1
|
Zhou M, Cao J, Guo J, Wang Y, Lu Y, Zhu L, Hu L, Liu W, Li C. Mechanisms and mitigation control of clogging in constructed wetlands: Insight into the enhancement of the bioelectrochemical systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124809. [PMID: 40049013 DOI: 10.1016/j.jenvman.2025.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Constructed wetlands (CWs), a cost-effective and eco-friendly wastewater treatment technology, are extensively applied in various types of wastewater treatment. There is a series of strong impacts on CWs performance by the accumulation of clogging matters which attribute to physical, chemical, and biological processes after the long-term operation. This paper summarizes the mechanism of clogging formation, which can be classified into physical, chemical, and biological clogging. Moreover, it analyzes the typical measures for preventing and controlling clogging in CWs. The integration of bioelectrochemical systems (BES), including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) into CWs is proposed as a safe and efficient way to alleviate substrate clogging on-site, owing to the fact that BES can easily automate the control or adjustment of its internal electric field form. The mechanism of clogging control by CW-BES is comprehensively described and analyzed. With the help of BES, the clogging substances obtained optimized occurrence form, reduced hydrophobicity and advantageous spatial distribution. Besides, the microbial community achieved promoted structure, accelerated rates of electron transfer and more diverse metabolic pathway. Compared to traditional methods for evaluating the clogging of CWs, the MFC sensor offers the advantages of being fast, enabling in-site detection, and being non-destructive. Future research should be focused on the theoretical underpinnings for putting CW-BES into practical use. Additional, efforts should be made to ensure the stable, long-term operation of CWs.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jinyan Guo
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou, 451191, China
| | - Li Hu
- College of Biology and Food Engineering, Huanghuai University, 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
Zhou Z, Liu S, Saleem M, Liu F, Hu R, Su H, Dong D, Luo Z, Wu Y, Zhang Y, He Z, Wang C. Unraveling phase-dependent variations of viral community, virus-host linkage, and functional potential during manure composting process. BIORESOURCE TECHNOLOGY 2025; 419:132081. [PMID: 39826761 DOI: 10.1016/j.biortech.2025.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The temporal dynamics of bacterial and fungal communities significantly impact the manure composting process, yet viral communities are often underexplored. Bulk metagenomes, viromes, metatranscriptomes, and metabolomes were integrated to investigate dynamics of double-stranded DNA (dsDNA) virus and virus-host interactions throughout a 63-day composting process. A total of 473 viral operational taxonomic units (vOTUs), predominantly Caudoviricetes, showed distinct phase-dependent differentiation. In phase I (initial-mesophilic), viruses targeted Gammaproteobacteria and Firmicutes, utilizing restriction-modification (RM) systems. In phase II (thermophilic-maturing), viruses infected Alphaproteobacteria, Chloroflexi, and Planctomycetes, employing CRISPR-Cas systems. Lysogenic and lytic viruses exerting differential effects on bacterial pathogens across phases. Additionally, six types of auxiliary metabolic genes (AMGs) related to galactose and cysteine metabolisms were identified. The homologous lineages of AMGs with bacterial genes, along with the significant temporal correlation observed between virus-host-metabolite interactions, underscore the critical yet often overlooked role of viral communities in modulating microbial metabolisms and pathogenesis within composting ecosystems.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Songfeng Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Da Dong
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, China
| | - Zhiwen Luo
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Huang M, Zhao L, Wang Z, Sun X, Shang Q, Li Y, Li M, Geng H, Hu S, Yang Y. Effect of plant species on wastewater treatment performance of a subsurface vertical-flow constructed wetland with step-feeding at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122546. [PMID: 39299120 DOI: 10.1016/j.jenvman.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To improve the treatment performance of constructed wetlands under low-temperature conditions, this study investigated the effects of plant species on wastewater treatment performance at low temperature and the associated microbiological characteristics in a subsurface vertical-flow constructed wetland (VFCW) with step-feeding. The results showed that the redox microenvironment in the VFCW filter with step-feeding could be restored and optimized by planting appropriate species that can tolerate low temperature, ensuring a high nitrification performance for the system. Correspondingly, the abundance and activity of three functional microbes (namely nitrifiers, denitrifiers, and anammox bacteria) increased to different degrees in the system, eventually ensuring ideal nitrogen removal by the VFCW. Compared with the VFCW planted with Phragmites australis and Acorus gramineus, the operation performance of the VFCW planted with Iris wilsonii could be recovered at low temperature, and its chemical oxygen demand, total phosphorus, total nitrogen, and ammonium nitrate removal rates could respectively reach 95.7%, 99.2%, 93.0%, and 94.4%, respectively. Moreover, nitrogen removal in the system relied on the nitrification/denitrification and partial denitrification - anaerobic ammonium oxidation processes. Nitrosomonas, Nitrospira, Thauera, and Candidatus Brocadia were the four dominant bacterial genera in the filter layer.
Collapse
Affiliation(s)
- Menglu Huang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Zhen Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Ximing Sun
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Qiongqiong Shang
- Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, China.
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Mengxiao Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Siyu Hu
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Zhang W, Ye J, Hu F, Zhang J, Chen P, Yuan Z, Xu Z. Microbial community succession and responses to internal environmental drivers throughout the operation of constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 259:119522. [PMID: 38960356 DOI: 10.1016/j.envres.2024.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Constructed wetlands (CWs) have been widely used to ensure effective domestic wastewater treatment. Microorganisms-derived CWs have received extensive attention as they play a crucial role. However, research on the succession patterns of microbial communities and the influencing mechanisms of internal environmental factors throughout entire CW operations remains limited. In this context, three parallel-operated CWs were established in this study to assess the microbial communities and their influencing environmental factors at different substrate depths throughout the operation process using 16S rRNA gene high-throughput sequencing and metagenomic sequencing. The results showed gradual reproduction and accumulation of the microbial communities throughout the CW operation. Although gradual increases in the richness and diversity of the microbial communities were found, there were decreases in the functional expression of the dominant microbial species. The excessive accumulation of microorganisms will decrease the oxidation-reduction potential (ORP) within CWs and attenuate their influence on effluent. Dissolved oxygen (DO) was the major factor influencing the microbial community succession over the CW operation. The main identified functional bacterial genera responsible for the ammonium oxidation, nitrification, and denitrification processes in the CWs were Nitrosospira, Nitrobacter, Nitrospira, Rhodanobacter, and Nakamurella. The narG gene was identified as a key functional gene linking various components of nitrogen cycling, while pH, electrical conductivity (EC), and ORP were the major environmental factors affecting the metabolism characteristics of nitrogen functional microorganisms. This study provides a theoretical basis for the effective regulation of related microbial communities to achieve long-term, efficient, and stable CW operations.
Collapse
Affiliation(s)
- Wencan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfeng Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Feng Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Peipei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhanzhan Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Hu S, Feng W, Shen Y, Jin X, Miao Y, Hou S, Cui H, Zhu H. Greenhouse gases emissions and carbon budget estimation in horizontal subsurface flow constructed wetlands with different plant species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172296. [PMID: 38588732 DOI: 10.1016/j.scitotenv.2024.172296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Constructed wetlands (CWs) are pivotal for wastewater treatment due to their high efficiency and numerous advantages. The impact of plant species and diversity on greenhouse gas (GHG) emissions from CWs requires a more comprehensive evaluation. Moreover, controversial perspectives persist about whether CWs function as carbon sinks or sources. In this study, horizontal subsurface flow (HSSF) CWs vegetated with Cyperus alternifolius, Typhae latifolia, Acorus calamus, and the mixture of these three species were constructed to evaluate pollutant removal efficiencies and GHG emissions, and estimate carbon budgets. Polyculture CWs can stably remove COD (86.79 %), NH4+-N (97.41 %), NO3--N (98.55 %), and TP (98.48 %). They also mitigated global warming potential (GWP) by suppressing N2O emissions compared with monoculture CWs. The highest abundance of the Pseudogulbenkiania genus, crucial for denitrification, was observed in polyculture CWs, indicating that denitrification dominated in nitrogen removal. While the highest nosZ copy numbers were observed in CWs vegetated with Cyperus alternifolius, suggesting its facilitation of denitrification-related microbes. Selecting Cyperus alternifolius to increase species diversity is proposed for simultaneously maintaining the water purification capacity and reducing GHG emissions. Carbon budget estimations revealed that all four types of HSSF CWs were carbon sinks after six months of operation, with carbon accumulation capacity of 4.90 ± 1.50 (Cyperus alternifolius), 3.31 ± 2.01 (Typhae latifola), 1.78 ± 1.30 (Acorus calamus), and 2.12 ± 0.88 (polyculture) kg C/m2/yr. This study implies that under these operation conditions, CWs function as carbon sinks rather than sources, aligning with carbon peak and neutrality objectives and presenting significant potential for carbon reduction efforts.
