1
|
Galang MGK, Chen J, Cobb K, Zarra T, Ruan R. Reduction of biogenic CO 2 emissions, COD and nutrients in municipal wastewater via mixotrophic co-cultivation of Chlorella vulgaris - aerobic-activated sludge consortium. ENVIRONMENTAL TECHNOLOGY 2025:1-15. [PMID: 39956149 DOI: 10.1080/09593330.2025.2463696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025]
Abstract
In this study, biogenic CO2 emissions, COD and other nutrients (i.e. TP, TN and N H 4 + - N ) from aerobic treatment in municipal Wastewater Treatment Plants (WWTP) were quantified and reduced by phycoremediation using a mixotrophic co-cultivation of Chlorella vulgaris and activated sludge. It has been shown that the microalgae sludge consortium (A-ASR, R1) outperformed the normal-activated sludge system (ASR, R2). In fact, estimated biogenic CO2 emissions with algae mark 1.20-fold higher removal, COD marks 1.40-fold higher removal, TP marks 1.70-fold higher removal, and N H 4 + - N marks 1.40-fold higher removal, compared to normal activated sludge (ASR, R2). Meanwhile, due to aeration, N O 3 - - N concentration increased in both reactors because some Ns were oxidized through nitrification. Furthermore, COD increased again during C. vulgaris stationary growth; thus, activated sludge addition every 4 days (optimal time) was implemented to maintain algae-bacteria balance. The results suggest that integrating the treatment of GHG emissions and water pollutants in a single, concurrent process can significantly enhance the sustainability and efficiency of wastewater treatment plants, which has not been explored comprehensively. Finally, by leveraging C. vulgaris capabilities for carbon and nutrients sequestration, this study can provide practical guidance for achieving carbon neutrality in a WWTP.
Collapse
Affiliation(s)
- Mark Gino K Galang
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
2
|
Terra de Oliveira D, de Jesus Paiva R, Albuquerque de Mescouto V, Ferreira da Silva SR, Farias Da Costa AA, Santos AV, Gonçalves EC, Narciso da Rocha Filho G, Rodrigues Noronha RC, Santos do Nascimento LA. The potential of third-generation biodiesel from Tolypothrix sp. CACIAM22 as a feedstock. Heliyon 2024; 10:e36343. [PMID: 39258198 PMCID: PMC11385769 DOI: 10.1016/j.heliyon.2024.e36343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Renewable energy has been recognized as an alternative to fossil fuels as a step to transform the energy produced and consumed worldwide. Cyanobacteria and microalgae are currently being considered as substitutes to the traditional feedstock used to produce biofuels due to their ability to achieve high amounts of lipids under cellular stress conditions. The aim of this study was to investigate the utilization of Tolypothrix sp. CACIAM 22 cyanobacterial biomass as a feedstock for biodiesel production, specifically by examining the effects of supplementing with hydrolysate of Brazil nutshell (HBNS) on biomass generation, lipid production, fatty acid composition, and quality of synthesized biodiesel. The supplementation of HBNS led to a significant increase of 12g.L-1 in wet biomass production. The lipid content reached 41 % of the biomass produced in HBNS supplemented cultures when nitrate source was deprived. The quality evaluation of cyanobacteria-derived biodiesel was performed using Biodiesel Analyzer ver 2.2 software, revealing superior quality compared to biodiesel produced from plant sources. The biodiesel exhibited values of 23 h for oxidative stability, 65 for cetane number, and an iodine index of 31 (g I2. 100 g-1 fat), indicating promising potential as a renewable source. This study is the first to utilize HBNS as an organic supplement for cyanobacteria culture medium and assess its impact on biomass and lipid production in Tolypothrix sp., supporting the hypothesis of utilizing this biomass as a renewable feedstock for biodiesel production as a viable alternative to plant sources based on biomass production, lipid productivity, and biodiesel quality.
Collapse
Affiliation(s)
- Deborah Terra de Oliveira
- Amazon Oil Laboratory, Guamá Science and Technology Park, Belém, 66075-750, Brazil
- Graduation Program of Biotechnology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | - Rutiléia de Jesus Paiva
- Amazon Oil Laboratory, Guamá Science and Technology Park, Belém, 66075-750, Brazil
- Graduation Program of Biotechnology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | - Vanessa Albuquerque de Mescouto
- Amazon Oil Laboratory, Guamá Science and Technology Park, Belém, 66075-750, Brazil
- Graduation Program of Biotechnology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | | | | | - Agenor Valadares Santos
- Graduation Program of Biotechnology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | - Evonnildo Costa Gonçalves
- Graduation Program of Biotechnology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | | | - Renata Coelho Rodrigues Noronha
- Laboratory of Genetics and Cell Biology, Center for Advanced Studies of Biodiversity, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Street, Guamá, Belém, 66075-110, PA, Brazil
| | - Luís Adriano Santos do Nascimento
- Amazon Oil Laboratory, Guamá Science and Technology Park, Belém, 66075-750, Brazil
- Graduation Program of Biotechnology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| |
Collapse
|
3
|
Ashour M, Mansour AT, Alkhamis YA, Elshobary M. Usage of Chlorella and diverse microalgae for CO 2 capture - towards a bioenergy revolution. Front Bioeng Biotechnol 2024; 12:1387519. [PMID: 39229458 PMCID: PMC11368733 DOI: 10.3389/fbioe.2024.1387519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
