1
|
Tong B, Yu Y, Shi S. Rhodotorula sp. as a promising host for microbial cell factories. Metab Eng 2025; 90:178-196. [PMID: 40139654 DOI: 10.1016/j.ymben.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Rhodotorula sp. is a red yeast that has emerged as a promising host for microbial cell factories. Under specific conditions, Rhodotorula sp. can accumulate lipids that constitute over 70% of its dry cell weight, underscoring its potential in lipid compound production. Additionally, it can utilize a variety of carbon sources, including glucose, xylose, and volatile fatty acids, and exhibits high tolerance to low-cost carbon sources and industrial by-products, showcasing its excellent performance in industrial processes. Furthermore, the native mevalonate pathway of Rhodotorula sp. enables its efficient synthesis of antioxidant carotenoids and other terpenoids, which are widely applied in the food, pharmaceutical, and cosmetic industries. Due to its excellent accumulation ability of lipophilic compounds, metabolic diversity, and environmental adaptability, this review summarizes recent advances in genetic elements and metabolic engineering technologies for Rhodotorula sp., emphasizing its potential as a chassis cell factory for the production of lipids, carotenoids, and other chemicals. It also highlights key factors influencing commercial fermentation processes and concludes with challenges and solutions for further developing Rhodotorula sp. as microbial chassis.
Collapse
Affiliation(s)
- Baisong Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China
| | - Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China.
| |
Collapse
|
2
|
Yu BS, Pyo S, Lee J, Han K. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact 2024; 23:308. [PMID: 39543605 PMCID: PMC11566087 DOI: 10.1186/s12934-024-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO2 reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seonju Pyo
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kyudong Han
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
| |
Collapse
|
3
|
Rosas-Paz M, Zamora-Bello A, Torres-Ramírez N, Villarreal-Huerta D, Romero-Aguilar L, Pardo JP, El Hafidi M, Sandoval G, Segal-Kischinevzky C, González J. Nitrogen limitation-induced adaptive response and lipogenesis in the Antarctic yeast Rhodotorula mucilaginosa M94C9. Front Microbiol 2024; 15:1416155. [PMID: 39161597 PMCID: PMC11330776 DOI: 10.3389/fmicb.2024.1416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The extremotolerant red yeast Rhodotorula mucilaginosa displays resilience to diverse environmental stressors, including cold, osmolarity, salinity, and oligotrophic conditions. Particularly, this yeast exhibits a remarkable ability to accumulate lipids and carotenoids in response to stress conditions. However, research into lipid biosynthesis has been hampered by limited genetic tools and a scarcity of studies on adaptive responses to nutrient stressors stimulating lipogenesis. This study investigated the impact of nitrogen stress on the adaptive response in Antarctic yeast R. mucilaginosa M94C9. Varied nitrogen availability reveals a nitrogen-dependent modulation of biomass and lipid droplet production, accompanied by significant ultrastructural changes to withstand nitrogen starvation. In silico analysis identifies open reading frames of genes encoding key lipogenesis enzymes, including acetyl-CoA carboxylase (Acc1), fatty acid synthases 1 and 2 (Fas1/Fas2), and acyl-CoA diacylglycerol O-acyltransferase 1 (Dga1). Further investigation into the expression profiles of RmACC1, RmFAS1, RmFAS2, and RmDGA1 genes under nitrogen stress revealed that the prolonged up-regulation of the RmDGA1 gene is a molecular indicator of lipogenesis. Subsequent fatty acid profiling unveiled an accumulation of oleic and palmitic acids under nitrogen limitation during the stationary phase. This investigation enhances our understanding of nitrogen stress adaptation and lipid biosynthesis, offering valuable insights into R. mucilaginosa M94C9 for potential industrial applications in the future.
