1
|
Ding S, Zhong J, Du S, Liu X, Yao A, Xu X, Wu D. Exploring the function of key species in different composting stages for effective waste biotransformation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125234. [PMID: 40186974 DOI: 10.1016/j.jenvman.2025.125234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Composting is a microbial-driven process that plays a vital role in recycling waste and promoting sustainable production. To develop more effective bioaugmentation strategies, this study examined three successive stages in an aerobic composting system, focusing on microbial community adaptation to high-temperature stress (mode_2) and nutrient-poor conditions (mode_3). The results revealed a shift from an r-strategy (rapid growth) to a K-strategy (thriving under resource-limited conditions). Community succession was predominantly driven by deterministic processes (>90 %) and exhibited strong cooperative interactions. Using multiple statistical approaches, key species were identified for each condition. These species enhanced microbial network connectivity under environmental stresses, increasing network edges by 29 %-35 %. Under high-temperature stress, Bacillus and Ureibacillus maintained core functions, while Chelativorans and Aeribacillus contributed to key metabolic pathways, including amino acid metabolism. In nutrient-poor conditions, Saccharomonospora and Pseudoxanthomonas enhanced overall system functionality, and Novibacillus played a key role in carbon and nitrogen cycling, particularly nitrogen fixation. Predictive models for microbial community stability (R2 = 0.68-0.97) were developed based on these key species to enable rapid assessment of system stability. Overall, this study identifies essential microbes involved in composting across different environmental conditions and clarifies their functional roles, providing valuable insights for optimizing aerobic composting efficiency and advancing waste resource management.
Collapse
Affiliation(s)
- Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Jialin Zhong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiaofan Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Aiping Yao
- Jinhua Academy of Agricultural Sciences, Jinhua, 321000, People's Republic of China.
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Ecological Civilization Academy, Anji, 313300, People's Republic of China.
| |
Collapse
|
2
|
Han Y, Yin M, Zhang Q, Tian L, Wu H, Song Y, He X. Fe 2O 3@D201 Enhanced Efficiency of Food Waste Degradation by Microbial Inoculum Under Aerobic Condition. Curr Microbiol 2025; 82:224. [PMID: 40172644 DOI: 10.1007/s00284-025-04215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
The global quantity of food waste (FW) is increasing at an alarming rate, making safe disposal a pressing issue in urban management. The inappropriate disposal of FW will put risks on health and environment. Aerobic degradation equipment has emerged as a promising solution for FW disposal by adding microbial agents. However, current equipment faces challenges such as long processing duration and low efficiency. Therefore, we investigated the impact of combining microbial agents with iron oxide nano-resin (Fe2O3@D201) on the aerobic degradation of FW. We conducted experiments using 10% microbial agents supplemented with 6% Fe2O3@D201 for FW degradation. Compared to the control group containing 10% microbial agents, the Fe2O3@D201-treated group showed higher levels of dissolved COD in the leachate, reaching 1.59 × 105 mg/L. Furthermore, the microbial hydrolytic enzyme activities in FW of this group surpassed those of the control group, with cellulase activity peaking at 0.13 U compared to the control group's peak of 0.06 U. Through 16S rRNA gene amplicon sequencing, we found that Fe2O3@D201 significantly enriched the abundance of Bacillus, which are commonly known for their hydrolysis functions. The results indicated that Fe2O3@D201 enhanced FW degradation by promoting the abundance of specialized microorganisms, and thus increased the hydrolytic enzyme activity, promoting the conversion of solid macromolecules into soluble organic matter. Consequently, Fe2O3@D201 shows potential for application in FW treatment equipment.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China.
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, People's Republic of China.
| | - Meiqi Yin
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, People's Republic of China
| | - Lili Tian
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, People's Republic of China
| | - Hao Wu
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Yu Song
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, People's Republic of China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, People's Republic of China
| |
Collapse
|
3
|
Fereidooni L, Morais ARC, Shiflett MB. Environmental applications of pistachio waste: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124927. [PMID: 40112470 DOI: 10.1016/j.jenvman.2025.124927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
A tremendous quantity of pistachio waste is produced worldwide annually, offering both environmental challenges and opportunities. This agricultural by-product can be repurposed in various forms, including sieved pistachio shells, pistachio-derived biochar, or in combination with other materials for diverse environmental applications. Notably, pistachio waste can be converted into materials with a high surface area and porous structure, primarily used as adsorbents for removing various pollutants such as dyes, pharmaceutical agents, heavy metals, and greenhouse gases. The adsorption process involves utilizing pistachio waste in different forms such as powder, biochar, or activated carbon, and in conjunction with nanomaterials like TiO2 nanoparticles. Research indicates that pistachio waste enhances compost quality by reducing the C/N ratio, improving plant germination, and enhancing phosphorus accessibility for plants in arid regions. Moreover, studies evaluating the partial substitution of animal feed with pistachio waste show promising results in terms of digestibility, immune response enhancement, and growth rate in animals. With its high potassium and calcium content, the conversion of pistachio waste into high surface area materials serves as a catalyst for photocatalytic pollutant degradation and as a promoter for catalytic efficiency in various processes. Furthermore, the pyrolysis products of pistachio waste exhibit significant potential for biodiesel production, with studies showcasing its viability as a sustainable fuel source through parameters like a higher heating value, low activation energy, and reduced gas emissions. This review comprehensively discusses recent advancements in utilizing pistachio waste for environmental applications, emphasizing its versatility and promising benefits in waste management and resource utilization.
Collapse
Affiliation(s)
- Leila Fereidooni
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS, 66045, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Ana Rita C Morais
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS, 66045, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Mark B Shiflett
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS, 66045, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
4
|
Mugivhisa LL, Manganyi MC. Green Catalysis: The Role of Medicinal Plants as Food Waste Decomposition Enhancers/Accelerators. Life (Basel) 2025; 15:552. [PMID: 40283107 PMCID: PMC12028435 DOI: 10.3390/life15040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The escalating global issue of food waste, valued at billions of USD annually and significantly impacting sustainability across social, economic, and environmental dimensions, necessitates innovative solutions to enhance waste management processes. Conventional decomposition techniques frequently encounter challenges related to inefficiencies and extended processing durations. This investigation examines the potential contributions of medicinal plants as green catalysts in the decomposition of food waste, utilizing their bioactive compounds to mitigate these obstacles. Medicinal plants facilitate the decomposition process through various mechanisms as follows: they secrete enzymes and metabolites that aid in the disintegration of organic matter, enhancing microbial activity and soil pH and structure. Furthermore, they foster nitrogen cycling and generate growth regulators that further optimize the efficiency of decomposition. The symbiotic associations between medicinal plants and microorganisms, including mycorrhizal fungi and rhizobacteria, are also instrumental in enhancing nutrient cycling and improving rates of decomposition. The utilization of medicinal plants in food waste management not only accelerates the decomposition process but also underpins sustainable practices by converting waste into valuable compost, thereby enriching soil health and lessening dependence on chemical fertilizers. This methodology is congruent with the 2030 Agenda for Sustainable Development and presents a plausible trajectory toward a circular economy and improved environmental sustainability.
Collapse
Affiliation(s)
| | - Madira C. Manganyi
- Department of Biological and Environmental Science, Sefako Makgatho Health Sciences University, P.O. Box 139, Ga-Rankuwa, Pretoria 0204, South Africa;
| |
Collapse
|
5
|
Carpanez TG, Carvalho de Lima E Silva N, Amaral MCS, Moreira VR. Reuse of wastewater and biosolids in soil conditioning: Potentialities, contamination, technologies for wastewater pre-treatment and opportunities for land restoration. CHEMOSPHERE 2025; 373:144185. [PMID: 39908843 DOI: 10.1016/j.chemosphere.2025.144185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
This study reviews the potential use of various wastewaters-vinasse, swine, food industry, paper and pulp, municipal wastewaters, and biosolids-as soil conditioners for restoring degraded areas, focusing on the circular economy concept. Over 90 articles from 2013 to 2024 were analyzed to address current scientific concerns, including these effluents' resistance genes, hormones, and macro/micronutrients. The presence of contaminants was critically examined alongside the necessary treatment methods to prevent soil degradation and ensure soil quality improvement. These included contaminants of emerging concern (CECs), antibiotic resistance genes (AGRs), and pathogens. These contaminants can either be assimilated and degraded by the soil ecosystem or leach into groundwater, translocate to plants, or accumulate in surface soil, necessitating careful monitoring. Furthermore, the study critically evaluates the potential of various physical and biological treatment technologies, such as anaerobic digestion, composting, dewatering, stabilization ponds, biological reactors, membrane processes, rotating disks, and pelletizers, highlighting their effectiveness in mitigating contamination and enhancing soil quality. The long-term effects of wastewater reuse as soil conditioner depend on both wastewater characteristics and soil properties. The benefits of using wastewater as soil conditioners are found to be influenced by characteristics of both the soil and the wastewater, with improvements in soil physical properties (increased porosity and permeability) and chemical properties (increased soil organic carbon and nutrients). Overall, the literature suggests that while wastewaters hold promise as soil conditioners, their successful application depends on effective wastewater management strategies to optimize benefits and mitigate risks.
