DOI: 10.1016/j.biortech.2020.123965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Membrane bioreactor systems face an inevitable challenge that is biofouling, which not only hinders the operation of the system, but also poses an environmental and medical concern caused by the increased antibiotic resistance in bacterial biofilms. This study investigates the disruption of membrane fouling using bacteriophage cocktail (Pyophage) in an aerobic membrane bioreactor for treatment of wastewater containing high non-lethal concentration of erythromycin, tetracycline and sulfamethoxazole, while also considering the effect of the cocktail on performance. The results indicate that Pyophage cocktail contributes significantly to the decrease (45%) in transmembrane pressure while also suppressing biofilm-producing bacteria compared to the control reactors. It also reconstructed biodegradation mechanism of antibiotics especially increasing the relative abundance of gram-negative bacteria by enhancement the removal rate of erythromycin and sulfamethoxazole from the aerobic system to 99%.
Collapse
Affiliation(s)
- Sevcan Aydin
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34469 Istanbul, Turkey.
| | - Kubra Can
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpaşa, 34320 Istanbul, Turkey
| |
Collapse
|
25
|
De Sotto R, Bae S. Nutrient removal performance and microbiome of an energy-efficient reciprocation MLE-MBR operated under hypoxic conditions. WATER RESEARCH 2020; 182:115991. [PMID: 32739686 DOI: 10.1016/j.watres.2020.115991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
A critical challenge in the application of membrane bioreactors (MBR) for domestic wastewater treatment is its high energy consumption caused by continuous aeration for biofouling control. To reduce energy consumption and mitigate fouling in membranes, alternative configurations using dynamic shear-enhanced filtration by membrane reciprocation, rotation, and vibration to mechanically impose shear on membrane surfaces have been recently introduced. However, although these methods are effective at lowering energy usage, the nutrient removal efficiencies and microbial community compositions of these systems have not been well studied. In this study, a lab-scale no-aeration reciprocation membrane bioreactor was used to characterize the microbial composition, functional profile and nutrient removal of the reciprocation MBR system operated under hypoxic conditions. Microbial community analysis showed Proteobacteria (35%) and Saccharibacteria (27%) to be the most abundant phyla in the sludge and the biofilm samples, respectively. Nitrogen and phosphorus removal efficiencies were observed at 70% and 50% while the chemical oxygen demand concentration had about a 99% decrease in the effluent. Quantitative PCR of nutrient-removing genes revealed the presence of complete ammonia-oxidizing organisms (comammox) with a mean abundance of 1.88 × 104 gene copies/g sludge, which explains the high ammonia removal despite a low abundance of canonical ammonia-oxidizing bacteria (AOB). Fluorescence in-situ hybridization showed a prevalence of nitrite-oxidizing bacteria (NOB) with clusters that are distant from other nutrient-removing communities, suggesting that their metabolism is not dependent on ammonia oxidizers. The reciprocation MBR configuration may be a suitable, more energy-efficient alternative to conventional air-scouring systems because of its biofouling mitigation and promising nutrient removal performed by the diverse microbial communities in its system.
Collapse
Affiliation(s)
- Ryan De Sotto
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 2, #07-03 E1A, 117576, Singapore
| | - Sungwoo Bae
- Civil and Environmental Engineering Department, National University of Singapore, 1 Engineering Drive 2, #07-03 E1A, 117576, Singapore.