Collapse
Affiliation(s)
- Miguel Rosas-Paz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Alberto Zamora-Bello
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Bioquímicas, Unidad de Posgrado, Ciudad Universitaria, Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Villarreal-Huerta
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados, Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Guadalajara, Mexico
| | - Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Zain NAA, Kahar P, Sudesh K, Ogino C, Kondo A. Production of single cell oil by Lipomyces starkeyi from waste plant oil generated by the palm oil mill industry. J Biosci Bioeng 2024; 138:153-162. [PMID: 38777650 DOI: 10.1016/j.jbiosc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.
Collapse
Affiliation(s)
- Noor-Afiqah Ahmad Zain
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation (STIN), Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Nautiyal AK, Priyanka, Paul P, Raut S, Bhaskar T, Chowdhury N, Khatri N, Ghosh D. Bioproduction of yeast single cell oil with acute oral toxicity study intended for edible oil application. World J Microbiol Biotechnol 2024; 40:211. [PMID: 38777956 DOI: 10.1007/s11274-024-03976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.
Collapse
Affiliation(s)
- Abhilek K Nautiyal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand, 248005, India
| | - Priyanka
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pranoy Paul
- Multidisciplinary Research Unit, All India Institute of Medical Sciences, Rishikesh, 249203, India
| | - Sachin Raut
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nilotpal Chowdhury
- Multidisciplinary Research Unit, All India Institute of Medical Sciences, Rishikesh, 249203, India
| | - Neeraj Khatri
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Kong M, Zhao W, Wang C, Qi J, Liu J, Zhang Q. A Well-Established Gut Microbiota Enhances the Efficiency of Nutrient Metabolism and Improves the Growth Performance of Trachinotus ovatus. Int J Mol Sci 2024; 25:5525. [PMID: 38791564 PMCID: PMC11121967 DOI: 10.3390/ijms25105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The gut microbiota has become an essential component of the host organism and plays a crucial role in the host immune system, metabolism, and physiology. Nevertheless, our comprehension of how the fish gut microbiota contributes to enhancing nutrient utilization in the diet and improving host growth performance remains unclear. In this study, we employed a comprehensive analysis of the microbiome, metabolome, and transcriptome to analyze intestines of the normal control group and the antibiotic-treated model group of T. ovatus to investigate how the gut microbiota enhances fish growth performance and uncover the underlying mechanisms. First, we found that the growth performance of the control group was significantly higher than that of the antibiotic-treated model under the same feeding conditions. Subsequent multiomics analyses showed that the gut microbiota can improve its own composition by mediating the colonization of some probiotics represented by Lactobacillus in the intestine, improving host metabolic efficiency with proteins and lipids, and also influencing the expression of genes in signaling pathways related to cell proliferation, which together contribute to the improved growth performance of T. ovatus. Our results demonstrated the important contribution of gut microbiota and its underlying molecular mechanisms on the growth performance of T. ovatus.
Collapse
Affiliation(s)
- Miao Kong
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Wendong Zhao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Cong Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jie Qi
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jinxiang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Quanqi Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Lei Y, Wang X, Sun S, He B, Sun W, Wang K, Chen Z, Guo Z, Li Z. A review of lipid accumulation by oleaginous yeasts: Culture mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170385. [PMID: 38364585 DOI: 10.1016/j.scitotenv.2024.170385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
Microbial lipids have attracted considerable interest owing to their favorable environmental sustainability benefits. In laboratory-scale studies, the factors impacting lipid production in oleaginous yeasts, including culture conditions, nutrients, and low-cost substrates, have been extensively studied. However, there were several different modes of microbial lipid cultivation (batch culture, fed-batch culture, continuous culture, and other novel culture modes), making it difficult to comprehensively analyze impacting factors under different cultivation modes on a laboratory scale. And only few cases of microbial lipid production have been conducted at the pilot scale, which requires more technological reliability assessments and environmental benefit evaluations. Thus, this study summarized the different culture modes and cases of scale-up processes, highlighting the role of the nutrient element ratio in regulating culture mode selection and lipid accumulation. The cost distribution and environmental benefits of microbial lipid production by oleaginous yeasts were also investigated. Our results suggested that the continuous culture mode was recommended for the scale-up process because of its stable lipid accumulation. More importantly, exploring the continuous culture mode integrated with other efficient culture modes remained to be further investigated. In research on scale-up processes, low-cost substrate (organic waste) application and optimization of reactor operational parameters were key to increasing environmental benefits and reducing costs.