Collapse
Affiliation(s)
- Thais Girardi Carpanez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Nayara Carvalho de Lima E Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| |
Collapse
|
6
|
Ding S, Wu D. Comprehensive analysis of compost maturity differences across stages and materials with statistical models. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:250-260. [PMID: 39675299 DOI: 10.1016/j.wasman.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Aerobic composting is an environmentally friendly and effective approach to treating organic solid waste. The variability in material composition introduces complex interactions between environmental factors and materials, which in turn affects compost maturity. This study uses multiple statistical analyses to systematically compare key indicators across composting processes for kitchen waste, livestock manure, and sludge. The results show that material type and composting stage have a significant impact on compost maturity (p < 0.001). High-precision modeling (R2 > 0.90) was achieved using a Stacking model on the composting dataset, with interpretability analysis highlighting the important roles of temperature, moisture content, and nitrogen content across different composting materials. The combined effects of environmental and material changes jointly influence the composting progression. In kitchen waste composting, strong interactions between multiple indicators were observed, while moisture shifts in livestock manure and sludge composting primarily influenced compost maturity by promoting decomposition and enhancing nitrogen retention, respectively. Partial dependence analysis quantified the relationships between key indicators and compost maturity scores. These findings offer a scientific basis for identifying key factors and optimization paths in various composting processes, supporting the development of more effective composting strategies.
Collapse
Affiliation(s)
- Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Wang X, You G, Liu C, Sun Y. Bioaugmentation strategies in co-composting anaerobically digested food waste with agricultural by-products: Enhancing fertilizer quality and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117539. [PMID: 39700777 DOI: 10.1016/j.ecoenv.2024.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Effective management of urban solid waste is critical for achieving sustainable development goals. One key aspect of this challenge is the recycling of anaerobically digested residues from anaerobic digestion of food waste, which plays a pivotal role in promoting sustainability. However, there is a gap in understanding the feasibility and effectiveness of converting these digested residues into valuable fertilizers through composting. Addressing this gap, the present study explored the potential of composting anaerobically digested residue and evaluated the quality of the co-compost products. In this study, we investigated the composting process using a mixture of rice straw, food waste, sheep manure and mature composted residues (RFM group) alongside the anaerobically digested residues. The results demonstrated that the composting process quickly reached the thermophilic stage, during which NH+4-N concentrations increased and C/N ratio decrease. The RFM group exhibited the highest humic acid content compared to other groups. Additionally, microbial analysis revealed key species such as Clostridium, Moheibacter, Bacillus, Thermobacillus, and Pseudogracilibacillus as major contributors to the composting process. The germination index (GI) test indicated that the co-composted residues were non-toxic to plants, suggesting their suitability as a fertilizer. All these works indicated that the addition of rice straw, food waste, and mature composted residues to anaerobically digested materials significantly enhanced the composting process, resulting in a high-quality co-compost. This approach not only provided a promising method for recycling food waste but also contributed to the broader goal of sustainable solid waste management.
Collapse
Affiliation(s)
- Xuezhi Wang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Guyu You
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chenchen Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Zhong J, Ding S, Zou X, Yu M, Du S, Wu D. Unraveling the impact of intervention strategies and oxygen disparity in humification during domestic waste composting. BIORESOURCE TECHNOLOGY 2025; 416:131736. [PMID: 39489310 DOI: 10.1016/j.biortech.2024.131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
This study constructs three different photovoltaic assisted composting systems to treat rural domestic waste, and explores the interaction pathways between biomacromolecules and other factors under oxygen disparity at gradient heights of the compost. The optimized mode of regular turning and ventilation-dehydration significantly reduced the moisture content by 53.6% and increased the seed germination index by 35.6%. The oxygen content at different heights under the optimized mode significantly affects the physicochemical properties of the compost, and the degradation of cellulose, hemicellulose, and protein in the middle is higher than other parts. The structural equation model shows that the physicochemical properties at the bottom are affected by biomacromolecules, which may be related to volatile fatty acids(VFAs) produced under low oxygen conditions.The research results show that using manual turning and ventilation-dehydration as the optimized process can promote compost maturity, and oxygen concentration has an important impact on the humification process of the compost.
Collapse
Affiliation(s)
- Jialin Zhong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xixuan Zou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Mengwen Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
9
|
Mironov V, Zhukov V, Efremova K, Brinton WF. Enhancing aerobic composting of food waste by adding hydrolytically active microorganisms. Front Microbiol 2024; 15:1487165. [PMID: 39687869 PMCID: PMC11647035 DOI: 10.3389/fmicb.2024.1487165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
The biomass of native microorganisms in food waste (FW) suitable for accelerated composting is initially low and requires time for adaptation. Adding of efficient hydrolytic microorganisms should be able to enhance compost-specific microbial activity, adjust microbial community structure, and potentially hasten FW biodegradation. This study aimed to identify bacterial and fungal strains with growth characteristics suitable for accelerating FW composting. Over 7 weeks, FW was composted in a pilot-scale test, either inoculated at the start or on day 28 with three different mixtures of 10 autochthonous Bacillus and Penicillium spp. strains known for their high hydrolytic activity. The effects of inoculation were assessed by measuring the rate of carbon dioxide (CO2) and ammonia (NH3) production and also the increase in temperature due to spontaneous exothermic activity of the enhanced microbial population degrading FW. Inoculation with Bacillus spp., particularly B. amyloliquefaciens and B. subtilis, at the beginning of composting increased CO2 production nearly 3-fold while maintaining stable ammonia production and temperature. The high concentration of Bacillus relative to native FW microorganisms led to dominant fermentation processes even in the presence of oxygen, resulting in moderate heat release and elevated production of volatile organic compounds. Introducing Penicillium spp. at a later stage (day 28) increased CO2 production nearly 2-fold, along with higher NH3 levels and temperature. These findings highlight the significance of inoculation timing and microbial composition in regulating metabolic pathways during FW composting degradation, offering insights for designing effective microbial formulations for composting.
Collapse
Affiliation(s)
- Vladimir Mironov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Zhukov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Kristina Efremova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
10
|
Du S, Zhang M, Zhang S, Wen X, Wang Y, Wu D. Evaluation of the quality of products from multiple industrial-scale composting treatment facilities for kitchen waste and exploration of influencing factors. ENVIRONMENTAL RESEARCH 2024; 262:119899. [PMID: 39222732 DOI: 10.1016/j.envres.2024.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The aerobic composting process is extensively utilized to manage kitchen waste. Nonetheless, the variability in the quality of compost derived from engineering practices which significantly hinders its broader industrial application. This work investigated the final products of kitchen waste compost at multiple industrial-scale treatment facilities utilizing three distinct aerobic composting processes in a bid to explore key factors affecting compost quality. The quality evaluation was based on technical parameters like seed germination index (GI), and limiting factors such as heavy metal content. The results showed that most of the compost products failed to meet the established standards, with GI being the primary limiting indicator. Furthermore, maturity assessments suggested that compost with low GI exhibited reduced humification could not be recommended for agricultural use. The investigation delved into the primary determinants of GI, focusing on risk factors such as the oil and salt of kitchen waste, and the microbial community of the humification driving forces. The results indicated that products with low GI had higher oil and salt content and a relatively simple microbial community. A thorough analysis suggested that excessive levels oil and salt were potential influencing factors on GI, as they stimulated the activity of acid-producing bacteria like Lactobacillus, suppressed the activity of humification-promoting bacteria such as Actinomarinales, and influenced the decomposition and humification processes of organic matter and total nitrogen, thereby affecting product quality. The findings provide valuable insights for improving kitchen waste compost products for agricultural applications.
Collapse
Affiliation(s)
- Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingjie Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuchi Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yida Wang
- Hangzhou Changhong Environmental Protection Technology Co, Ltd., Hangzhou, 310030, China
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Marten BM, Cook SM. Exploring resource recovery from diverted organics: Life cycle assessment comparison of options for managing the organic fraction of municipal solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175960. [PMID: 39245371 DOI: 10.1016/j.scitotenv.2024.175960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Diversion of the organic fraction of municipal solid waste (OFMSW) from landfills is increasing. Previous life cycle assessment studies have evaluated subsets of OFMSW management options, but conclusions are inconsistent, and none have evaluated diverse applications of material by-products. The primary objective of this work was to identify sustainability-based improvements to the selection, design, implementation, and operation of organics waste diversion management technologies. Process modeling and life cycle assessment were used to compare OFMSW composting, anaerobic digestion, and pyrolysis, with biochar used as a landfill cover, leachate treatment sorbent, and land applicant. Material and energy flows, calculated by newly developed models for the defined functional unit (1 kg MSW over a 20-year timeframe), were translated to environmental performance using ecoinvent and USLCI databases and TRACI method. Additionally, uncertainty, sensitivity, and scenario analyses were conducted to evaluate the implications of model uncertainties, design decisions, and resource recovery tradeoffs. OFMSW pyrolysis usually (65 % of uncertainty assessment simulations) had the best global warming performance mostly due to energy recovery and biochar's carbon sequestration benefit, which was independent of fate. Pyrolyzing the biosolids from OFMSW anaerobic digestion recovered the most energy and had the best performance in 34 % of uncertainty simulations. Material recovery amounts were large (e.g., more biochar was produced than required for novel uses) and warrant feasibility considerations. Global warming performance was more sensitive to uncertainty in carbon sequestration and primary energy production than in fertilizer offset, energy conversion, or heat offset approach. Practical implications include the potential for biochar supply to outweigh demand, and inconsistent revenue from the sale of recovered energy and carbon credits; future research could focus on evaluating the relative social and economic sustainability of the OFMSW management technologies.