| |
Collapse
|
26
|
Deng L, Guo W, Ngo HH, Wang XC, Hu Y, Chen R, Cheng D, Guo S, Cao Y. Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: Sludge characteristics and microbial community. BIORESOURCE TECHNOLOGY 2020; 312:123612. [PMID: 32526665 DOI: 10.1016/j.biortech.2020.123612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The feasibility of a novel bioflocculant (GemFloc™) for membrane fouling mitigation in membrane bioreactor (MBR) was investigated during real municipal wastewater treatment. When compared to the conventional MBR (CMBR), suspended sludge in the MBR with GemFloc™ (G-MBR) showed less soluble microbial products (SMP), higher ratios of proteins to polysaccharides in SMP (SMPP/SMPC) and loosely bound extracellular polymeric substances (LB-EPS). Adding GemFloc™ also enlarged floc size (> 200 µm), and increased tightly bound EPS levels, zeta potential and relative hydrophobicity of sludge flocs, further reduced cake layer and pore blocking resistances. Moreover, more diverse microbial community and enrichment of fouling reduction microbes such as Arenimonas and Flavihumibacter were observed in the G-MBR, together with less abundant microbes (e.g. Sphaerotilus and Povalibacter) which could aggravate membrane fouling. Therefore, GemFloc™ has high capability in improving sludge characteristics, mitigating membrane fouling and increasing diversity of special functional bacterial community in MBR.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shengquan Guo
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yunyang Cao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
27
|
Li M, Wei D, Yan L, Yang Q, Liu L, Xu W, Du B, Wang Q, Hou H. Aerobic biodegradation of p-nitrophenol in a nitrifying sludge bioreactor: System performance, sludge property and microbial community shift. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110542. [PMID: 32275249 DOI: 10.1016/j.jenvman.2020.110542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The system performance, sludge property and microbial community shift were evaluated in a nitrifying sludge (NS) bioreactor for simultaneous treating p-Nitrophenol (PNP) and high ammonia wastewater. After long-term acclimation for 80 days, the removal efficiencies of PNP and NH4+-N reached to 99.9% and 99.5%, respectively. Meanwhile, the effluent PNP gradually decreased from 7.9 to 0.1 mg/L by acclimation of sludge. The particle size of NS increased from 115.2 μm to 226.3 μm accompanied by the decreased zeta potential as a self-protection strategy. The presence of PNP exposure altered the effluent soluble microbial products (SMP) fluorescent components and molecular composition. The increase in the relative abundance of Thauera, Nitrospiraceae and Nitrosomonas indicated the nitrification and denitrification capacities of NS increased, which maybe the PNP cometabolic biodegradation effect. Moreover, Ignavibacteria and Aeromonas were responsible as the dominant bacteria for degrading PNP in the nitrifying system.
Collapse
Affiliation(s)
- Mingrun Li
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China; Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China.
| | - Liangguo Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qingwei Yang
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Lulu Liu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Hongxun Hou
- Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China
| |
Collapse
|
28
|
Zheng Y, Zhou Z, Jiang L, Huang J, Jiang J, Chen Y, Shao Y, Yu S, Wang K, Huang J, Wang Z. Evaluating influence of filling fraction of carriers packed in anaerobic side-stream reactors on membrane fouling and microbial community of the coupled membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122030. [PMID: 31954301 DOI: 10.1016/j.jhazmat.2020.122030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
An anoxic/oxic membrane bioreactors (AO-MBR) and three identical anaerobic side-stream reactor coupled with anoxic/oxic membrane bioreactors (ASSR-MBR) were constructed and operated in parallel to investigate the appropriate filling fraction of carriers packed in ASSR, influences on pollutants removal, sludge reduction, membrane fouling and microbial community of ASSR-MBR. Inserting ASSR achieved efficient COD removal and nitrification, and packing carriers in ASSR obtained the highest sludge reduction efficiency of 50.5 % at filling fraction of 25 %. Compared to AO-MBR, inserting ASSR without carriers induced the release of viscous components in extracellular polymeric substances (EPS) and the formation of calcium carbonate-related bacteria on membrane surface, and thus deteriorated membrane fouling. Packing carriers with 25 % filling fraction promoted the hydrolysis of soluble microbial products and EPS, whilst reduced the viscoelasticity of sludge flocs. Higher filling fraction of 50 % increased the shear forces to the biofilm and biomarkers related to membrane fouling, and thus showed little improvement to alleviate membrane fouling. MiSeq sequencing revealed that although it enriched in the bulk sludge of conventional ASSR-MBR and the coupled reactor with filling fraction of 50 %, the floc-forming, hydrolytic and fermentative bacteria were more inclined to attach on the membrane surface and alleviate fouling process.