Collapse
Affiliation(s)
- Yuxin Lei
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Shushuang Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| | - Bingyang He
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Wenjin Sun
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Kexin Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhengxian Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
| | - Zhiling Guo
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
8
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, Lam MK, Lim JW, Tong WY, Bashir MJK, Ravindran B, Alsufi NA. Advancements of microalgal upstream technologies: Bioengineering and application aspects in the paradigm of circular bioeconomy. CHEMOSPHERE 2023; 339:139699. [PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan.
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Nizar Abdallah Alsufi
- Department of Management Information System and Production Management, College of Business & Economics, Qassim University, P.O. BOX 6666, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
10
|
Liu Q, Li Y, Hou W, Zhang B, Bao J. Cellulase mediated stress triggers the mutations of oleaginous yeast Trichosporon cutaneum with super-large spindle morphology and high lipid accumulation. Biotechnol J 2023; 18:e2300091. [PMID: 37182226 DOI: 10.1002/biot.202300091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
Accumulation of intracellular lipid bodies in oleaginous yeast cells is highly restricted by their natural intracellular space. Here we show a cellulase mediated adaptive evolution with ultra-centrifugation fractionation of oleaginous yeast Trichosporon cutaneum to obtain the favorable cell structure for lipid accumulation. Cellulase was added to the wheat straw hydrolysate during long-term adaptive evolution for disruption of cell wall integrity of T. cutaneum cells. The cellulase, together with ultracentrifugation force, triggered multiple mutations and transcriptional expression changes of the functional genes associated with cell wall integrity and lipid synthesis metabolism. The fractionated mutant T. cutaneum YY52 demonstrated the heavily weakened cell wall and high lipid accumulation by the super-large expanded spindle cells (two orders of magnitude greater than the parental). A record-high lipid production by T. cutaneum YY52 was achieved (55.4 ± 0.5 g L-1 from wheat straw and 58.4 ± 0.1 g L-1 from corn stover). This study not only obtained an oleaginous yeast strain with industrial application potential for lipid production but also provided a new method for generation of mutant cells with high intracellular metabolite accumulation.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanyuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiliang Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
12
|
Integrative analysis of genomic and metabolomic data reveals key metabolic pathways involved in lipid and carotenoid biosynthesis in oleaginous red yeast Rhodosporidiobolus odoratus XQR. Microbiol Res 2023; 270:127339. [PMID: 36827895 DOI: 10.1016/j.micres.2023.127339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Rhodosporidiobolus odoratus, one of the oleaginous red yeasts, is gaining biotechnological importance for their ability to produce microbial lipids and carotenoids. However, to date, the genomic resource underling lipid and carotenoid biosynthesis in R. odoratus has not been reported. Here, we reported the first genome assembly of R. odoratus using a combination of PacBio and Illumina techniques. The final genome assembly is 23.74 Mb in size, containing 52 scaffolds with a N50 length of 1200,460 bp and a GC content of 56.90%. Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment showed that our assembly contains 94.23% of Basidiomycota universal single-copy orthologs. The genome was predicted to contain 4986 protein-coding genes, 4967 of which were functionally annotated. Metabolomic profiling identified 574 lipids, 3 carotenoids, and 208 volatile organic compounds synthesized by R. odoratus. Integrative analysis of genomics and metabolomics provides insights into the biosynthesis of lipid, carotenoid, and other bioactive compounds in R. odoratus. Collectively, the results presented herein greatly enhance our understanding of R. odoratus in lipids and carotenoids biosynthesis, and thus further accelerate its fundamental molecular investigations and biotechnological applications.