Collapse
Affiliation(s)
- Brooke M Marten
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Sherri M Cook
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| |
Collapse
|
12
|
Yu H, Li W, Feng S, Loo SCJ. Impacts of industrial food wastes on nutritional value of mealworm (Tenebrio molitor) and its gut microbiota community shift. BIOMATERIALS ADVANCES 2024; 165:214022. [PMID: 39226676 DOI: 10.1016/j.bioadv.2024.214022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The extensive investigation into the capacity of mealworms to digest diverse food by-products, as well as plastic wastes, has been a focal point in recent years. The transition from traditional diet sources like brans to food wastes has the potential to impact the physiological properties of mealworms. This study explored the utilization of various industrial food wastes such as okara, barley spent grain (BSG), sesame oil meal (SOM), and spent coffee grounds (SCG) as feed alternatives, and reports on their survival rate, biomass variations, and nutritional composition. In additional, the shift in their gut microbiota was also assessed. Among the range of industrial food wastes, mealworms exhibited the most robust growth performance when nourished with BSG. This particular group showed a survival rate of 98.33 % and a biomass increase of 23.06 %. In contrast, mealworms fed with SCG demonstrated the lowest survival rate and experienced a significant reduction in biomass. Although the groups fed with okara and SCG displayed moderate growth performance, both exhibited protein levels comparable to those observed in the oatmeal-fed group (used as the positive control). Notably, the inclusion of BSG in the mealworm diet exhibited the potential to enrich their omega-3 fatty acid content, suggesting potential benefits for applications as animal feed or even human consumption. Furthermore, an analysis of the gut microbiome was conducted to investigate the associations between specific diets and the composition of mealworm gut microbiota. In summary, food wastes such as BSG may be repurposed as feed substrates for mealworms before converting them into an alternative source of protein.
Collapse
Affiliation(s)
- Hong Yu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wenrui Li
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shiliu Feng
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Say Chye Joachim Loo
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 67551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
13
|
He Y, Chen W, Xiang Y, Zhang Y, Xie L. Unveiling the effect of PFOA presence on the composting process: Roles of oxidation stress, carbon metabolism, and humification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135682. [PMID: 39236542 DOI: 10.1016/j.jhazmat.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 μg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.
Collapse
Affiliation(s)
- Yingying He
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weizhen Chen
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yuankun Xiang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yue Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Li Xie
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Huang YZ, Lee YY, Fan C, Chung YC. Recycling of domestic sludge cake as the inoculum of anaerobic digestion for kitchen waste and its benefits to carbon negativity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122863. [PMID: 39405843 DOI: 10.1016/j.jenvman.2024.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Organic waste recovery has been a concerning issue in line with resource conservation. In the present study, the kitchen waste of vegetables, fish, and beef was digested anaerobically using domestic sludge as the inoculum, the methane and carbon dioxide were monitored, and the environmental benefits of the anaerobic digestion (AD) process were evaluated. AD using sludge cake as the inoculum was shown to treat kitchen waste effectively. Raw beef was found to produce more gas than raw fish or vegetables. Investigations also indicated that celluloses within vegetables were not as readily biodegradable as the proteins in beef and fish. Moreover, cooking altered the protein structures in beef and fish, thus increasing methane production. Meanwhile, oil inhibited methane generation as carbon dioxide generation remained, implying that the hydrolysis and acedogenesis still proceeded in the digestion process containing oil. Anaerolineaceae and Synergistaceae are the two most abundant microbial species observed in an anaerobic digestion system. However, the carbon conversions to liquid (i.e., leachate), solid (i.e., digestate), and gaseous (i.e., methane and carbon dioxide) occurred in the AD process, showing a diverse transforming process from waste to reusable valuables. Moreover, the kitchen waste treatment by domestic sludge cake was shown to have positive effects on reducing carbon dioxide emissions compared to the conventional treatment of kitchen waste and domestic sludge. More environmental benefits could be expected if the resulting products (i.e., methane gas, leachate, digestate) were applied as an energy source, liquid fertilizers, and soil conditioners.
Collapse
Affiliation(s)
- Ya-Zhen Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| | - You-Yi Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| | - Yi-Chun Chung
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-An District, Taipei, 10617, Taiwan.
| |
Collapse
|
15
|
Abban-Baidoo E, Manka'abusi D, Apuri L, Marschner B, Frimpong KA. Biochar addition influences C and N dynamics during biochar co-composting and the nutrient content of the biochar co-compost. Sci Rep 2024; 14:23781. [PMID: 39390006 PMCID: PMC11466957 DOI: 10.1038/s41598-024-67884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/17/2024] [Indexed: 10/12/2024] Open
Abstract
This study investigated the effects of corn cob biochar (CCB) and rice husk biochar (RHB) additions (at 0%, 5%, and 10% w/w) on nitrogen and carbon dynamics during co-composting with poultry litter, rice straw, and domestic bio-waste. The study further assessed the temperature, moisture, pH, and nutrient contents of the mature biochar co-composts, and their potential phytotoxicity effects on amaranth, cucumber, cowpea, and tomato. Biochar additions decreased NH4+-N and NO3- contents, but bacteria and fungi populations increased during the composting process. The mature biochar co-composts showed higher pH (9.0-9.7), and increased total carbon (24.7-37.6%), nitrogen (1.8-2.4%), phosphorus (6.5-8.1 g kg-1), potassium (26.8-42.5 g kg-1), calcium (25.1-49.5 g kg-1), and magnesium (4.8-7.2 g kg-1) contents compared to the compost without biochar. Germination indices (GI) recorded in all the plants tested with the different composts were greater than 60%. Regardless of the biochar additions, all composts treatments showed no or very minimal phytotoxic effects on cucumber, amaranth and cowpea seeds. We conclude that rice husk and corn cob biochar co-composts are nutrient-rich and safe soil amendment for crop production.
Collapse
Affiliation(s)
- Emmanuel Abban-Baidoo
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Delphine Manka'abusi
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany
| | - Lenin Apuri
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany
| | - Kwame Agyei Frimpong
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
16
|
Zhang L, Li H, Hu T, Du X, Zhou Y, Sun G, Liu J. The reduction of the carbon footprint of municipal solid waste management via source classification and supporting strategies: An analysis for the megacity of Shenzhen. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:145-155. [PMID: 39032437 DOI: 10.1016/j.wasman.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/25/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Municipal solid waste (MSW) management is a critical concern in megacities that depend heavily on external material and energy inputs but lack space for waste disposal. MSW treatment is a significant contributor to carbon emissions. The implementation of source classification improved the overall MSW management system and enhanced resource recovery from MSW. However, the precise contribution of source classification to carbon emissions reduction remains unclear. This study aimed to analyze the carbon emissions evolution in the MSW management of Shenzhen, a prototypical megacity in China, using data from 2006 to 2020 and employing carbon footprint assessment methodologies. The results demonstrated that source classification reduced the carbon emissions from 0.19-0.25 to 0.14-0.18 t CO2-eq/t MSW when considering the contribution of the urban environmental sanitation management department. The entire MSW management system becomes a carbon sink when considering recyclables collected by commercial enterprises. Although the source classification complicated the collection and transportation of MSW, the carbon offset effect of recycling food waste and recyclables was more significant than that of carbon emissions from collection and transport. Moreover, the landfill gas recovery rate critically influenced the carbon emissions of landfill-based MSW management systems. In contrast, the recovery of plastics was crucial for determining carbon emissions from incineration-based MSW management systems.
Collapse
Affiliation(s)
- Lei Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huan Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tao Hu
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Xinrui Du
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Yingjun Zhou
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Guofen Sun
- Shenzhen Zhonghuanbohong Technology Co. Ltm., Shenzhen 518055, China
| | - Jianguo Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Lara-Topete GO, Castanier-Rivas JD, Bahena-Osorio MF, Krause S, Larsen JR, Loge FJ, Mahlknecht J, Gradilla-Hernández MS, González-López ME. Compounding one problem with another? A look at biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173735. [PMID: 38857803 DOI: 10.1016/j.scitotenv.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Environmental concerns about microplastics (MPs) have motivated research of their sources, occurrence, and fate in aquatic and soil ecosystems. To mitigate the environmental impact of MPs, biodegradable plastics are designed to naturally decompose, thus reducing the amount of environmental plastic contamination. However, the environmental fate of biodegradable plastics and the products of their incomplete biodegradation, especially micro-biodegradable plastics (MBPs), remains largely unexplored. This comprehensive review aims to assess the risks of unintended consequences associated with the introduction of biodegradable plastics into the environment, namely, whether the incomplete mineralization of biodegradable plastics could enhance the risk of MBPs formation and thus, exacerbate the problem of their environmental dispersion, representing a potentially additional environmental hazard due to their presumed ecotoxicity. Initial evidence points towards the potential for incomplete mineralization of biodegradable plastics under both controlled and uncontrolled conditions. Rapid degradation of PLA in thermophilic industrial composting contrasts with the degradation below 50 % of other biodegradables, suggesting MBPs released into the environment through compost. Moreover, degradation rates of <60 % in anaerobic digestion for polymers other than PLA and PHAs suggest a heightened risk of MBPs in digestate, risking their spread into soil and water. This could increase MBPs and adsorbed pollutants' mobilization. The exact behavior and impacts of additive leachates from faster-degrading plastics remain largely unknown. Thus, assessing the environmental fate and impacts of MBPs-laden by-products like compost or digestate is crucial. Moreover, the ecotoxicological consequences of shifting from conventional plastics to biodegradable ones are highly uncertain, as there is insufficient evidence to claim that MBPs have a milder effect on ecosystem health. Indeed, literature shows that the impact may be worse depending on the exposed species, polymer type, and the ecosystem complexity.
