1
|
Tang A, Li C, Feng D, Li A. Deciphering the code of temperature rise on aerobic granular sludge stability: A DSF-c-di-GMP mediated regulatory mechanism. ENVIRONMENTAL RESEARCH 2025; 267:120705. [PMID: 39732421 DOI: 10.1016/j.envres.2024.120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Diffusible signal factor (DSF)-c-di-GMP-mediated strategies have been proposed as an effective regulatory approach for signal molecules in aerobic granular sludge (AGS). The increase in temperature from low to normal levels had a significant impact on AGS stability. In this study, two reactors were established to investigate the effects of different temperature rise modes (abrupt or gradual) on AGS stability. Following the temperature rise, the DSF concentration in Reactor 1 (R1, abrupt) rose nearly fourfold by day 125, while LB-EPS levels decreased by 70%. In contrast, in Reactor 2 (R2, gradual), the DSF concentration increased by only twofold, and TB-EPS levels decreased by 25%. Flavobacterium (R1: 3.64%→0.41%, R2: 3.70%→1.97%) and Thauera (R1: 28.62%→4.01%, R2: 27.56%→13.10%), which are associated with EPS and signal molecule production, exhibited significantly different trends in response to the different temperature rise modes. Batch experiments exhibited that the exogenous addition of DSF and the DSF inhibitor, salicylic acid (SA), can regulate EPS content by altering the concentration of signaling molecules, particularly the LB-EPS, thereby reducing the risk of sludge collapse. These findings offer novel insights into the role of DSF in bacterial communication during AGS formation under temperature rise, providing a basis for regulating AGS formation and stability.
Collapse
Affiliation(s)
- Aiqi Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Chunyan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Donglei Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
2
|
Tang A, Fan S, Zhang P, Li A. Role of diffusible signal factor in regulating aerobic granular sludge formation under temperature shocks. BIORESOURCE TECHNOLOGY 2024; 412:131369. [PMID: 39209233 DOI: 10.1016/j.biortech.2024.131369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Signal-molecule-mediated strategies are proposed for aerobic granular sludge (AGS), but the regulatory mechanisms behind AGS formation are largely unexplored. In this study, two sequence batch reactors (SBRs) were operated to investigate the regulation of diffusible signal factor (DSF) in AGS formation. DSF secretion in Reactor 2 (R2: 10 °C→25 °C) decreased by 15 % compared to Reactor 1 (R1: 25 °C→10 °C), correlating with a 26 % increase in extracellular polymeric substance (EPS) concentration, resulting in a 63 % acceleration of the granulation process. After temperature shocks in R2, DSF concentration increased by 70 %, while EPS concentration decreased by 47 %. Batch tests confirmed that DSF inhibited EPS secretion. Combined 16S rRNA analysis and machine learning identified key bacteria responsible for secreting EPS and signal molecule. The decrease in the abundances of these bacteria reduced EPS production. These findings on DSF regulation of EPS secretion provide an in-depth understanding of enhanced AGS granulation.
Collapse
Affiliation(s)
- Aiqi Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengqiang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330000, PR China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
3
|
Jiang H, Xie X, Li J, Jiang Z, Pi K, Wang Y. Metagenomic and FT-ICR MS insights into the mechanism for the arsenic biogeochemical cycling in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135047. [PMID: 38959833 DOI: 10.1016/j.jhazmat.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Arsenic (As) is a groundwater contaminant of global concern. The degradation of dissolved organic matter (DOM) can provide a reducing environment for As release. However, the interaction of DOM with local microbial communities and how different sources and types of DOM influence the biotransformation of As in aquifers is uncertain. This study used optical spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), metagenomics, and structural equation modeling (SEM) to demonstrate the how the biotransformation of As in aquifers is promoted. The results indicated that the DOM in high-As groundwater is dominated by highly unsaturated low-oxygen(O) compounds that are quite humic and stable. Metagenomics analysis indicated Acinetobacter, Pseudoxanthomonas, and Pseudomonas predominate in high-As environments; these genera all contain As detoxification genes and are members of the same phylum (Proteobacteria). SEM analyses indicated the presence of Proteobacteria is positively related to highly unsaturated low-O compounds in the groundwater and conditions that promote arsenite release. The results illustrate how the biogeochemical transformation of As in groundwater systems is affected by DOM from different sources and with different characteristics.
Collapse
Affiliation(s)
- Honglin Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
4
|
Lin Q, Sun S, Yang J, Hu P, Liu Z, Liu Z, Song C, Yang S, Wu F, Gao Y, Zhang W, Zhou L, Li Y. Enhanced aerobic granular sludge by thermally-treated dredged sediment in wastewater treatment under low superficial gas velocity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122210. [PMID: 39146649 DOI: 10.1016/j.jenvman.2024.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The positive contributions of carriers to aerobic granulation have been wildly appreciated. In this study, as a way resource utilization, the dredged sediment was thermally-treated to prepared as carriers to promote aerobic granular sludge (AGS) formation and stability. The system was started under low superficial gas velocity (SGV, 0.6 cm/s)for a lower energy consumption. Two sequencing batch reactors (SBR) labeled R1 (no added carriers) and R2 (carriers added), were used in the experiment. R2 had excellent performance of granulation time (shortened nearly 43%). The maximum mean particle size at the maturity stage of AGS in R2 (0.545 mm) was larger compared to R1 (0.296 mm). The sludge settling performance in R2 was better. The reactors exhibited high chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal rates. The total phosphorus (TP) removal rate in R2 was higher than R1 (almost 15% higher) on stage II (93-175d). R2 had a higher microbial abundance and dominant bacteria content. The relative abundance of dominant species was mainly affected by the carrier. However, the enrichment of dominant microorganisms and the evolution of subdominant species were more influenced by the increase of SGV. The results indicated that the addition of carriers induced the secretion of extracellular polymeric substances (EPS) by microorganisms and accelerated the rapid formation of initial microbial aggregates. This work provided a low-cost method and condition to enhance aerobic granulation, which may be helpful in optimizing wastewater treatment processes.
Collapse
Affiliation(s)
- Qingxia Lin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Jianbin Yang
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Pei Hu
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Zhengrong Liu
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Ziqiang Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Chuxuan Song
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Suiqin Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Fangtong Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yifu Li
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|
5
|
Pérez-Bou L, Rosa-Masegosa A, Vilchez-Vargas R, Link A, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Treatment of hospital wastewater using aerobic granular sludge technology: Removal performance and microbial dynamics. JOURNAL OF WATER PROCESS ENGINEERING 2024; 60:105206. [DOI: 10.1016/j.jwpe.2024.105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
6
|
Tsertou E, Caluwé M, Goettert D, Goossens K, Seguel Suazo K, Vanherck C, Dries J. Impact of low and high temperatures on aerobic granular sludge treatment of industrial wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:548-561. [PMID: 38358488 PMCID: wst_2024_024 DOI: 10.2166/wst.2024.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The goal of this study was to unravel the impact of high and low temperatures (T) on glycogen-accumulating microorganisms (GAOs) which were stimulated in an aerobic granular sludge plant fed with industrial wastewater, which is derived from the cleaning of trucks transporting chocolate and beer. Among GAOs, Candidatus Competibacter (Ca. Competibacter) was the most abundant. The long-term impact on (1) anaerobic dissolved organic carbon (DOC) uptake, (2) sludge morphology, and (3) microbial community composition was investigated. In addition, the short-term impact of T changes on the anaerobic uptake rate was evaluated. High T (above 38 °C) and low T (below 11 °C) had a negative impact on the relative read abundance of Ca. Competibacter and the anaerobic DOC uptake. Nevertheless, the carbon removal efficiency and the settleability of the biomass were not affected. Denitrifiers such as Thauera and Zoogloea were promoted over Ca. Competibacter under high T and low T, respectively, indicating their positive contribution to granulation maintenance.