Collapse
Affiliation(s)
- Yue Zheng
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Lingyan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yirong Chen
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaichong Wang
- Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jianping Huang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
29
|
Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Composite NF membranes with anti-bacterial activity prepared by electrostatic self-assembly for dye recycle. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Su C, Deng Q, Lu Y, Qin R, Chen S, Wei J, Chen M, Huang Z. Effects of hydraulic retention time on the performance and microbial community of an anaerobic baffled reactor-bioelectricity Fenton coupling reactor for treatment of traditional Chinese medicine wastewater. BIORESOURCE TECHNOLOGY 2019; 288:121508. [PMID: 31132595 DOI: 10.1016/j.biortech.2019.121508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present paper was to investigate the effects of hydraulic retention time (HRT) on the performance and microbial community dynamics of an anaerobic baffled reactor-bioelectricity Fenton (ABR-BEF) coupling reactor for treating traditional Chinese medicine (TCM) wastewater. The results show that the average removal of chemical oxygen demand (COD) and NH3-N at HRTs of 24 h and 18 h were high (>90% and >70%, respectively), but decreased to about 40% and 30% when operating at 12 h HRT. For the electrical production performance, the maximum power density was 196.86 mW/m3 at a HRT of 18 h. Methanomicrobia was the dominant archaea in the coupling reactor and the relative abundance of Methanothrix and Methanolinea increased with decreasing HRT. For the bacteria, the relative abundance of Planctomycetia significantly decreased with a short HRT; however, Anaerolineaceae was always the dominant bacterial taxa, which could guarantee efficient treatment of TCM wastewater.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shenglong Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Jingwei Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhi Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
32
|
Xu R, Yu Z, Zhang S, Meng F. Bacterial assembly in the bio-cake of membrane bioreactors: Stochastic vs. deterministic processes. WATER RESEARCH 2019; 157:535-545. [PMID: 30986700 DOI: 10.1016/j.watres.2019.03.093] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 03/30/2019] [Indexed: 05/06/2023]
Abstract
Much about assembly processes dictating bio-cake microbiota remains uncertain, leading to poor understanding of membrane biofouling in membrane bioreactors (MBRs). This work aimed to reveal the underlying mechanisms driving bio-cake community during the biofouling process under different flux conditions. On the basis of 16S rRNA sequences, the results showed that bacterial diversity decreased with increasing fouling. Additionally, low-flux bio-cake (8 LMH) communities harbored much lower diversity than high-flux (16 LMH) bio-cake microbiomes. Ecological null model analyses and phylogenetic molecular ecological networks (pMENs) revealed that environmental filtering deterministically governed low-flux bio-cake communities. In contrast, high-flux bio-cake communities were mainly shaped in a stochastic manner. This is likely due to the higher stochastic deposition of bacterial taxa from bulk sludge because of the presence of a stronger drag force. Moreover, by lowering the flux, the interactions between bacterial lineages were enhanced; this is evidenced by the greater number of links, the higher average degree, and the higher average clustering coefficients within the pMENs in low-flux bio-cakes than those in high-flux bio-cakes. Most keystone fouling-related taxa in low-flux bio-cakes were motile and involved in nitrate reduction and polysaccharide/protein metabolism. This corroborated the important role of environmental filtering in the assembly process dictating low-flux bio-cake formation. Some low-abundance taxa were observed to be key fouling-related bacteria under both flux conditions, indicating that a few populations play paramount ecological roles in triggering biofouling. In summary, our findings clearly indicate distinct bio-cake community assembly patterns under different operational conditions and highlight the importance of developing specialized strategies for fouling control in individual MBR systems.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Shaoqing Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