Collapse
Affiliation(s)
- Gary Ossmar Lara-Topete
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Juan Daniel Castanier-Rivas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - María Fernanda Bahena-Osorio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joshua R Larsen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Frank J Loge
- Department of Civil & Environmental Engineering, University of California - Davis, Davis, CA, United States of America; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Martín Esteban González-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico.
| |
Collapse
|
18
|
Mandal M, Roy A, Mitra D, Sarkar A. Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100274. [PMID: 39310303 PMCID: PMC11416519 DOI: 10.1016/j.crmicr.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
To meet the need of the growing global population, the modern agriculture faces tremendous challenges to produce more food as well as fiber, timber, biofuels, etc.; hence generates more waste. This continuous growth of agricultural waste (agri-waste) and its management strategies have drawn the attention worldwide because of its severe environmental impacts including air, soil and water pollution. Similarly, growing concerns about the sustainable future have fuelled the development of biopolymers, substances occurring in and/or produced by living organisms, as substitute for different synthetic and harmful polymers, especially petroleum-based plastics. Now, the components of agri-waste offer encouraging opportunities for the production of bioplastics through mechanical and microbial procedures. Even the microbial, both bacterial and fungal, system results in lower energy consumption and better eco-friendly alternatives. The review mainly concentrates on cataloging and understanding the bacterial 'input' in developing bioplastics from diverse agri-waste. Especially, the bacteria like Cupriavidus necator, Chromatium vinosum, and Pseudomonas aeruginosa produce short- and medium-chain length poly(3-hydroxyalkanote) (P3HB) polymers using starch (from corn and potato waste), and cellulose (from sugarcane bagasse, corn husks waste). Similarly, C. necator, and transformant Wautersia eutropha produce P3HB polymer using lipid-based components (such as palm oil waste). Important to note that, the synthesis of these polymers are interconnected with the bacterial general metabolic activities, for example Krebs cycle, glycolysis cycle, β-oxidation, calvin cycle, de novo fatty acid syntheses, etc. Altogether, the agri-waste is reasonably low-cost feed for the production of bioplastics using bacterial communities; and the whole process certainly provide an opportunity towards sustainable waste management strategy.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| |
Collapse
|
19
|
Pang Y, Zhen F, Wang D, Luo Z, Huang J, Zhang Y. Effects of biochar combined with MgO desulfurization waste residue on nitrogen conversion and odor emission in chicken manure composting. ENVIRONMENTAL TECHNOLOGY 2024; 45:4779-4790. [PMID: 37970824 DOI: 10.1080/09593330.2023.2283086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/18/2023] [Indexed: 11/19/2023]
Abstract
Aim: Chicken manure is known to produce strong odors during aerobic composting, which not only pollutes the surrounding environment but also leads to the loss of valuable nutrients like nitrogen and sulfur, thus reducing the quality of the fertilizer. Methods: In this study, we explored the use of biochar combined with MgO desulfurization waste residue (MDWR) as a novel composting additive. Our approach involved conducting composting tests, characterizing the compost samples, conducting pot experiments, and examining the impact of the additives on nitrogen retention, deodorization, and compost quality. Results: Our findings revealed that the addition of biochar and MDWR significantly reduced ammonia volatilization in chicken manure compost, demonstrating a reduction rate of up to 60.12%. Additionally, the emission of volatile organic compounds (VOCs) from chicken manure compost treated with biochar and MDWR decreased by 44.63% compared to the control group. Conclusions: The composting product treated with both biochar and MDWR (CMB) exhibited a 67.7% increase in total nitrogen (TN) compared to the blank control group, surpassing the other treatment groups and showcasing the synergistic effect of these two additives on nitrogen retention. Moreover, the CMB treatment facilitated the formation of struvite crystals. Furthermore, our pot experiment results demonstrated that the CMB treatment enhanced vegetable yield and quality while reducing nitrate content. These findings highlight the significant impact of MDWR on nitrogen retention, deodorization, and compost quality enhancement, thereby indicating its promising application prospects.
Collapse
Affiliation(s)
- Yuwan Pang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, People's Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Dehan Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zifeng Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jianfeng Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, People's Republic of China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Yanli Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People's Republic of China
| |
Collapse
|
20
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, Lam SS, Nadda AK, Tong YW. Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis. Crit Rev Biotechnol 2024; 44:1040-1060. [PMID: 37643972 DOI: 10.1080/07388551.2023.2241112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 08/31/2023]
Abstract
The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
Collapse
Affiliation(s)
- Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Sheetal Kishor Parakh
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - To Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction, and Molecular Immunology Laboratory, Integral University, Lucknow, India
| | - Surendra Pratap Singh
- Department of Botany, Plant Molecular Biology Laboratory, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, C.M.P. Degree College, a Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
22
|
Chu XL, Peng XY, Sun ZY, Xie CY, Tang YQ. Converting kitchen waste into value-added fertilizer using thermophilic semi-continuous composting-biofiltration two-stage process with minimized NH 3 emission. BIORESOURCE TECHNOLOGY 2024; 406:130955. [PMID: 38871228 DOI: 10.1016/j.biortech.2024.130955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Thermophilic semi-continuous composting (TSC) is effective for kitchen waste (KW) treatment, but large amounts of NH3-rich odorous gas are generated. This study proposes a TSC-biofiltration (BF) two-stage process. Compost from the front-end TSC was used as the packing material in the BF to remove NH3 from the exhaust gas. The BF process was effective in removing up to 83.7 % of NH3, and the NH3 content was reduced to < 8 ppm. Seven days of BF improved the quality of the product from TSC by enhancing the germination index to 134.6 %, 36.5 % higher than that in the aerated-only group. Microbial community analysis revealed rapid proliferation and eventual dominance in the BF of members related to compost maturation and the nitrogen cycle from Actinobacteria, Proteobacteria, Chloroflexi, and Bacteroidetes. The results suggest that the TSC-BF two-stage process is effective in reducing NH3 emissions from TSC and improving compost quality.
Collapse
Affiliation(s)
- Xiu-Lin Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiang-Yu Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
23
|
Li L, Jin Z, Wang C, Wang YC. Valorization of Food Waste: Utilizing Natural Porous Materials Derived from Pomelo-Peel Biomass to Develop Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37806-37817. [PMID: 38988002 DOI: 10.1021/acsami.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Food waste is an enormous challenge, with implications for the environment, society, and economy. Every year around the world, 1.3 billion tons of food are wasted or lost, and food waste-associated costs are around $2.6 trillion. Waste upcycling has been shown to mitigate these negative impacts. This study's optimized pomelo-peel biomass-derived porous material-based triboelectric nanogenerator (PP-TENG) had an open circuit voltage of 58 V and a peak power density of 254.8 mW/m2. As porous structures enable such triboelectric devices to respond sensitively to external mechanical stimuli, we tested our optimized PP-TENG's ability to serve as a self-powered sensor of biomechanical motions. As well as successfully harvesting sufficient mechanical energy to power light-emitting diodes and portable electronics, our PP-TENGs successfully monitored joint motions, neck movements, and gait patterns, suggesting their strong potential for use in healthcare monitoring and physical rehabilitation, among other applications. As such, the present work opens up various new possibilities for transforming a prolific type of food waste into value-added products and thus could enhance long-term sustainability while reducing such waste.
Collapse
Affiliation(s)
- Longwen Li
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chenxin Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Vico A, Maestre-Lopez MI, Arán-Ais F, Orgilés-Calpena E, Bertazzo M, Marhuenda-Egea FC. Assessment of the Biodegradability and Compostability of Finished Leathers: Analysis Using Spectroscopy and Thermal Methods. Polymers (Basel) 2024; 16:1908. [PMID: 39000763 PMCID: PMC11243809 DOI: 10.3390/polym16131908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, the biodegradation properties of leather treated with various finishing chemicals were evaluated in order to enhance the sustainability of leather processing. We applied advanced analytical techniques, including FT-IR, thermogravimetric analysis (TGA), and solid-state NMR spectroscopy. Leather samples treated with different polymers, resins, bio-based materials, and traditional finishing agents were subjected to a composting process under controlled conditions to measure their biodegradability. The findings revealed that bio-based polyurethane finishes and acrylic wax exhibited biodegradability, while traditional chemical finishes like isocyanate and nitrocellulose lacquer showed moderate biodegradation levels. The results indicated significant differences in the biodegradation rates and the impact on plant germination and growth. Some materials, such as black pigment, nitrocellulose lacquer and wax, were beneficial for plant growth, while others, such as polyurethane materials, had adverse effects. These results support the use of eco-friendly finishes to reduce the environmental footprint of leather production. Overall, this study underscores the importance of selecting sustainable finishing chemicals to promote eco-friendly leather-manufacturing practices.
