1
|
Flores-Piña A, Valencia-Cantero E, Santoyo G. Underground fires shape the structure of microbial communities and select for thermophilic bacteria through a temperature gradient. Microbiol Res 2025; 292:127996. [PMID: 39671811 DOI: 10.1016/j.micres.2024.127996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
A detailed diversity analysis of the prokaryotic and fungal communities in soil impacted by an underground fire located in the Trans-Mexican volcanic belt, Mexico, is described. Microbial diversity data obtained from soils at different depths and temperatures (27 °C, 42 °C, 50 ºC and 54 ºC) were analyzed, and Firmicutes increased in abundance as the temperature augmented, and Proteobacteria mainly decreased in abundance at high temperatures compared to unaffected soils. The fungal phylum Ascomycota was the most abundant, with no significant changes. A clear reduction in the richness of both prokaryotic and eukaryotic operational taxonomic units (OTUs) was observed in the affected soils. At the genus level, Bacillus species were the most abundant among bacteria, while Aspergillus, Penicillium, and Mortierella were dominant fungal genera at higher temperatures. Interestingly, the physicochemical parameters of the affected soils modified organic matter, which was indirectly correlated with the presence of some microbial taxa. Likewise, we obtained 308 soil bacterial isolates from both control and affected soils. Among these, the taxa from the phyla Actinobacteria and Firmicutes demonstrated the highest thermotolerance in the affected soils. Our findings shed light on the impact of underground fires on the structure of microbial communities, favoring an abundance of thermotolerant microbes.
Collapse
Affiliation(s)
- Aurora Flores-Piña
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Eduardo Valencia-Cantero
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Gustavo Santoyo
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico.
| |
Collapse
|
2
|
Liu X, Kong L, Tong L, Zackariah GSK, Zhu R, Li Z, Lv Y. Inoculation with effective microorganisms agent enhanced fungal diversity in the secondary fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123985. [PMID: 39752954 DOI: 10.1016/j.jenvman.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed. The results showed that microbial inoculations enhanced fungal richness and diversity during the secondary fermentation, promoted beneficial fungi, and restrained pathogenic microbes. Microbial inoculation facilitated saprophytic fungi and symbiotic fungi, augmented fungal network complexity and cooperation during the first fermentation, concurrently impeding fungal network complexity and cooperation during the secondary fermentation. These results provide technical guidance for composting process optimization and compost product quality improving, which was beneficial to promote soil quality and mitigating agricultural non-point source pollution.
Collapse
Affiliation(s)
- Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China; Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lihong Tong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - G S K Zackariah
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Abban-Baidoo E, Manka'abusi D, Apuri L, Marschner B, Frimpong KA. Biochar addition influences C and N dynamics during biochar co-composting and the nutrient content of the biochar co-compost. Sci Rep 2024; 14:23781. [PMID: 39390006 PMCID: PMC11466957 DOI: 10.1038/s41598-024-67884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/17/2024] [Indexed: 10/12/2024] Open
Abstract
This study investigated the effects of corn cob biochar (CCB) and rice husk biochar (RHB) additions (at 0%, 5%, and 10% w/w) on nitrogen and carbon dynamics during co-composting with poultry litter, rice straw, and domestic bio-waste. The study further assessed the temperature, moisture, pH, and nutrient contents of the mature biochar co-composts, and their potential phytotoxicity effects on amaranth, cucumber, cowpea, and tomato. Biochar additions decreased NH4+-N and NO3- contents, but bacteria and fungi populations increased during the composting process. The mature biochar co-composts showed higher pH (9.0-9.7), and increased total carbon (24.7-37.6%), nitrogen (1.8-2.4%), phosphorus (6.5-8.1 g kg-1), potassium (26.8-42.5 g kg-1), calcium (25.1-49.5 g kg-1), and magnesium (4.8-7.2 g kg-1) contents compared to the compost without biochar. Germination indices (GI) recorded in all the plants tested with the different composts were greater than 60%. Regardless of the biochar additions, all composts treatments showed no or very minimal phytotoxic effects on cucumber, amaranth and cowpea seeds. We conclude that rice husk and corn cob biochar co-composts are nutrient-rich and safe soil amendment for crop production.
Collapse
Affiliation(s)
- Emmanuel Abban-Baidoo
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Delphine Manka'abusi
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany
| | - Lenin Apuri
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany
| | - Kwame Agyei Frimpong
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
4
|
Feng X, Zhang L. Composite additives regulate physicochemical and microbiological properties in green waste composting: A comparative study of single-period and multi-period addition modes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121677. [PMID: 38963955 DOI: 10.1016/j.jenvman.2024.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Composting additives can significantly enhance green waste (GW) composting. However, their effectiveness is limited due to the short action duration of a single-period addition. Therefore, this study proposes that multi-period additive modes to prolong the action duration, expedite lignocellulose degradation, reduce composting time, and enhance product quality. This study conducted six treatments (T1-T6), introducing a compound additive (BLP) during the mesophilic (MP) and cooling periods (CP). Each treatment consistently maintained 25% total BLP addition of GW dry weight, with variations only in the BLP distribution in different periods. The composition of BLP consists of Wbiochar: Wlactic acid: Wpond sediment in a ratio of 10:1:40. Specifically, T1 added 25% BLP in CP, T2 added 5% in MP and 20% in CP, T3 added 10% in MP and 15% in CP, T4 added 15% in MP and 10% in CP, T5 added 20% in MP and 5% in CP, and T6 added 25% in MP. In this study, composting temperature, pH value, electrical conductivity, total porosity, the contents of lignin, cellulose, hemicellulose, and nutrient, scanning electron microscopy images, germination index, and the successions of different bacteria and fungi at the phylum and genus levels were detailed. Results showed T4 achieved two thermophilic periods and matured in just 25 days. T4 enhanced lignocellulose degradation rates (lignin: 16-53%, cellulose: 14-23%, hemicellulose: 9-48%) and improved nutrient content. The above results, combined with correlation analysis and structural equation model, indicated that T4 may promote the development of dominant bacteria (Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes) by regulating compost physicochemical properties and facilitate the growth of dominant fungi (Ascomycota and Basidiomycota) by modulating nutrient supply capacity. This ultimately leads to a microbial community structure more conducive to lignocellulose degradation and nutrient preservation. In summary, this study reveals the comprehensive effects of single-period and multi-period addition methods on GW composting, providing a valuable basis for optimizing the use of additives and enhancing the efficiency and quality of GW composting.