Collapse
Affiliation(s)
- Eirini Tsertou
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium E-mail:
| | - Michel Caluwé
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium
| | - Dorothee Goettert
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium
| | - Koen Goossens
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium
| | - Karina Seguel Suazo
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium
| | - Catharina Vanherck
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium
| | - Jan Dries
- Research Group BioWAVE, Biochemical Wastewater Valorization & Engineering, Faculty of Applied Engineering, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171-2020, Antwerp, Belgium
| |
Collapse
|
7
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-Martínez A, González-López J. Novel insights into the impact of anticancer drugs on the performance and microbial communities of a continuous-flow aerobic granular sludge system. BIORESOURCE TECHNOLOGY 2024; 394:130195. [PMID: 38081471 DOI: 10.1016/j.biortech.2023.130195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 02/04/2024]
Abstract
Anticancer drugs are frequently found in domestic wastewater, but knowledge of their impacts on wastewater treatment processes is limited. The effects of three levels of concentrations (low, medium, and high) of three anticancer drugs on physicochemical parameters and prokaryotic communities of a continuous-flow aerobic granular sludge (AGS) system were examined. Drugs at medium and high concentrations reduced the removal of total nitrogen and organic matter during the first 15 days of operation by approximately 15-20 % compared to a control, but these effects disappeared afterward. Removal efficiencies of drugs were in the range of 51.2-100 % depending on the concentration level. Drugs at medium and high concentrations reduced the abundance and diversity and altered the composition of prokaryotic communities. Specific taxa were linked to variations in performance parameters after the addition of the drugs. This study provides improved knowledge of the impacts of anticancer drugs in AGS systems operated in continuous-flow reactor.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain.
| | - Manuel J Gallardo-Altamirano
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain
| | - Alejandro González-Martínez
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain
| | - Jesús González-López
- Department of Microbiology, Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, Granada 18071, Spain
| |
Collapse
|
8
|
Zhang X, Zhao B, An Q, Zhang P. The influence of different nitrate concentrations on aerobic sludge granulation and the role of extracellular polymeric substances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119226. [PMID: 37820429 DOI: 10.1016/j.jenvman.2023.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
This study investigated the influence of nitrate on aerobic granular sludge (AGS) granulation. The introduction of nitrate at 5, 15 and 20 mg L-1 promoted AGS granulation, and the promoting effect was positively correlated with nitrate concentrations. Meanwhile, exogenous nitrate significantly increased denitrification rate in the AGS system. However, granular disintegration appeared at a long-term addition of nitrate. An in-deep analysis showed that nitrate stimulated the secretion of extracellular polymeric substances (EPS), especially the content of proteins, which might be the main reason for the AGS granulation. However, the rapid and excessive increase in EPS might cause granular disintegration, as excessive EPS blocked the transmission of substrates, leading to the increase of dead cells in the granules. Besides, nitrate also altered the hydrophobicity of EPS and the content of α-helix, 3-turned helix and polymeric chain that favored aggregation, which also affected AGS granulation. From the microbial community level, nitrate induced the enrichment of denitrifying bacteria, including those that also functioned as EPS producers, such as Micropruina and Flavobacterium, resulting in the rapid increase of functional enzymes associated with amino acid synthesis, thereby promoting the secretion of proteins in EPS. Conversely, disintegration caused by mass transfer blockage might lead to the loss of EPS producing bacteria and subsequent decrease in EPS content, further accelerating granular disintegration.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Peng Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
9
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
10
|
Domańska M, Kuśnierz M, Mackiewicz K. Seasonal prevalence of bacteria in the outflow of two full-scale municipal wastewater treatment plants. Sci Rep 2023; 13:10608. [PMID: 37391517 PMCID: PMC10313732 DOI: 10.1038/s41598-023-37744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Despite many modern wastewater treatment solutions, the most common is still the use of activated sludge (AS). Studies indicate that the microbial composition of AS is most often influenced by the raw sewage composition (especially influent ammonia), biological oxygen demand, the level of dissolved oxygen, technological solutions, as well as the temperature of wastewater related to seasonality. The available literature mainly refers to the relationship between AS parameters or the technology used and the composition of microorganisms in AS. However, there is a lack of data on the groups of microorganisms leaching into water bodies whose presence is a signal for possible changes in treatment technology. Moreover, sludge flocs in the outflow contain less extracellular substance (EPS) which interferes microbial identification. The novelty of this article concerns the identification and quantification of microorganisms in the AS and in the outflow by fluorescence in situ hybridization (FISH) method from two full-scale wastewater treatment plants (WWTPs) in terms of 4 key groups of microorganisms involved in the wastewater treatment process in the context of their potential technological usefulness. The results of the study showed that Nitrospirae, Chloroflexi and Ca. Accumulibacter phosphatis in treated wastewater reflect the trend in abundance of these bacteria in activated sludge. Increased abundance of betaproteobacterial ammonia-oxidizing bacteria and Nitrospirae in the outflow were observed in winter. Principal component analysis (PCA) showed that loadings obtained from abundance of bacteria in the outflow made larger contributions to the variance in the PC1 factorial axis, than loadings obtained from abundance of bacteria from activated sludge. PCA confirmed the reasonableness of conducting studies not only in the activated sludge, but also in the outflow to find correlations between technological problems and qualitative and quantitative changes in the outflow microorganisms.
Collapse
Affiliation(s)
- Magdalena Domańska
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland.
| | - Magdalena Kuśnierz
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland
| | - Katarzyna Mackiewicz
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland
| |
Collapse
|
11
|
Tian H, Liu J, Zhang Y, Liu Q. Stress response and signalling of a low-temperature bioaugmentation system in decentralized wastewater treatment: Degradation characteristics, community structure, and bioaugmented mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118257. [PMID: 37290305 DOI: 10.1016/j.jenvman.2023.118257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Low temperatures present challenges for stable wastewater treatment operations in cold regions. Low-temperature effective microorganisms (LTEM) were added as a bioaugmentation strategy at a decentralized treatment facility to improve performance. The effects of a low-temperature bioaugmentation system (LTBS) with LTEM at low temperatures (4 °C) on organic pollutant performance, microbial community changes, and the metabolic pathways of functional genes and functional enzymes were studied. To explore the bioaugmentation mechanism of LTBS based on stress response and signalling. The results showed that the start-up time of the LTBS (S2) with LTEM was shorter (8 days) and that it removed COD and NH4+-N at higher rates (87 % and 72 %, respectively) at 4 °C. LTEM effectively degraded complex macromolecular organics into small molecular organics, and decomposing sludge flocs and the changing the extracellular polymeric substances (EPS) structure removed more organics and nitrogen. LTEM and local microbial communities (nitrifying and denitrifying bacteria) improved the ability of organic matter degradation and denitrification of the LTBS and formed a core microbial community dominated by LTEM (Bacillus and Pseudomonas). Finally, based on the functional enzymes and metabolic pathways of the LTBS, a low-temperature strengthening mechanism consisting of 6 cold stress responses and signal pathways under low temperatures was formed. This study demonstrated that the LTEM-dominated LTBS could provide an engineering alternative for future decentralized wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Hongyu Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing, 100044, China
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing, 100044, China.