Collapse
Affiliation(s)
- Alberto Vico
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Maria I. Maestre-Lopez
- Department of Biochemistry and Molecular Biology and Agricultural Chemistry and Edafology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Francisca Arán-Ais
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Elena Orgilés-Calpena
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Marcelo Bertazzo
- Footwear Technological Institute (INESCOP), C/Alemania 102—Polígono Campo Alto, 03600 Elda, Spain (E.O.-C.); (M.B.)
| | - Frutos C. Marhuenda-Egea
- Department of Biochemistry and Molecular Biology and Agricultural Chemistry and Edafology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| |
Collapse
|
25
|
Zheng H, Wang M, Fan Y, Yang J, Zhao Z, Chen H, Ye Z, Zheng Z, Yu K. Reuse of composted food waste from rural China as vermicomposting substrate: effects on earthworms, associated microorganisms, and economic benefits. ENVIRONMENTAL TECHNOLOGY 2024; 45:2685-2697. [PMID: 36846968 DOI: 10.1080/09593330.2023.2184728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTAerobic composting of food waste (FW) from rural China using a composting device results in a substantial financial burden on the government. This study aimed to assess the feasibility of mitigating this cost using vermicomposting of composted FW. The specific aims were to elucidate the effects of composted FW on earthworm growth and reproduction, reveal the changes in the physical and chemical properties of earthworm casts during vermicomposting, identify the microbial community structure associated with vermicomposting, and perform a financial analysis based on the yield of earthworms and earthworm casts. Mixing composted FW and mature cow dung in an equal ratio achieved the highest earthworm reproduction rate, where 100 adult earthworms produced 567 juvenile earthworms and 252 cocoons in 40 d. Earthworms reduce salt content of vermicomposting substrates by assimilating Na+ and promoting humification by transforming humin into humic and fulvic acid, thus producing earthworm casts with a high generation index > 80%. When composted FW was added to a vermicomposting substrate, a distinctive microbial community structure with alkaliphilic, halophilic, and lignocellulolytic microorganisms dominated the microflora. The dominant bacterial species was Saccharopolyspora rectivirgula, and the dominant fungal species changed from Kernia nitida to Coprinopsis scobicola. Furthermore, microbial genes for refractory organic matter and fat degradation were observed in Vibrio cholerae, Kernia nitida, and Coprinopsis scobicola. Financial analysis showed that vermicomposting has the potential to reduce the cost associated with FW disposal from $ 57 to $ 18/t.
Collapse
Affiliation(s)
- Huabao Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Min Wang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Yueqin Fan
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Jian Yang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhuoqun Zhao
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Hengyuan Chen
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhenwei Ye
- Office of Qingshanhu strict, Government of Linan district, Linan, People's Republic of China
| | - Zhanwang Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
- Zhejiang Sunda Public Environmental Protection Co. Ltd., Hangzhou, People's Republic of China
| | - Kefei Yu
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| |
Collapse
|
26
|
Ruan M, Li Y, Ma C, Xie Y, Chen W, Luo L, Li X, Hu W, Hu B. Treatment of landfill leachate by black soldier fly (Hermetia illucens L.) larvae and the changes of intestinal microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121193. [PMID: 38772238 DOI: 10.1016/j.jenvman.2024.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Black soldier fly larvae (BSFL) (Hermetia illucens) are commonly used to treat organic waste. This work aims to evaluate the transformation effect, heavy metal migration, and alterations in the gut microbiota of BSFL in addition to treating landfill leachate (LL) with BSFL. We found that BSFL may grow in various landfill leachate concentrations without obvious toxicity and growth inhibition. In addition, the results indicated a significant increase in the content of ammonia nitrogen and the activity of urease and β-glucosidase (β-GC) in LL, increased from 2570.17 mg/L to 5853.67 mg/L, 1859.17 mg/(g·d) to 517,177.98 mg/(g·d), 313.73 μg/(g·h) to 441.91 μg/(g·h) respectively. Conversely, the content of total nitrogen (TN) and total organic carbon (TOC) decreased in LL, decreasing by 31.24% and 29.45% respectively. Heavy metals are accumulated in the leachate by the BSFL to differing degrees, the descending sequence of accumulation is Cd > As > Cu > Cr. As dropped by 26.0%, Cd increased by 22.6%, Cu reduced by 5.23%, and Cr increased by 317.1% in the remaining matrix. The concentration of heavy metals satisfies the organic fertilizers' limit index (NY/T1978). The diversity of intestinal microorganisms in BSFL decreased, from 2819 OTUs to 2338 OTUs, with Providencia and Morganella emerging as the core flora. The gene abundance of nitrogen metabolism in the microbiota increased significantly. The TOC, β-GC, and Copper (Cu) content in BSFL correlated significantly with the gut microbiota. In Summary, this study revealed the treatment effect of BSFL on LL, the migration of heavy metals, and changes in the intestinal microorganisms of BSFL. The content of heavy metals in BSFL was found to be much lower than the upper limit of feed protein raw materials, demonstrating that BSFL is a sustainable method to treat LL.
Collapse
Affiliation(s)
- Mingjun Ruan
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - You Li
- Everbright Environmental Technology (China) Co., Ltd., Nanjing, 211102, Jiangsu Province, China
| | - Chong Ma
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Yingying Xie
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenying Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Limei Luo
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bin Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, China.
| |
Collapse
|
27
|
Hall AL, Ponomareva AI, Torn MS, Potts MD. Socio-environmental Opportunities for Organic Material Management in California's Sustainability Transition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9031-9039. [PMID: 38752553 PMCID: PMC11137869 DOI: 10.1021/acs.est.3c10711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Contemporary resource management is doubly burdened by high rates of organic material disposal in landfills, generating potent greenhouse gases (GHG), and globally degraded soils, which threaten future food security. Expansion of composting can provide a resilient alternative, by avoiding landfill GHG emissions, returning valuable nutrients to the soil to ensure continued agricultural production, and sequestering carbon while supporting local communities. Recognizing this opportunity, California has set ambitious organics diversion targets in the Short-Lived Climate Pollutant Law (SB1383) which will require significant increases (5 to 8 million tonnes per year) in organic material processing capacity. This paper develops a spatial optimization model to consider how to handle this flow of additional material while achieving myriad social and ecological benefits through compost production. We consider community-based and on-farm facilities alongside centralized, large-scale infrastructure to explore decentralized and diversified alternative futures of composting infrastructure in the state of California. We find using a diversity of facilities would provide opportunity for cost savings while achieving significant emissions reductions of approximately 3.4 ± 1 MMT CO2e and demonstrate that it is possible to incorporate community protection into compost infrastructure planning while meeting economic and environmental objectives.
Collapse
Affiliation(s)
- Anaya L. Hall
- Energy
& Resources Group University of California—Berkeley 345 Giannini Hall Berkeley, California 94720, United States
| | - Aleksandra I. Ponomareva
- Energy
& Resources Group University of California—Berkeley 345 Giannini Hall Berkeley, California 94720, United States
| | - Margaret S. Torn
- Energy
& Resources Group University of California—Berkeley 345 Giannini Hall Berkeley, California 94720, United States
- Climate
and Ecosystem Sciences Division Lawrence
Berkeley National Laboratory Berkeley, California 94720, United States
| | - Matthew D. Potts
- Department
of Environmental Science, Policy, and Management University of California—Berkeley 130 Mulford Hall Berkeley, California 94720, United States
- Carbon
Direct, Incorporated 17 State Street New York, New York 10004, United States
| |
Collapse
|
28
|
Yang S, Yin Y, Zhang W, Li H, Wang X, Chen R. Advances in understanding bioaerosol release characteristics and potential hazards during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171796. [PMID: 38513848 DOI: 10.1016/j.scitotenv.2024.171796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.
Collapse
Affiliation(s)
- Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
29
|
Zhu L, Wang X, Liu L, Le B, Tan C, Dong C, Yao X, Hu B. Fungi play a crucial role in sustaining microbial networks and accelerating organic matter mineralization and humification during thermophilic phase of composting. ENVIRONMENTAL RESEARCH 2024; 254:119155. [PMID: 38754614 DOI: 10.1016/j.envres.2024.119155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Boyi Le
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunxu Tan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
30
|
Razouk A, Tiganescu E, von Glahn AJ, Abdin AY, Nasim MJ, Jacob C. The future in the litter bin - bioconversion of food waste as driver of a circular bioeconomy. Front Nutr 2024; 11:1325190. [PMID: 38769990 PMCID: PMC11104270 DOI: 10.3389/fnut.2024.1325190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
Bioconversion of organic waste requires the development and application of rather simple, yet robust technologies capable of transferring biomass into energy and sustainable materials for the future. Food waste plays a significant role in this process as its valorisation reduces waste and at the same time avoids additional exploitation of primary resources. Nonetheless, to literally become "litterate". extensive research into such robust large-scale methods is required. Here, we highlight some promising avenues and materials which fulfill these "waste to value" requirements, from various types of food waste as sustainable sources for biogas, bioethanol and biodiesel to fertilizers and antioxidants from grape pomace, from old-fashioned fermentation to the magic of anaerobic digestion.
Collapse
Affiliation(s)
| | | | | | | | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbruecken, Germany
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
31
|
Chiarelotto M, Melo DCD, Santos MVAD. Does the initial C/N ratio interfere with the performance of sewage sludge composting and cotton waste? ENVIRONMENTAL TECHNOLOGY 2024; 45:2673-2683. [PMID: 36780336 DOI: 10.1080/09593330.2023.2180672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The effects of the initial C/N ratio on the composting of sewage sludge and cotton residues are not reported in the literature. Understanding the main composting control parameters is essential for the good stabilization of these wastes. Therefore, this study sought to evaluate different initial C/N ratios for the composting of sewage sludge and cotton waste, aiming to find the ranges with the best performance for the process and quality of the final organic compost. In this sense, five mixtures of sewage sludge (S) and cotton residues (C) were prepared and composted with three replications for each treatment in a completely randomized design. Physicochemical parameters were evaluated during composting and in the final organic compounds. A Multivariate Principal Component Analysis (PCA) was applied to evaluate the agronomic quality of organic compounds. The thermal behaviour of the mixtures presented differences. The treatments 90C10S, 80C20S and 67C33S showed the highest EXI² index (3566.64, 3448.39 and 2738.89), longer duration of thermophilic phase (12 and 13 days) and better potential for maximum degradation (A) of organic matter (67.5, 61.2 and 65.6%C). The final compounds of 90C10S and 80C20S showed higher pH values (7.9 and 7.5) and higher CEC (123.6 and 114.0 meq/100 g OM). PCA showed similarity in the agronomic quality of organic compounds for 90C10S, 80C20S and 67C33S. The treatment 28C72S (initial C/N ratio of 16.6) presented final pH of 5.3 and did not meet the minimum limit required by Brazilian regulations. Initial C/N relations between 24.9 and 35.2 showed better stabilization of waste and final organic compound with better agronomic quality.