Collapse
Affiliation(s)
- Sile Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Weidong Feng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuting Shen
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaoling Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yaqin Miao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shengnan Hou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Hui Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China.
| |
Collapse
|
6
|
Gao X, Bi Y, Su L, Lei Y, Gong L, Dong X, Li X, Yan Z. Unveiling the nitrogen and phosphorus removal potential: Comparative analysis of three coastal wetland plant species in lab-scale constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119864. [PMID: 38109823 DOI: 10.1016/j.jenvman.2023.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
It is well accepted that tidal wetland vegetation performs a significant amount of water filtration for wetlands. However, there is currently little information on how various wetland plants remove nitrogen (N) and phosphorus (P) and how they differ in their denitrification processes. This study compared and investigated the denitrification and phosphorus removal effects of three typical wetland plants in the Yangtze River estuary wetland (Phragmites australis, Spartina alterniflora, and Scirpus mariqueter), as well as their relevant mechanisms, using an experimental laboratory-scale horizontal subsurface flow constructed wetland (CW). The results showed that all treatment groups with plants significantly reduced N pollutants as compared to the control group without plants. In comparison to S. mariqueter (77.2-83.2%), S. alterniflora and P. australis had a similar total nitrogen (TN)removal effectiveness of nearly 95%. With a removal effectiveness of over 99% for ammonium nitrogen (NH4+-N), P. australis outperformed S. alterniflora (95.6-96.8%) and S. mariqueter (94.6-96.5%). The removal of nitrite nitrogen (NO2--N)and nitrate nitrogen (NO3--N)from wastewater was significantly enhanced by S. alterniflora compared to the other treatment groups. Across all treatment groups, the removal rate of PO43--P was greater than 95%. P. australis and S. alterniflora considerably enriched more 15N than S. mariqueter, according to the results of the 15N isotope labeling experiment. While the rhizosphere and bulk sediments of S. alterniflora were enriched with more simultaneous desulfurization-denitrification bacterial genera (such as Paracoccus, Sulfurovum, and Sulfurimonas), which have denitrification functions, the rhizosphere and bulk sediments of P. australis were enriched with more ammonia-oxidizing archaea and ammonia-oxidizing bacteria. As a result, compared to the other plants, P. australis and S. alterniflora demonstrate substantially more significant ability to remove NH4+-N and NO2--N/NO3--N from simulated domestic wastewater.
Collapse
Affiliation(s)
- Xiaoqing Gao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Yuxin Bi
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Lin Su
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Ying Lei
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Lv Gong
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Xinhan Dong
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
| |
Collapse
|
7
|
Xing X, Yuan X, Zhang Y, Men C, Zhang Z, Zheng X, Ni D, Xi H, Zuo J. Enhanced denitrification of the AO-MBBR system used for expressway service area sewage treatment: A new perspective on decentralized wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118763. [PMID: 37683385 DOI: 10.1016/j.jenvman.2023.118763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Decentralized wastewater treatment warrants considerable development in numerous countries and regions. Owing to the unique characteristics of high ammonia nitrogen concentrations and low carbon/nitrogen ratio, nitrogen removal is a key challenge in treating expressway service area sewage. In this study, an anoxic/oxic-moving bed biofilm reactor (A/O-MBBR) and a traditional A/O bioreactor were continuously operated for 115 days and their outcomes were compared to investigate the enhancement effect of carriers on the total nitrogen removal (TN) for expressway service area sewage. Results revealed that A/O-MBBR required lower dissolved oxygen, exhibited higher tolerance toward harsh conditions, and demonstrated better shock load resistance than traditional A/O bioreactor. The TN removal load of A/O-MBBR reached 181.5 g‧N/(m3‧d), which was 15.24% higher than that of the A/O bioreactor. Furthermore, under load shock resistance, the TN removal load of A/O-MBBR still reached 327.0 g‧N/(m3‧d), with a TN removal efficiency of above 80%. Moreover, kinetics demonstrated that the denitrification rate of the A/O-MBBR was 121.9% higher than that of the A/O bioreactor, with the anoxic tank biofilm contributing 60.9% of the total denitrification rate. Community analysis results revealed that the genera OLB8, uncultured_f_Saprospiraceae and OLB12 were the dominant in biofilm loaded on carriers, and OLB8 was the key for enhanced denitrification. FAPROTAX and PICRUSt2 analyses confirmed that more bacteria associated with nitrogen metabolism were enriched by the A/O-MBBR carriers through full denitrification metabolic pathway and dissimilatory nitrate reduction pathway. This study offers a perspective into the development of cost-effective and high-efficiency treatment solutions for expressway service area sewage.
Collapse
Affiliation(s)
- Xin Xing
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xin Yuan
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yu Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Cong Men
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhuowei Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xiaoying Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Dong Ni
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China.
| | - Huatian Xi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Li X, Yan N, Sun J, Zhao M, Zheng X, Zhang W, Zhang Z. Rhamnolipid-induced alleviation of bioclogging in Managed Aquifer Recharge (MAR): Interactions with bacteria and porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118635. [PMID: 37506449 DOI: 10.1016/j.jenvman.2023.118635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/20/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
The prevention and treatment of bioclogging is of great significance to the application of Managed Aquifer Recharge (MAR). This study investigated the alleviating effect of biosurfactant rhamnolipid (RL) on bioclogging by laboratory-scale percolation experiments. The results show that the addition of RL greatly reduced bioclogging. Compared with the group without RL, the relative hydraulic conductivity (K') of the 100 mg/L RL group increased 5 times at the end of the experiment (23 h), while the bacterial cell amount and extracellular polymeric substances (EPS) content on the sand column surface (0-2 cm) decreased by 60.8% and 85.7%, respectively. In addition, the richness and diversity of the microbial communities within the clogging matter decreased after the addition of RL. A variety of bacterial phyla were found, among which Proteobacteria were predominant in all groups. At the genus level, RL reduced the relative abundance of Acinetobacter, Bacillus, Klebsiella, and Pseudomonas. These microbes are known as strong adhesion, large size, and easy to form biofilms, therefore playing a critical role during MAR bioclogging. Moreover, RL changed the surface properties of bacteria and porous media, which results in the increase of electrostatic repulsion and decrease of hydrophobic interaction between them. Therefore, RL mediated the bacteria-porous media interaction to reduce biomass in porous media, thereby alleviating bioclogging. This study implies that RL's addition is an environmentally friendly and effective method to alleviate the bioclogging in MAR.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, China
| | - Ni Yan
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jie Sun
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mingmin Zhao
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xilai Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Wendi Zhang
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zaiyong Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
9
|
Li J, Wang J, Zhang Q, Ding Y, Zhang Y, Wang R, Wang D, Bai S. Efficient carbon removal and excellent anti-clogging performance have been achieved in multilayer quartz sand horizontal subsurface flow constructed wetland for domestic sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117516. [PMID: 36840999 DOI: 10.1016/j.jenvman.2023.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed to investigate the application of a multilayer quartz sand substrate horizontal subsurface flow constructed wetland (HSFCW) for campus sewage treatment. It aimed to assess the pollutant removal efficiency and anti-clogging performance under the suggested maximum organic loading rate (250 g/m2/d). The results of the multilayer HSFCW (CW6) were compared to the mololayer HSFCW (CW1) for the removal of the chemical oxygen demand (COD), solid accumulation, and microbial communities. During operation, the combination conditions of high hydraulic loading rate (HLR) with low COD concentration were better for COD removal under a high organic loading rate (OLR) of 200-300 g/m2/d. The maximum removal rate reached 80.4% in CW6 under high HLR, which was 13.8% higher than that in CW1, showing better adsorption and biodegradation ability of organic matter. Impressive clogging resistance capacity was found in CW6 due to the lower contents of the insoluble organic matter (IOM) that are prone to clogging, indicating full degradation of organic matters, particularly IOM, in CW6 under high HLR. Less abundance of unclassified Chitinophagaceae (under low HLR), Pedobacter and Saccharibacteria_genera_incertae_sedis (under high HLR) in CW6, which contributed to aerobic membrane fouling, helped to prevent clogging. Moreover, Brevundimonas, Cloacibacterium, Citrobacter, Luteimonas contributed to IOM degradation, thus further enhancing the anti-clogging performance. In view of the better clogging resistance performance, the application of CW6 operated under high HLR and low COD concentrations was recommended to achieve economical, efficient, and steady COD removal for domestic sewage treatment in long-term operation.