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Qianqian Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
12
|
Sun Z, Zhang J, Wang J, Zhu H, Xiong J, Nong G, Luo M, Wang J. Direct start-up of aerobic granular sludge system with dewatered sludge granular particles as inoculant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116540. [PMID: 36427360 DOI: 10.1016/j.jenvman.2022.116540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology for engineering applications in the biological treatment of sewage. New objective is to skip the conventional granulation step to integrate it into a continuous-flow reactor directly. This study proposed a method for integrating spherical pelletizing granular sludge (SPGS) into a new patented aerobic granular sludge bed (AGSB), a continuous up-flow reactor. AGSB system could be startup directly, and after 120 days of operation, the SPGS maintained a relatively intact spherical structure and stability. With an initial high chemical oxygen demand (COD) volume loading of over 2.0 kg/(m3·d), this system achieved the desired effect as the same as a mature AGS system. The final mixed liquid suspended solids, and the ratio of 30 min-5 min sludge volume index (SVI30/SVI5) were 20,000 mg/L, and 0.84, respectively. Although hydraulic elution and filamentous bacteria (FBs) had a slightly negative impact on initial phase pollutant removal, the final removal rates for COD, total nitrogen (TN), ammonia nitrogen (NH4+-H), and total phosphorus (TP) were 90%, 70%, 95%, and 85%, respectively. The presence of specific functional microorganisms promoted the secretion of extracellular polymeric substances (EPS), from 90.65 to 209.78 mg/gVSS. The maturation process of SPGS altered the microbial community structures and reduced the species abundance of microbes in sludge.
Collapse
Affiliation(s)
- Zhuo Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China; Branch Graduate School of Guangxi Bossco Environmental Protection Technology Co., Ltd, Guangxi University, Nanning, 530007, People's Republic of China
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jin Wang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mengqi Luo
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, People's Republic of China
| | - Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
13
|
Yuan C, Sun F, Zhang J, Feng L, Tu H, Li A. Low-temperature-resistance granulation of activated sludge and the microbial responses to the granular structural stabilization. CHEMOSPHERE 2023; 311:137146. [PMID: 36347348 DOI: 10.1016/j.chemosphere.2022.137146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Completely loss of granular structural stability and reliable start-up of aerobic granular sludge (AGS) system are considered as the biggest challenges for its engineering application under seasonal temperature variation, especially extremely low temperatures. In this study, two identical sequencing batch reactors (SBR) were successfully start-up at 10 °C (R1) and 25 °C (R2), respectively, and then operated under a strategy of stepwise change of temperatures to investigate the stability of the granular sludge by examining its microbial characteristics, bis (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), extracellular polymeric substance (EPS) and sludge physiochemical properties. The results showed that AGS formed under the low temperature preferentially secrete EPS and c-di-GMP for stable granulation and improvement of its resistance to temperature changes. Meanwhile, R1 successfully obtained aerobic granulation with high biomass concentration and superior settleability, as well as high pollutant removal performance. In comparison, R2 took a longer time for granulation and was subjected to serious disintegration of AGS. The matrix structure partially formed by filamentous bacteria during the start-up stage in R1 was one of major reasons for its own superiority beyond R2 in granulation. Slow-growing organisms such as autotrophic nitrifying and Anammox bacteria, phosphorus accumulation organisms, EPS-producing genera, and c-di-GMP pathway-dependent genera, were exclusively enriched in the R1 and resulted in higher pollutants removal efficiencies and stable structure, whereas Sphaerotilus dominated in R2 that related closely with its unstable performance. Therefore, the strategy based on the stepwise change of temperatures from extremely low temperatures may be one feasible way for the sustainable application of AGS system, which is of significance to address the challenging problems of AGS applications.
Collapse
Affiliation(s)
- Chunyan Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China.
| | - Jianjun Zhang
- Shenzhen Municipal Design & Research Institute Co. Ltd., People's Republic of China
| | - Liang Feng
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Honghua Tu
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
14
|
Kruglova A, Muñoz-Palazón B, Gonzalez-Martinez A, Mikola A, Vahala R, Talvitie J. The dangerous transporters: A study of microplastic-associated bacteria passing through municipal wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120316. [PMID: 36191797 DOI: 10.1016/j.envpol.2022.120316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) provide a stable and protective habitat for diverse wastewater bacteria, including pathogenic and antibiotic-resistant species. Therefore, MPs may potentially transport these bacteria through wastewater treatment steps to the environment and far distances. This study investigated bacterial communities of MP-associated bacteria from different stages of municipal wastewater treatment processes to evaluate the potential negative effect of these biofilms on the environment. The results showed a high diversity of bacteria that were strongly attached to MPs. After all treatment steps, the core bacterial groups remained attached to MPs and escaped from the wastewater treatment plant with effluent water. Several pathogenic bacteria were identified in MP samples from all treatment steps, and most of them were found in effluent water. These data provide new insights into the possible impacts of wastewater-derived MPs on the environment. MP-associated biofilms were proved to be important sources of pathogens and antibiotic-resistant genes in natural waters.
Collapse
Affiliation(s)
- Antonina Kruglova
- Department of Built Environment, Aalto University, PO Box 15200, FI-00076, AALTO, Finland.
| | - Barbara Muñoz-Palazón
- Department of Microbiology, University of Granada, Campus Universitario de la Cartuja C.P., 18071, Granada, Spain; Dipartimento di Ecologia e Biologia, Università degli Studi della Tuscia, Largo Università snc, 01100, Viterbo, Italy
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, University of Granada, Campus Universitario de la Cartuja C.P., 18071, Granada, Spain
| | - Anna Mikola
- Department of Built Environment, Aalto University, PO Box 15200, FI-00076, AALTO, Finland
| | - Riku Vahala
- Department of Built Environment, Aalto University, PO Box 15200, FI-00076, AALTO, Finland
| | - Julia Talvitie
- Marine Research Center, Finnish Environment Institute (SYKE), P.O.Box 140, FI-00251, Helsinki, Finland
| |
Collapse
|
15
|
Chen S, Yang D, Wang Q, Huang X, Ren H, Xu K. Study on the advanced nitrogen removal under low temperature by biofilm on weak magnetic carriers. BIORESOURCE TECHNOLOGY 2022; 360:127580. [PMID: 35798170 DOI: 10.1016/j.biortech.2022.127580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The advanced nitrogen removal under low temperature is inhibited because of reduction of the microbial activity. Packed bed reactors filled with different magnetic carriers (0, 0.3, 0.6, 0.9 mT) were constructed to enhance advanced denitrification under low temperature (5 ℃). Results showed that 0.3 and 0.9 mT carriers significantly improved denitrification, indicating the "window" effect. Total nitrogen removals were increased by 6.96% and 8.25%, and NO2- accumulation decreased by 25.70% and 13.90% in 0.3 and 0.9 mT reactors, respectively. Analysis of enzyme activity and electron transport chain showed that 0.3 mT carrier mainly increased NIR activity by improving compound III and cytC abundance while 0.9 mT carrier mainly increased NAR activity by improving compound I and NADH abundance, indicating different pathways. Similar microbial community in 0.3 and 0.9 mT reactors were revealed. Overall, weak magnetic carriers can be used to enhance advanced nitrogen removal under low temperature.