To address climate change threats to ecosystems and the global economy, sustainable solutions for reducing atmospheric carbon dioxide (CO2) levels are crucial. Existing CO2 capture projects face challenges like high costs and environmental risks. This review explores leveraging microalgae, specifically the Chlorella genus, for CO2 capture and conversion into valuable bioenergy products like biohydrogen. The introduction section provides an overview of carbon pathways in microalgal cells and their role in CO2 capture for biomass production. It discusses current carbon credit industries and projects, highlighting the Chlorella genus's carbon concentration mechanism (CCM) model for efficient CO2 sequestration. Factors influencing microalgal CO2 sequestration are examined, including pretreatment, pH, temperature, irradiation, nutrients, dissolved oxygen, and sources and concentrations of CO2. The review explores microalgae as a feedstock for various bioenergy applications like biodiesel, biooil, bioethanol, biogas and biohydrogen production. Strategies for optimizing biohydrogen yield from Chlorella are highlighted. Outlining the possibilities of further optimizations the review concludes by suggesting that microalgae and Chlorella-based CO2 capture is promising and offers contributions to achieve global climate goals.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Fish and Animal Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yousef A. Alkhamis
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Water and Environment Study Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mostafa Elshobary
- Department of Botany and microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Goswami RK, Mehariya S, Verma P. Sub-pilot scale sequential microalgal consortium-based cultivation for treatment of municipal wastewater and biomass production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123796. [PMID: 38518973 DOI: 10.1016/j.envpol.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Municipal wastewater (MWW) was treated by a sequential pilot microalgal cultivation process. The cultivation was performed inside a specifically designed low-cost photobioreactor (PBR) system. A microalgal consortium 2:1 was developed using Tetraselmis indica (TS) and Picochlorum sp. (PC) in the first stage and PC:TS (2:1) in the second stage and the nutrient removal efficiency and biomass production and biomolecules production was evaluated and also compared with monoculture in a two-stage sequential cultivation system. This study also investigated the effect of seasonal variations on microalgae growth and MWW treatment. The results showed that mixed microalgal consortium (TS:PC) had higher nutrient removal efficiency, with chemical oxygen demand (COD), total phosphate (TP), and total nitrate (TN) removal efficiencies of 78.50, 84.49, and 84.20%, respectively, and produced a biomass of 2.50 g/L with lipid content of 37.36% in the first stage of cultivation under indoor conditions. In the second stage of indoor cultivation, the PC:TS consortium demonstrated maximum COD, TP, and TN removal efficiencies of 92.49, 94.24, and 94.16%, respectively. It also produced a biomass of 2.65 g/L with a lipid content of 40.67%. Among all the seasonal variations, mass flow analysis indicated that the combination of mixed consortium-based two-stage sequential process during the winter season favored maximum nutrient removal efficiency of TN i.e. 88.54% (84.12 mg/L) and TP i.e., 90.18% (43.29 mg/L), respectively. It also enhanced total biomass production of 49.10 g in 20-L medium, which includes lipid yield ∼15.68 g compared to monoculture i.e., 82.06% (78.70 mg/L) and 82.87% (40.26 mg/L) removal of TN and TP, respectively, and produced biomass 43.60 g with 11.90 g of lipids.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
5
|
Nguyen VT, Le VA, Do QH, Le TNC, Vo TDH. Emerging revolving algae biofilm system for algal biomass production and nutrient recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168911. [PMID: 38016564 DOI: 10.1016/j.scitotenv.2023.168911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Toward the direction of zero‑carbon emission and green technologies for wastewater treatment, algae-based technologies are considered promising candidates to deal with the current situation of pollution and climate change. Recent developments of algae-based technologies have been introduced in previous studies in which their performances were optimized for wastewater treatment and biomass production. Among these, revolving algae biofilm (RAB) reactors have been proven to have a great potential in high biomass productivity, simple harvesting method, great CO2 transfer rate, high light-use efficiency, heavy metal capture, nutrient removal, and acid mine drainage treatment in previous studies. However, there were few articles detailing RAB performance, which concealed its enormous potential and diminished interest in the model. Hence, this review aims to reveal the major benefit of RAB reactors in simultaneous wastewater treatment and biomass cultivation. However, there is still a lack of research on aspects to upgrade this technology which requires further investigations to improve performance or fulfill the concept of circular economy.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam.
| | - Vu-Anh Le
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City 32023, Taiwan
| | - Quoc-Hoang Do
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Ngoc-Chau Le
- Institute for Environment and Resources (IER), Ho Chi Minh City 700000, Viet Nam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
6
|
Yu M, Wang L, Feng P, Wang Z, Zhu S. Treatment of mixed wastewater by vertical rotating microalgae-bacteria symbiotic biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 393:130057. [PMID: 37984669 DOI: 10.1016/j.biortech.2023.130057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A novel vertical rotating microalgae-bacteria symbiotic biofilm reactor was built to treat the mixed wastewater containing municipal and soybean soaking wastewater. The reactor was operated in both sequential batch and semi-continuous modes. Under the sequential batch operation mode, the maximum removal rates for Chemical Oxygen Demand (COD), Total Nitrogen (TN), Total Phosphorus (TP), and Ammonia Nitrogen (NH4+-N) of the mixed wastewater were 95.6 %, 96.1 %, 97.6 %, and 100 %, respectively. During the semi-continuous operation, the water discharge indices decreased gradually and eventually stabilized. At stabilization, the removal rates of COD, TN, and NH4+-N achieved 98 %, 95 %, and 99.9 %, respectively. The maximum biomass productivity of the biofilm was 2.69 g·m-2·d-1. Additionally, the carbohydrate, protein and lipid comprised approximately 22 %, 51 % and 10 % of the dry weight of Chlorella. This study demonstrates the great potential of the microalgae-bacteria symbiotic biofilm system to treat food and domestic wastewater while harvesting microalgal biomass.