Collapse
Affiliation(s)
- Jieyue Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jiajun Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Yanli Ding
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin, 541004, China.
| | - Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin, 541004, China
| | - Ronghua Wang
- Hengsheng Water Environment Treatment Co., Ltd, Guilin 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin, 541004, China.
| |
Collapse
|
10
|
Wang X, Chen S, Bi X, Chen N, Yang T, Wang L, Maletskyi Z, Ratnaweera H. Morphological image analysis of biofilm evolution with quantitative analysis in a moving bed biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159199. [PMID: 36198352 DOI: 10.1016/j.scitotenv.2022.159199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The quantitative analysis of biomass is essential for the research and application of moving bed biofilm reactors (MBBRs). However, the difficulty in measuring the attached growing biomass hinders the quantitative analysis of biofilm processes. In this study, a pilot-scale MBBR system was established to investigate biofilm evolution. The quantity of active heterotrophic and autotrophic biomass was measured throughout the entire culturing process. The total active biomass reached 250 mg COD/m2 when the biofilm attachment and detachment were balanced, and the corresponding autotrophic biomass contributes to as high as 17 % of the total biomass. Furthermore, quantitative image analysis was performed to obtain the thickness and morphological data of the biofilm evolution. Multivariate regression models were constructed based on the morphological data, which provided satisfactory prediction accuracy for the biofilm thickness and maturation. The most suitable carrier spots for biomass quantification and biofilm maturation were suggested. This work provided the life-cycle information of biofilm quantity and morphology of the MBBR, which contributes to the quantitative understanding of biofilm evolution at MBBRs.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao 266033, China.
| | - Shanshan Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao 266033, China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao 266033, China
| | - Ning Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao 266033, China
| | - Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao 266033, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao 266033, China
| | - Zakhar Maletskyi
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - Harsha Ratnaweera
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| |
Collapse
|
11
|
Wu B, Xu D, Wang H, Xu R, Qin N, Han J. Wetland plant-derived biochar enhances the diclofenac treatment performance in vertical subsurface flow constructed wetlands. ENVIRONMENTAL RESEARCH 2022; 215:114326. [PMID: 36113575 DOI: 10.1016/j.envres.2022.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DFC) is a pharmacologically active compound frequently detected in various receiving waters. To improve the efficiency of constructed wetlands in removing DFC, biochar (BC) is added as a substrate. The study mainly involved the effect of adding wetland plant-derived BC to vertical subsurface flow constructed wetlands (VSF-CWs) on the DFC removal process. In addition, the study discussed the effects of the initial DFC concentration (0.05-1.00 mg L-1), pH (5.5-8.5), and hydraulic retention times (HRTs, 1-7 d) on the removal process and fluctuations in the microbial community. Preliminary results of the study showed optimal removal (>90%) achieved at an initial DFC concentration of 0.75-1 mg L-1, a pH of 6.5-7.5, and an HRT of 7 d. Moreover, no significant effects on the removal efficiency of conventional water quality parameters were observed. Non-metric multidimensional scaling results revealed a reshaped community structure, which was altered by the initial DFC concentration. DFC concentration is a key factor in the variation of microbial communities and controls the quantitative evolution of the species in experimental units. Therefore, the addition of BC to CWs effectively enhanced the removal efficiency of DFC and provided a viable and effective improvement of the CWs.
Collapse
Affiliation(s)
- Bin Wu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; China Aneng Group First Engineering Bureau Co. Ltd, Nanning, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Naibing Qin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| |
Collapse
|
12
|
Xiong C, Li Q, Tam NF, Zhang X, Tai Y, Wu R, Huang L, Vymazal J, Dai Y, Yang Y. The combination sequence effect on nitrogen removal pathway in hybrid constructed wetlands treating raw sewage from multiple perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155200. [PMID: 35421456 DOI: 10.1016/j.scitotenv.2022.155200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The combination sequence of traditional hybrid constructed wetlands (HCWs) affects the removal of nitrogen in raw sewage, but the effect of the combination sequence on nitrogen removal pathway have seldom been reported, especially the specific conditions allowing anammox to occur. Three-stage HCWs, namely vertical flow (VF), horizontal flow (HF) and surface flow (SF) constructed wetlands, were arranged in six different sequences to investigate nitrogen removal efficiencies and microbial removal pathways using metagenomic and stable isotope analyses. Results showed that the combination sequence significantly affected nitrogen removal pathways in HCWs. We found the best removal of total nitrogen (~50%) and ammonium (NH4+-N, ~99%) in HCWs with a VFCW in the 1st stage. Metagenomic results and stable isotope analyses further indicated that simultaneous nitrification and heterotrophic denitrification were the main pathways in unsaturated VFCW, which depended on the energy substance and electron donor supplied by chemical oxygen demand (CODCr) in raw sewage. Nitrifier, anammox bacteria and autotrophic denitrifies prevailed in the subsequent saturated CWs, which tend to nitrogen loss by partial nitrification and anammox in HFCW when fed with NH4+-N wastewater with low CODCr. Providing NH4+-N and oxygen in low CODCr wastewater was the essential step to facilitate anammox process in HFCW. It implied that the problem of poor nitrogen removal due to carbon limitation could be overcome by optimizing conditions in anammox's favor.
Collapse
Affiliation(s)
- Chunhui Xiong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Qiwen Li
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Nora Fungyee Tam
- Department of Science, Open University of Hong Kong, Homantin, Kowloon, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Xiaomeng Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yiping Tai
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Ruitai Wu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Lingjie Huang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, 16521 Prague 6, Czech Republic
| | - Yunv Dai
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| | - Yang Yang
- Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
13
|
Liu H, Liu Z, Morató J, Hu Z, Zhuang L, Kang X, Pang Y. Evaluation of substrate clogging in a full-scale horizontal subsurface flow treatment wetland using electrical resistivity tomography with an optimized electrode configuration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153981. [PMID: 35181353 DOI: 10.1016/j.scitotenv.2022.153981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the spatial distribution of clogging matter in a full-scale horizontal subsurface flow treatment wetland (HSSF TW) based on an electrical resistivity tomography (ERT) method, comparing the performance of two different electrode configurations (i.e., Schlumberger and Wenner arrays). The results indicated that during the draining phase, the substrate apparent resistivities of the full-scale HSSF TWs were negatively correlated with the clogging matter fraction (v/v), and a functional relationship between the two parameters was established using a first-order k-C* model. The detected clogging matter fraction (v/v) based on the Schlumberger array showed higher accuracy (linear slope = 0.900, R-squared = 0.902) than the Wenner array (linear slope = 0.685, R-squared = 0.685). Most of the severe substrate clogging in the full-scale HSSF TW occurred within a 10-m flow distance, and the distribution of the clogging matter showed different characteristics at different substrate depths. From a cross section positioned 1 m from the inlet, the average clogging matter fraction (v/v) at a 0-0.30 m depth (23.1 ± 14.9%) was significantly higher than that at a 0.30-0.80 m depth (5.0 ± 2.1%). The clogging matter at a 5-m flow distance was evenly distributed at different substrate depths. Only a few localized clogging zones were observed in the cross section at a 10-m flow distance. This study provided an accurate and feasible method for investigating the volume fraction of clogging matters containing different organic contents and demonstrates the spatial heterogeneity of clogging matter in HSSF TWs.