Collapse
Affiliation(s)
- Maico Chiarelotto
- Centre of Exact Sciences and Technologies, Federal University of Western Bahia, Barreiras Brazil
| | - Danilo Corado de Melo
- Centre of Exact Sciences and Technologies, Federal University of Western Bahia, Barreiras Brazil
| | | |
Collapse
|
32
|
He K, Liu Y, Tian L, He W, Cheng Q. Review in anaerobic digestion of food waste. Heliyon 2024; 10:e28200. [PMID: 38560199 PMCID: PMC10979283 DOI: 10.1016/j.heliyon.2024.e28200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the special property of food waste (FW), anaerobic digestion of food waste is facing many challenges like foaming, acidification, ammonia nitrogen and (NH4+-N) inhibition which resulted in a low biogas yield. A better understanding on the problems exiting in the FW anaerobic digestion would enhance the bio-energy recovery and increase the stable operation. Meanwhile, to overcome the bottle necks, pretreatment, co-digestion and additives is proposed as well as the solutions to improve biogas yield in FW digestion system. At last, future research directions regarding FW anaerobic digestion were proposed.
Collapse
Affiliation(s)
- Kefang He
- School of Management, Wuhan Polytechnic University, China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Longjin Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Wanyou He
- School of Management, Wuhan Polytechnic University, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| |
Collapse
|
33
|
Huang LT, Hou JY, Liu HT. Machine-learning intervention progress in the field of organic waste composting: Simulation, prediction, optimization, and challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:155-167. [PMID: 38401429 DOI: 10.1016/j.wasman.2024.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Aerobic composting stands as a widely-adopted method for treating organic solid waste (OSW), simultaneously producing organic fertilizers and soil amendments. This biologically-driven biochemical reaction process, however, presents challenges due to its complex non-linear metabolism and the heterogeneous nature of the solid medium. These characteristics inherently limit the simulation accuracy and efficiency optimization in aerobic composting. Recently, significant efforts have been made to simulate and control composting process parameters, as well as predicting and optimizing composting product quality. Notably, the integration of machine learning (ML) in aerobic composting of organic waste has garnered considerable attention for its applicability and predictive capability in exploring the complex non-linear relationships of organic waste composting parameters. Despite numerous studies on ML applications in OSW composting, a systematic review of research findings in this field is lacking. This study offers a systematic overview of the application level, current status, and versatility of ML in OSW composting. It spans various aspects, such as compost maturity, environmental pollutants, nutrients, moisture, heat loss, and microbial metabolism. The survey reveals that ML-intervention predominantly focuses on compost maturity and environmental pollutants, followed by nutrients, moisture, heat loss, and microbial activity. The most commonly employed predictive models and optimization algorithms are artificial neural networks (47%) and genetic algorithms (10%). These demonstrate high prediction accuracy and maximize composting efficiency in the simulation and prediction of organic waste composting, alongside regulation of key parameters. Deep neural networks and ensemble learning models prove effective in achieving superior predictive performance by selecting feature variables in compost maturity and pollutant residue prediction of organic waste composting in a simpler and more objective manner.
Collapse
Affiliation(s)
- Li-Ting Huang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Jia-Yi Hou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Tao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
González D, Barrena R, Moral-Vico J, Irigoyen I, Sánchez A. Addressing the gaseous and odour emissions gap in decentralised biowaste community composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:231-238. [PMID: 38412755 DOI: 10.1016/j.wasman.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Composting has demonstrated to be an effective and sustainable technology to valorise organic waste in the framework of circular economy, especially for biowaste. Composting can be performed in various technological options, from full-scale plants to community or even individual composters. However, there is scarce scientific information about the potential impact of community composting referred to gaseous emissions. This work examines the emissions of methane and nitrous oxide as main GHG, ammonia, VOC and odours from different active community composting sites placed in Spain, treating kitchen, leftovers and household biowaste. Expectedly, the gaseous emissions have an evident relation with the composting progress, represented mainly by its decrease as temperature or biological activity decreases. GHG and odour emission rates ranged from 5.3 to 815.2 mg CO2eq d-1 kg-1VS and from 69.8 to 1088.5 ou d-1 kg-1VS, respectively, generally being lower than those find in open-air full-scale composting. VOC characterization from the community composting gaseous emissions showed a higher VOC families' distribution in the emissions from initial composting phases, even though terpenes such as limonene, α-pinene and β-pinene were the most abundant VOC along the composting process occurring in the different sites studied. The results presented in this study can be the basis to evaluate systematically and scientifically the numerous current projects for a worldwide community composting implementation in decentralised biowaste management schemes.
Collapse
Affiliation(s)
- Daniel González
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Javier Moral-Vico
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Ignacio Irigoyen
- Department of Agronomy, Biotechnology and Food, Public University of Navarre, 31006 Pamplona-Iruña, Navarra, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
35
|
Mandal M, Roy A, Das S, Rakwal R, Agrawal GK, Singh P, Awasthi A, Sarkar A. Food waste-based bio-fertilizers production by bio-based fermenters and their potential impact on the environment. CHEMOSPHERE 2024; 353:141539. [PMID: 38417498 DOI: 10.1016/j.chemosphere.2024.141539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Increasing food waste is creating a global waste (and management) crisis. Globally, ∼1.6 billion tons of food is wasted annually, worth ∼$1.2 trillion. By reducing this waste or by turning it into valuable products, numerous economic advantages can be realized, including improved food security, lower production costs, biodegradable products, environmental sustainability, and cleaner solutions to the growing world's waste and garbage management. The appropriate handling of these detrimental materials can significantly reduce the risks to human health. Food waste is available in biodegradable forms and, with the potential to speed up microbial metabolism effectively, has immense potential in improving bio-based fertilizer generation. Synthetic inorganic fertilizers severely affect human health, the environment, and soil fertility, thus requiring immediate consideration. To address these problems, agricultural farming is moving towards manufacturing bio-based fertilizers via utilizing natural bioresources. Food waste-based bio-fertilizers could help increase yields, nutrients, and organic matter and mitigate synthetic fertilizers' adverse effects. These are presented and discussed in the review.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, Global Sport Innovation Bldg., Room 403, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110065, India
| | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, 732 103, West Bengal, India.
| |
Collapse
|
36
|
Vráblová M, Smutná K, Chamrádová K, Vrábl D, Koutník I, Rusín J, Bouchalová M, Gavlová A, Sezimová H, Navrátil M, Chalupa R, Tenklová B, Pavlíková J. Co-composting of sewage sludge as an effective technology for the production of substrates with reduced content of pharmaceutical residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169818. [PMID: 38184247 DOI: 10.1016/j.scitotenv.2023.169818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Sewage sludge is a valuable source of elements such as phosphorus and nitrogen. At the same time, heavy metals, emerging organic compounds, micropollutants (pharmaceuticals, pesticides, PCPs, microplastics), or some potentially dangerous bacteria can be present. In this study, the sewage sludge was aerobically treated by composting with other materials (co-composted), and the resulting substrate was tested for suitability of its use in agriculture. Closer attention was focused on the pharmaceuticals (non-steroidal antiphlogistics, sartanes, antiepileptics, caffeine, and nicotine metabolites) content and ecotoxicity of the resulting substrates in the individual phases of sludge co-composting. It has been verified that during co-composting there is a potential for reduction of the content of pharmaceutical in the substrates up to 90 %. The course of the temperature in the thermophilic phase is decisive. Growth and ecotoxicity experiments demonstrated that with a suitable co-composting procedure, the resulting stabilized matter is suitable as a substrate for use in plant production, and the risk of using sewage sludge on agricultural land is substantially reduced.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Chamrádová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Daniel Vrábl
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Jiří Rusín
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Markéta Bouchalová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Anna Gavlová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Hana Sezimová
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Navrátil
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Richard Chalupa
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Barbora Tenklová
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Jitka Pavlíková
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| |
Collapse
|
37
|
Bouhia Y, Hafidi M, Ouhdouch Y, Soulaimani A, Zeroual Y, Lyamlouli K. Microbial intervention improves pollutant removal and semi-liquid organo-mineral fertilizer production from olive mill wastewater sludge and rock phosphate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120317. [PMID: 38387346 DOI: 10.1016/j.jenvman.2024.120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Olive mill wastewater sludge (OMWS) represents a residual pollutant generated by the olive oil industry, often stored in exposed evaporation ponds, leading to contamination of nearby land and water resources. Despite its promising composition, the valorization of OMWS remains underexplored compared to olive mill wastewater (OMW). This study aims to identify potent native microbial species within OMWS suitable for bioremediation and its transformation into a high-value organic fertilizer. The microbial screening, based on assessing OMWS tolerance and phosphate solubilization properties in vitro, followed by a singular inoculation using a mixture of OMWS and rock phosphate (RP). Identification of FUN 06 (Galactomyces Geotrichum), a fungal species, employed as an inoculant in the treatment of sterile OMWS supplemented with RP. Results demonstrate that fungal inoculation notably diminished OMWS phytotoxicity while enhancing its physicochemical parameters, nutrient concentrations, and removal of toxic organic compounds by up to 90% compared to the control, and enhances plant growth, offering a sustainable approach to tackle environmental concerns. Additionally, metataxonomic analysis unveiled FUN 06's propensity to enhance the presence of microbial species engaged in pollutant degradation. However, higher RP dosage (10%) appeared to adversely affect bioprocess efficiency, suggesting a potential dose-related effect. Overall, FUN 06, isolated from OMWS evaporation ponds, shows promise for effective bioremediation and sustainable reuse. In fact, our results indicate that targeted microbial inoculation stands as an effective strategy for mitigating pollutants in OMWS, facilitating its conversion into a nutrient-rich organo-mineral fertilizer suitable for direct use, promoting its beneficial reuse in agriculture, thereby presenting a promising avenue for olive oil waste management.