Collapse
Affiliation(s)
- Mingran Yu
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Li Wang
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
7
|
Hasnain M, Zainab R, Ali F, Abideen Z, Yong JWH, El-Keblawy A, Hashmi S, Radicetti E. Utilization of microalgal-bacterial energy nexus improves CO 2 sequestration and remediation of wastewater pollutants for beneficial environmental services. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115646. [PMID: 37939556 DOI: 10.1016/j.ecoenv.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan; Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Saud Hashmi
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Emanuele Radicetti
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
8
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Penhaul Smith J, Hughes A, McEvoy L, Day J. Use of crude glycerol for mixotrophic culture of Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Zhou Q, Sun H, Jia L, Wu W, Wang J. Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. CHEMOSPHERE 2022; 296:134054. [PMID: 35202664 DOI: 10.1016/j.chemosphere.2022.134054] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
With the advancement of water ecological protection and water control standard, it is the general trend to upgrade the wastewater treatment plants (WWTPs). The simultaneous removal of nitrogen and phosphorus is the key to improve the water quality of secondary effluent of WWTPs to prevent the eutrophication. Therefore, it is urgent to develop the applicable technologies for simultaneous biological removal of nitrogen and phosphorus from secondary effluent. In this review, the composition of secondary effluent from municipal WWTPs were briefly introduced firstly, then the three main treatment processes for simultaneous nitrogen and phosphorus removal, i.e., the enhanced denitrifying phosphorus removal filter, the pyrite-based autotrophic denitrification and the microalgae biological treatment system were summarized, their performances and mechanisms were analyzed. The influencing factors and microbial community structure were discussed. The advanced removal of nitrogen and phosphorus by different technologies were also compared and summarized in terms of performance, operational characteristics, disadvantage and cost. Finally, the challenges and future prospects of simultaneous removal of nitrogen and phosphorus technologies for secondary effluent were proposed. This review will deepen to understand the principles and applications of the advanced removal of nitrogen and phosphorus and provide some valuable information for upgrading the treatment process of WWTPs.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
11
|
Goswami RK, Agrawal K, Verma P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Kant Bhatia S, Ahuja V, Chandel N, Mehariya S, Kumar P, Vinayak V, Saratale GD, Raj T, Kim SH, Yang YH. An overview on microalgal-bacterial granular consortia for resource recovery and wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 351:127028. [PMID: 35318147 DOI: 10.1016/j.biortech.2022.127028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Excessive generation of wastewater is a matter of concern around the globe. Wastewater treatment utilizing a microalgae-mediated process is considered an eco-friendly and sustainable method of wastewater treatment. However, low biomass productivity, costly harvesting process, and energy extensive cultivation process are the major bottleneck. The use of the microalgal-bacteria granular consortia (MBGC) process is economic and requires less energy. For efficient utilization of MBGC, knowledge of its structure, composition and interaction are important. Various microscopic, molecular and metabolomics techniques play a significant role in understating consortia structure and interaction between partners. Microalgal-bacteria granular consortia structure is affected by various cultivation parameters like pH, temperature, light intensity, salinity, and the presence of other pollutants in wastewater. In this article, a critical evaluation of recent literature was carried out to develop an understanding related to interaction behavior that can help to engineer consortia having efficient nutrient removal capacity with reduced energy consumption.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram-122103, Haryana, India
| | | | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
López-Sánchez A, Silva-Gálvez AL, Aguilar-Juárez Ó, Senés-Guerrero C, Orozco-Nunnelly DA, Carrillo-Nieves D, Gradilla-Hernández MS. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114612. [PMID: 35149401 DOI: 10.1016/j.jenvman.2022.114612] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.
Collapse
Affiliation(s)
- Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Óscar Aguilar-Juárez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | | |
Collapse
|
14
|
Wang Q, Wei D, Luo X, Zhu J, Rong J. Ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella-based photo-fermentation with optimal light-emitting diode illumination: From laboratory to pilot plant. BIORESOURCE TECHNOLOGY 2022; 348:126779. [PMID: 35104651 DOI: 10.1016/j.biortech.2022.126779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
To achieve ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella pyrenoidosa-based photo-fermentation, light-emitting diode (LED) spectrum was firstly evaluated in 5-L glass photo-fermenter with surrounding LED panels. Results showed that warm white LED was favorable to improve biomass yield and recovery rate of nutrients than mixed white LED. When scaling up from laboratory (50-L, 500-L) to pilot scale photo-fermenter with inner LED panels, the maximum recovery rates of NO3- (5.77 g L-1 d-1) and PO43- (0.44 g L-1 d-1) were achieved in 10,000-L photo-fermenter, along with high productivity of biomass (11.06 g L-1 d-1), protein (3.95 g L-1 d-1) and lipids (3.79 g L-1 d-1), respectively. This study demonstrated that photo-fermenter with inner warm white LED illumination is a superhigh-efficient system for nitrate and phosphate recovery with algal biomass coproduction, providing a promising application in pilot demonstration of wastewater bioremediation and facilitating novel facility development for green manufacturing.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China.
| | - Xiaoying Luo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China
| | - Junying Zhu
- Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, College Road 18, Haidian district, Beijing 100083, PR China
| | - Junfeng Rong
- Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, College Road 18, Haidian district, Beijing 100083, PR China
| |
Collapse
|
15
|
Meena M, Yadav G, Sonigra P, Shah MP. A comprehensive review on application of bioreactor for industrial wastewater treatment. Lett Appl Microbiol 2022; 74:131-158. [PMID: 34469596 DOI: 10.1111/lam.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment.