Collapse
Affiliation(s)
- Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing, 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Wang Y, Wang J, Yi G, Wu X, Zhang X, Yang X, Ho Daniel Tang K, Xiao R, Zhang Z, Qu G, Li R. Sulfur-aided aerobic biostabilization of swine manure and sawdust mixture: Humification and carbon loss. BIORESOURCE TECHNOLOGY 2023; 387:129602. [PMID: 37536465 DOI: 10.1016/j.biortech.2023.129602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
To investigate how sulfur addition affects humification and carbon loss during swine manure (SM) biostabilisation, various proportions of sulfur, i.e., 0 (CK), 0.2%-0.8% (S1-S4) were added to SM in a 70-day pilot-scale test. Compared to CK (16.07%), sulfur addition resulted in the mineralization of 17.05%-24.27% of the total organic carbon. Sulfur addition also reduced CH4 emissions, which were 3.7%-29.3% lower than that of CK. The total global warming potential values were in the range of 913.1-968.2 g CO2 eq kg-1 for all treatments. Although the sulfur-added treatments showed lower HA/FA ratios than CK after 70 days, no significant impact on the maturity of the final products was observed. Sulfur addition impacted the microbial community, CH4, CO2, N2O emissions, and affected the variation of temperature in biowaste biostabilization. These discoveries provided an important basis for understanding the function of sulfur in regulating the aerobic bio-decomposition of organic waste.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guorong Yi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Ran Xiao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Zhao X, Li J, Yuan H, Che Z, Xue L. Dynamics of Bacterial Diversity and Functions with Physicochemical Properties in Different Phases of Pig Manure Composting. BIOLOGY 2023; 12:1197. [PMID: 37759597 PMCID: PMC10525911 DOI: 10.3390/biology12091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Bacteria are key drivers in regulating ecosystem functions, and understanding the diversity and dynamic changes in bacteria in composting is very important for optimizing compost. This study investigated the structure, composition, and function of bacterial communities in alkaline pig manure compost using Miseq sequencing, PICRUSt2. The ACE and Chao1 indices of the bacterial communities in various phases were significantly different. Bacterial communities of alkaline pig compost were different from neutral and acidic swine manure compost, and there were 438 genera of common bacteria in various stages. The main bacterium was the phylum Firmicutes. There were six genera, including Romboutsia, Clostridium, Terrisporobacter, norank_f_Marinococcaceae, Saccharomonospora, and unclassified_f_Bacillaceae, that were significantly correlated (p < 0.05), or even extremely significantly correlated (p < 0.001), with the physicochemical properties. TOC, moisture, C/N, and Tem were the key factors that caused changes in bacterial communities in composting. PICRUSt2 analysis showed that there were seven functional groups: metabolism (45.02-48.07%), environmental information processing (15.25-16.00%), genetic information processing (16.97-20.02%), cellular processes (3.63-4.37%), human diseases (0.71-0.82%), organismal systems (0.66-0.77%), and unclassified (13.93-14.36%). This study will provide a reference for improving bacteria growth and reproduction conditions in pig manure composting, optimizing the process, and improving the efficiency of composting.
Collapse
Affiliation(s)
- Xu Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Juan Li
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Hongxia Yuan
- Laboratory of Molecular Biology, Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China;
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Lingui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| |
Collapse
|
7
|
Liang W, Jiao M, Hu E, Liu T, Ren X, Wang P, Kumar Awasthi M, Li R, Zhang Z. Magnesite driven the complementary effects of core fungi by optimizing the physicochemical parameters in pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127541. [PMID: 35777646 DOI: 10.1016/j.biortech.2022.127541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The effects of magnesite (MS) on fungi communities and the core fungi complementarity during pig manure (PM) composting were explored. Different dosage of MS [0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4) and 10% (T5)] as amendments mixed with PM for 42 days composting. The results showed the dominant of phyla were Ascomycota (78.87%), Neocallimastigomycota (41.40%), Basidiomycota (30.81%) and Aphelidiomycota (29.44%). From day 7 to 42, the abundance of Ascomycota and Aphelidiomycota were increased from 7.75% to 42.41% to 57.27%-78.87% and 0-0.70% to 11.73%-29.44% among all treatments. Nevertheless, the phyla abundance of Neocallimastigomycota and Basidiomycota decreased from day 7 to 42. The co-occurrence network indicated that the high additive amendment could enhance the core fungi complementarity effects capacity. The 10% MS addition was a promisable candidate to optimum fungal communities, and causing a better compost quality. This study illustrated the potential and fungi communities changing of MS as additives in composting.
Collapse
Affiliation(s)
- Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Endian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
8
|
Zheng Y, Wang Y, Yang X, Gao J, Xu G, Yuan J. Effective mechanisms of water purification for nitrogen-modified attapulgite, volcanic rock, and combined exogenous microorganisms. Front Microbiol 2022; 13:944366. [PMID: 36033894 PMCID: PMC9399813 DOI: 10.3389/fmicb.2022.944366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/15/2022] [Indexed: 12/07/2022] Open
Abstract
The study tested the water purification mechanism of the combination of microorganisms and purification materials via characteristic, enzymatic, and metagenomics methods. At 48 h, the removal rates of total nitrogen, total phosphorous, and Mn chemical oxygen demand in the combination group were 46.91, 50.93, and 65.08%, respectively. The alkaline phosphatase (AKP) activity increased during all times tested in the volcanic rock, Al@TCAP, and exogenous microorganism groups, while the organophosphorus hydrolase (OPH), dehydrogenase (DHO), and microbial nitrite reductase (NAR) activities increased at 36-48, 6-24, and 36-48 h, respectively. However, the tested activities only increased in the combination groups at 48 h. Al@TCAP exhibits a weak microbial loading capacity, and the Al@TCAP removal is primarily attributed to adsorption. The volcanic rock has a sufficient ability to load microorganisms, and the organisms primarily perform the removal for improved water quality. The predominant genera Pirellulaceae and Polynucleobacter served as the sensitive biomarkers for the treatment at 24, 36-48 h. Al@TCAP increased the expression of Planctomycetes and Actinobacteria, while volcanic rock increased and decreased the expression of Planctomycetes and Proteobacteria. The growth of Planctomycetes and the denitrification reaction were promoted by Al@TCAP and the exogenous microorganisms. The purification material addition group decreased the expression of Hyaloraphidium, Chytridiomycetes (especially Hyaloraphidium), and Monoblepharidomycetes and increased at 36-48 h, respectively. Ascomycota, Basidiomycota, and Kickxellomycota increased in group E, which enhanced the nitrogen cycle through microbial enzyme activities, and the growth of the genus Aspergillus enhanced the phosphorous purification effect.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Yuqin Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Xiaoxi Yang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Gangchun Xu,
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- Julin Yuan,
| |
Collapse
|
9
|
Do TT, Nolan S, Hayes N, O'Flaherty V, Burgess C, Brennan F, Walsh F. Metagenomic and HT-qPCR analysis reveal the microbiome and resistome in pig slurry under storage, composting, and anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119271. [PMID: 35398400 DOI: 10.1016/j.envpol.2022.119271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Direct application of pig slurry to agricultural land, as a means of nutrient recycling, introduces pathogens, antibiotic resistant bacteria, or genes, to the environment. With global environmental sustainability policies mandating a reduction in synthetic fertilisation and a commitment to a circular economy it is imperative to find effective on-farm treatments of slurry that maximises its fertilisation value and minimises risk to health and the environment. We assessed and compared the effect of storage, composting, and anaerobic digestion (AD) on pig slurry microbiome, resistome and nutrient content. Shotgun metagenomic sequencing and HT-qPCR arrays were implemented to understand the dynamics across the treatments. Our results identified that each treatment methods have advantages and disadvantages in removal pollutants or increasing nutrients. The data suggests that storage and composting are optimal for the removal of human pathogens and anaerobic digestion for the reduction in antibiotic resistance (AMR) genes and mobile genetic elements. The nitrogen content is increased in storage and AD, while reduced in composting. Thus, depending on the requirement for increased or reduced nitrogen the optimum treatment varies. Combining the results indicates that composting provides the greatest gain by reducing risk to human health and the environment. Network analysis revealed reducing Proteobacteria and Bacteroidetes while increasing Firmicutes will reduce the AMR content. KEGG analysis identified no significant change in the pathways across all treatments. This novel study provides a data driven decision tree to determine the optimal treatment for best practice to minimise pathogen, AMR and excess or increasing nutrient transfer from slurry to environment.