Collapse
Affiliation(s)
- Huaqing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhengyu Liu
- Shandong University, Geotechnical & Structural Engineering Research Centre, Jinan 250100, PR China
| | - Jordi Morató
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, C/Colom, 1, TR1, ESEIAAT, 08222 Terrassa, Spain
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Xingsheng Kang
- Environmental Engineering Co., Ltd., Shandong Academy of Environmental Science, Jinan 250100, PR China
| | - Yonghao Pang
- Shandong University, Geotechnical & Structural Engineering Research Centre, Jinan 250100, PR China
| |
Collapse
|
14
|
Ma X, Du Y, Peng W, Zhang S, Liu X, Wang S, Yuan S, Kolditz O. Modeling the impacts of plants and internal organic carbon on remediation performance in the integrated vertical flow constructed wetland. WATER RESEARCH 2021; 204:117635. [PMID: 34530225 DOI: 10.1016/j.watres.2021.117635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The integrated vertical flow (IVF) constructed wetland consists of two or more chambers with heterogeneous flow patterns and strong aeration capability, possesses favorable remediation performance. The Constructed Wetland Model No.1 (CWM1) embedded in the OpenGeoSys # IPHREEQC was applied to investigate the wetland plant effects on treatment efficiency. Two fundamental functions of the plant roots (i) the radial oxygen loss (ROL) and (ii) exudation of internal organic carbon (IOC), are developed and implemented in the model to simulate the treating processes of planted laboratory-scale IVF wetlands fed by the synthetic wastewater. The good agreement between simulated results and measurements of the planted IVF wetland and the unplanted filters mimicking wetland demonstrates the combined effects of ROL and IOC and the model reliability. In summer the ammonia (NH4-N) and total nitrogen (TN) removals are high as above 90% in both IVF wetlands, and in winter they decline significantly to around 55% and 45% in unplanted wetland, contrastively to about 85% and 78% in the planted wetland. The nitrogen removal - COD/N ratio relation curves of IVF wetlands are proposed and obtained by modeling to evaluate organic carbon loading status. Based on the curves, the COD/N ratios of unplanted and planted wetlands are about 3∼7 and 3∼10 gCOD/gN for high TN removal respectively. Planted wetlands can tolerate a wider range of COD/N ratio influents than unplanted ones. The ROL in the unplanted wetland promotes COD and NH4-N removal, while may inhibit denitrification under low-temperature conditions. The single addition of IOC enhances the oxygen-consuming and restrains the nitrification under the full loaded COD condition. Summing up all organic carbon releases from substrate and roots as IOC, the quantification of IOC acts on nitrogen treatment was simulated and compared with the external organic carbon (EOC) loading from influent. IOC performs higher efficiency on TN removal than EOC at the same organic loading rates. The results provide the thoughts of the solution for low TN removal in the carbon deficient constructed wetlands.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Yanliang Du
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China.
| | - Wenqi Peng
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shuanghu Zhang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Xiaobo Liu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shiyang Wang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Olaf Kolditz
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| |
Collapse
|
15
|
Zhang M, Xu D, Bai G, Cao T, Liu W, Hu Z, Chen D, Qiu D, Wu Z. Changes of microbial community structure during the initial stage of biological clogging in horizontal subsurface flow constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 337:125405. [PMID: 34166934 DOI: 10.1016/j.biortech.2021.125405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The clogging is a universal problem in constructed wetlands, where microorganisms play an essential role. However, the implication of micro-organism variation due to the clogging is not clear. Four horizontal subsurface flow constructed wetlands (HFCWs) were designed and operated to simulate the process of clogging. The wetland treatment performance and microbial community variation were investigated by regularly monitoring. Results showed the substrate filtration rate and the total phosphorous (TP) removal efficiency consistently decreased and the chemical oxygen demand (COD) and total nitrogen (TN) removal efficiency were at the range of 50%-85% and 10-20%, respectively. The sequencing results indicated that the clogging could affect the richness of bacterial community. The bacterial variation could be attributed to the dissolved oxygen decreasing and organic matter accumulation in the initial clogging period. These findings are expected to provide some theoretical reference for developing the biological methods to indicate the initial clogging in constructed wetlands.
Collapse
Affiliation(s)
- Mingzhen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Wuhan Research Academy of Environmental Protection Sciences, Wuhan 430015, China.
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Taotao Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Disong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
16
|
Liu H, Zhang J, Yu X, Xie H, Häggblom M, Liang S, Hu Z. Inorganic particle accumulation promotes nutrient removal of vertical flow constructed wetlands: Mechanisms and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146203. [PMID: 33711594 DOI: 10.1016/j.scitotenv.2021.146203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Vertical flow constructed wetlands (VF CWs) are widely applied for treating eutrophic water due to prominent advantages in economy and ecology. Natural inorganic particles are ubiquitous in contaminated water and the accumulation of inorganic particles takes place spontaneously in VF CWs. To reveal how the accumulation of inorganic particles affects the transport and transformation of phosphorus (P) and nitrogen (N) in VF CWs, column experiments with and without inorganic particle loading were conducted for over 180 days. The morphology and mass balance of P and N, microbial community structure and hydraulic characteristics of VF CWs were investigated. The average total phosphorus (TP) and total nitrogen (TN) removal efficiencies in VF CWs with inorganic particle loading were steady at 90.4 ± 1.9% and 87.8 ± 2.3%, respectively. Inorganic particle accumulation improved TP removal mainly via adsorption and plant uptake, while enhanced TN removal was mainly attributed to higher plant uptake and microbial degradation. Of particular interest was that plant biomass production was doubled by the concentrated nutrients (e.g., bioavailable P and N) in the rhizosphere, accompanied by the accumulation of inorganic particles up to 9.5 g L-1. Accumulated particles increased the bacterial abundance by 7.7-fold, and the diversity of the bacterial community associated with P and N transformations was significantly enhanced (p < 0.05). 31P NMR and P fractionation revealed that the elevated P proportion in the substrate was mainly in the form of iron-bound inorganic P. Moreover, inorganic particle accumulation decreased the substrate hydraulic conductivity, while it showed limited effect on the reduction of the hydraulic retention time.