Collapse
Affiliation(s)
- M Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - G Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - P Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - M P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| |
Collapse
|
16
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
17
|
Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. BIORESOURCE TECHNOLOGY 2021; 342:126056. [PMID: 34601027 DOI: 10.1016/j.biortech.2021.126056] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment using activated sludge cannot efficiently eliminate nitrogen and phosphorus, thus engendering the risk of water eutrophication and ecosystem disruption. Fortunately, a new wastewater treatment process applying microalgae-bacteria consortia has attracted considerable interests due to its excellent performance of nutrients removal. Moreover, some bacteria facilitate the harvest of microalgal biomass through bio-flocculation. Additionally, while stimulating the functional bacteria, the improved biomass and enriched components also brighten bioenergy production from the perspective of practical applications. Thus, this review first summarizes the current development of nutrients removal and mutualistic interaction using microalgae-bacteria consortia. Then, advancements in bio-flocculation are completely described and the corresponding mechanisms are thoroughly revealed. Eventually, the recent advances of bioenergy production (i.e., biodiesel, biohydrogen, bioethanol, and bioelectricity) using microalgae-bacteria consortia are comprehensively discussed. Together, this review will provide the ongoing challenges and future developmental directions for better converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
18
|
López-Pacheco IY, Castillo-Vacas EI, Castañeda-Hernández L, Gradiz-Menjivar A, Rodas-Zuluaga LI, Castillo-Zacarías C, Sosa-Hernández JE, Barceló D, Iqbal HMN, Parra-Saldívar R. CO 2 biocapture by Scenedesmus sp. grown in industrial wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148222. [PMID: 34380253 DOI: 10.1016/j.scitotenv.2021.148222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/15/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Greenhouse gases (GHG) emissions are widely related to climate change, triggering several environmental problems of global concern and producing environmental, social, and economic negative impacts. Therefore, global research seeks to mitigate greenhouse gas emissions. On the other hand, the use of wastes under a circular economy scheme generates subproducts from the range of high to medium-value, representing a way to help sustainable development. Therefore, the use of wastewater as a culture medium to grow microalgae strains that biocapture environmental CO2, is a proposal with high potential to reduce the GHG presence in the environment. In this work, Scenedesmus sp. was cultivated using BG-11 medium and industrial wastewater (IWW) as a culture medium with three different CO2 concentrations, 0.03%, 10%, and 20% to determine their CO2 biocapture potential. Furthermore, the concomitant removal of COD, nitrates, and total phosphorus in wastewater was evaluated. Scenedesmus sp. achieves a biomass concentration of 1.9 g L-1 when is grown in BG-11 medium, 0.69 g L-1 when is grown in a combination of BG-11 medium and 25% of industrial wastewater; both cases with 20% CO2 supplied. The maximum CO2 removal efficiency (8.4%, 446 ± 150 mg CO2 L-1 day-1) was obtained with 10% CO2 supplied and using a combination of BG-11 medium and 50% IWW (T2). Also, the highest removal of COD was reached with a combination of BG-11 medium and T2 with a supply of 20% CO2 (82% of COD removal). Besides, the highest nitrates removal was achieved with a combination of BG-11 medium and 75% IWW (T3) with a supply of 10% CO2 (42% of nitrates removal) and the maximum TP removal was performed with the combination of BG-11 medium and 25% IWW (T1) with a supply of 10% CO2 (67% of TP removal). These results indicate that industrial wastewater can be used as a culture media for microalgae growth and CO2 biocapture can be performed as concomitant processes.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Eduardo Israel Castillo-Vacas
- Escuela Agrícola Panamericana, Zamorano. Km 30 carretera de Tegucigalpa a Danlí, Valle del Yeguare, Municipio de San Antonio de Oriente, Francisco Morazán, Honduras, Apartado postal 93, Tegucigalpa 11101, Honduras
| | - Lizbeth Castañeda-Hernández
- Escuela Agrícola Panamericana, Zamorano. Km 30 carretera de Tegucigalpa a Danlí, Valle del Yeguare, Municipio de San Antonio de Oriente, Francisco Morazán, Honduras, Apartado postal 93, Tegucigalpa 11101, Honduras
| | - Angie Gradiz-Menjivar
- Escuela Agrícola Panamericana, Zamorano. Km 30 carretera de Tegucigalpa a Danlí, Valle del Yeguare, Municipio de San Antonio de Oriente, Francisco Morazán, Honduras, Apartado postal 93, Tegucigalpa 11101, Honduras; University of Nebraska-Lincoln, Department of Biological Systems Engineering, Panhandle Research and Extension Center, Scottsbluff, NE, USA
| | | | | | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
19
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Duque AF, Campo R, Val del Rio A, Amorim CL. Wastewater Valorization: Practice around the World at Pilot- and Full-Scale. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189466. [PMID: 34574414 PMCID: PMC8472693 DOI: 10.3390/ijerph18189466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Over the last few years, wastewater treatment plants (WWTPs) have been rebranded as water resource recovery facilities (WRRFs), which recognize the resource recovery potential that exists in wastewater streams. WRRFs contribute to a circular economy by not only producing clean water but by recovering valuable resources such as nutrients, energy, and other bio-based materials. To this aim, huge efforts in technological progress have been made to valorize sewage and sewage sludge, transforming them into valuable resources. This review summarizes some of the widely used and effective strategies applied at pilot- and full-scale settings in order to valorize the wastewater treatment process. An overview of the different technologies applied in the water and sludge line is presented, covering a broad range of resources, i.e., water, biomass, energy, nutrients, volatile fatty acids (VFA), polyhydroxyalkanoates (PHA), and exopolymeric substances (EPS). Moreover, guidelines and regulations around the world related to water reuse and resource valorization are reviewed.