Collapse
|
13
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|
14
|
Park MR, Gauttam R, Fong B, Chen Y, Lim HG, Feist AM, Mukhopadhyay A, Petzold CJ, Simmons BA, Singer SW. Revealing oxidative pentose metabolism in new Pseudomonas putida isolates. Environ Microbiol 2023; 25:493-504. [PMID: 36465038 PMCID: PMC10107873 DOI: 10.1111/1462-2920.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.
Collapse
Affiliation(s)
- Mee-Rye Park
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rahul Gauttam
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bonnie Fong
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyun Gyu Lim
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Adam M Feist
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Gutiérrez-Hernández CA, Hernández-Almanza A, Hernández-Beltran JU, Balagurusamy N, Hernández-Teran F. Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Singhvi M, Kim BS. Green hydrogen production through consolidated bioprocessing of lignocellulosic biomass using nanobiotechnology approach. BIORESOURCE TECHNOLOGY 2022; 365:128108. [PMID: 36270388 DOI: 10.1016/j.biortech.2022.128108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to develop a sustainable process for hydrogen production by implementing nanotechnology in combination with consolidated bioprocessing (CBP) approach from lignocellulosic biomass (LCB). Peroxidase mimicking CeFe3O4 nanoparticles (NPs, 4.0 g/L) were applied for degradation of lignin from raw corn cob (CC) biomass for generation of cellulose-hemicellulose fractions amenable towards Clostridium cellulovorans during fermentation process. NP-treated biomass exhibited 43.26 % lignin removal from raw CC which was further employed for hydrogen fermentation by C. cellulovorans through CBP method. The strain yielded maximum 78.45 mL of cumulative hydrogen with hydrogen production rate of 1.55 mL/h using NP-treated CC. To the best of our knowledge, this is the first study on enhanced hydrogen production using NP-treated CC biomass in single pot fermentation which can prove to be a simpler, easier, and more economical process.
Collapse
Affiliation(s)
- Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
17
|
Gong G, Wu B, Liu L, Li J, He M, Hu G. Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source. BIORESOURCE TECHNOLOGY 2022; 364:128139. [PMID: 36252765 DOI: 10.1016/j.biortech.2022.128139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Microbial biomass and lipid production with mixed-culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source was investigated. Synergistic effect of mixed-culture using 20 g/L acetate significantly promoted cell growth and acetate utilization efficiency. Increasing the proportion of algae in co-culture was beneficial for biomass and lipid accumulation and the optimal ratio of yeast/algae was 1:2. Light exposure further enhanced biomass and lipid titer with 6.9 g/L biomass and 2.6 g/L lipid (38.3 % lipid content) obtained in a 5L bioreactor. The results of lipid classes and fatty acid profiles moreover indicated that more neutral lipids and linolenic acid were synthesized in mixed-culture under light exposure condition, suggesting the great potential in applications of biofuels production. This study provided new insight and strategy for economical microbial biomass and lipid production by light-exposed mixed-culture using inexpensive acetate as carbon source.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
18
|
Saini R, Osorio-Gonzalez CS, Hegde K, Kaur Brar S, Vezina P. A co-fermentation strategy with wood hydrolysate and crude glycerol to enhance the lipid accumulation in Rhodosporidium toruloides-1588. BIORESOURCE TECHNOLOGY 2022; 364:127821. [PMID: 36007764 DOI: 10.1016/j.biortech.2022.127821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Wood hydrolysate has been regarded as sustainable and renewable substrate to produce microbial lipids, a potential feedstock for the biodiesel industry. Moreover, the major by-product of biofuel industries is crude glycerol but its implementation as a carbon source is still constrained due to the presence of impurities resulting in low biomass production and low lipid titer. Thus, this study investigates the effect of different carbon ratios of hydrolysate and crude glycerol on R. toruloides-1588. Hydrolysate to crude glycerol ratio of 60:40 resulted in maximum lipid accumulation of 49% (w/w), more than 90% of sugars and glycerol consumption. Further, scale-up to bench-scale fermenter resulted in 12% higher lipid accumulation (56.3% w/w, 0.15 g/L∙h) in 50% less time than flask fermentation. Hence, the ability of R. toruloides-1588 to flourish on different carbohydrates and accumulate high lipid content will be beneficial for the further development of biorefinery industries.