Collapse
Affiliation(s)
- Huaqing Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Ximing Yu
- Taiwei Energy Group Co., Ltd., Jinan 250023, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
17
|
Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland. WATER 2021. [DOI: 10.3390/w13060788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dimethyl phthalate (DMP), belonging to the family of Phthalate esters (PAEs), is a plasticizer and has been widely used in the world for many years. Nowadays, it has become a ubiquitous environmental pollutant and is listed as an environmental priority pollutant by China’s Environmental Monitoring Center. The purpose of this study is to estimate the responses of the bacterial community and enzyme activity to DMP contamination in three vertical flow constructed wetlands (VFCW), namely the constructed wetland A (planted with Pennisetum sinese Roxb), constructed wetland B (planted with Pennisetum purpureum Schum.), and constructed wetland C (unplanted), respectively. The results showed that the relative percentages of some genera associated with nitrogen metabolism and the function of degrading aromatic hydrocarbons were increased by DMP contamination, such as Dechloromonas agitata, Pleomorphomonas sp., Denitratisoma oestradiolicum, Plasticicumulans lactativorans, Novosphingobium sp., Alicycliphilus denitrificans, and Thauera sp. Meanwhile, principal coordinate analysis (PCA) analysis showed that the addition of DMP divided 12 samples into two groups as followed: one was the DMP group containing a-1, a-2, b-1, b-2, c-1 and c-2 while the other was no DMP group including A-1, A-2, B-1, B-2, C-1 and C-2. It indicated that DMP was the main reason for this change. In addition, by monitoring the activity of substrate enzymes, the activity of urease, phosphatase, catalase, and invertase in the wetlands before and after the experiment, these were significantly higher in the upper layer than in the lower layer and maintained high activity. Ultimately, the average influent concentration of DMP in three VFCWs was 8.12 mg/L and the average removal efficiency of the effluent was over 90%. Our results suggested that DMP was an important factor affecting the microbial community structure of wetland and the upper layer of the VFCW was the main site for the degradation of DMP. VFCW has great potential for the removal of the high concentration of DMP and it can be a good choice for the treatment of PAEs.
Collapse
|
18
|
Ping T, Zeshun X, Penghui M, Yongchao Z. Laboratory investigation on Bacillus subtilis addition to alleviate bio-clogging for constructed wetlands. ENVIRONMENTAL RESEARCH 2021; 194:110642. [PMID: 33352184 DOI: 10.1016/j.envres.2020.110642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Bio-clogging is a major problem in the operation of constructed wetlands (CWs) and is caused by accumulation of biofilm and extracellular polymeric substances (EPS) in the substrate. B. subtilis can successfully produce α-amylase and endoglucanase, which can degrade polysaccharides and, consequently, disperse the EPS. Therefore, the addition of B. subtilis was used to decrease the bio-clogging of lab-scale vertical-flow constructed wetlands (VFCW) in this study, and the feasibility and performance of VFCWs were assessed. The results indicate that the addition of B. subtilis can degrade the polysaccharides in the clogging matter and thereby increase the porosity of the substrate. The hydraulic conductivity of Column 1 (with addition) increased by six times, which was 57 times that of control (Column 2). Meanwhile, the chemical oxygen demand (COD) removal rate also increased after the addition of B. subtilis. The microbial communities show that the richness and diversity within the substrate increased after addition. The relative abundance of functional groups of chemoheterotrophy, aerobic chemoheterotrophy, as well as that connected to N cycles also increased, which implied the improvement of the pollution removal efficiency. Meanwhile, the copy number of α-amylase and endoglucanase increased significantly in Column 1 with the addition of B. subtilis, which offers further support for a hydrolase-induced reduction of polysaccharides and the efficiency of B. subtilis on bio-clogging alleviation. The results showed that B. subtilis addition is an effective and safe solution to control the bio-clogging for CWs. However, further research about long-term effect assessment and dosing strategy optimization should be conducted.
Collapse
Affiliation(s)
- Tang Ping
- The College of Material and Environment Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Xiang Zeshun
- The College of Material and Environment Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Ma Penghui
- The College of Material and Environment Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Zhou Yongchao
- The Institute of Municipal Engineering, The College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Li X, Li Y, Wu J. Bacterial community response to different nitrogen gradients of swine wastewater in surface flow constructed wetlands. CHEMOSPHERE 2021; 265:129106. [PMID: 33261832 DOI: 10.1016/j.chemosphere.2020.129106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
How sediment bacterial community structure and diversity responds to different gradients of nitrogen (N) in swine wastewater is poorly understood. Here, the effects of different total nitrogen (TN) concentrations in swine wastewater on the microbial diversity and community composition in surface flow constructed wetlands (SFCWs) were investigated. The five concentration gradients included 2, 250, 300, 350, and 400 mg L-1. Under high N concentrations (>300 mg L-1), the Ace and Chao1 indexes increased, however, the Shannon index declined with increasing N concentration. The relative abundance of Chloroflexi, Acidobacteria and Actinobacteria showed an increasing trend. In contrast, under relatively low N concentrations (≤300 mg L-1), Shannon index increased with increasing N concentration. The relative abundance of Bacteroidetes and Verrucomicrobia exhibited an increasing trend with increasing N concentration. TN, NH4+ and NO3- significantly influenced on the microbial community distribution and composition (P < 0.05). These findings provide evidence that N concentration of swine wastewater is powerful predictor of bacterial diversity and community composition in SFCWs.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China.
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
20
|
Huang X, Yang X, Zhu J, Yu J. Microbial interspecific interaction and nitrogen metabolism pathway for the treatment of municipal wastewater by iron carbon based constructed wetland. BIORESOURCE TECHNOLOGY 2020; 315:123814. [PMID: 32682264 DOI: 10.1016/j.biortech.2020.123814] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
In order to explore the pollutant removal performance and interspecific interaction in constructed wetland (CW) with Fe0-C filler, constructed wetland with Fe0-C filler (CW-Fe) and with ceramsite filler (CW-C) were set up. Besides, the nutrients removal and interspecific interaction were analyzed, and the results showed that total nitrogen (TN) removal efficiency of CW-Fe system without carbon source was lower than that in CW-C system though CW-Fe system could convert macro-molecular organic matter into micro-molecular organic matter. However, ammonia nitrogen (NH4+-N) increase was observed in CW-Fe system with better total phosphorus (TP) removal performance. High-throughput sequencing showed that the microbial richness and abundance of Bacteroides, Firmicutes, Chlorofeli and Actinobacteria in the CW with Fe0-C filler was significantly higher than with ceramsite filler. The interaction between two CWs was significantly different, and the functional enzymes abundance of nitrate nitrogen (NO3--N) to NH4+-N transformation in CW-Fe system significantly increased.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xinmei Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jia Zhu
- Department of Architecture and Environment, Shenzhen Polytechnic College, Shenzhen 518055, Guangdong, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
21
|
Mathematical Modeling of a Domestic Wastewater Treatment System Combining a Septic Tank, an Up Flow Anaerobic Filter, and a Constructed Wetland. WATER 2020. [DOI: 10.3390/w12113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systems combining anaerobic bioreactors with constructed wetlands (CW) have proven to be adequate and efficient for wastewater treatment. Detailed knowledge of removal dynamics of contaminants can ensure positive results for engineering and design. Mathematical modeling is a useful approach to studying the dynamics of contaminant removal in wastewater. In this study, water quality monitoring was performed in a system composed of a septic tank (ST), an up flow anaerobic filter (UAF), and a horizontal flow constructed wetland (HFCW). Biological oxygen demand (BOD5), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), NH3, organic nitrogen (ON), total suspended solids (TSS), NO2−, and NO3− were measured biweekly during a 3-month period. First-order kinetics, multiple linear regression, and mass balance models were applied for data adjustment. First-order models were useful to predict the outlet concentration of pollutants (R2 > 0.87). Relevant multiple linear regression models were found, which could be applied to facilitate the system’s monitoring and provide valuable information to control and improve biological and physical processes necessary for wastewater treatment. Finally, the values of important parameters (μmax, Ks, and Yx/s) in mass-balance models were determined with the aid of a differential neural network (DNN) and an optimization algorithm. The estimated parameters indicated the high robustness of the treatment system since performance stability was found despite variations in wastewater composition.