Collapse
Affiliation(s)
- Anouk F. Duque
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 1099-085 Lisboa, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 1099-085 Lisboa, Portugal
| | - Riccardo Campo
- DICEA—Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Firenze, Via di S. Marta 3, 50139 Florence, Italy;
| | - Angeles Val del Rio
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain;
| | - Catarina L. Amorim
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: ; Tel.: +351-226-196-200
| |
Collapse
|
21
|
Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F. Improving the feasibility of aquaculture feed by using microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43234-43257. [PMID: 34173144 DOI: 10.1007/s11356-021-14989-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry is an efficient edible protein producer and grows faster than any other food sector. Therefore, it requires enormous amounts of fish feed. Fish feed directly affects the quality of produced fish, potential health benefits, and cost. Fish meal (FM), fis oil (FO), and plant-based supplements, predominantly used in fish feed, face challenges of low availability, low nutritional value, and high cost. The cost associated with aquaculture feed represents 40-75% of aquaculture production cost and one of the key market drivers for the thriving aquaculture industry. Microalgae are a primary producer in aquatic food chains. Microalgae are expanding continuously in renewable energy, pharmaceutical pigment, wastewater treatment, food, and feed industries. Major components of microalgal biomass are proteins with essential amino acids, lipids with polyunsaturated fatty acids (PUFA), carbohydrates, pigments, and other bioactive compounds. Thus, microalgae can be used as an essential, viable, and alternative feed ingredient in aquaculture feed. In recent times, live algae culture, whole algae, and lipid-extracted algae (LEA) have been tested in fish feed for growth, physiological activity, and nutritional value. The present review discusses the potential application of microalgae in aquaculture feed, its mode of application, nutritional value, and possible replacement of conventional feed ingredients, and disadvantages of plant-based feed. The review also focuses on integrated processes such as algae cultivation in aquaculture wastewater, aquaponics systems, challenges, and future prospects of using microalgae in the aquafeed industry.
Collapse
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University, Mumbai, India
| | - Sanjay Kumar Gupta
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
| |
Collapse
|
22
|
Lumped intracellular dynamics: Mathematical modeling of the microalgae Tetradesmus obliquus cultivation under mixotrophic conditions with glycerol. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Daneshvar E, Sik Ok Y, Tavakoli S, Sarkar B, Shaheen SM, Hong H, Luo Y, Rinklebe J, Song H, Bhatnagar A. Insights into upstream processing of microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124870. [PMID: 33652189 DOI: 10.1016/j.biortech.2021.124870] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The aim of this review is to provide insights into the upstream processing of microalgae, and to highlight the advantages of each step. This review discusses the most important steps of the upstream processing in microalgae research such as cultivation modes, photobioreactors design, preparation of culture medium, control of environmental factors, supply of microalgae seeds and monitoring of microalgal growth. An extensive list of bioreactors and their working volumes used, elemental composition of some well-known formulated cultivation media, different types of wastewater used for microalgal cultivation and environmental variables studied in microalgae research has been compiled in this review from the vast literature. This review also highlights existing challenges and knowledge gaps in upstream processing of microalgae and future research needs are suggested.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Samad Tavakoli
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu 225700, China
| | - Yongkang Luo
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu 225700, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|
24
|
Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144236. [PMID: 33422843 DOI: 10.1016/j.scitotenv.2020.144236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In recent years, microalgal feedstocks have gained immense potential for sustainable biofuel production. Thermochemical, biochemical conversions and transesterification processes are employed for biofuel production. Especially, the transesterification process of lipid molecules to fatty acid alkyl esters (FAAE) is being widely employed for biodiesel production. In the case of the extractive transesterification process, biodiesel is produced from the extracted microalgal oil. Whereas In-situ (reactive) transesterification allows the direct conversion of microalgae to biodiesel avoiding the sequential steps, which subsequently reduces the production cost. Though microalgae have the highest potential to be an alternate renewable feedstock, the minimization of biofuel production cost is still a challenge. The biorefinery approaches that rely on simple cascade processes involving cost-effective technologies are the need of an hour for sustainable bioenergy production using microalgae. At the same time, combining the biorefineries for both (i) high value-low volume (food and health supplements) and (ii) low value- high volume (waste remediation, bioenergy) from microalgae involves regulatory and technical problems. Waste-remediation and algal biorefinery were extensively reviewed in many previous reports. On the other hand, this review focuses on the cascade processes for efficient utilization of microalgae for integrated bioenergy production through the transesterification. Microalgal biomass remnants after the transesterification process, comprising carbohydrates as a major component (process flow A) or the carbohydrate fraction after bio-separation of pretreated microalgae (process flow B) can be utilized for bioethanol production. Therefore, this review concentrates on the cascade flow of integrated bioprocessing methods for biodiesel and bioethanol production through the transesterification and biochemical routes. The review also sheds light on the recent combinatorial approaches of transesterification of microalgae. The applicability of spent microalgal biomass residue for biogas and other applications to bring about zero-waste residue are discussed. Furthermore, techno-economic analysis (TEA), life cycle assessment (LCA) and challenges of microalgal biorefineries are discussed.