33
|
Cheng D, Ngo HH, Guo W, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Zhou J, Ni B. Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues. BIORESOURCE TECHNOLOGY 2018; 267:714-724. [PMID: 30082132 DOI: 10.1016/j.biortech.2018.07.133] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic wastewater has become a major concern due to the toxicity and recalcitrance of antibiotics. Anaerobic membrane bioreactors (AnMBRs) are considered alternative technology for treating antibiotic wastewater because of their advantages over the conventional anaerobic processes and aerobic MBRs. However, membrane fouling remains the most challenging issue in the AnMBRs' operation and this limits their application. This review critically discusses: (i) antibiotics removal and antibiotic resistance genes (ARGs) in different types of AnMBRs and the impact of antibiotics on membrane fouling and (ii) the integrated AnMBRs systems for fouling control and removal of antibiotics. The presence of antibiotics in AnMBRs could aggravate membrane fouling by influencing fouling-related factors (i.e., sludge particle size, extracellular polymeric substances (EPS), soluble microbial products (SMP), and fouling-related microbial communities). Conclusively, integrated AnMBR systems can be a practical technology for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Junliang Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Bingjie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
34
|
Fouling Development in A/O-MBR under Low Organic Loading Condition and Identification of Key Bacteria for Biofilm Formations. Sci Rep 2018; 8:11427. [PMID: 30061582 PMCID: PMC6065318 DOI: 10.1038/s41598-018-29821-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 11/08/2022] Open
Abstract
Membrane fouling in membrane bioreactors (MBR) remains a major issue and knowledge of microbes associated with biofilm formation might facilitate the control of this phenomenon, Thus, an anoxic/oxic membrane bioreactor (A/O-MBR) was operated under an extremely low organic loading rate (0.002 kg-COD·m−3·day−1) to induce membrane fouling and the major biofilm-forming bacteria were identified. After operation under extremely low organic loading condition, the reactor showed accumulation of total nitrogen and phosphorus along with biofilm development on the membrane surface. Thus, membrane fouling induced by microbial cell lysis was considered to have occurred. Although no major changes were observed in the microbial community structure of the activated sludge in the MBR before and after membrane fouling, uncultured bacteria were specifically increased in the biofilm. Therefore, bacteria belonging to candidate phyla including TM6, OD1 and Gammaproteobacteria could be important biofilm-forming bacteria.
Collapse
|
35
|
Takada K, Shiba T, Yamaguchi T, Akane Y, Nakayama Y, Soda S, Inoue D, Ike M. Cake layer bacterial communities during different biofouling stages in full-scale membrane bioreactors. BIORESOURCE TECHNOLOGY 2018; 259:259-267. [PMID: 29571169 DOI: 10.1016/j.biortech.2018.03.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
A detailed understanding of the bacterial communities in the cake layers formed on the membrane surface is required to control biofouling in a membrane bioreactor (MBR). This study aimed to investigate the dynamics of the cake layer bacterial communities in full-scale MBRs operated in a wastewater treatment plant in Japan and to identify the key bacteria responsible for cake layer formation. The bacterial communities in the cake layer and the activated sludge were analyzed using 16S rRNA gene amplicon sequencing when biofouling occurred under different fouling conditions. The most dominant phyla in activated sludge were almost always Proteobacteria and Bacteroidetes. By contrast, when the cake layer had unique bacterial communities distinguishable from those in the activated sludge, members of Firmicutes were highly dominant in the cake layer, irrespective of the fouling conditions. This study reported for the first time that Firmicutes play an important role throughout the biofouling process.