Collapse
Affiliation(s)
- Thi Thuy Do
- Maynooth University, Biology Department, Ireland
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Science and Ryan Institute, Galway, Ireland
| | - Nicky Hayes
- Teagasc, Department of Environment, Soils and Landuse, Johnstown Castle, Wexford, Ireland
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Science and Ryan Institute, Galway, Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Fiona Brennan
- Teagasc, Department of Environment, Soils and Landuse, Johnstown Castle, Wexford, Ireland
| | - Fiona Walsh
- Maynooth University, Biology Department, Ireland.
| |
Collapse
|
10
|
He Y, Huang X, Zhang H, Li H, Zhang Y, Zheng X, Xie L. Insights into the effect of iron-carbon particle amendment on food waste composting: Physicochemical properties and the microbial community. BIORESOURCE TECHNOLOGY 2022; 351:126939. [PMID: 35247558 DOI: 10.1016/j.biortech.2022.126939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The effects of iron-carbon (Fe-C) particle amendment on organic matter degradation, product quality and functional microbial community in food waste composting were investigated. Fe-C particles (10%) were added to the material and composted for 32 days in a lab-scale composting system. The results suggested that Fe-C particle enhanced organic matter degradation by 12.3%, particularly lignocellulose, leading to a greater humification process (increased by 15.5%). In addition, NO3--N generation was enhanced (15.9%) by nitrification with more active ammonia monooxygenase and nitrite oxidoreductase activities in the cooling and maturity periods. Fe-C particles not only significantly increased the relative abundances of Bacillus and Aspergillus for organic matter decomposition, but also decreased the relative abundances of acid-producing bacteria. RDA analysis demonstrated that the bacterial community was significantly influenced by dissolved organic matter, C/N, NO3--N, humic acid, volatile fatty acids and pH, while electrical conductivity was the key factor affecting the fungal community.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hongning Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Huiping Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yidie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Awasthi MK, Singh E, Binod P, Sindhu R, Sarsaiya S, Kumar A, Chen H, Duan Y, Pandey A, Kumar S, Taherzadeh MJ, Li J, Zhang Z. Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 156:111987. [DOI: 10.1016/j.rser.2021.111987] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
12
|
Li Z, Chen S, Liu B, Yang J, Liang S, Xiao K, Hu J, Hou H. Pretreatment of sludge with sodium iron chlorophyllin-H 2O 2 for enhanced biogas production during anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 204:112223. [PMID: 34688644 DOI: 10.1016/j.envres.2021.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
This study investigated a novel sodium iron chlorophyllin-H2O2 (SIC-H2O2) sludge pretreatment strategy before anaerobic digestion to enhance methane production. The efficiencies and mechanism of the proposed strategy to enhance sludge biodegradability were explored. The SIC-H2O2 pretreatment could enhance the oxidation performance for sludge floc disintegration to dissociate TB-EPS into S-EPS increased SCOD to 521.38 mg/L. The increase of solubilization and release of EPS with the pretreatment facilitate the biogas production at 702 L kg-1 VS, which was 3-folds of the control and significantly higher than other pretreatments. The result of excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis showed that the SIC-H2O2 pretreatment enhanced the dissociation of TB-EPS fractions, especially the protein-like and soluble microbial by-product-like substances. Electron paramagnetic resonance (EPR) results provided evidence for homolytic catalysis H2O2 for the generation OH and the production of high-valent (Por)FeIV(O) intermediates. Synergistic effects of reactive oxygen species (OH, H2O2 and /HO2) and (Por)FeIV(O) enhanced the EPS disintegration during SIC-H2O2 pretreatment. The mixed-acid type fermentation provided continuous VFAs supply under the enrichment of Chloroflexi and Actinobacteria and multiplication Methanosaeta also promoted methane production. This research provides a feasible pretreatment strategy increase sludge biodegradability and enhance biogas production in the anaerobic digestion process.
Collapse
Affiliation(s)
- Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China
| | - Shuo Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China.
| |
Collapse
|
13
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
14
|
Zhu N, Zhu Y, Li B, Jin H, Dong Y. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting. BIORESOURCE TECHNOLOGY 2021; 337:125427. [PMID: 34217022 DOI: 10.1016/j.biortech.2021.125427] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The present study investigated the effect of brown-rot fungus Gloeophyllum trabeum inoculation on lignocellulose degradation, enzyme activities and fungal community during co-composting of swine manure and wheat straw. G. trabeum inoculation shortened the maturation period of composting from 39 to 30 days. Composting piles inoculated with G. trabeum showed a higher degree of maturity as indicated by 31.6% lower C/N ratio and 29.4% higher GI. The decomposition rate of cellulose, hemicellulose and lignin was increased by 181.1%, 49.4% and 109.4%, respectively, due to higher activities of filter paper enzyme, xylanase, manganese peroxidase and laccase. Redundancy analysis showed that inoculating G. trabeum influenced the succession of fungal communities by changing the main physicochemical parameters, resulting in the increased relative abundance of Aspergillus, Mycothermus and Melanocarpus. Pearson correlation analysis indicated that more dominant fungal genera were involved in the production of lignocellulose-degrading enzymes after G. trabeum inoculation.
Collapse
Affiliation(s)
- Ning Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yanyun Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Bingqing Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yiwei Dong
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Wang K, Ma XC, Yin X, Wu C, Wang Z, Wu Y, Zhao Y, Tian Y. Difference and interplay of microbial communities, metabolic functions, trophic modes and influence factors between sludge and bulking agent in a composting matrix. BIORESOURCE TECHNOLOGY 2021; 336:125085. [PMID: 34049165 DOI: 10.1016/j.biortech.2021.125085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The difference and interplay of microbial communities, metabolic functions and influence factors between sewage sludge and bulking agent were evaluated in 60 days composting. Results showed that fungal communities were mainly affected by pH (42.4%) and ORP (35.9%) of sludge but by VS (41.1%) and temperature (34.7%) of sawdust in a composting system. Bacterial communities were primarily affected by VS (43.5%) and C/N (34.8%) of sludge but by ORP (44.5%) and temperature (31.0%) of sawdust. Tepidimicrobium dominated in the sludge at thermophilic period, while Alcaligenes prevailed in the sawdust. Bacterial carbon metabolism was significantly higher in the sludge than that in the sawdust except carbohydrate metabolism. Saprophytic fungi were the main trophic mode both in the sludge and sawdust. Water transfer facilitated Aspergillus and Trichosporon moving from sludge to sawdust to decompose lignocellulose. Ammonia transfer promoted the migration of Alcaligenes and Pseudomonas from sludge to sawdust and facilitated ammonia assimilating.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqing Yin
- CAUPD Beijing Planning & Design Consultants Ltd., Beijing 100089, China
| | - Chuandong Wu
- Guangdong Water Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Zhao
- Guangdong Water Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Liu T, Awasthi SK, Duan Y, Pandey A, Zhang Z, Awasthi MK. Current status of global warming potential reduction by cleaner composting. ENERGY & ENVIRONMENT 2021; 32:1002-1028. [DOI: 10.1177/0958305x19882417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The global living standards are currently undergoing a stage of growth; however, such improvement also brings some challenges. Global warming is the greatest threat to all living things and attracts more and more attention on a global scale due to the rapid development of economy. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the common components of greenhouse gases, which contribute to the global warming. Mitigation technologies for these gas emissions are urgently needed in every industry for the aim of cleaner production. Traditional agriculture also contributes significantly to enhance the greenhouse gases emission. Composting is a novel and economic greenhouse gases mitigation strategy compared to other technologies in terms of the organic waste disposal. Some of the European countries showed an increase of more than 50% in the composting rate. The microbial respiration, nitrification and denitrification processes, and the generation of anaerobic condition makes the emission of greenhouse gases inevitable during composting. However, although there have been a lot of papers that focused on the reduction of greenhouse gases emission in composting, none of these has summarized the methods of reducing the emission of greenhouse gases during the composting. This review discusses the benefit of composting in greenhouse gases mitigation in the organic waste management and the current methods to improve mitigation efficiency during cleaner composting. Key physical, chemical, and biological parameters related to greenhouse gases mitigation strategies were precisely studied to give a deep understanding about the emission of greenhouse gases during cleaner composting. Furthermore, the mechanism of greenhouse gases emission mitigation strategies for cleaner composting based on various external measures would be helpful for the exploration of novel and effective mitigation strategies.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Sanjeev K Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Mukesh K Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