Collapse
Affiliation(s)
- Rathinasamy Karpagam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Kalimuthu Jawaharraj
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States
| | - Ramasamy Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
25
|
López-Pacheco IY, Silva-Núñez A, García-Perez JS, Carrillo-Nieves D, Salinas-Salazar C, Castillo-Zacarías C, Afewerki S, Barceló D, Iqbal HNM, Parra-Saldívar R. Phyco-remediation of swine wastewater as a sustainable model based on circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111534. [PMID: 33129031 DOI: 10.1016/j.jenvman.2020.111534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
Pork production has expanded in the world in recent years. This growth has caused a significant increase in waste from this industry, especially of wastewater. Although there has been an increase in wastewater treatment, there is a lack of useful technologies for the treatment of wastewater from the pork industry. Swine farms generate high amounts of organic pollution, with large amounts of nitrogen and phosphorus with final destination into water bodies. Sadly, little attention has been devoted to animal wastes, which are currently treated in simple systems, such as stabilization ponds or just discharged to the environment without previous treatment. This uncontrolled release of swine wastewater is a major cause of eutrophication processes. Among the possible treatments, phyco-remediation seems to be a sustainable and environmentally friendly option of removing compounds from wastewater such as nitrogen, phosphorus, and some metal ions. Several studies have demonstrated the feasibility of treating swine wastewater using different microalgae species. Nevertheless, the practicability of applying this procedure at pilot-scale has not been explored before as an integrated process. This work presents an overview of the technological applications of microalgae for the treatment of wastewater from swine farms and the by-products (pigments, polysaccharides, lipids, proteins) and services of commercial interest (biodiesel, biohydrogen, bioelectricity, biogas) generated during this process. Furthermore, the environmental benefits while applying microalgae technologies are discussed.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - J Saúl García-Perez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, C.P. 45138, Zapopan, Jalisco, Mexico
| | | | | | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Damiá Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | | |
Collapse
|
26
|
Liu X, Wang M, Zhang J, Wei L, Cheng H. Immobilization altering the growth behavior, ammonium uptake and amino acid synthesis of Chlorella vulgaris at different concentrations of carbon and nitrogen. BIORESOURCE TECHNOLOGY 2021; 320:124438. [PMID: 33246797 DOI: 10.1016/j.biortech.2020.124438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen recycling by microalgae has aroused considerable attention. In this study, immobilized Chlorellavulgaris with 5-day mixotrophic cultivation to recover ammonium (NH4+-N) were systematically investigated under various sodium acetate (CH3COONa) and ammonium chloride (NH4Cl) concentrations, and evaluated by comparison with suspended cells. The results revealed that, unlike suspended cells, NH4+-N uptake by immobilized cells was not in direct proportion to chemical oxygen demand (COD) concentrations. The immobilized cells to NH4+-N uptake was all inferior to that of suspended cells, presenting the maximum rate of 68.92% in group of 30 mg/L NH4+-N and 200 mg/L COD. Free amino acids in immobilized cells such as glutamate (Glu), arginine (Arg), proline (Pro) and leucine (Leu) were more sensitive to NH4+-N assimilation, as higher values observed by suspended cells. Low carbon-nitrogen (C/N) ratio showed remarkable benefits to amino acid synthesis. These results could provide a reference for manipulating the algal system and biomass accumulation.
Collapse
Affiliation(s)
- Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Min Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Lin Wei
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
27
|
Han J, Thomsen L, Pan K, Wang P, Wawilow T, Osundeko O, Wang S, Theilen U, Thomsen C. Treating wastewater by indigenous microalgae strain in pilot platform located inside a municipal wastewater treatment plant. ENVIRONMENTAL TECHNOLOGY 2020; 41:3261-3271. [PMID: 30961473 DOI: 10.1080/09593330.2019.1604816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Various resources from a municipal wastewater treatment plant (MWTP) are available for microalgae cultivation plants, suggesting that a combination of these technologies can be used to produce microalgae biomass and remove contaminants at a low cost. In this study, the growth performance and nutrient removal efficiency of an indigenous Scenedesmus sp. in various wastewater media with different exchange patterns were investigated firstly, then transferred to a pilot-scale photobioreactor (located inside a MWTP) for bioremediation use. The temperature and pH of the platform were maintained at 15-30°C and 7.6, respectively. The N H 4 + - N , N O 3 - - N , and P O 4 3 - - P of the wastewater could be reduced to below 0.05, 0.40, and 0.175 mg L-1, respectively. Our results indicate that microalgae cultivation using the resources of a MWTP can achieve high algal biomass productivity and nutrient removal rate. Our study also suggests that efficient technology for controlling zooplankton needs to be developed.