Collapse
|
22
|
Shilei Z, Yue S, Tinglin H, Ya C, Xiao Y, Zizhen Z, Yang L, Zaixing L, Jiansheng C, Xiao L. Reservoir water stratification and mixing affects microbial community structure and functional community composition in a stratified drinking reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110456. [PMID: 32421660 DOI: 10.1016/j.jenvman.2020.110456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
To investigate how the aquatic bacterial community of a stratified reservoir drives the evolution of water parameters, the microbial community structure and network characteristics of bacteria in a stratified reservoir were investigated using Illumina MiSeq sequencing technology. A total of 42 phyla and 689 distinct genera were identified, which showed significant seasonal variation. Additionally, stratified variations in the bacterial community strongly reflected the vertical gradient and seasonal changes in water temperature, dissolved oxygen, and nutrition concentration. Furthermore, principal coordinate analysis indicated that most microorganisms were likely influenced by changes in water stratification conditions, exhibiting significant differences during the stratification period and mixing period based on Adonis, MRPP, and Anosim. Compared to the stratification period, 123 enhanced operational taxonomic units (OTUs; 29%) and 226 depleted OTUs (52%) were identified during the mixing period. Linear discriminant analysis effect size results showed that 15 major genera were enriched in the mixing period and 10 major genera were enriched in the stratification period. Importantly, network analysis revealed that the keystone species belonged to hgcI_clade, CL500-29, Acidibacter, Paucimonas, Flavobacterium, Prochlorothrix, Xanthomonadales, Chloroflexia, Burkholderiales, OPB56, KI89A_clade, Synechococcus, Caulobacter or were unclassified. Redundancy analysis showed that temperature, dissolved oxygen, pH, chlorophyll-α, total phosphorus, nitrate, and ammonia were important factors influencing the water bacterial community and function composition, which were consistent with the results of the Mantel test analysis. Furthermore, random forest analysis showed that temperature, dissolved oxygen, ammonia, and total dissolved phosphorous were the most important variables predicting water bacterial community and function community α- and β-diversity (P < 0.05). Overall, these results provide insight into the interactions between the microbial community and water quality evolution mechanism in Zhoucun reservoir.
Collapse
Affiliation(s)
- Zhou Shilei
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Sun Yue
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Huang Tinglin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Cheng Ya
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yang Xiao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Northwest Engineering Corporation Limited the Power Construction Corporation of China, PR China
| | - Zhou Zizhen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, PR China
| | - Li Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, PR China
| | - Li Zaixing
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Cui Jiansheng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Luo Xiao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| |
Collapse
|
23
|
Zhu Y, Ye P, Xu S, Zhou Y, Zhang Y, Zhang Y, Zhang T. The influence mechanism of bioclogging on pollution removal efficiency of vertical flow constructed wetland. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1870-1881. [PMID: 32666942 DOI: 10.2166/wst.2020.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of change of hydraulic characteristic and microbial community on pollution removal efficiency of the infiltration systems in the bioclogging development process remain poorly understood. In this study, therefore, the pollutant removal as a response to hydraulic conductivity reduction and the change of diversity and structure of microbial communities in vertical flow constructed wetlands (VFCWs) was investigated. The results indicated that the richness and diversity of the bacterial communities in the columns at different depths were decreased, and the microbial communities of the genus level were changed in the process of bioclogging. However, the variation of microbial communities has a low impact on the purification performance of VFCWs because the abundance of function groups, respiratory activity, and degradation potentiality of microorganisms remain steady or even get improved in the columns after bioclogging. On the contrary, the hydraulic efficiency of VFCWs decreased greatly by 16.9%, 9.9%, and 57.1% for VFCWs filled with zeolite (Column I), gravel (Column II), and ceramsite (Column III), respectively. The existence of short-circuiting and dead zones in the filter media cause the poor pollution removal efficiency of VFCWs due to the short contact time and decrease of oxygenation renewal, as well as low activity in the dead zone.
Collapse
Affiliation(s)
- Yixuan Zhu
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China E-mail: ; College of Civil Engineering, Hunan University, Changsha, China
| | - Ping Ye
- Jiaxing Water Conservancy Investment Co., Ltd, Jiaxing, China
| | - Shirong Xu
- College of Civil Engineering, Hunan University, Changsha, China
| | - Yongchao Zhou
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China E-mail:
| | - Yan Zhang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China E-mail:
| | - Yiping Zhang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China E-mail:
| | - Tuqiao Zhang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China E-mail:
| |
Collapse
|
24
|
Li M, Mi T, Yu Z, Ma M, Zhen Y. Planktonic Bacterial and Archaeal Communities in an Artificially Irrigated Estuarine Wetland: Diversity, Distribution, and Responses to Environmental Parameters. Microorganisms 2020; 8:microorganisms8020198. [PMID: 32023944 PMCID: PMC7074933 DOI: 10.3390/microorganisms8020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Bacterial and archaeal communities play important roles in wetland ecosystems. Although the microbial communities in the soils and sediments of wetlands have been studied extensively, the comprehensive distributions of planktonic bacterial and archaeal communities and their responses to environmental variables in wetlands remain poorly understood. The present study investigated the spatiotemporal characteristics of the bacterial and archaeal communities in the water of an artificially irrigated estuarine wetland of the Liaohe River, China, explored whether the wetland effluent changed the bacterial and archaeal communities in the Liaohe River, and evaluated the driving environmental factors. Within the study, 16S rRNA quantitative PCR methods and MiSeq high-throughput sequencing were used. The bacterial and archaeal 16S rRNA gene abundances showed significant temporal variation. Meanwhile, the bacterial and archaeal structures showed temporal but not spatial variation in the wetland and did not change in the Liaohe River after wetland drainage. Moreover, the bacterial communities tended to have higher diversity in the wetland water in summer and in the scarce zone, while a relatively higher diversity of archaeal communities was found in autumn and in the intensive zone. DO, pH and PO4-P were proven to be the essential environmental parameters shaping the planktonic bacterial and archaeal community structures in the Liaohe River estuarine wetland (LEW). The LEW had a high potential for methanogenesis, which could be reflected by the composition of the microbial communities.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Manman Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Correspondence: ; Tel.: +86-532-6678-1940
| |
Collapse
|
25
|
Pang X, Jia Z, Lu J, Zhang S, Zhang C, Zhang M, Lv J. A new method for quantitative detection of Lactobacillus casei based on casx gene and its application. BMC Biotechnol 2019; 19:87. [PMID: 31823776 PMCID: PMC6902566 DOI: 10.1186/s12896-019-0587-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background The traditional method of bacterial identification based on 16S rRNA is a widely used and very effective detection method, but this method still has some deficiencies, especially in the identification of closely related strains. A high homology with little differences is mostly observed in the 16S sequence of closely related bacteria, which results in difficulty to distinguish them by 16S rRNA-based detection method. In order to develop a rapid and accurate method of bacterial identification, we studied the possibility of identifying bacteria with other characteristic fragments without the use of 16S rRNA as detection targets. Results We analyzed the potential of using cas (CRISPR-associated proteins) gene as a target for bacteria detection. We found that certain fragment located in the casx gene was species-specific and could be used as a specific target gene. Based on these fragments, we established a TaqMan MGB Real-time PCR method for detecting bacteria. We found that the method used in this study had the advantages of high sensitivity and good specificity. Conclusions The casx gene-based method of bacterial identification could be used as a supplement to the conventional 16 s rRNA-based detection method. This method has an advantage over the 16 s rRNA-based detection method in distinguishing the genetic relationship between closely-related bacteria, such as subgroup bacteria, and can be used as a supplement to the 16 s rRNA-based detection method.