Collapse
Affiliation(s)
- Rahul Saini
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos Saul Osorio-Gonzalez
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Pierre Vezina
- Director of Energy and the Environment, Council of the Quebec Forestry Industry, 1175 Avenue Lavigerie Suite 200, Quebec G1V 4P1, Canada
| |
Collapse
|
19
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022; 8:e11505. [DOI: 10.1016/j.heliyon.2022.e11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
|
20
|
Singh R, Paritosh K, Pareek N, Vivekanand V. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. BIORESOURCE TECHNOLOGY 2022; 360:127596. [PMID: 35809870 DOI: 10.1016/j.biortech.2022.127596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Agricultural and food waste have become major issue affecting the environment and climate owing to growing population. However, such wastes have potential to produce renewable fuels which will help to meet energy demands. Numerous valorization pathways like anaerobic digestion, pyrolysis, composting and landfilling have been employed for treating such wastes. However, it requires integrated system that could utilize waste and promote circular bioeconomy. This review explores integration of anaerobic digestion and pyrolysis for treating agricultural and food waste. Proposed system examines the production of biochar and pyro-oil by pyrolysis of digestate. The use of this biochar for stabilizing anaerobic digestion process, biogas purification and soil amendment will promote the circular bioeconomy. Kinetic models and framework of techno-economic analysis of system were discussed and knowledge gaps have been identified for future research. This system will provide sustainable approach and offer carbon capture and storage in form of biochar in soil.
Collapse
Affiliation(s)
- Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Kunwar Paritosh
- Hybred Energy Solutions Private Limited, Gift City, Gandhinagar 382007, Gujarat, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
21
|
Osorio-González CS, Saini R, Hegde K, Brar SK, Avalos Ramirez A. Furfural degradation and its effect on Rhodosporidium toruloides-1588 during microbial growth and lipid accumulation. BIORESOURCE TECHNOLOGY 2022; 359:127496. [PMID: 35718247 DOI: 10.1016/j.biortech.2022.127496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The presence of furfural in the hydrolysates obtained from lignocellulosic biomass sources represents an enormous challenge during their fermentation because furfural is a toxic compound for different microorganisms. Rhodosporidium toruloides-1588 can grow and accumulate lipids using wood hydrolysate as a substrate containing up to 1 g/L of furfural. In this study, the capacity of R. toruloides-1588 to grow and accumulate lipids using furfural without glucose in the media has been observed. R. toruloides-1588 degraded up to 3 g/L of furfural into furfuryl alcohol (1.8 g/L) and 2-furoic acid (0.9 g/L). Furthermore, R. toruloides-1588 accumulated 52% and 30% of its dry weight into lipids using YM media and YM media without glucose, respectively. Fatty acids such as palmitic, stearic and oleic were the most abundant. Finally, R. toruloides-1588 could potentially utilize furfural as a carbon source.
Collapse
Affiliation(s)
- Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en technologies environnementales, 2263, Avenue du Collège, Shawinigan, G9N 6V8, QC, Canada
| |
Collapse
|
22
|
Lu R, Cao L, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce advanced biofuels: Current status and perspectives. BIORESOURCE TECHNOLOGY 2021; 341:125877. [PMID: 34523574 DOI: 10.1016/j.biortech.2021.125877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Energy security and global climate change have necessitated the development of renewable energy with net-zero emissions. As alternatives to traditional fuels used in heavy-duty vehicles, advanced biofuels derived from fatty acids and terpenes have similar properties to current petroleum-based fuels, which makes them compatible with existing storage and transportation infrastructures. The fast development of metabolic engineering and synthetic biology has shown that microorganisms can be engineered to convert renewable feedstocks into these advanced biofuels. The oleaginous yeast Yarrowia lipolytica is rapidly emerging as a valuable chassis for the sustainable production of advanced biofuels derived from fatty acids and terpenes. Here, we provide a summary of the strategies developed in recent years for engineering Y. lipolytica to synthesize advanced biofuels. Finally, efficient biotechnological strategies for the production of these advanced biofuels and perspectives for future research are also discussed.