Collapse
Affiliation(s)
- Jichang Han
- Department of Physics and Earth Sciences, Jacobs University of Bremen, Bremen, Germany
- College of Marine Life Science, Ocean University of China, Qingdao, People's Republic of China
| | - Laurenz Thomsen
- Department of Physics and Earth Sciences, Jacobs University of Bremen, Bremen, Germany
| | - Kehou Pan
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
- Ministry of Education, Key Laboratory of Mariculture (Ocean University of China), Qingdao, People's Republic of China
| | - Pu Wang
- Laboratory of protozoology, Ocean University of China, Qingdao, People's Republic of China
| | - Tatjana Wawilow
- Competence Centre for Energy and Environmental Engineering, THM Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Olumayowa Osundeko
- Department of Physics and Earth Sciences, Jacobs University of Bremen, Bremen, Germany
| | - Song Wang
- Department of Physics and Earth Sciences, Jacobs University of Bremen, Bremen, Germany
| | - Ulf Theilen
- Competence Centre for Energy and Environmental Engineering, THM Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | | |
Collapse
|
28
|
Wang X, Liu SF, Qin ZH, Balamurugan S, Li HY, Lin CSK. Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114854. [PMID: 32504890 DOI: 10.1016/j.envpol.2020.114854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Waste streams have emerged as potential feedstocks for biofuel production via microbial bioconversion. Metabolic engineering of the microalga Phaeodactylum tricornutum in its lipid biosynthetic pathways has been conducted with an aim to improve lipid production. However, there has been only limited achievement in satisfying biofuel demands by utilising extracellular organic carbons from low-cost waste streams. Herein, we present a successive staged cultivation mode, based on a previously engineered strain that co-overexpresses two key triacylglycerol biosynthesis genes. We first optimised microalgal biomass and lipid production by using food waste hydrolysate and crude glycerol as the cultivation media. Food waste hydrolysate (5% v/v) is a low-cost organic carbon source for enhanced microalgal biomass production, and the resulting lipid concentration was 1.08-fold higher with food-waste hydrolysate than that of the defined medium. Additionally, the resultant lipid concentration after using crude glycerol (100 mM) was 1.24-fold higher than that using the defined medium. Two carbon feeding modes (hybrid and sequential) were also performed to investigate the potential of engineered P. tricornutum with preliminary mechanistic analyses. The biodiesel properties of lipids produced in the hybrid mode were evaluated for potential application prospects. Collectively, this study demonstrates a waste stream utilisation strategy for efficient and sustainable microalgal biofuel production.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
29
|
CRISPR/Cas technology promotes the various application of Dunaliella salina system. Appl Microbiol Biotechnol 2020; 104:8621-8630. [PMID: 32918585 DOI: 10.1007/s00253-020-10892-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
Dunaliella salina (D. salina) has been widely applied in various fields because of its inherent advantages, such as the study of halotolerant mechanism, wastewater treatment, recombinant proteins expression, biofuel production, preparation of natural materials, and others. However, owing to the existence of low yield or in the laboratory exploration stage, D. salina system has been greatly restricted for practical production of various components. In past decade, significant progresses have been achieved for research of D. salina in these fields. Among them, D. salina as a novel expression system demonstrated a bright prospect, especially for large-scale production of foreign proteins, like the vaccines, antibodies, and other therapeutic proteins. Due to the low efficiency, application of traditional regulation tools is also greatly limited for exploration of D. salina system. The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system offers a precise editing tool to overcome the obstacles of D. salina system. This review not only comprehensively summarizes the recent progresses of D. salina in domain of gene engineering but also gives a deep analysis of problems and deficiencies in different fields of D. salina. Moreover, further prospects of CRISPR/Cas system and its significant challenges have been discussed in various aspects of D. salina. It provides a great referencing value for speeding up the maturity of D. salina system, and also supplies practical guiding significance to expand the new application fields for D. salina. KEY POINTS: • The review provides recent research progresses of various applications of D. salina. • The problems and deficiencies in different fields of D. salina were deeply analyzed. • The further prospects of CRISPR/Cas technology in D. salina system were predicted. • CRISPR/Cas system will promote the new application fields and maturity for D. salina.
Collapse
|
30
|
Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D. Co-cultivation of microalgae in aquaculture water: Interactions, growth and nutrient removal efficiency at laboratory- and pilot-scale. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
|
32
|
Jo SW, Do JM, Na H, Hong JW, Kim IS, Yoon HS. Assessment of biomass potentials of microalgal communities in open pond raceways using mass cultivation. PeerJ 2020; 8:e9418. [PMID: 32742771 PMCID: PMC7369025 DOI: 10.7717/peerj.9418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Metagenome studies have provided us with insights into the complex interactions of microorganisms with their environments and hosts. Few studies have focused on microalgae-associated metagenomes, and no study has addressed aquatic microalgae and their bacterial communities in open pond raceways (OPRs). This study explored the possibility of using microalgal biomasses from OPRs for biodiesel and biofertilizer production. The fatty acid profiles of the biomasses and the physical and chemical properties of derived fuels were evaluated. In addition, the phenotype-based environmental adaptation ability of soybean plants was assessed. The growth rate, biomass, and lipid productivity of microalgae were also examined during mass cultivation from April to November 2017. Metagenomics analysis using MiSeq identified ∼127 eukaryotic phylotypes following mass cultivation with (OPR 1) or without (OPR 3) a semitransparent film. Of these, ∼80 phylotypes were found in both OPRs, while 23 and 24 phylotypes were identified in OPRs 1 and 3, respectively. The phylotypes belonged to various genera, such as Desmodesmus, Pseudopediastrum, Tetradesmus, and Chlorella, of which, the dominant microalgal species was Desmodesmus sp. On average, OPRs 1 and 3 produced ∼8.6 and 9.9 g m−2 d−1 (0.307 and 0.309 DW L−1) of total biomass, respectively, of which 14.0 and 13.3 wt% respectively, was lipid content. Fatty acid profiling revealed that total saturated fatty acids (mainly C16:0) of biodiesel obtained from the microalgal biomasses in OPRs 1 and 3 were 34.93% and 32.85%, respectively; total monounsaturated fatty acids (C16:1 and C18:1) were 32.40% and 31.64%, respectively; and polyunsaturated fatty acids (including C18:3) were 32.68% and 35.50%, respectively. Fuel properties determined by empirical equations were within the limits of biodiesel standards ASTM D6751 and EN 14214. Culture solutions with or without microalgal biomasses enhanced the environmental adaptation ability of soybean plants, increasing their seed production. Therefore, microalgal biomass produced through mass cultivation is excellent feedstock for producing high-quality biodiesel and biofertilizer.