- Swedish Center for Resource Recovery Department of Biotechnology, University of Borås, Borås, Sweden
| |
Collapse
|
17
|
Wu X, Wang J, Shen L, Wu X, Amanze C, Zeng W. Effect of bamboo sphere amendment on the organic matter decomposition and humification of food waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 133:19-27. [PMID: 34343864 DOI: 10.1016/j.wasman.2021.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to examine the effect of bamboo sphere on the organic matter decomposition and humification of food waste composting. Food waste composting were carried out on four treatments, namely control (CK), 3% (T1), 6% (T2) and 9% (T3) (w/w) bamboo sphere treatments. Results showed that adding bamboo sphere facilitated the organic matter decomposition and increased the seed germination index. The number of cells in T2 treatment was always the highest during the composting process. Furthermore, the final humic substances and humic acid contents increased by 41.08% and 68.3%, respectively, in 6% bamboo sphere treatment. Fourier transform infrared and excitation-emission matrix fluorescence spectroscopy analysis revealed that adding bamboo sphere accelerated the humification of composting with more aromatic structures and humic acid-like substances. GC-MS studies revealed that the compost products of 6% bamboo sphere treatment had more ring structures, and thus enhanced the humification.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
18
|
Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater. ENERGIES 2021. [DOI: 10.3390/en14164936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin production is the most industry polluting process where huge amounts of raw organic materials and chemicals (HCl, NaOH, Ca2+) are utilized in the manufacturing accompanied by voluminous quantities of end-pipe effluent. The gelatinous wastewater (GWW) contains a large fraction of protein and lipids with biodegradability (BOD/COD ratio) exceeding 0.6. Thus, it represents a promising low-cost substrate for the generation of biofuels, i.e., H2 and CH4, by the anaerobic digestion process. This review comprehensively describes the anaerobic technologies employed for simultaneous treatment and energy recovery from GWW. The emphasis was afforded on factors affecting the biofuels productivity from anaerobic digestion of GWW, i.e., protein concentration, organic loading rate (OLR), hydraulic retention time (HRT), the substrate to inoculum (S0/X0) ratio, type of mixed culture anaerobes, carbohydrates concentration, volatile fatty acids (VFAs), ammonia and alkalinity/VFA ratio, and reactor configurations. Economic values and future perspectives that require more attention are also outlined to facilitate further advancement and achieve practicality in this domain.
Collapse
|
19
|
Gao Y, Li H, Yang B, Wei X, Zhang C, Xu Y, Zheng X. The preliminary evaluation of differential characteristics and factor evaluation of the microbial structure of rural household toilet excrement in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43842-43852. [PMID: 33840021 PMCID: PMC8036012 DOI: 10.1007/s11356-021-13779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/29/2021] [Indexed: 05/28/2023]
Abstract
Recent studies on the microbial community composition of human excrement after rural household toilet treatment are unclear regarding the effects and risks of using recycled products as fertilizers in agriculture. In this study, we used Illumina high-throughput sequencing to investigate the microbial community structure of the excrement from 50 Chinese rural household toilets on a spatial scale, and we evaluated the impact of select geochemical factors on the bacterial and fungal communities in the human excrement. Multivariate analysis showed that there was a significant spatial differentiation of the human excrement in microbial communities after all toilet treatments. Twenty dry toilet samples and thirty septic tank samples had similar bacterial (Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes) and fungal phyla (Ascomycota and Basidiomycota), differing only in the proportions of the microorganisms. For both dry toilet samples and septic tank samples, the pH and ammonium nitrogen were found to be the major driving forces affecting the changes in bacterial community structures (p<0.05), while there was no correlation found for the fungal community with environmental factors in China (p>0.05), except in the northern regions, where the total phosphorus was found to be significantly correlated with the fungal community (p<0.05). Network analysis confirmed that NH4+-N had the most significant impact on the content of pathogens. Certain pathogens were still detected after toilet treatment, such as Streptococcus, Bacteroides, Aspergillus, and Chrysosporium, and the proportion of potential pathogenic bacteria in dry toilets was higher than that in septic tanks, suggesting that septic tanks were better than dry toilets in treating human excrement. These results provide an ecological perspective for understanding the large-scale geographic distribution of household excrement microbial communities in rural areas and for improving human excrement treatment technologies and avoiding the risks of agricultural applications.
Collapse
Affiliation(s)
- Yi Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bo Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
20
|
Tarin MWK, Fan L, Xie D, Tayyab M, Rong J, Chen L, Muneer MA, Zheng Y. Response of Soil Fungal Diversity and Community Composition to Varying Levels of Bamboo Biochar in Red Soils. Microorganisms 2021; 9:microorganisms9071385. [PMID: 34202337 PMCID: PMC8306102 DOI: 10.3390/microorganisms9071385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Soil fungi play a vital role in soil nutrient dynamics, but knowledge of their diversity and community composition in response to biochar addition into red soil is either limited or inconsistent. Therefore, we determined the impact of bamboo biochar (BB) with increasing concentrations (0, 5, 20, and 80 g kg−1 of soil, referred to as B0, BB5, BB20, and BB80, respectively) on soil physicochemical properties and fungal communities (Illumina high-throughput sequencing) in red soil under Fokenia hodginsii (Fujian cypress). We found that increasing BB levels effectively raised the soil pH and soil nutrients, particularly under BB80. BB addition significantly increased the relative abundance of important genera, i.e., Basidiomycota, Mucoromycota, and Chytridiomycota that could play a key role in ecological functioning, e.g., wood degradation and litter decomposition, improvement in plant nutrients uptake, and resistance to several abiotic stress factors. Soil amended with BB exhibited a substantial ability to increase the fungal richness and diversity; BB80 > BB20 > BB5 > B0. Basidiomycota, Mucoromycota, Glomeromycota, Rozellomycota, Aphelidiomycota, Kickxellomycota, and Planctomycetes were positively associated with soil pH, total nitrogen, phosphorous, and carbon, and available potassium and phosphorous. Besides, the correlation analysis between the soil fungal communities and soil properties also showed that soil pH was the most influential factor in shaping the soil fungal communities in the red soil. These findings have significant implications for a comprehensive understanding of how to ameliorate acidic soils with BB addition, as well as for future research on sustainable forest management, which might increase soil fungi richness, diversity, and functionality in acidic soils.
Collapse
Affiliation(s)
- Muhammad Waqqas Khan Tarin
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.F.); (D.X.); (J.R.)
| | - Lili Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.F.); (D.X.); (J.R.)
| | - Dejin Xie
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.F.); (D.X.); (J.R.)
| | - Muhammad Tayyab
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jundong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.F.); (D.X.); (J.R.)
| | - Lingyan Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.)
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yushan Zheng
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.K.T.); (L.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.F.); (D.X.); (J.R.)
- Correspondence:
| |
Collapse
|
21
|
Lu XL, Wu H, Song SL, Bai HY, Tang MJ, Xu FJ, Ma Y, Dai CC, Jia Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27998-28013. [PMID: 33523381 DOI: 10.1007/s11356-021-12569-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Composting has become the most important way to recycle medicinal herbal residues (MHRs). The traditional composting method, adding a microbial agent at one time, has been greatly limited due to its low composting efficiency, mutual influence of microbial agents, and unstable compost products. This study was conducted to assess the effect of multi-phase inoculation on the lignocellulose degradation, enzyme activities, and fungal community during MHRs composting. The results showed that multi-phase inoculation treatment had the highest thermophilic temperature (68.2 °C) and germination index (102.68%), significantly improved available phosphorus content, humic acid, and humic substances concentration, accelerated the degradation of cellulose and lignin, and increased the activities of cellulase in the mature phase, xylanase, manganese peroxidase, and utilization of phenolic compounds. Furthermore, the non-metric multi-dimensional scaling showed that the composting process and inoculation significantly influenced fungal community composition. In multi-phase inoculation treatment, Thermomyces in mesophilic, thermophilic, and mature phase, unclassified_Sordariales, and Coprinopsis in mature phase were the dominant genus that might be the main functional groups to degrade lignocellulose and improve the MHRs composting process.