Collapse
Affiliation(s)
- Sien Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qingxin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueying Huang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Sanchez-Huerta C, Fortunato L, Leiknes T, Hong PY. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR). JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128698. [PMID: 35349844 DOI: 10.1016/j.jhazmat.2022.128698] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of organic micropollutants (OMPs) in natural water bodies has become an emerging concern due to their fast dissemination into natural water sources, high persistence, ubiquitous nature, and detrimental impact on the environment and human health. This study evaluated the Membrane Aerated Biofilm Reactor (MABR) efficiency in the removal of 13 OMPs commonly reported in water. Results demonstrated that OMPs removal is dependent on biofilm thickness and bacterial cell density, microbial community composition and physicochemical properties of OMPs. Effective removals of ammonium and organic carbon (COD, >50%), acetaminophen (70%) and triclosan (99%) were obtained even at early stages of biofilm development (thickness < 0.33 mm, 2.9 ×105 cell mL-1). An increase in biofilm thickness and cell density (1.02 mm, 2.2 ×106 cell mL-1) enhanced the system performance. MABR achieved over 90% removal of nonpolar, hydrophobic and hydrophilic OMPs and 22-69% removal of negatively charged and acidic OMPs. Relative abundances of Zoogloea, Aquabacterium, Leucobacter, Runella, and Paludilbaculum bacteria correlated with the removal of certain OMPs. In addition, MABR achieved up to 96% nitrification and 80% overall COD removal by the end of the experiment. The findings from this study demonstrated MABRs to be a feasible option to treat municipal wastewater polluted by OMPs.
Collapse
Affiliation(s)
- C Sanchez-Huerta
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - L Fortunato
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - T Leiknes
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - P-Y Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Muñoz-Palazon B, Rosa-Masegosa A, Vilchez-Vargas R, Link A, Gorrasi S, Gonzalez-Lopez J, Gonzalez-Martinez A. Biological removal processes in aerobic granular sludge for treating synthetic hospital wastewater: Effect of temperature. JOURNAL OF WATER PROCESS ENGINEERING 2022; 47:102691. [DOI: 10.1016/j.jwpe.2022.102691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
18
|
Penagos DG, Victoria JR, Manrique MV. Formulation of a protocol to evaluate the aerobic granulation potential (AGP) of an inoculum. MethodsX 2022; 9:101710. [PMID: 35601957 PMCID: PMC9120046 DOI: 10.1016/j.mex.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
This paper proposes and develops a protocol for measuring the aerobic granulation potential of sludge, aiming to provide an affordable and simple alternative that can facilitate the development of aerobic granulation technology. In this sense, the protocol comprises a set of parameters and considerations that interact to create a controlled environment and stimulate cell population clustering. All of this is done in the context of procedural simplicity, low cost, and the speed at which results are obtained. The protocol is essentially a three-stage method: preparation of the substrate, adaptation of the inoculum, and implementation of the protocol. Simple parameters were measured to evaluate the granulation process: SVI, settling velocity, and morphological parameters. The protocol was validated according to optimal ranges and criteria previously established in the literature. For this purpose, an activated sludge inoculum from a domestic wastewater treatment plant was submitted to the protocol, obtaining an optimal response of the biomass (SVI5 =13.90 mL g-1, settling velocity= 25,79 m h-1, Diameter > 0.2 mm) in a relatively short time (7 d). The results show that this protocol can constitute a tool for evaluation and decision-making using traditional laboratory equipment and is applicable at different scales.
Collapse
Key Words
- AGP, Aerobic Granulation Potential
- Aerobic granules
- COD, Chemical Oxygen Demand
- DO, Dissolved Oxygen
- EPS, Extracellular Polymeric Substance
- F/M, Food Microorganism Relationship
- H/D, Height Diameter Ratio
- HRT, Hydraulic retention time
- Inoculum
- OLR, organic loading rate
- PVC, Polyvinyl Chloride
- Protocol
- SBR, Sequential Batch Reactor
- SVI, Sludge Volumetric Index
- VER, Volumetric exchange ratio
Collapse
|
19
|
Wu H, Cui M, Yang X, Liu Y, Wang J, Zhang L, Zhan G, Zhao Y. Visual signal sensor coupling to nitrification for sustainable monitoring of trichloroacetaldehyde and the response mechanisms. Bioelectrochemistry 2022; 146:108142. [DOI: 10.1016/j.bioelechem.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
20
|
Duarte KLS, Castellanos RM, Costa RC, Mahler CF, Bassin JP. Start-up of an aerobic granular sludge system from stored granules: Evaluating the impact of storage period on biomass activity and stability and the effect of temperature on nitrification and phosphorus removal rates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113200. [PMID: 34284343 DOI: 10.1016/j.jenvman.2021.113200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Aerobic granular sludge (AGS) has been considered a breakthrough within the wastewater treatment sector. However, the long reactor start-up for the formation of granules is challenging and may hinder the spread of this technology. To circumvent this obstacle, inoculation of the reactors with pre-formed granules from existing plants is an interesting approach. In this context, issues related to biomass storage becomes very relevant. In this study, reactivation of aerobic granular biomass after storage was evaluated in a sequencing batch reactor (SBR) designed for achieving simultaneous organic matter, nitrogen and phosphorus removal. Two different scenarios, short (40 days) and long (180 days) storage periods, were assessed, and their influence on the granules physical properties and bioactivity was addressed. The results revealed that the granules stored for a shorter period showed higher resistance to breakage and underwent smooth color changes. On the other hand, the biomass stored for a longer period acquired a dark color and was more susceptible to disruption during reactivation. The granules stored for 6 months become swollen and exhibited an irregular morphology and fluffy structure within the first days of reactivation. Consequently, their settling properties were adversely affected, and some parameters such as the food-to-microorganism ratio had to be adjusted to prevent granules disintegration. Regarding the bioactivity of important microbial functional groups, COD removal was rapidly restored within a few days of SBR operation with the biomass stored for a shorter period. However, it took longer for the biomass stored for 180 days to reach the same performance observed for the granules stored for 40 days. A similar trend is valid for nitrification. In the experiments with sludge stored for a longer time, it took almost twice as long to reach effluent ammonium concentrations lower than 1 mg NH4+-N L-1 compared to the test using biomass stored for 40 days. Phosphate removal was strongly affected by biomass storage, especially after 180 days of inactivity, a condition found to be detrimental for polyphosphate-accumulating organisms. Finally, cycle tests were also conducted to assess substrate conversion rates for comparison between different trials and evaluate the influence of temperature (10-35 °C) on nitrification and phosphate removal rates.