Collapse
Affiliation(s)
- Kazuki Takada
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiko Shiba
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takako Yamaguchi
- Sakai City Waterworks and Sewerage Bureau, 1-39-2 Mozuumekita-cho, Kita-ku, Sakai, Osaka 591-8505, Japan
| | - Yui Akane
- Sakai City Waterworks and Sewerage Bureau, 1-39-2 Mozuumekita-cho, Kita-ku, Sakai, Osaka 591-8505, Japan
| | - Yoshinari Nakayama
- Sakai City Waterworks and Sewerage Bureau, 1-39-2 Mozuumekita-cho, Kita-ku, Sakai, Osaka 591-8505, Japan
| | - Satoshi Soda
- Department of Environmental Systems Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
36
|
Zhang S, Zhou Z, Li Y, Meng F. Deciphering the core fouling-causing microbiota in a membrane bioreactor: Low abundance but important roles. CHEMOSPHERE 2018; 195:108-118. [PMID: 29258007 DOI: 10.1016/j.chemosphere.2017.12.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Currently, membrane biofouling in membrane bioreactors (MBRs) is normally attributed to the occurrence of abundant bacterial species on membranes, whereas the roles of low-abundance bacteria have not been paid sufficient attention. In this study, the linear discriminant analysis (LDA) effect size (LEfSe) algorithm was used to identify active biomarkers, determining 67 different phylotypes among Bulk sludge, low-fouling Bio-cake (10 kPa), high-fouling Bio-cake (25 kPa) and Membrane pore in a membrane bioreactor with NaOCl backwash. Interestingly, a large proportion of the active biomarkers in bio-cake samples, such as Methylophilaceae, Burkholderiaceae, Paucibacter and Pseudoxanthomonas, did not fall within the abundant taxa (i.e., <0.05% relative abundance), indicating the preferential growth of these low-abundance bacteria on the membrane surface. Furthermore, the characterization of microbial interactions using a random matrix theory (RMT)-based network approach obtained a network consisting of 120 nodes and 228 edges. Specifically, network analysis showed the presence of an intense competition among bacterial species in the fouling-related communities, suggesting that negative interactions have an important effect on determining the microbial community structure. More importantly, the LEfSe algorithm and network analysis showed that most of the core species of the bio-cake, such as Burkholderiaceae, Bacillus and Rhodothermaceae, merely amounted to a very low relative abundance (<1%), suggesting their unrecognized and over-proportional ecological role in triggering the initial biofilm formation and subsequent biofilm maturation during MBR operation. Overall, this work should improve our understanding of the bacterial community structure on the fouled membranes in MBRs.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
37
|
Han X, Zhou Z, Mei X, Ma Y, Xie Z. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community. BIORESOURCE TECHNOLOGY 2018; 250:699-707. [PMID: 29220815 DOI: 10.1016/j.biortech.2017.11.090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed.
Collapse
Affiliation(s)
- Xiaomeng Han
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd., Shanghai 200082, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xiaojie Mei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yan Ma
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd., Shanghai 200082, China
| | - Zhenfang Xie
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd., Shanghai 200082, China
| |
Collapse
|
38
|
Antwi P, Li J, Opoku Boadi P, Meng J, Shi E, Xue C, Zhang Y, Ayivi F. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB. BIORESOURCE TECHNOLOGY 2017; 235:348-357. [PMID: 28384587 DOI: 10.1016/j.biortech.2017.03.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Microbial community structure of sludge sampled from an UASB treating potato starch processing wastewater (PSPW) was investigated. Operational taxonomic units revealed at 97% sequence identity tolerance was 2922, 2869 and 3919 for bottom, middle and top sections of the reactor, respectively. Overall abundant phylum observed within the UASB was low-G+C-Gram-positive bacteria affiliated to Firmicutes (26.01%) followed by Chloroflexi (16.70%), Proteobacteria (12.71%), Cloacimonetes (10.72%), Bacteroidetes (7.87%), Synergistetes (9.02%) and Euryarchaeota (8.82%). Whiles Firmicutes had dominated the bottom and top section by 34.01% and 28.64%, respectively, middle section was predominantly Euryarchaeota (24.32%) with major dominance in methanogens affiliated to genus Methanosaeta. The results demonstrated substantial stratification of the microbial community structure along the reactor height with various functional bacterial groups which subsequently allowed degradation of organics in PSPW in sequential mode. The findings herein would provide guidance for optimizing the anaerobic process and operation of the UASB.
Collapse
Affiliation(s)
- Philip Antwi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Portia Opoku Boadi
- School of Management, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - En Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Chi Xue
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yupeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Frederick Ayivi
- Department of Geography, University of North Carolina, 237 Graham Building, 1009 Spring Garden St, Greensboro, NC 27412, USA
| |
Collapse
|
39
|
Yamanouchi S, Nasuno E, Ohno M, Okano C, Iimura KI, Okuda T, Nishijima W, Kato N. Enhancement effects of cationic contaminants from bacteria on cake layer formation and biofouling on an RO membrane. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|