Collapse
Affiliation(s)
- Seung-Woo Jo
- Department of Energy Science, Kyungpook National University, Daegu, South Korea
| | - Jeong-Mi Do
- Department of Biology, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Ho Na
- Department of Biology, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, South Korea
| | - Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- Department of Energy Science, Kyungpook National University, Daegu, South Korea.,Department of Biology, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.,Advanced Bio-resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
33
|
Rodríguez MBR. Simulation of an assisted culture medium for production of Dunaliella tertiolecta. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Tan XB, Meng J, Tang Z, Yang LB, Zhang WW. Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. CHEMOSPHERE 2020; 244:125509. [PMID: 31812770 DOI: 10.1016/j.chemosphere.2019.125509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 05/09/2023]
Abstract
Anaerobically digested waste sludge contains very high concentrations of ammonium and phosphate that are difficult to be purified using traditional processes. Mixotrophic culture of microalgae is a potential way to achieve ammonium and phosphate removal, while harvesting considerable biomass for biodiesel production. In this study, four typical volatile organic acids that could be potentially produced from sludge fermentation were tested for algal mixotrophic culture in anaerobically digested waste sludge. The results showed that the addition of propionate and isovaleric acid had no significant improvement on biomass production, and even inhibited algal growth at low concentration. Fortunately, the addition of acetic and n-butyric acid (initial C/N = 10) increased biomass production by1.9-2.4 times compared to the blank culture. Higher biomass production increased ammonium and orthophosphate removal to 88.3-97.1% and 80.4-93.0%, respectively. Moreover, the optimal addition of volatile organic acids enhanced lipids production by 3.9-6.3 times, while achieving higher saturation degree in biodiesels. The results suggest that adding these optimal volatile organic acids is suitable to enhance nutrients recycling and algal biodiesel production from anaerobically digested waste sludge.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China.
| | - Jing Meng
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Zhuo Tang
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Li-Bin Yang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen-Wen Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
35
|
The past, present and future of algal continuous cultures in basic research and commercial applications. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Peralta E, Jerez CG, Figueroa FL. Centrate grown Chlorella fusca (Chlorophyta): Potential for biomass production and centrate bioremediation. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Marazzi F, Bellucci M, Rossi S, Fornaroli R, Ficara E, Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101430] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Han J, Thomsen L, Pan K, Thomsen C. Two-step process: Enhanced strategy for wastewater treatment using microalgae. BIORESOURCE TECHNOLOGY 2018; 268:608-615. [PMID: 30138873 DOI: 10.1016/j.biortech.2018.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Microalgae possess many advantages, but the lack of a suitable strategy to simultaneously facilitate their low cost cultivation and high value productions limits their commercial applications. In this study, two microalgae strains (RT_C and RT_F) isolated from a municipal wastewater treatment plant were used to establish a two-step wastewater treatment process. During step-1, RT_C was cultivated in composite wastewater due to its high tolerance of sludge centrate; followed by step-2, in which the supernatant generated from RT_C culture was used to cultivate RT_F. The NH4+-N, PO43--P, and COD in the wastewater were removed almost completely using this strategy. Moreover, the majority of the metal ions in the wastewater were absorbed by RT_C during step-1, and thus the powdered RT_F only contained low levels of toxic metals. Our results demonstrate that this two-step process is effective for removing pollutants and while generating a powder sufficiently clean for extracting valuable compounds.
Collapse
Affiliation(s)
- Jichang Han
- Jacbos University of Bremen, Bremen 28759, Germany.
| | | | - Kehou Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | | |
Collapse
|
39
|
Zhao X, Kumar K, Gross MA, Kunetz TE, Wen Z. Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility. WATER RESEARCH 2018; 143:467-478. [PMID: 29986255 DOI: 10.1016/j.watres.2018.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
This work is to evaluate pilot-scale Revolving Algal Biofilm (RAB) reactors of two heights (0.9-m and 1.8-m tall) to treat supernatant from sludge sedimentation at Metropolitan Water Reclamation District of Greater Chicago (MWRD) for removing nutrients (N and P) as well as various metals. The RAB reactors demonstrated a superior performance in N and P removal as compared to control raceway ponds. Taller 1.8-m RAB reactors performed better than 0.9-m RAB reactors in terms of total nutrient removal and algal biomass productivity. At 7-day HRT, total P (TP) and Total Kjeldahl N (TKN) removal efficiency reached to 80% and 87%, respectively, while ortho-P and ammonia removal efficiency reached to 100%. Decreasing HRT led to an enhanced TP and TKN removal rate and nutrient removal capacity. At HRT of 1.3-day, the TP removal per footprint of 1.8-m tall RAB reactors was around 7-times higher than the open pond system. The RAB reactors also showed certain capabilities of removing metals from wastewater. The study demonstrated that RAB-based treatment process is an effective method to recover nutrients from municipal wastewater.
Collapse
Affiliation(s)
- Xuefei Zhao
- Gross-Wen Technologies Inc, 2710 S. Loop Dr. Suite 2017, Ames, IA, 50010, USA
| | - Kuldip Kumar
- Metropolitan Water Reclamation District of Greater Chicago, 100 East Erie Street, Chicago, IL, 60611, USA
| | - Martin A Gross
- Gross-Wen Technologies Inc, 2710 S. Loop Dr. Suite 2017, Ames, IA, 50010, USA; Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Ln, Ames, IA, 50011, USA
| | - Thomas E Kunetz
- Metropolitan Water Reclamation District of Greater Chicago, 100 East Erie Street, Chicago, IL, 60611, USA
| | - Zhiyou Wen
- Gross-Wen Technologies Inc, 2710 S. Loop Dr. Suite 2017, Ames, IA, 50010, USA; Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Ln, Ames, IA, 50011, USA.
| |
Collapse
|
40
|
|