Collapse
Affiliation(s)
- Xiao-Lin Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Yıldızlı G, Coral G, Ayaz F. Biochar as a Biocompatible Mild Anti-Inflammatory Supplement for Animal Feed and Agricultural Fields. Chem Biodivers 2021; 18:e2001002. [PMID: 33835673 DOI: 10.1002/cbdv.202001002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022]
Abstract
Biochar is an organic material and high in carbon content, besides its use for energy purposes, it is also a material that serves the purpose of improving soil fertility, organic matter content of soils and removing heavy metals from water and soil. This study aims to investigate the antimicrobial effects of biochar whose beneficial effects on agricultural productivity has been proven by different studies. Scientific literature concerning the antibacterial, antifungal, and antiviral effects of the apricot seed and olive seed biochar is limited. Biochar applications may help to alter the microbial diversity by modifying biological environment either in agriculture or in animal husbandry. Moreover, biochar has been used in animal husbandry to improve animal health especially by regulating the intestinal flora and inflammation in the intestines. Hence, in our study, we investigated the effect of biochar on the growth of Aspergillus niger, Cryphonectria parasitica, Phytophthora cinnamomi, Plenodomus tracheiphilus, Enterococcus casseliflavus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and two different bacteriophage strains. Biochar did not have any direct effect on the growth of either Gram-positive or Gram-negative bacteria, bacteriophages, and fungi. In order to test their direct effects on the immune cells, mammalian macrophages were used and biochar directly reduced the inflammatory cytokine levels produced by the in vitro activated macrophages.
Collapse
Affiliation(s)
- Gizem Yıldızlı
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| | - Gokhan Coral
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| |
Collapse
|
23
|
Liu T, Kumar Awasthi M, Jiao M, Kumar Awasthi S, Qin S, Zhou Y, Liu H, Li J, Zhang Z. Changes of fungal diversity in fine coal gasification slag amendment pig manure composting. BIORESOURCE TECHNOLOGY 2021; 325:124703. [PMID: 33476856 DOI: 10.1016/j.biortech.2021.124703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate fungal diversity and relative abundance (RA) during pig manure composting via high-throughput sequencing approach. Fine coal gasification slag (FCGS) (0%, 2%, 4%, 6%, 8% and 10%) were added into composting raw materials as additive and performed 42 days. Adjust C/N and moisture to 30 and 65%. Results showed that dominant phyla were Ascomycota (99.62%) and Basidiomycota (0.38%). The main genera were Epicoccum (1.26%), Alternaria (83.35%), Aspergillus (12.08%) and Gibberella (1.69%). 10% treatment got the higher abundance and operational taxonomic units number from rank abundance curve and petals diagram. Compared with control, FCGS amendment composting could increase the sanitary time (3-7 d) and total nitrogen (0.05-12.03%). The principal component analysis was considered that FCGS treatments and control had significantly difference. The RA of fungi varied among all treatments. Therefore, 10% treatment was a potential candidate to enhance fungal diversity and composting quality.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
24
|
Awasthi SK, Duan Y, Liu T, Zhou Y, Qin S, Liu H, Varjani S, Awasthi MK, Zhang Z, Pandey A, Taherzadeh MJ. Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process. JOURNAL OF CLEANER PRODUCTION 2021; 291:125947. [DOI: 10.1016/j.jclepro.2021.125947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
25
|
Jiang J, Wang Y, Yu D, Li J, Han J, Cui H, Cheng R, Yao X, Yan G, Li Y, Zhu G. Effects of urease inhibitors on enzymatic activities and fungal communities during the biosolids composting. RSC Adv 2021; 11:37667-37676. [PMID: 35498097 PMCID: PMC9043792 DOI: 10.1039/d1ra07628k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the influences of urease inhibitors (UIs) on nitrogen conversion, enzyme activities, and fungal communities during aerobic composting. Results showed that UI addition reduced NH3 emissions by 22.2% and 21.5% and increased the total nitrogen (TN) content by 9.7% and 14.3% for the U1 (0.5% UI of the dry weight of the mixture) and U2 (1% UI of the dry weight of the mixture) treatments, respectively. The addition of UI inhibited the enzyme activity during thermophilic stage while increased enzyme activity during the cool and maturity stages. Ascomycota, Basidiomycota and unclassified fungi were the main phyla, and Ascomycota increased significantly during the maturity period. Network analysis showed that Aspergillus, Penicillium, Trichoderma, Talaromyces, Peseudeurotium, and Exophiala were the main “connecting” genera. The redundancy analysis (RDA) showed that the fungal community was mainly influenced by temperature, DOC, pH, and urease. The results suggested that UI was an effective additive for nitrogen conservation and the increase of enzyme activity reduce nitrogen loss and promote enzyme activity during biosolids composting. Adding UI was effective for nitrogen conservation and the increase of enzyme activity during biosolid composting.![]()
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yang Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Dou Yu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jingyu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jin Han
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Huilin Cui
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Ronghui Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xing Yao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| |
Collapse
|
26
|
Liu T, Awasthi MK, Awasthi SK, Zhang Y, Zhang Z. Impact of the addition of black soldier fly larvae on humification and speciation of trace elements during manure composting. INDUSTRIAL CROPS AND PRODUCTS 2020; 154:112657. [DOI: 10.1016/j.indcrop.2020.112657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
27
|
Duan Y, Pandey A, Zhang Z, Awasthi MK, Bhatia SK, Taherzadeh MJ. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. INDUSTRIAL CROPS AND PRODUCTS 2020; 153:112568. [DOI: 10.1016/j.indcrop.2020.112568] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
28
|
Jiang J, Wang Y, Guo F, Zhang X, Dong W, Zhang X, Zhang X, Zhang C, Cheng K, Li Y, Zhu G. Composting pig manure and sawdust with urease inhibitor: succession of nitrogen functional genes and bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36160-36171. [PMID: 32556988 DOI: 10.1007/s11356-020-09696-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the relationship between nitrogen (N) cycle and N transformation-related functional genes is crucial to reduce N loss during composting process. Urease inhibitor (UI) is widely used to reduce N loss in agriculture. However, the effects of UI on N transformation and related N functional genes during composting have not been well investigated. The goal of this study was to investigate the effects of a urease inhibitor (UI) on N functional genes and bacterial community succession during pig manure composting. Results showed that the addition of UI decreased the ammonium N content during the thermophilic stage and notably increased the total N and nitrite N contents of the final compost. The UI significantly decreased the abundances of amoA, nirS, nirK, and nosZ during the initial composting stage, while the opposite trend was observed at the maturation stage. Bacterial community richness and diversity were increased after the UI amendment, but the relative abundance of the phyla Firmicutes and Proteobacteria significantly decreased compared with control during the thermophilic stage. Redundancy analysis indicated that the evaluated environmental factors and bacterial community showed a cumulative 94.7% contribution to the total variation in N functional genes. In summary, UI addition is a recommended method for N conservation during composting, but the added forms of UI, such as delayed addition, combined with adsorbing materials, or microorganism inoculant, should be further evaluated.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Fengqi Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiaofang Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Wei Dong
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xindan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xin Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Ke Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| |
Collapse
|
29
|
Abstract
Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health. Rotting discharges methane, causing greenhouse effect and adverse health effects due to pathogenic microorganisms or toxic leachates that reach agricultural land and water system. As a solution, composting is implemented to manage and reduce food waste in line with global sustainable development goals (SDGs). This review compiles input on the types of organic composting, its characteristics, physico-chemical properties involved, role of microbes and tools available in determining the microbial community structure. Composting types: vermi-composting, windrow composting, aerated static pile composting and in-vessel composting are discussed. The diversity of microorganisms in each of the three stages in composting is highlighted and the techniques used to determine the microbial community structure during composting such as biochemical identification, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), terminal restriction fragment length polymorphism (T-RFLP) and single strand-conformation polymorphism (SSCP), microarray analysis and next-generation sequencing (NGS) are discussed. Overall, a good compost, not only reduces waste issues, but also contributes substantially to the economic and social sectors of a nation.