Collapse
Affiliation(s)
- Xiaoyang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Ziyang Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang, 471023, China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
26
|
Zhang N, Yang Y, Huang L, Xie H, Hu Z. Birnessite-coated sand filled vertical flow constructed wetlands improved nutrients removal in a cold climate. RSC Adv 2019; 9:35931-35938. [PMID: 35540576 PMCID: PMC9075035 DOI: 10.1039/c9ra07364g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
At low temperature, plants wither and microbial activities decrease, leading to a decline in the pollutant-treatment performance of constructed wetlands (CWs). In this study, vertical flow CWs (VFCWs) with birnessite (Mn oxides)-coated sand (Mn-CWs) were developed to investigate the pollutant removal performance and mechanism in a cold climate. The results showed that the average removal efficiencies for NH4-N, NO3-N, TN, and TP were 73.81%, 90.66%, 82.44%, and 57.89% in Mn-CWs, respectively, while the average removal efficiencies for NH4-N, NO3-N, TN, and TP were 29.07%, 90.40%, 62.80%, and 26.32% in the control, respectively. Mn-CWs enhanced microbial denitrification and matrix storage, as well as inhibited P release in Mn-CWs at low temperature. According to GC-MS analysis of the organic compounds, the Mn-CWs matrix contained much more short-chain volatile organic compounds, such as carboxylic acid derivatives, while the control matrix had more ethyl acetate. The absolute quantities of bacterial 16S rRNA, amoA, narG, nirS, and nosZ were significantly higher than the control at 20 cm height from the bottom (p > 0.05). Illumina high-throughput sequencing analysis revealed that the relative abundances of nitrifying and denitrifying bacteria were both higher in Mn-CWs than that of the control. CWs filled with birnessite-coated sand represent an innovative approach for improving nutrient removal performance in cold climates through chemical absorption and microbial transformation.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University Jinan 250100 China +86-531-8836978 +86-531-88361185
| | - Yixiao Yang
- Environment Research Institute, Shandong University Jinan 250100 China +86-531-8836978 +86-531-88361185
| | - Lihua Huang
- School of Resources and Environment, Linyi University Linyi Shandong 276005 China
| | - Huijun Xie
- Environment Research Institute, Shandong University Jinan 250100 China +86-531-8836978 +86-531-88361185
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University Jinan Shandong 250100 China
| |
Collapse
|
27
|
Zhang L, Cheng Y, Gao G, Jiang J. Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203966. [PMID: 31627458 PMCID: PMC6844080 DOI: 10.3390/ijerph16203966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Abstract
Sediment bacterial communities are critical for the circulation of nutrients in lake ecosystems. However, the bacterial community function and co-occurrence models of lakes have not been studied in depth. In this study, we observed significant seasonal changes and non-significant spatial changes in the beta diversity and community structure of sediment bacteria in Lake Chaohu. Through linear discriminant analysis effect size (LEfSe), we observed that certain taxa (from phylum to genus) have consistent enrichment between seasons. The sudden appearance of a Firmicutes population in spring samples from the Zhaohe River, an estuary of Lake Chaohu, and the dominance of Firmicutes populations in other regions suggested that exogenous pollution and environmental induction strongly impacted the assembly of bacterial communities in the sediments. Several taxa that serve as intermediate centers in Co-occurrence network analysis (i.e., Pedosphaeraceae, Phycisphaeraceae, Anaerolineaceae, and Geobacteraceae) may play an important role in sediments. Furthermore, compared with previous studies of plants and animals, the results of our study suggest that various organisms, including microorganisms, are resistant to environmental changes and/or exogenous invasions, allowing them to maintain their community structure.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yu Cheng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jiahu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
28
|
Zhang X, Dou Y, Gao C, He C, Gao J, Zhao S, Deng L. Removal of Cd(II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:951-962. [PMID: 31247441 DOI: 10.1016/j.scitotenv.2019.06.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
To improve the adsorption performance of Cd(II) by maifanite in constructed rapid infiltration systems (CRIS), Mg-layered double hydroxides (MgAl-LDHs, MgFe-LDHs) are prepared by a co-precipitation method and in-situ coated on the surface of original maifanite. Characterization of the successful LDHs-coating modification is realized by the following: scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Brunauer Emmett Teller (BET). In the purification experiments, the average removal rates of Cd(II) were 97.66% for maifanite/MgAl-LDHs and 97.54% for maifanite/MgFe-LDHs, approximately 11% greater than for the original maifanite. Isothermal adsorption experiments and adsorption kinetic experiments were conducted to explore the Cd(II) adsorption mechanism. The modified maifanite demonstrated a higher Langmuir adsorption capacity and stronger surface bond energies compared to the original maifanite. The adsorption type of Cd(II) by maifanite/Mg-LDHs and original maifanite was monolayer adsorption based mainly on chemical adsorption. Furthermore, the extracellular polymeric substances and dehydrogenase activities of the microorganisms were measured and analyzed to study the effect of microorganisms on the removal of Cd(II) in the test columns. High-throughput sequencing technology was also applied to analyze the composition and diversity of bacterial communities. Based on a simple estimation, the synthesis cost of maifanite/MgAl-LDHs was only ¥ 0.33/Kg. In brief, maifanite/Mg-LDHs is an efficient and economical substrate for a CRIS for Cd(II) removal.
Collapse
Affiliation(s)
- Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Yankai Dou
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chenguang Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chunyan He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jingtian Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shuangjie Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Lichu Deng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
29
|
Zheng X, Zhang S, Huang D, Zhang L, Zhang J. A pilot-scale deep bed denitrification filter for secondary effluent treatment using sodium acetate as external carbon. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:491-499. [PMID: 30791185 DOI: 10.1002/wer.1035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
A pilot-scale quartz sand deep bed denitrification filter (DBDF) using sodium acetate as the additional carbon source was implemented to treat secondary effluent, with a high nitrate nitrogen (NO3 -N) concentration and low C/N ratio, from an urban municipal water resource recovery facility. By the 18th day, results showed that the removal efficiency of NO3 -N and the chemical oxygen demand (COD) were stable at above 85% and 70%, respectively. When the filter layer depth was set to 1,600 mm and the concentration of additional sodium acetate was maintained at 51 mg/L, the total nitrogen and COD concentrations of the DBDF effluent were stabilized below 5 and 30 mg/L, respectively. The quartz sand DBDF had a good effect on the removal of dissolved organic matter, especially for aromatic protein-like and tryptophan protein-like substances. Bacteria with denitrification function, such as Cloacibacterium and Zoogloea, became increasingly dominant with increasing filling layer depth. PRACTITIONER POINTS: The denitrification filter had a good effect on the removal of aromatic protein-like and tryptophan protein-like substances. Cloacibacterium and Zoogloea became increasingly dominant with increasing filling layer depth.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Shenyao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Liu Zhang
- Anhui Academy of Environmental Sciences, Hefei, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Shi L, Guo Z, Peng C, Xiao X, Feng W, Huang B, Ran H. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:425-434. [PMID: 30639868 DOI: 10.1016/j.ecoenv.2019.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The effects of the continuous amendments with lime (L), lime mixed with organic manure (LO), or phosphate fertilizer (LP) on the soil bacterial community, soil available cadmium (Cd) content, and Cd accumulation in rice planted in a Cd contaminated paddy soil were determined through a four-season field experiment. The results showed that with continuous application of amendments during the four seasons, the soil pH increased significantly compared with the control, while the soil available Cd content significantly decreased by 12.9-18.2%, 13.1-17.3% and 0.09-23.2% under the L, LO, or LP treatments, and the Cd content of rice was significantly reduced by 28.5-56.2%, 37.6-53.4%, and 31.2-44.6%, respectively. The rice Cd content in each season at amendment treatments was lower than the National Food Safety Standard of China (maximum level of Cd in grains is 0.2 mg/kg). The diversity and richness of soil bacteria significantly increased after the continuous amendments in soil for four-season cropping. Soil pH and available Cd content were important factors for soil bacterial community. Lime mixed with phosphate fertilizer or organic manure had been characterized by a significant increase of Proteobacteria, Nitrospirae, and Chloroflexi and a decrease of Acidobacteria based on an Illumina Miseq sequencing analysis. The results indicate that the continuous application of lime mixed with organic manure or phosphate fertilizer is a very important measure to ensure the quality safety of rice and improve soil quality in a Cd-contaminated paddy.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bo Huang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
31
|
Hua G, Shao C, Cheng Y, Kong J, Zhao Z. Parameter-efficient bioclogging model: calibration and comparison with laboratory data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3731-3740. [PMID: 30539400 DOI: 10.1007/s11356-018-3894-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
A parameter-efficient bioclogging model coupled with hydrodynamics was developed with a stepwise numerical calculation. Column lab tests were carried out to calibrate and verify the bioclogging model developed in this paper. The results showed that the experimental data fit well with the simulation data, which indicated that the developed model was reasonable. According to the sensitivity analysis of the parameters, the BOD (biochemical oxygen demand) loading rate and deposition coefficient are the key parameters for bioclogging. The results illustrate how the clogging is impacted by changing the BOD loading rate and can predict the biofilm accumulation within the substrate, the microbial saturation along the substrate profile over time, and the biofilter longevity based on the biomass growth. The model could dynamically describe the entire process of biological clogging and could quantitatively predict the amount of biofilm accumulated in the pores with the increasing operation time, which provides a basis for the prediction of biological clogging. Graphical abstract.