Collapse
Affiliation(s)
- K L S Duarte
- Civil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R M Castellanos
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R C Costa
- Civil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C F Mahler
- Civil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J P Bassin
- Civil Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Structural Characteristics of Aerobic Granular Sludge and Factors That Influence Its Stability: A Mini Review. WATER 2021. [DOI: 10.3390/w13192726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current extensive research on aerobic granular sludge (AGS) largely focuses on improving its microbial biodiversity, settlement behavior, nitrogen and phosphorus removal efficiency, and shock load resistance. Great challenges that have to be faced are the bottleneck of slow-speed granulation and easy disintegration after granulation, which are key to the extended application of AGS technology. In the present review, the typical morphological structures of AGS are firstly summarized as well as the granulation model hypotheses, and then, we analyze the dominant microflora and their spatial distribution features. The influencing factors on particle structure stability are discussed thereafter on a macro and micro scale. Prospects and future research trends are also discussed based on the current study results for AGS technology.
Collapse
|
22
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, Gonzalez-Lopez J, Vahala R, Gonzalez-Martinez A. Evaluating the nitrogen-contaminated groundwater treatment by a denitrifying granular sludge bioreactor: effect of organic matter loading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41351-41364. [PMID: 33783701 DOI: 10.1007/s11356-021-13648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A sequential bed granular bioreactor was adapted to treat nitrate-polluted synthetic groundwater under anaerobic conditions and agitation with denitrification gas, achieving very efficient performance in total nitrogen removal at influent organic carbon concentrations of 1 g L-1 (80-90%) and 0.5 g L-1 (70-80%) sodium acetate, but concentrations below 0.5 g L-1 caused accumulation of nitrite and nitrate and led to system failure (30-40% removal). Biomass size and settling velocity were higher above 0.5 g L-1 sodium acetate. Trichosporonaceae dominated the fungal populations at all times, while a dominance of terrestrial group Thaumarchaeota and Acidovorax at 1 and 0.5 g L-1 passed to a domination of Methanobrevibacter and an unclassified Comamonadaceae clone for NaAc lower than 0.5 g L-1. The results obtained pointed out that the denitrifying granular sludge technology is a feasible solution for the treatment of nitrogen-contaminated groundwater, and that influent organic matter plays an important role on the conformation of microbial communities within it and, therefore, on the overall efficiency of the system.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jesús Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | | |
Collapse
|
23
|
New Advances in Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering and Microbiological Aspects. WATER 2021. [DOI: 10.3390/w13131792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimensional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundamentally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange. Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
Collapse
|
24
|
Muñoz-Palazon B, Rosa-Masegosa A, Hurtado-Martinez M, Rodriguez-Sanchez A, Link A, Vilchez-Vargas R, Gonzalez-Martinez A, Lopez JG. Total and Metabolically Active Microbial Community of Aerobic Granular Sludge Systems Operated in Sequential Batch Reactors: Effect of Pharmaceutical Compounds. TOXICS 2021; 9:93. [PMID: 33922816 PMCID: PMC8146427 DOI: 10.3390/toxics9050093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
Two aerobic granular sludge (AGS) sequential batch reactors were operated at a mild (15 °C) temperature for 180 days. One of those bioreactors was exposed to a mixture of diclofenac, naproxen, trimethoprim, and carbamazepine. The AGS system, operating under pressure from emerging contaminants, showed a decrease in COD, BOD5, and TN removal capacity, mainly observed during the first 100 days, in comparison with the removal ratios detected in the control bioreactor. After an acclimatisation period, the removal reached high-quality effluent for COD and TN, close to 95% and 90%, respectively. In the steady-state period, trimethoprim and diclofenac were successfully removed with values around 50%, while carbamazepine and naproxen were more recalcitrant. The dominant bacterial OTUs were affected by the presence of a mixture of pharmaceutical compounds, under which the dominant phylotypes changed to OTUs classified among the Pseudomonas, Gemmobacter, and Comamonadaceae. The RT-qPCR and qPCR results showed the deep effects of pharmaceutical compounds on the number of copies of target genes. Statistical analyses allowed for linking the total and active microbial communities with the physico-chemical performance, describing the effects of pharmaceutical compounds in pollution degradation, as well as the successful adaptation of the system to treat wastewater in the presence of toxic compounds.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Aurora Rosa-Masegosa
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Miguel Hurtado-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Alejandro Rodriguez-Sanchez
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Alejandro Gonzalez-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez Lopez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
25
|
Yan X, Zheng S, Huo Z, Shi B, Huang J, Yang J, Ma J, Han Y, Wang Y, Cheng K, Feng J, Sun J. Effects of exogenous N-acyl-homoserine lactones on nutrient removal, sludge properties and microbial community structures during activated sludge process. CHEMOSPHERE 2020; 255:126945. [PMID: 32388260 DOI: 10.1016/j.chemosphere.2020.126945] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of exogenous N-acyl-homoserine lactone (AHL) signal molecules, N-hexanoyl-l-homoserine lactone (C6-HSL) and N-octanoyl-l-homoserine lactone (C8-HSL), on treatment performance, sludge properties and microbial community structures in activated sludge systems. Results showed that the nitrification and denitrification efficiencies were enhanced with the addition of signal molecules. The particle size, irregularity, and internal mass transfer resistance of activated sludge flocs (ASFs) increased, primarily because dosing AHLs led to a content increase and chemical composition variation of extracellular polymeric substances (EPS) in sludge. Microbial analysis indicated an increase in both the bacterial richness and diversity of the systems. The relative abundances of the key functional groups, including bacteria related to C and N removal and EPS production, varied correspondingly. This study presents an insight into the comprehensive understanding of the effects of AHL-based quorum sensing on activated sludge treatment process.
Collapse
Affiliation(s)
- Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Shikan Zheng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Zhaoman Huo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Bowen Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jiajun Huang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jie Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ke Cheng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jinglan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
26
|
He Q, Wang H, Chen L, Gao S, Zhang W, Song J, Yu J. Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121454. [PMID: 31668764 DOI: 10.1016/j.jhazmat.2019.121454] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Acclimation performances and characteristics of aerobic granular sludge to salt and temperature were investigated in a sequencing batch reactor (SBR) performing simultaneous nitrification, denitrification and phosphorus removal (SNDPR). The aerobic granular SNDPR system was firstly subjected to low salinity (0.5%, w/v) at moderate temperature (> 15 ℃) and subsequent low temperature (< 15 ℃). The shock loading of salinity temporarily deteriorated biological phosphorus removal, while dual stresses of salinity and low temperature induced temporary inhibition on both nitrogen and phosphorus removal. Both salinity and low temperature stimulated the settleability of aerobic granules, accompanied with decreased ratios of protein to polysaccharide (PN/PS). Illumina MiSeq sequencing revealed that salinity rarely affected bacterial richness, but significantly decreased the diversity. Whereas low temperature strengthened both bacterial richness and diversity. Phyla Proteobacteria, Chloroflexi and their sub-groups acted as the main halophilic bacteria while Proteobacteria was also psychrophilic. The functional bacteria such as nitrifiers, denitrifiers, and phosphorus removal bacteria exhibited greater tolerance to salt and low temperature than glycogen accumulating organisms (GAOs). Overall, the present study demonstrated the resilience and robustness of aerobic granular sludge toward salinity and low temperature, which could aid the knowledge of saline wastewater treatment by aerobic granular sludge.