Collapse
|
30
|
Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z, Kim SH, Pandey A. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. RENEWABLE ENERGY 2020; 152:421-429. [DOI: 10.1016/j.renene.2020.01.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
31
|
Azeem M, Sun D, Crowley D, Hayat R, Hussain Q, Ali A, Tahir MI, Jeyasundar PGSA, Rinklebe J, Zhang Z. Crop types have stronger effects on soil microbial communities and functionalities than biochar or fertilizer during two cycles of legume-cereal rotations of dry land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136958. [PMID: 32032990 DOI: 10.1016/j.scitotenv.2020.136958] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 05/22/2023]
Abstract
The addition of biochar to agricultural fields has been widely studied, but most of these studies have emphasized its effects by growing a single type of crop over short- to long-term time spans. Additionally, a limited number of studies have focused on the soil microbial community composition with respect to biochar addition in legume-cereal crop rotation. In this study, we examined soil microbial community structures by adding biochar (0, 5, and 10 t ha-1) and fertilizer (nitrogen-N, phosphorous-P and potassium-K) during 2 cycles of mash bean and wheat rotations. The results showed that the bacterial (16S rRNA) gene abundance was often increased by biochar addition in the presence of mash bean (Vigna mungo L.) but not wheat. When the soil received fertilizer, the bacterial gene abundance was less responsive to biochar addition. Fungal (ITS rRNA) copy numbers were enhanced by biochar and fertilizer in presence of wheat but were decreased in the presence of mash bean. Fertilizer addition also resulted in less change in ITS genes after biochar addition. Microbial functional groups including Gram+, Gram- and Pseudomonas bacteria were stimulated by biochar or fertilizer only in mash bean soils, while mycorrhizae were significantly increased by biochar in wheat soils. Although biochar addition affected soil properties, microbial community assays were not greatly altered by these physicochemical properties. In conclusion, the crop type played a decisive role, rather than biochar or fertilizer addition, in shaping microbial community structures (16S and ITS phyla) during crop rotation.
Collapse
Affiliation(s)
- Muhammad Azeem
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Department of Environmental Sciences, University of California, Riverside, CA 92507, USA; Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Daquan Sun
- Biology Center, Institute of Soil Biology & SoWa Research Infrastructure, Czech Academy of Science, Na Sadkach 7, Ceske Budejovice, CZ 37005, Czech Republic
| | - David Crowley
- Department of Environmental Sciences, University of California, Riverside, CA 92507, USA
| | - Rifat Hayat
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Qaiser Hussain
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | | | | | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste-Management, Laboratory of Soil and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
32
|
Liang J, Tang S, Gong J, Zeng G, Tang W, Song B, Zhang P, Yang Z, Luo Y. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121533. [PMID: 31757720 DOI: 10.1016/j.jhazmat.2019.121533] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/22/2023]
Abstract
Biochar and compost, two common amendments, were rarely conducted to investigate their combined influence on enzymatic activities and microbial communities in organic-polluted wetlands. This article described the effects of biochar/compost on degradation efficiency of sulfamethoxazole (SMX) and ecosystem responses in polluted wetland soil during the whole remediation process. 1% biochar (SB1) increased degradation efficiency of SMX by 0.067% ascribed to the increase of dehydrogenase and urease. 5% biochar (SB5) decreased degradation efficiency by 0.206% due to the decrease of enzymes especially for dehydrogenase. 2% compost (SC2), 1% biochar & 2% compost (SBC3), both 10% compost (SC10) and 5% biochar & 10% compost (SBC15) enhanced degradation efficiency by 0.033%, 0.015% and 0.222%, respectively, due to the increase of enzymes and biomass. The degradation efficiency was positively related to biomass and enzymatic activities. High-throughput sequencing demonstrated that HCGs (SB5, SC10, SBC15) improved the bacterial diversities but reduced richness through introducing more exogenous predominance strains and annihilated several inferior strains, while LCGs (SB1, SC2, SBC3) exhibited lower diversities but higher richness through enhanced the RAs of autochthonal preponderant species and maintained some inferior species. Additionally, HCGs raised the RAs of amino and lipid metabolism gene but lowered those of carbohydrate compared with LCGs.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhaoxue Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
33
|
Jiang X, Deng L, Meng Q, Sun Y, Han Y, Wu X, Sheng S, Zhu H, Ayodeji B, Egbeagu UU, Xu X. Fungal community succession under influence of biochar in cow manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9658-9668. [PMID: 31925688 DOI: 10.1007/s11356-019-07529-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
This study examined the influence of biochar addition on fungal community during composting of cow manure using high-throughput sequencing. Two treatments were set up, including compost of cow manure plus 10% biochar (BC) and cow manure compost without biochar (CK). Fungal community composition varied obviously during composting in both treatments, and main fungi included Aspergillus, Myriococcum, Thermomyces, Mycothermus, Scedosporium, Cladosporium, and unclassified Microascaceae. Fungal community composition was altered by biochar during composting, especially during the thermophilic and the cooling phase, promoting Aspergillus and Myriococcum while inhibiting unclassified Microascaceae and Thermomyces. Based on linear discriminant analysis effect size analysis, common indicator groups were detected in both composts; however, specific indicator groups were also found in BC treatment, including Clavicipitaceae, Tremellales, Gibberella, and Coprinopsis. Canonical correspondence analysis (CCA) indicated that moisture content, organic matter, C/N, and pH had significant correlation (p < 0.05) with fungal composition in both treatments. However, in compost added with biochar, temperature was not an important factor affecting fungal community (p > 0.05).
Collapse
Affiliation(s)
- Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bello Ayodeji
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
34
|
Wei H, Ma J, Su Y, Xie B. Effect of nutritional energy regulation on the fate of antibiotic resistance genes during composting of sewage sludge. BIORESOURCE TECHNOLOGY 2020; 297:122513. [PMID: 31821955 DOI: 10.1016/j.biortech.2019.122513] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Sludge composting is increasingly adopted due to its end product for application as a soil nourishment amendment. Although the ratio of C/N is significant in the quality and process of composting, little information has been obtained from the effects of nutritional energy (carbon and nitrogen) on the fate of antibiotic resistance genes (ARGs) during sludge composting. Dynamic variations of ARGs, microbial community as well as functional characteristics during composting of sludge were investigated in this study. Three levels of carbon to nitrogen (20:1, 25:1 and 30:1) were developed for the composting of sludge with fermented straw plus a control which was just sewage sludge (C/N = 9.5:1). A novel finding of this work is that the highest initial C/N ratio (30:1) could prolong the thermophilic period, which was helpful to reduce some target ARGs. Some ARGs (sul1, sul2, and aadA1) had negative correlation with multiple metabolic pathways, which were difficult to remove.