Collapse
Affiliation(s)
- Guofen Hua
- College of Water Conservancy and Hydroelectric Power, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Chenfei Shao
- College of Water Conservancy and Hydroelectric Power, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ying Cheng
- College of Water Conservancy and Hydroelectric Power, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Kong
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zhongwei Zhao
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
32
|
The Effects of Plants on Pollutant Removal, Clogging, and Bacterial Community Structure in Palm Mulch-Based Vertical Flow Constructed Wetlands. SUSTAINABILITY 2019. [DOI: 10.3390/su11030632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the effects of plants on the performance and bacterial community structure of palm mulch-based vertical flow constructed wetlands was studied. The wetlands were built in August 2013; one of them was planted with Canna indica and Xanthosoma sp., and the other one was not planted and used as a control. The experimental period started in September 2014 and finished in June 2015. The influent was domestic wastewater, and the average hydraulic surface loading was 208 L/m2d, and those of COD, BOD, and TSS were 77, 57, and 19 g/m2d, respectively. Although the bed without plants initially performed better, the first symptoms of clogging appeared in December 2014, and then, its performance started to fail. Afterwards, the wetland with plants provided better removals. The terminal restriction fragment length polymorphism (T-RFLP) analysis of Enterococci and Escherichia coli in the effluents suggests that a reduction in their biodiversity was caused by the presence of the plants. Thus, it can be concluded that the plants helped achieve better removals, delay clogging, and reduce Enterococci and E. coli biodiversity in the effluents.
Collapse
|
33
|
Tang P, Xiang Z, Zhou Y, Zhang Y. Enzyme treatment improves the performance of laboratory-scale vertical flow constructed wetland. BIORESOURCE TECHNOLOGY 2018; 268:665-671. [PMID: 30144740 DOI: 10.1016/j.biortech.2018.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
An enzyme treatment was developed and evaluated for its effectiveness in alleviating bioclogging through a laboratory-scale vertical-flow constructed wetland (VFCW) experiment in this study. The enzyme preparation was a combination of α-glucoamylase and β-glucanase. The results show that the enzyme treatment greatly reduced bioclogging, and the peak hydraulic conductivity after treatment increased by a factor of 16, mainly because polysaccharides in the clogging matter were decomposed and the gelatinous clogging matter was dissolved and dispersed. The results also show that the abundance of Proteobacteria microbes increased by 89.4% after the enzyme treatment, although the diversity of the microbial community within the substrate decreased slightly. These microbes can increase the capability of the constructed wetland to purify influent water, and thus the rate of reduction of COD improved. It offers a solution to the problem of bioclogging in constructed wetlands.
Collapse
Affiliation(s)
- Ping Tang
- The College of Material and Environment, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Zeshun Xiang
- The College of Material and Environment, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Yongchao Zhou
- The Institute of Municipal Engineering, The College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yiping Zhang
- The Institute of Municipal Engineering, The College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Li X, Li Y, Li Y, Wu J. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments. Appl Microbiol Biotechnol 2018; 102:10755-10765. [DOI: 10.1007/s00253-018-9426-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 01/15/2023]
|
35
|
Sun Y, Xu S, Zheng D, Li J, Tian H, Wang Y. Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:507-516. [PMID: 29754085 DOI: 10.1016/j.scitotenv.2018.04.203] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 05/14/2023]
Abstract
In this study, particulate matter (PM) with aerodynamic diameters of ≤2.5 and ≤10 μm (PM2.5 and PM10, respectively), which was found at different concentrations in spring, was collected in Beijing. The chemical composition and bacterial community diversity of PM were determined, and the relationship between them was studied by 16S rRNA sequencing and mathematical statistics. Chemical composition analysis revealed greater relative percentages of total organic compounds (TOC) and secondary ions (NO3-, SO42-, and NH4+). The concentrations of Ca2+, Na+, Mg2+, K+ and SO42- increased in high-concentration PM, which was associated with the contribution of soil, dust and soot. Microbiological analysis revealed 1191 operational taxonomic units. Microbial community structure was stable at the phylum level. The most abundant phyla were Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Community clustering analysis at the genus level showed that the difference in bacterial community structure between different PM concentrations (clean air vs. smog) was greater than that between different particle sizes. The dominant genera varied in different concentrations of PM. An unclassified genus of Cyanobacteria and Comamonadaceae were most abundant in low- and high-concentration PM, respectively. The microbial community structure was dynamic at the genus level due to different environmental factors. The dominant bacteria in high-concentration PM were widely distributed in soils, indicating that the soil contributed more to the increase in the PM. The individual microbes that were detected did not increase significantly as the PM concentration increased. The bacterial community structure was strongly correlated with K+, Ca2+, Na+, Mg2+, SO42- and TOC in high-concentration PM and had a good correlation with NO3-, Cl-, NH4+ and TIC in low-concentration PM. Soil and dust contributed to the increase in the concentration of the particles, and the relevant chemical components also produced differences in the bacterial community structure in different concentrations of PM.
Collapse
Affiliation(s)
- Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Shangwei Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Danyang Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yong Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Su X, Zhao W, Xia D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:245. [PMID: 30202440 PMCID: PMC6128992 DOI: 10.1186/s13068-018-1237-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/27/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Biogenic and biogenic-thermogenic coalbed methane (CBM) are important energy reserves for unconventional natural gas. Thus, to investigate biogenic gas formation mechanisms, a series of fresh coal samples from several representative areas of China were analyzed to detect hydrogen-producing bacteria and methanogens in an in situ coal seam. Complete microbial DNA sequences were extracted from enrichment cultures grown on coal using the Miseq high-throughput sequencing technique to study the diversity of microbial communities. The species present and differences between the dominant hydrogen-producing bacteria and methanogens in the coal seam are then considered based on environmental factors. RESULTS Sequences in the Archaea domain were classified into four phyla and included members from Euryarchaeota, Thaumarchaeota, Woesearchaeota, and Pacearchaeota. The Bacteria domain included members of the phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, Chloroflexi, and Nitrospirae. The hydrogen-producing bacteria was dominated by the genera: Clostridium, Enterobacter, Klebsiella, Citrobacter, and Bacillus; the methanogens included the genera: Methanorix, Methanosarcina, Methanoculleus, Methanobrevibacter, Methanobacterium, Methanofollis, and Methanomassiliicoccus. CONCLUSION Traces of hydrogen-producing bacteria and methanogens were detected in both biogenic and non-biogenic CBM areas. The diversity and abundance of bacteria in the biogenic CBM areas are relatively higher than in the areas without biogenic CBM. The community structure and distribution characteristics depend on coal rank, trace metal elements, temperature, depth and groundwater dynamic conditions. Biogenic gas was mainly composed of hydrogen and methane, the difference and diversity were caused by microbe-specific fermentation of substrates; as well as by the environmental conditions. This discovery is a significant contribution to extreme microbiology, and thus lays the foundation for research on biogenic CBM.
Collapse
Affiliation(s)
- Xianbo Su
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China
- Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000 Henan Province China
| | - Weizhong Zhao
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China
| | - Daping Xia
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 China
- Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000 Henan Province China
| |
Collapse
|