Collapse
Affiliation(s)
- Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuxian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jian Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
27
|
Xu J, Pang H, He J, Nan J, Wang M, Li L. Start-up of aerobic granular biofilm at low temperature: Performance and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134311. [PMID: 31783455 DOI: 10.1016/j.scitotenv.2019.134311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Low temperature is a great challenge for the biological treatment of wastewater. In this study, the rapid start-up of aerobic granular biofilm (AGF) reactor was realized by adding micro-sized polyurethane (PU) sponges as matrices at 10 °C. The results showed that the granulation process of AGF was different from that of traditional aerobic granular sludge and biofilms, which was formed by using the sludge intercepted in PU matrix instead of sponge skeletons as granulation carriers. During the 5-month operation period, stable pollutants removal performance was achieved within 70 days, besides, the corresponding ammonium, total nitrogen, and total phosphorus removal efficiencies were 98%, 70%, and 95%, respectively. The addition of PU matrices inhibited the growth of filamentous bacteria and provided support for high structural stability of AGF. With the operation of the reactor, the relative abundance of traditional denitrifying bacteria (genera Thauera and Acidovorax, etc.) decreased gradually, and the putative denitrifying phosphorus accumulating genus, Dechloromonas, occupied a dominant position in the system. This experiment showed that AGF system could be successfully started-up and operated with efficient pollutants removal performance under low temperature when using micro-sized PU sponges as matrices.
Collapse
Affiliation(s)
- Jie Xu
- School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Heliang Pang
- School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Mengfei Wang
- School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Lin Li
- School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
| |
Collapse
|
28
|
Xia Z, Wang Q, She Z, Gao M, Zhao Y, Guo L, Jin C. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134047. [PMID: 31491641 DOI: 10.1016/j.scitotenv.2019.134047] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In this study, simultaneous nitrification and denitrification (SND) process was successfully established in a hybrid sequencing batch biofilm reactor (HSBBR). High removal efficiency of NH4+-N (98.0±2.4% to 99.8±0.4%) and COD (86.6±4.0% to 91.6±1.8%) was observed in the salinity range of 0.0 to 2.4%. SND via nitrite, replacing SND via nitrate, became the main nitrogen removal pathway at 1.6% and 2.4% salinity. Suspended sludge and biofilm shared similar microbial composition. Dominant genera were substituted by salt-adaptable microbes as salinity increasing. Abundance of autotrophic ammonia-oxidizing bacteria (Nitrosomonas) increased with elevated salinity, while autotrophic nitrite-oxidizing bacteria (Nitrospira) exhibited extreme sensitivity to salinity. The presence of Gemmata demonstrated that heterotrophic nitrification co-existed with autotrophic nitrification in the SND process. Aerobic denitrifiers (Denitratisoma and Thauera) were also identified. Thiothrix, Sedimenticola, Sulfuritalea, Arcobacter (sulfide-based autotrophic denitrifier) and Hydrogenophaga (hydrogen-based autotrophic denitrifier) were detected in both S-sludge and biofilm. The occurrence of ANAMMOX bacteria Pirellula and Planctomyces indicated that ANAMMOX process was another pathway for nitrogen removal. Nitrogen removal in the HSBBR was accomplished via diverse pathways, including traditional autotrophic nitrification/heterotrophic denitrification, heterotrophic nitrification, aerobic and autotrophic denitrification, and ANAMMOX.
Collapse
Affiliation(s)
- Zhengang Xia
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Qun Wang
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
29
|
Yin Y, Liu F, Wang L, Sun J. Overcoming the instability of aerobic granular sludge under nitrogen deficiency through shortening settling time. BIORESOURCE TECHNOLOGY 2019; 289:121620. [PMID: 31229861 DOI: 10.1016/j.biortech.2019.121620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the short settling time strategy to overcome the instability of aerobic granular sludge (AGS) under nitrogen deficiency. AGS variations in its physical and chemical characteristics and microbial community were investigated. Results showed that nitrogen deficiency led to the instability of AGS, while short settling time strategy could overcome the instability of AGS under nitrogen deficiency. Extracellular polymeric substances (EPS), especially, the increased secretion of polysaccharide and proteins with amide III groups at the short settling time enhanced the stability of the granules under nitrogen deficiency. Unclassified_f_Microbacteriaceae shifted to be the major bacteria group at short settling time, along with the decrease of Meganema and Rhodobacter and the increase of Lysobacter, which may play an important role in enhancing AGS stability. Therefore, shortening settling time supports an effective strategy for applications of AGS under nitrogen deficiency.
Collapse
Affiliation(s)
- Yunjun Yin
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Fengyuan Liu
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Lu Wang
- Development Research Center of the Ministry of Water Resources of P.R. China, Beijing 100038, China
| | - Jian Sun
- School of Civil and Architecture Engineering, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
30
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, de Castro IM, Juarez-Jimenez B, Gonzalez-Martinez A, Gonzalez-Lopez J. Performance and microbial community structure of an aerobic granular sludge system at different phenolic acid concentrations. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:58-67. [PMID: 31121453 DOI: 10.1016/j.jhazmat.2019.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The present work aims to use aerobic granular sludge technology for the treatment of wastewater containing high organic matter loads and a mixture of phenolic compounds normally present in olive washing water. The physicochemical performance of five bioreactors treating different concentrations of mixture of phenolic acid was monitored to observe the response of the systems. The bioreactors that operated at 50, 100 and 300 mg L-1 did not show relevant changes in terms of performance and granules properties, showing high ratio of phenolic compound removal ratio. However, the bioreactors operated with high phenolic compound concentrations showed low rates of organic matter, nitrogen and phenolic acid removal. In the same way, high concentrations of phenolic compounds determined the disintegration of the granular biomass. Next-generation sequencing studies showed a stable community structure in the bioreactors operating with 50, 100 and 300 mg L-1 of phenolic acids, with the genera Lampropedia and Arenimonas, family Xanthobacteraceae and Fungi Pezizomycotina as the dominant phylotypes. Conversely, the reactors operated at 500 and 600 mg L-1 of phenolic substances promoted the proliferation of Oligohymenophorea ciliates. Thus, this study suggests that aerobic granular sludge technology could be useful for the treatment of wastewaters such as olive washing water.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain.