Collapse
Affiliation(s)
- Huawei Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaying Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing Xie
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
35
|
Li J, Bao H, Xing W, Yang J, Liu R, Wang X, Lv L, Tong X, Wu F. Succession of fungal dynamics and their influence on physicochemical parameters during pig manure composting employing with pine leaf biochar. BIORESOURCE TECHNOLOGY 2020; 297:122377. [PMID: 31734062 DOI: 10.1016/j.biortech.2019.122377] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The effects of pine leaf biochar (PLB) on fungal community during pig manure composting were investigated. Five different doses of PLB [0% (T1), 2.5% (T2), 5% (T3), 10% (T4) and 15% (T5)] were mixed with mixture of pig manure and sawdust (2:1) for 50 days of composting. The present results indicated that fungal diversity increased more obvious in biochar amendment treatments than control (T1) and that the highest was recorded in T4 treatment. Basidiomycota, Ascomycota and Mucoromycota were the most three abundant phyla in all the treatments, while Heterobasidion, Pezoloma, Mucor, Geastrum, Talaromyces and Cystofilobasidium were the richness genera. In addition, network analysis indicated that fungal community abundance was significantly (p < 0.05) associated with temperature, pH, CO2 and CH4 emission and the seed germination index. In summary, the 10% PLB amendment (T4) was a potential option to strengthen fungal diversity and improve the composting efficiency as well as compost quality.
Collapse
Affiliation(s)
- Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technologv (SKLUWRE, HIT), Harbin 150090, China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lihui Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xiaogang Tong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Ma C, Hu B, Wei MB, Zhao JH, Zhang HZ. Influence of matured compost inoculation on sewage sludge composting: Enzyme activity, bacterial and fungal community succession. BIORESOURCE TECHNOLOGY 2019; 294:122165. [PMID: 31561154 DOI: 10.1016/j.biortech.2019.122165] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
The influence of matured compost inoculation during sewage sludge with sawdust composting was assessed. Mature compost reduced the heating rate, thermophilic phase, peak temperature, and volatile solid degradation rate, with no significant effect on pH and germination index. Matured compost addition also increased the cellulase, peroxidase, arylsulfatase, and urease contents during the mesophilic phase, and increased the urease content but decreased the cellulase, peroxidase, protease, and arylsulfatase contents during the cooling phase, with no significant effect on enzyme activities at the thermophilic phase. Matured compost increased the diversity of bacteria during the mesophilic and thermophilic phases, but reduced the fungal diversity throughout composting. Matured compost significantly improved uniformity of the bacterial community and affected the structure of the bacterial and fungal communities, while changing the correlation between some functional microorganisms and enzyme activities. These results provide guidance for optimizing the composting process when matured compost as bulking agent.
Collapse
Affiliation(s)
- Chuang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ming-Bao Wei
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ji-Hong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hong-Zhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| |
Collapse
|
37
|
Hu T, Wang X, Zhen L, Gu J, Zhang K, Wang Q, Ma J, Peng H, Lei L, Zhao W. Effects of inoculating with lignocellulose-degrading consortium on cellulose-degrading genes and fungal community during co-composting of spent mushroom substrate with swine manure. BIORESOURCE TECHNOLOGY 2019; 291:121876. [PMID: 31377509 DOI: 10.1016/j.biortech.2019.121876] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Composting is used widely for recycling spent mushroom substrate (SMS). This study investigated the effects of inoculating a lignocellulose-degrading consortium at two levels comprising 0% (control: CK) and 10% (T) on the fungal community and cellulose-degrading genes during SMS co-composting with swine manure. Lignocellulose degradation rate in T was 8.77-34.45% higher compared with CK. Inoculation affected the distribution of the fungal community, increased the community diversity, and inhibited pathogens. Network analysis showed that inoculation changed the co-occurrence patterns of the fungal communities and made the co-composting system more stable. The relative abundances of glycoside hydrolase genes GH3E (fungal GH3), GH6, and GH7 were 0.45, 0.09, and 0.39 logs higher in T, respectively, than CK. Partial least-squares path modeling suggested that the variations in cellulose-degrading genes were driven mainly by changes in the fungal community during co-composting. Therefore, the lignocellulose-degrading consortium accelerated the transformation of lignocellulose to facilitate safer composting.
Collapse
Affiliation(s)
- Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Zhen
- Shaanxi Province Institute of Microbiology, Xian, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiling Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
38
|
Wang J, Liu Z, Xia J, Chen Y. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. BIORESOURCE TECHNOLOGY 2019; 291:121843. [PMID: 31357046 DOI: 10.1016/j.biortech.2019.121843] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, microorganisms were inoculated during citrus peel composting for citrus waste recycling and valorisation. The physicochemical properties and the bacterial community structure of citrus peel composting inoculated microorganism were studied. The thermophilic stage of pilot-scale composting (T2) was 20 days longer than lab-scale composting (T1). C/N, organic matter, moisture, pectin and cellulose content decreased along with composing process, but the pH, soluble protein and total nutrient showed an opposite trend. The inoculation improved the richness and diversity of the bacterial community and the diversity index reached maximum on 21 days. As composting progress, Bacillus, Sphingobacterium and Saccharomonospora in inoculum became the dominant genus. Redundancy analysis showed that C/N, pectin degradation rate and temperature could explain 30.1%, 24.9% and 15.6% of the variation in bacterial genera, respectively.
Collapse
Affiliation(s)
- Jiaqin Wang
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| | - Zhiping Liu
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China.
| | - Jiashuai Xia
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| | - Youpeng Chen
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400045, China
| |
Collapse
|
39
|
Jiang J, Wang Y, Liu J, Yang X, Ren Y, Miao H, Pan Y, Lv J, Yan G, Ding L, Li Y. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: Insights into the prediction of microbial metabolic function and enzymatic activity. BIORESOURCE TECHNOLOGY 2019; 286:121397. [PMID: 31059972 DOI: 10.1016/j.biortech.2019.121397] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 05/23/2023]
Abstract
Effect mechanisms of organic matter (OM) degradation and methane (CH4) emission during sewage sludge (SS) composting with added vesuvianite (V) were studied by high-throughput sequencing (HTS) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). Results show that the addition of V accelerated the OM degradation and decreased the cumulative CH4 emissions by 33.6% relative to the control. In addition, V significantly decreased the mcrA gene abundance and the methanogen community richness at the genus level. PICRUSt also indicated that V strengthens the microbial metabolic function and enzymatic activity related to OM degradation, and reduced the enzymatic activity related to CH4 production. Methanogens community variation analysis proved the ratio of carbon and nitrogen and moisture content are the significant variables affecting CH4 emissions. Thus, optimizing the ratio of carbon and nitrogen and moisture content will decrease CH4 emission during SS composting.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Juan Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xianli Yang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yuqing Ren
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Haohao Miao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Youwei Pan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jinghua Lv
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Linjie Ding
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
40
|
Use of Carbonized Fallen Leaves of Jatropha Curcas L. as a Soil Conditioner for Acidic and Undernourished Soil. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Jatropha (Jatropha curcas L.) represents a renewable bioenergy source in arid regions, where it is used to produce not only biodiesel from the seed oil, but also various non-oil biomass products, such as fertilizer, from the seed cake following oil extraction from the seeds. Jatropha plants also generate large amounts of fallen leaves during the cold or drought season, but few studies have examined the utilization of this litter biomass. Therefore, in this study, we produced biochar from the fallen leaves of jatropha using a simple and economical carbonizer that was constructed from a standard 200 L oil drum, which would be suitable for use in rural communities, and evaluated the use of the generated biochar as a soil conditioner for the cultivation of Swiss chard (Beta vulgaris subsp. cicla “Fordhook Giant”) as a model vegetable in an acidic and undernourished soil in Botswana. Biochar application improved several growth parameters of Swiss chard, such as the total leaf area. In addition, the dry weights of the harvested shoots were 1.57, 1.88, and 2.32 fold higher in plants grown in soils containing 3%, 5%, and 10% biochar, respectively, compared with non-applied soil, suggesting that the amount of biochar applied to the soil was positively correlated with yield. Together, these observations suggest that jatropha fallen leaf biochar could function as a soil conditioner to enhance crop productivity.