Collapse
Affiliation(s)
- Youness Bouhia
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco.
| | - Mohamed Hafidi
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences University Mohammed VI Polytechnic (UM6P), Laayoune, 70000, Morocco
| | - Yedir Ouhdouch
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences University Mohammed VI Polytechnic (UM6P), Laayoune, 70000, Morocco
| | - Aziz Soulaimani
- Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | | | - Karim Lyamlouli
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
38
|
Re A, Schiavon M, Torretta V, Polvara E, Invernizzi M, Sironi S, Caruson P. Application of different packing media for the biofiltration of gaseous effluents from waste composting. ENVIRONMENTAL TECHNOLOGY 2024; 45:1622-1635. [PMID: 36404772 DOI: 10.1080/09593330.2022.2148570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
A pilot-scale experiment was implemented in a waste bioreactor with an inner capacity of 1 m3 in order to simulate a real-scale composting process. The waste underwent composting conditions that are typical of the initial bio-oxidation phase, characterised by a high production of volatile organic compounds (VOCs), hydrogen sulphide (H2S) and odorants. The waste bioreactor was fed with an intermittent airflow rate of 6 Nm3/h. The target of this study was to investigate the air treatment performance of three biofilters with the same size, but filled with different filtering media: (1) wood chips, (2) a two-layer combination of lava rock (50%) and peat (50%), and (3) peat only. The analyses on air samples taken upstream and downstream of the biofilters showed that the combination of lava rock and peat presents the best performance in terms of mean removal efficiency of odour (96%), total VOCs (95%) and H2S (77%) concentrations. Wood chips showed the worst abatement performance, with respective mean removal efficiencies of 90%, 88% and 62%. From the results obtained, it is possible to conclude that the combination of lava rock and peat can be considered as a promising choice for air pollution control in waste composting facilities.
Collapse
Affiliation(s)
- Andrea Re
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Marco Schiavon
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Elisa Polvara
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Marzio Invernizzi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Selena Sironi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | | |
Collapse
|
39
|
Cao Y, Han X, Wu X, Deveci M, Kadry S, Delen D. Evaluation of food waste treatment techniques using the complex q-rung orthopair fuzzy generalized TODIM method with weighted power geometric operator. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120105. [PMID: 38325282 DOI: 10.1016/j.jenvman.2024.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Food waste has received wide attention due to its hazardous environmental effects, such as soil, water, and air pollution. Evaluating food waste treatment techniques is imperative to realize environmental sustainability. This study proposes an integrated framework, the complex q-rung orthopair fuzzy-generalized TODIM (an acronym in Portuguese for interactive and multi-criteria decision-making) method with weighted power geometric operator, to assess the appropriate technique for food waste. The assessment of food waste treatment techniques can be divided into three phases: information processing, information fusion, and ranking alternatives. Firstly, the complex q-rung orthopair fuzzy set flexibly describes the information with periodic characteristics in the processing process with various parameters q. Then, the weighted power geometric operator is employed to calculate the weight of the expert and form the group evaluation matrix, in which the weight of each input rating depends upon the other input ratings. It can simulate the mutual support, multiplicative preferences, and interrelationship of experts. Next, the generalized TODIM method is employed to rank the food waste treatment techniques, considering experts' psychological characteristics and bounded behavior. Subsequently, a real-world application case examines the practicability of the proposed framework. Furthermore, the sensitivity analysis verifies the validity and stability of the presented framework. The comparative study highlights the effectiveness of this framework using the existing frameworks. According to the result, Anaerobic digestion (0.0043) has the highest priority among the considered alternatives, while Incineration (-0.0009) has the lowest.
Collapse
Affiliation(s)
- Yushuo Cao
- School of Economics and Management, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Xiao Han
- School of Economics and Management, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Xuzhong Wu
- School of Economics and Management, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Muhammet Deveci
- Department of Industrial Engineering, Turkish Naval Academy, National Defence University, 34942 Tuzla, Istanbul, Turkey; The Bartlett School of Sustainable Construction, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK; Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon.
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emirates; MEU Research Unit, Middle East University, Amman 11831, Jordan.
| | - Dursun Delen
- Center for Health Systems Innovation, Department of Management Science and Information Systems, Spears School of Business, Oklahoma State University, Stillwater, 74078, Oklahoma, USA; Department of Industrial Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Sarıyer/İstanbul, Türkiye.
| |
Collapse
|
40
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
41
|
Shi C, Xie P, Ding Z, Niu G, Wen T, Gu W, Lu Y, Wang F, Li W, Zeng J, Shen Q, Yuan J. Inhibition of pathogenic microorganisms in solid organic waste via black soldier fly larvae-mediated management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169767. [PMID: 38176562 DOI: 10.1016/j.scitotenv.2023.169767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Inadequately managed solid organic waste generation poses a threat to the environment and human health globally. Biotransformation with the black soldier fly larvae (BSFL) is emerging as talent technology for solid waste management. However, there is a lack of understanding of whether BSFL can effectively suppress potential pathogenic microorganisms during management and the underlying mechanisms. In this study, we investigated the temporal variations of microorganisms in two common types of solid waste, i.e., kitchen waste (KW) and pig manure (PM). Natural composting and composting with BSFL under three different pH levels (pH 5, 7, and 9) were established to explore their impact on microbial communities in compost and the gut of BSFL. The results showed that the compost of kitchen waste and pig manure led to an increase in relative abundance of various potentially pathogenic bacteria. Temporal gradient analyses revealed that the most substantial reduction in the relative abundance and diversity of potentially pathogenic microorganisms occurred when the initial pH of both two wastes were adjusted to 7 upon the introduction of BSFL. Through network and pls-pm analysis, it was discovered that the gut microbiota of BSFL occupied an ecological niche in the compost, inhibiting the proliferation of potentially pathogenic microorganisms. This study has revealed the potential of BSFL in reducing public health risks during the solid waste management process, providing robust support for sustainable waste management.
Collapse
Affiliation(s)
- Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Penghao Xie
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhexu Ding
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoqing Niu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Fengying Wang
- Guangzhou Outreach Environmental Technologies Co., Ltd., Guangzhou 510640, China
| | - Wanling Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jianguo Zeng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
43
|
Batista-Barwinski MJ, Butzke-Souza N, Radetski-Silva R, Tiegs F, Laçoli R, Venturieri GA, Miller PRM, Branco JO, Ariente-Neto R, Radetski CM. Slaughterhouse by-products composting: can microorganisms inoculum addition mitigate final compost odor emission? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:131-141. [PMID: 38314812 DOI: 10.1080/03601234.2024.2312063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.
Collapse
Affiliation(s)
| | - Nicolli Butzke-Souza
- Laboratório de Remediação Ambiental, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Ramaiana Radetski-Silva
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, Brazil
| | - Frankie Tiegs
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, Brazil
| | - Rosane Laçoli
- Laboratório de Remediação Ambiental, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Giorgini A Venturieri
- Programa de Pós-Graduação em Agroecossistemas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paul Richard M Miller
- Programa de Pós-Graduação em Agroecossistemas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Joaquim O Branco
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Rafael Ariente-Neto
- Curso de Engenharia de Produção, Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Jandaia do Sul, Brazil
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, Brazil
| |
Collapse
|
44
|
Muhammad T, Jiang C, Li Y, Manan I, Ma C, Geng H, Fatima I, Adnan M. Impacts and mechanism of coal fly ash on kitchen waste composting performance: The perspective of microbial community. CHEMOSPHERE 2024; 350:141068. [PMID: 38160955 DOI: 10.1016/j.chemosphere.2023.141068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Aerobic composting is eco-friendly and sustainable practice for kitchen waste (KW) disposal to restore soil fertility and reduce environmental risks. However, KW compact structure, perishable nature, acidification by anaerobic acidogens, inhibits the metabolism of aerobic microbes, insufficient breakdown of organic matters, and prolong the composting duration. This study, co-composted coal fly ash (FA), to regulate bacterial dynamics, co-occurrence patterns and nutrients transformation in KW composting. Our results indicated, FA created suitable environment by increasing pH and temperature, which facilitated the proliferation and reshaping of microbial community. FA fostered the relative abundances of phlya (Proteobacteria, Chloroflexi and Actinobacteriota) and genera (Bacillus, Paenibacillus and Lysinibacillus), which promoted the nutrients transformation (phosphorus and nitrogen) in KW compost. FA enhanced the mutualistic correlations between bacterial communities, promoted the network complexity (nodes & edges) and contains more positive connections, which reflect the FA amendment effects. KW mature compost seed germination index reached >85% of FA treatment, indicated the final products fully met the Chinese national standard for organic fertilizer. These findings might provide opportunity to advance the KW composting and collaborative management of multiple waste to curb the current environmental challenges.