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Ines Manuel de Castro
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Belén Juarez-Jimenez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| |
Collapse
|
31
|
Rodriguez-Sanchez A, Muñoz-Palazon B, Hurtado-Martinez M, Maza-Marquez P, Gonzalez-Lopez J, Vahala R, Gonzalez-Martinez A. Microbial ecology dynamics of a partial nitritation bioreactor with Polar Arctic Circle activated sludge operating at low temperature. CHEMOSPHERE 2019; 225:73-82. [PMID: 30861385 DOI: 10.1016/j.chemosphere.2019.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/06/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
A lab-scale partial nitritation SBR was operated at 11 °C for 300 days used for the treatment of high-ammonium wastewater, which was inoculated with activated sludge from Rovaniemi WWTP (located in Polar Arctic Circle) in order to evaluate the influence the temperature on the performance, stability and dynamics of its microbial community. The partial nitritation achieved steady-state long-term operation and granulation process was not affected despite the low temperature and high ammonia concentration. The steady conditions were reached after 60 days of operation where the granular biomass was fully-formed and the 50%-50% of ammonium-nitrite effluent was successful achieved. Inoculation with cold adapted inoculum showed to yield bigger, denser granules with faster start-up without necessity of low temperature adaptation period. Next-generation sequences techniques showed that Trichosporonaceae and Xanthomonadaceae were the dominant OTUs in the mature granules. Our study could be useful in the implementation of full-scale partial nitritation reactors in cold regions such as Nordic countries for treating wastewater with high concentration of ammonium.
Collapse
Affiliation(s)
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Paula Maza-Marquez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | | |
Collapse
|
32
|
Wang XC, Chen ZL, Kang J, Zhao X, Shen JM, Yang L. The key role of inoculated sludge in fast start-up of sequencing batch reactor for the domestication of aerobic granular sludge. J Environ Sci (China) 2019; 78:127-136. [PMID: 30665631 DOI: 10.1016/j.jes.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
Two types of inoculated sludges, granular sludge that had been stored at -20°C and activated sludge, were investigated for the domestication of aerobic granular sludges (AGSs) in sequencing batch reactors (SBRs). The results showed that using the stored granular sludge as inoculation sludge could effectively shorten the domestication time of AGS and yielded mature granular sludge after 22 days of operation. The AGS domesticated by stored granular sludge had better biomass and sedimentation properties; its MLSS and SVI reached 8.55 g/L and 35.27 mL/g, respectively. The removal efficiencies for chemical oxygen demand (COD), ammonium nitrogen (NH4+-N) and total phosphorus (TP) reached 90.76%, 97.39% and 96.40%, respectively. By contrast, 54 days were needed to obtain mature granules using activated sludge. The microbial community structure was probed by using scanning electron microscopy (SEM) and high-throughput sequencing. The results showed that the diversity of the microbial community in mature granules was reduced when stored granular sludge rather than activated sludge was employed as inoculation sludge, and the dominant microbes were changed. The dominant species in mature granules domesticated using stored granular sludge were Zoogloea, Acidovorax and Tolumonas at the genus classification level, while the dominant species were Zoogloea and TM7-genera in granules developed from activated sludge.
Collapse
Affiliation(s)
- Xiao-Chun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Lin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ji-Min Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liu Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
33
|
Composition and Dynamics of the Activated Sludge Microbiome during Seasonal Nitrification Failure. Sci Rep 2019; 9:4565. [PMID: 30872659 PMCID: PMC6418219 DOI: 10.1038/s41598-019-40872-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Wastewater treatment plants in temperate climate zones frequently undergo seasonal nitrification failure in the winter month yet maintain removal efficiency for other contaminants. We tested the hypothesis that nitrification failure can be correlated to shifts in the nitrifying microbial community. We monitored three parallel, full-scale sequencing batch reactors over the course of a year with respect to reactor performance, microbial community composition via 16S rRNA gene amplicon sequencing, and functional gene abundance using qPCR. All reactors demonstrated similar changes to their core microbiome, and only subtle variations among seasonal and transient taxa. We observed a decrease in species richness during the winter, with a slow recovery of the activated sludge community during spring. Despite the change in nitrification performance, ammonia monooxygenase gene abundances remained constant throughout the year, as did the relative sequence abundance of Nitrosomonadacae. This suggests that nitrification failure at colder temperatures might result from different reaction kinetics of nitrifying taxa, or that other organisms with strong seasonal shifts in population abundance, e.g. an uncultured lineage of Saprospiraceae, affect plant performance in the winter. This research is a comprehensive analysis of the seasonal microbial community dynamics in triplicate full-scale sequencing batch reactors and ultimately strengthens our basic understanding of the microbial ecology of activated sludge communities by revealing seasonal succession patterns of individual taxa that correlate with nutrient removal efficiency.
Collapse
|
34
|
Zhou H, Li X, Xu G, Yu H. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:225-237. [PMID: 29936164 DOI: 10.1016/j.scitotenv.2018.06.100] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Biological wastewater treatment has been widely applied to municipal/domestic wastewater treatment systems. However, low temperature significantly decreases process performance. Furthermore, increasingly stringent effluent discharge standards are causing wastewater treatment facilities to have to improve and maintain contaminants removal under low temperature. Hence, this review aims to summarize strategies for enhanced treatment of municipal/domestic wastewater at low temperature. First, mechanisms of the effects of low temperature on wastewater treatment, including physiological characteristics, microbial growth rate, microbial activity, microbial community structure and sludge settleability, are analyzed. Strategies for performance intensifications at low temperature, mainly operational parameters regulation, bioaugmentation, biofilm technology, chemical phosphorus precipitation and application of novel process technologies, are then reviewed. Finally, future directions to address low temperature wastewater are highlighted. A special emphasis is given to the application of novel process/technology configurations to enhance process performance at low temperature in practical engineering.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
35
|
Xu J, He J, Wang M, Li L. Cultivation and stable operation of aerobic granular sludge at low temperature by sieving out the batt-like sludge. CHEMOSPHERE 2018; 211:1219-1227. [PMID: 30223338 DOI: 10.1016/j.chemosphere.2018.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Aerobic granules were successfully cultivated at 10 °C with relatively low strength substrate. Stable granules coexisted with the batt-like sludge (BLS) were obtained in 60 days. After removing the BLS, nutrient removal performance was greatly improved and stable removal efficiencies of 99% phosphorous, 98% ammonia and 60% TN were achieved. The bacterial community structure revealed that it was an unclassified-Comamonadaceae genus dominant in the BLS, which represented for low relative abundance in mature granules. Overgrowth of unclassified-Comamonadaceae genus was considered to be the key factor for inhibiting the performance of granules. The final configuration of granules was dominated by DPAO genus Flavobacterium and polysaccharide nutritional genus Chryseolinea. This study showed that stable aerobic granules with superior performance under low temperature could be successfully cultivated by sieving out the BLS.