Collapse
|
41
|
Liu H, Yin H, Tang S, Wei K, Peng H, Lu G, Dang Z. Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge. CHEMOSPHERE 2019; 222:517-526. [PMID: 30721810 DOI: 10.1016/j.chemosphere.2019.01.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Benzo [a] pyrene (BaP), the most ubiquitous polycyclic aromatic hydrocarbons (PAHs) found in sludge, can impact the composting processes of sewage sludge as well as the quality of compost produced. In the present study, we investigated the effects of BaP at various concentrations on physicochemical characteristics, heavy metal passivation, and microbial community during the composting processes. The removal efficiency of BaP at 5 and 20 mg kg-1 after composting was 51.1% and 74.2%, respectively. In comparison with the control, the content of residual Cu, Pb, Cr and Ni in 5 mg kg-1 BaP contained system declined dramatically on the second day of composting, while such content in 20 mg kg-1 BaP system significantly decreased on the 8th day. Regardless of the presence of BaP in the sludge, composting process had a positive passivation effect on Cu, Pb, Cr and Ni. A stronger inhibitory effect of BaP at higher concentration was observed on microorganism, which reduced microbial abundance and species in the composting, and influenced microbial diversity. Besides, microbial communities in BaP-containing composting would improve the transformation of silicates and minerals, increase the concentration of humus and extend the passivation time of heavy metals. As these results verified, composting process could remove BaP from the sludge effectively, and BaP had a significant impact on heavy metal passivation and abundance and composition of microbial community during the composting process.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China.
| | - Shaoyu Tang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
42
|
Jiang J, Pan Y, Yang X, Liu J, Miao H, Ren Y, Zhang C, Yan G, Lv J, Li Y. Beneficial influences of pelelith and dicyandiamide on gaseous emissions and the fungal community during sewage sludge composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8928-8938. [PMID: 30715712 DOI: 10.1007/s11356-019-04404-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Reducing the emissions of NH3 and greenhouse gases (GHGs) during composting is essential for improving compost quality and controlling environmental pollution. This paper investigates the effects of pelelith (P) combined with dicyandiamide (DCD) on gaseous emissions and the fungal community diversity during sewage sludge (SS) composting. Results showed that the P and P + DCD treatments decreased the cumulative gaseous emissions by 41% and 22% for NH3, 21% and 34% for N2O, and 31.5% and 33.0% for CH4, respectively. The evolution of the fungal community analysis showed that Ascomycota and unclassified fungi dominated during the thermophilic stage, while only Ascomycota was the dominant fungal phylum during the maturity stage, composing 62%, 66%, and 73% of the total fungal community in the control, P, and P + DCD, respectively. The P and P + DCD significantly increased the fungal community richness at the genus level. Fungal community abundance was found to be significantly related to temperature, pH, organic matter, and total Kjeldahl nitrogen, which also influence the gaseous emissions during SS composting. It suggested that the combined addition of pelelith and dicyandiamide (DCD) was an effective method for reducing the emissions of NH3 and greenhouse gases during SS composting.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Youwei Pan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xianli Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Juan Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Haohao Miao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yuqing Ren
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunyan Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jinghua Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yunbei Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
43
|
Malinowski M, Wolny-Koładka K, Vaverková MD. Effect of biochar addition on the OFMSW composting process under real conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 84:364-372. [PMID: 30691911 DOI: 10.1016/j.wasman.2018.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
The article evaluates the effect of small selected doses of biochar addition (0%, 1.5%, 3% and 5%, wet weight) on the composting process of the organic fraction of municipal solid waste (OFMSW) with a low initial C/N ratio under real conditions. The low C/N composting mixtures with addition of biochar at low rates can have a positive effect on the compost quality and on the reduction of N losses in compost. The novelty of this work consists in studying the impact of small biochar doses on the composting process at full-scale. The research was conducted under real conditions in the Brno Central Composting Plant (Czech Republic) receiving food waste, grass, straw, sawdust, mineral waste, paper, wood and sewage sludge for processing. The experimental processing time was 12 weeks. We evaluated changes in carbon (C), nitrogen (N), moisture content (MC), organic matter (OM), respiration activity (AT4), as well as changes in the microbiocenotic composition of microorganisms colonizing the processed waste. OFMSW with the addition of biochar and compost were assessed for the content of heavy metals (HM). It was found out that biochar reduced the compost toxicity. The resulting compost with the addition of biochar exhibited higher moisture content and lower waste density. Biochar had an impact on N retention during composting but it did not change the course or accelerate the composting process. The highest OM loss (62.6%) was observed in the OFMSW with no biochar addition. The abundance of potentially pathogenic microorganisms clearly decreased during the OFMSW composting process with the addition of biochar.
Collapse
Affiliation(s)
- Mateusz Malinowski
- Institute of Agricultural Engineering and Informatics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116b, 30-149 Krakow, Poland.
| | - Katarzyna Wolny-Koładka
- Department of Microbiology, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza Ave 24/28, 30-059 Krakow, Poland.
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
44
|
Duan Y, Awasthi SK, Liu T, Chen H, Zhang Z, Wang Q, Ren X, Tu Z, Awasthi MK, Taherzadeh MJ. Dynamics of fungal diversity and interactions with environmental elements in response to wheat straw biochar amended poultry manure composting. BIORESOURCE TECHNOLOGY 2019; 274:410-417. [PMID: 30551044 DOI: 10.1016/j.biortech.2018.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The fungal dynamics and its correlation with physicochemical and gaseous emission were investigated using metagenomics and Heat map illustrator (HEMI). Five different concentrations of wheat straw biochar (WSB) were applied to poultry manure (PM) and composted for 50 days; those without the WSB treatment were used as a control. The results revealed the dominant phyla to be Chytridiomycota, Mucoromycota, Ascomycota and Basidiomycota, while Batrachochytrium, Rhizophagus, Mucor, and Puccinia were the superior genera. In particular, the diversity of Chytridiomycota and Ascomycota was more abundant among all of the treatments. Overall, the diversity of the fungal species was correspondent, but relative abundance varied significantly among all of the composts. Principle Coordinate Analysis (PCoA) and Non-Metric Multi- Dimensional Scaling (NMDS) indicated that different concentrations of WSB applied treatments have significantly distinct fungal communities. In addition, correlation analyses of fungal interactions with environmental elements via HEMI also indicate a clear difference among the treatments. Ultimately, the relative abundance of fungal composition significantly influenced the PM compost treated by the WSB.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhineng Tu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|
45
|
Duan Y, Awasthi SK, Chen H, Liu T, Zhang Z, Zhang L, Awasthi MK, Taherzadeh MJ. Evaluating the impact of bamboo biochar on the fungal community succession during chicken manure composting. BIORESOURCE TECHNOLOGY 2019; 272:308-314. [PMID: 30384205 DOI: 10.1016/j.biortech.2018.10.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate the fungal community succession and variations in chicken manure (CM) compost with different concentration of bamboo biochar (BB) as additive via the using of metagenomics method. The consequent obviously revealed that Chytridiomycota, Mucoromycota, Ascomycota and Basidiomycota were the dominant phylum, while Batrachochytrium, Funneliformis, Mucor, Phizophagus and Pyronema were the pre-dominant genera in each treatment. Redundancy analyses indicated that higher dosage of biochar applied treatments has significant correlation between fungal communities and environmental factors. The diversity of fungal community was analogous but the relative abundance (RA) was inconsistent among the all treatments. In addition, the principal component analysis was also confirmed that T5 and T6 treatments have considerably correlation than other treatments. However, the mean value of RA remained maximum in higher dosage of biochar blended treatments. Ultimately, the RA of different fungal genus and species were influenced in CM compost by the BB amendment.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Linsen Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | | |
Collapse
|