Collapse
Affiliation(s)
- Tahir Muhammad
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Irum Manan
- Department of Botany, Sardar Bahadur Khan Women's University, Quetta 87300, Pakistan.
| | - Changjian Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Hui Geng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Iza Fatima
- Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, USA.
| | - Muhammad Adnan
- College of Environment Hohai University, Nanjing 210098, China.
| |
Collapse
|
45
|
Zhu L, Zhao Y, Chen S, Miao X, Fang Z, Yao X, Dong C, Hu B. Alternating ventilation accelerates the mineralization and humification of food waste by optimizing the temperature-oxygen-moisture distribution in the static composting reactor. BIORESOURCE TECHNOLOGY 2024; 393:130050. [PMID: 37989420 DOI: 10.1016/j.biortech.2023.130050] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Traditional unidirectional ventilation often leads to the loss of heat and moisture during composting, disrupting the favorable microenvironment required for aerobic microbes. This study developed a pulse alternating ventilation composting reactor and investigated the effects of alternating ventilation on composting efficiency compared with upward ventilation and downward ventilation. The results demonstrated that alternating ventilation stabilized the moisture content at approximately 60 % while reducing the temperature and oxygen concentration range within the reactor. Moreover, it extended the duration of high-temperature (>50 °C) by 31 % and 75 % compared to other two groups. It improved the microbial cooperation intensity and stimulated the core microbe (Tepidimicrobium). Seed germination index (GI) of the compost was improved (GI = 91.27 %), and the humic acid content was 1.23 times and 1.37 times higher than other two groups. These results showed that alternating ventilation can be used for efficient resource disposal of food waste.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyin Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyin Miao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chifei Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
46
|
Bai Y, Wu D, Dolfing J, Zhang L, Xie B. Dynamics and functions of biomarker taxa determine substrate-specific organic waste composting. BIORESOURCE TECHNOLOGY 2024; 393:130118. [PMID: 38029801 DOI: 10.1016/j.biortech.2023.130118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Bacteria are an influential component of diverse composting microbiomes, but their structure and underlying dynamics are poorly understood. This study analyzed the bacterial communities of 577 compost datasets globally and constructed a substrate-dependent catalog with more than 15 million non-redundant 16S rRNA gene sequences. Using a random-forest machine-learning model, 30 biomarker taxa were identified that accurately distinguish between the food, sludge and manure waste composting microbiomes (accuracy >98 %). These biomarker taxa were closely associated with carbon and nitrogen metabolic processes, during which they contributed to the predominant stochastic process and are influenced by different factors in the substrate-specific composts. This is corroborated by the community topological characteristics, which feature the biomarkers as keystone taxa maintaining the bacterial network stability. These findings provide a theoretical basis to identify and enhance the biomarker-functional bacteria for optimizing the composting performance of different organic wastes.
Collapse
Affiliation(s)
- Yudan Bai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Jan Dolfing
- Faculty Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, United Kingdom
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
47
|
Cai D, Wang Y, Zhao X, Zhang C, Dang Q, Xi B. Regulating the biodegradation of petroleum hydrocarbons with different carbon chain structures by composting systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166552. [PMID: 37634726 DOI: 10.1016/j.scitotenv.2023.166552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Composting can decrease petroleum hydrocarbons in petroleum contaminated soils, however the microbial degradation mechanisms and regulating method for biodegradation of petroleum hydrocarbons with different carbon chain structures in the composting system have not yet been investigated. This study analyzed variations of total petroleum hydrocarbon concentrations with C ≤ 16 and C > 16, Random Forest model was applied to identify the key microorganisms for degrading the petroleum hydrocarbon components with specific structure in biomass-amended composting. Regulating method for biodegradation of petroleum hydrocarbons with different carbon chain structures was proposed by constructing the influence paths of "environmental factors-key microorganisms- total petroleum hydrocarbons". The results showed that composting improved the degradation rate of C ≤ 16 fraction and C > 16 fraction of petroleum hydrocarbons by 67.88 % and 61.87 %, respectively. Analysis of the microbial results showed that the degrading bacteria of the C ≤ 16 fraction had degradation advantages in the heating phase of the compost, while the C > 16 fraction degraded better in the cooling phase. Moreover, microorganisms that specifically degraded C > 16 fractions were significantly associated with total nitrogen and nitrate nitrogen. The biodegradation of C ≤ 16 fraction was regulated by organic matter, moisture content, and temperature. The composting system modified by biogas slurry was effective in removing of petroleum hydrocarbons with different carbon chain structures in soil by regulating the metabolic potential of the 46 key microorganisms. This study given their expected importance to achieve the purpose of treating waste with waste and contributing to soil utilization as well as pollution remediation.
Collapse
Affiliation(s)
- Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
48
|
Wang F, Zhao Q, Zhang L, Chen J, Wang T, Qiao L, Zhang L, Ding C, Yuan Y, Qi Z, Chen T. Co-digestion of chicken manure and sewage sludge in black soldier fly larvae bioconversion system: bacterial biodiversity and nutrients quality of residues for biofertilizer application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119804-119813. [PMID: 37930569 DOI: 10.1007/s11356-023-30717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Black soldier fly larvae (BSFL) bioconversion system is emerging as an effective approach for organic waste pollution treatment. Co-digestion of different organic matters with BSFL can be an effective way to realize the innovative biowaste circular economy. In this study, organic waste mixture of chicken manure and sewage sludge was chosen as substrate for BSFL growth. The bacterial biodiversity and nutrients quality of BSFL residue were evaluated through gene sequencing and other characterizations to confirm their application potential as biofertilizers. The dominant bacteria in BSFL residue were Firmicutes (75.39%) at phylum level, Bacilli (71.61%) at class level and Pseudogracilibacillus (11.08%) at genus level. Antibiotic resistance genes (ARGs) were used to assess the harmlessness of BSFL residue. After BSFL treatment, 36.2% decrease in ARGs was observed. Taking nutrients quality into consideration, dissolved organic carbon, dissolved nitrogen, available phosphorous, and available potassium significantly increased in the co-digestion system. These results demonstrated that co-digestion of chicken manure and excess sludge in BSFL bioconversion system could improve the nutrients quality of residues. However, removal of ARGs in the bioconversion process should be further explored to eliminate environmental concerns associated with application of BSFL residue as biofertilizers.
Collapse
Affiliation(s)
- Feihong Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Qi Zhao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Lei Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Jie Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Tao Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Luyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
| |
Collapse
|
49
|
Costa BF, Zarei-Baygi A, Md Iskander S, Smith AL. Antibiotic resistance genes fate during food waste management - Comparison between thermal treatment, hyperthermophilic composting, and anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 388:129771. [PMID: 37739184 DOI: 10.1016/j.biortech.2023.129771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The fate of eight different antibiotic resistance genes (ARGs) in food waste (sul1, sul2, tetO, tetW, ermF, ermB, ampC, oxa-1), intI1, and rpoB were monitored during thermal treatment (pyrolysis and incineration), hyperthermophilic composting, and anaerobic membrane bioreactor (AnMBR) treatment. ARGs in food waste ranged from 2.9 × 106 to 3.5 × 109 copies/kg with ampC being the least abundant and sul1 being the most abundant. Thermal treatment achieved removal below detection limits of all ARGs. Only two ARGs (sul1 and ampC) persisted in hyperthermophilic composting. While all genes except for ermB decreased in the AnMBR effluent relative to the food waste feed, sul1 remained at relatively high abundance. Biosolids on the contrary, accumulated tetO, ampC and sul2 in all tested operating conditions. Thermal treatment, despite limited resource recovery, provides the most effective mitigation of ARG risk in food waste.
Collapse
Affiliation(s)
- Bianca F Costa
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14(th) Ave N, Fargo, ND 58102, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
50
|
Zhang X, Khalid M, Menhas S, Chi Y, Yang X, Chu S, Zhou P, Zhang D. Insights into effects of salt stress on the oil-degradation capacity, cell response, and key metabolic pathways of Bacillus sp. YM1 isolated from oily food waste compost. CHEMOSPHERE 2023; 341:140092. [PMID: 37678592 DOI: 10.1016/j.chemosphere.2023.140092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
A novel bacterial strain, Bacillus sp. YM1, was isolated from compost for the efficient degradation of oily food waste under salt stress. The strain's lipase activity, oil degradation ability, and tolerance to salt stress were evaluated in a liquid medium. Additionally, the molecular mechanisms (including key genes and functional processes) underlying the strain's salt-resistant degradation of oil were investigated based on RNA-Seq technology. The results showed that after 24 h of microbial degradation, the degradation rate of triglycerides in soybean oil was 80.23% by Bacillus sp. YM1 at a 30 g L-1 NaCl concentration. The metabolizing mechanism of long-chain triglycerides (C50-C58) by the YM1 strain, especially the biodegradation rate of triglycerides (C18:3/C18:3/C18:3), could reach 98.65%. The most substantial activity of lipase was up to 325.77 U·L-1 at a salinity of 30 g L-1 NaCl. During salt-induced stress, triacylglycerol lipase was identified as the crucial enzyme involved in oil degradation in Bacillus sp. YM1, and its synthesis was regulated by the lip gene (M5E02_13495). Bacillus sp. YM1 underwent adaptation to salt stress through various mechanisms, including the accumulation of free amino acids, betaine synthesis, regulation of intracellular Na+/K+ balance, the antioxidative response, spore formation, and germination. The key genes involved in Bacillus sp. YM1's adaptation to salt stress were responsible for the synthesis of glutamate 5-kinase, superoxide dismutase, catalase, Na+/H+ antiporter, general stress protein, and sporogenic proteins belonging to the YjcZ family. Results indicated that the isolated strain of Bacillus sp. YM1 could significantly degrade oil in a short time under salt stress. This study would introduce new salt-tolerant strains for coping with the biodegradation of oily food waste and provide gene targets for use in genetic engineering.
Collapse
Affiliation(s)
- Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325000, China
| | - Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|