Collapse
Affiliation(s)
- Jie Xu
- School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Junguo He
- School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Mengfei Wang
- School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Lin Li
- School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, China
| |
Collapse
|
36
|
Muñoz-Palazon B, Pesciaroli C, Rodriguez-Sanchez A, Gonzalez-Lopez J, Gonzalez-Martinez A. Pollutants degradation performance and microbial community structure of aerobic granular sludge systems using inoculums adapted at mild and low temperature. CHEMOSPHERE 2018; 204:431-441. [PMID: 29677650 DOI: 10.1016/j.chemosphere.2018.04.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Three aerobic granular sequencing batch reactors were inoculated using different inocula from Finland, Spain and a mix of both in order to investigate the effect over the degradation performance and the microbial community structure. The Finnish inoculum achieved a faster granulation and a higher depollution performance within the first two month of operation. However, after 90 days of operation, similar physico-chemical values were observed. On the other hand, the Real-time PCR showed that Archaea diminished from inoculum to granular biomass, while Bacteria and Fungi numbers remained stable. All granular biomass massive parallel sequencing studies were similar regardless of the inocula from which they formed, as confirmed by singular value decomposition principal coordinates analysis, expected effect size of OTUs, and β-diversity analyses. Thermoproteaceae, Meganema and a Trischosporonaceae members were the dominant phylotypes for the three domains studied. The analysis of oligotype distribution demonstrated that a fungal oligotype was ubiquitous. The dominant OTUs of Bacteria were correlated with bioreactors performance. The results obtained determined that the microbial community structure of aerobic granular sludge was similar regardless of their inocula, showing that the granulation of biomass is related to several phylotypes. This will be of future importance for the implementation of aerobic granular sludge to full-scale systems.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain; Department of Civil Engineering, University of Granada, Campus of Fuentenueva, sn, 18071, Granada, Spain
| | - Chiara Pesciaroli
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Alejandro Rodriguez-Sanchez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain; Department of Civil Engineering, University of Granada, Campus of Fuentenueva, sn, 18071, Granada, Spain
| | - Jesús Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain; Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain
| | | |
Collapse
|
37
|
Short-Term Effects of Tourmaline on Nitrogen Removals and Microbial Communities in a Sequencing Batch Reactor at Low Temperatures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061280. [PMID: 29914192 PMCID: PMC6024927 DOI: 10.3390/ijerph15061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/30/2023]
Abstract
Tourmaline is a ring borosilicate with unique pyro-electricity and piezoelectricity values. Non-gem tourmaline is usually used as an environmental material. The short-term effects of ultrafine tourmaline particles on nitrogen removal performs microbial population dynamics. Key functional species in a sequencing batch reactor were investigated at 9 ± 1 °C. The investigation results showed that 1 g·L−1 ultrafine tourmaline particles could resist the effect of temperature shock on the metabolism of NH4+-N and were beneficial to the restoration of the metabolism capacity of NH4+-N. 1 g·L−1 ultrafine tourmaline particles, which increased the oxidation rate of NH4+-N in the aerobic phase, the formation rate of NO3−-N in the aerobic phase, and the denitrification rate in the hypoxia phase at low temperatures. However, the community richness or diversities were not changed after short-term exposure to 1 g·L−1 ultrafine tourmaline particles at low temperatures and 1 g·L−1 ultrafine tourmaline particles could not change the relative abundances of functional microbes except nitrite oxidizing bacteria.
Collapse
|
38
|
Gonzalez-Martinez A, Muñoz-Palazon B, Maza-Márquez P, Rodriguez-Sanchez A, Gonzalez-Lopez J, Vahala R. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature. BIORESOURCE TECHNOLOGY 2018; 256:22-29. [PMID: 29428610 DOI: 10.1016/j.biortech.2018.01.147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to study the performance and microbial community structure of a polar Arctic Circle aerobic granular sludge (AGS) system operating at low temperature. Thus, an AGS bioreactor was operated at 7, 5 and 3 °C of temperature using a cold-adapted sludge from Lapland. At 5 °C, it yielded acceptable conversion rates, in terms of nitrogen, phosphorous, and organic matter. However, under 3 °C a negligible nitrogen and phosphorous removal performance was observed. Below 5 °C, scanning electron microscopy studies showed a wispy, non-dense and irregular granular structure with a strong outgrowth of filamentous. Moreover, Illumina next-generation sequencing showed a heterogeneous microbial population where SM1K20 (Archaea), Trichosporon domesticum (Fungus), and Zooglea, Arcobacter and Acinetobacter (Bacteria) were the dominant phylotypes. Our study suggests that AGS technologies inoculated with North Pole sludge could be operated, in cold regions for a period longer than 3 months (winter season) under 5 °C of water temperature.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Martinez
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland.
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, 18071 Granada, Spain
| | - Paula Maza-Márquez
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, 18071 Granada, Spain
| | | | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, 18071 Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| |
Collapse
|
39
|
New concepts in anaerobic digestion processes: recent advances and biological aspects. Appl Microbiol Biotechnol 2018; 102:5065-5076. [DOI: 10.1007/s00253-018-9039-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
40
|
Wilén BM, Liébana R, Persson F, Modin O, Hermansson M. The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl Microbiol Biotechnol 2018; 102:5005-5020. [PMID: 29705957 PMCID: PMC5960003 DOI: 10.1007/s00253-018-8990-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022]
Abstract
Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.
Collapse
Affiliation(s)
- Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil and Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Raquel Liébana
- Division of Water Environment Technology, Department of Architecture and Civil and Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil and Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil and Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
41
|
Chen H, Li A, Wang Q, Cui D, Cui C, Ma F. Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater. Biodegradation 2018; 29:285-299. [DOI: 10.1007/s10532-018-9829-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
42
|
Devlin TR, Oleszkiewicz JA. Cultivation of aerobic granular sludge in continuous flow under various selective pressure. BIORESOURCE TECHNOLOGY 2018; 253:281-287. [PMID: 29353757 DOI: 10.1016/j.biortech.2018.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Formation of aerobic granular sludge was examined in a novel continuous flow configuration, at 20 ± 1 °C. Synthetic proteinaceous wastewater with municipal primary effluent characteristics was used (i.e., COD = 370 ± 30 mg/L; TN = 43 ± 7 mg/L; and TP = 10 ± 2 mg/L). Various levels of selective pressure were applied after inoculation with flocculent sludge (i.e., estimated velocity gradients during settling between 1 and 9 1/s). Impeller rpm of 15 and below generated floccular-granular biomass, while 20 rpm and above generated large granules with a filamentous population. Effluent soluble COD, total inorganic nitrogen, and phosphate of 25 ± 7 mg/L, 11 ± 1 mg/L, and 0.1 ± 0.1 mg/L, respectively, were obtained. Observed yields were as low as 0.08-0.19 g-VSS/g-COD and whole sludge solids retention time was 18 ± 1 d. Famine conditions developed for 90% of the total aerobic volume and >45 ± 3% anaerobic substrate utilization was recorded. Aerobic granulation was demonstrated feasible under continuous flow providing adequate treatment with low biomass yields.
Collapse
Affiliation(s)
- Tanner R Devlin
- Department of Civil Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada.
| | - Jan A Oleszkiewicz
- Department of Civil Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| |
Collapse
|
43
|
Chen H, Li A, Cui D, Wang Q, Wu D, Cui C, Ma F. N-Acyl-homoserine lactones and autoinducer-2-mediated quorum sensing during wastewater treatment. Appl Microbiol Biotechnol 2017; 102:1119-1130. [DOI: 10.1007/s00253-017-8697-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
|