Collapse
Affiliation(s)
- Ran Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lizhen Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
23
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
24
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144429. [PMID: 33385808 DOI: 10.1016/j.scitotenv.2020.144429] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly. Dark fermentation involves anaerobic microbes which degrade carbohydrate rich substrate and produce hydrogen. Lignocellulosic biomass is an abundantly available raw material and can be utilized as an economic and renewable substrate for biohydrogen production. Although there are many hurdles, continuous advancements in lignocellulosic biomass pretreatment technology, microbial fermentation (mixed substrate and co-culture fermentation), the involvement of molecular biology techniques, and understanding of various factors (pH, T, addition of nanomaterials) effect on biohydrogen productivity and yield render this technology efficient and capable to meet future energy demands. Further integration of biohydrogen production technology with other products such as bio-alcohol, volatile fatty acids (VFAs), and methane have the potential to improve the efficiency and economics of the overall process. In this article, various methods used for lignocellulosic biomass pretreatment, technologies in trends to produce and improve biohydrogen production, a coproduction of other energy resources, and techno-economic analysis of biohydrogen production from lignocellulosic biomass are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill 171005, H.P, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Andhra Pradesh 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
25
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
26
|
Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion. ENERGIES 2021. [DOI: 10.3390/en14030640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Olive mill wastewater (OMW), which is generated during olive oil production, has detrimental effects on the environment due to its high organic load and phenolic compounds content. OMW is difficult to biodegrade, but represents a valuable resource of nutrients for microbial growth. In this study, yeast strains were screened for their growth on phenolic compounds usually found in OMW and responsible for antimicrobial effects. Candida tropicalis ATCC 750 demonstrated an extraordinary capacity to grow in phenolics and was chosen for further experiments with OMW-based medium. The effects of nitrogen supplementation, the pH, and the stirring rate on cellular growth, OMW-components consumption, and added-value compounds production were studied in batch cultures in Erlenmeyer flasks and in a bioreactor. Candida tropicalis was able to reduce 68% of the organic load (chemical oxygen demand) and 39% of the total phenols of OMW in optimized conditions in bioreactor experiments, producing lipase (203 U·L−1) and protease (1105 U·L−1). Moreover, intracellular lipids were accumulated, most significantly under nitrogen-limited conditions, which is common in this type of wastewater. The high potential of C. tropicalis to detoxify OMW and produce added-value compounds from it makes this process an alternative approach to other conventional processes of OMW treatment.
Collapse
|
27
|
Zhang L, Loh KC, Kuroki A, Dai Y, Tong YW. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123543. [PMID: 32739727 DOI: 10.1016/j.jhazmat.2020.123543] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This review aims to encourage the technical development of microbial biodiesel production from industrial-organic-wastes-derived volatile fatty acids (VFAs). To this end, this article summarizes the current status of several key technical steps during microbial biodiesel production, including (1) acidogenic fermentation of bio-wastes for VFA collection, (2) lipid accumulation in oleaginous microorganisms, (3) microbial lipid extraction, (4) transesterification of microbial lipids into crude biodiesel, and (5) crude biodiesel purification. The emerging membrane-based bioprocesses such as electrodialysis, forward osmosis and membrane distillation, are promising approaches as they could help tackle technical challenges related to the separation and recovery of VFAs from the fermentation broth. The genetic engineering and metabolic engineering approaches could be applied to design microbial species with higher lipid productivity and rapid growth rate for enhanced fatty acids synthesis. The enhanced in situ transesterification technologies aided by microwave, ultrasound and supercritical solvents are also recommended for future research. Technical limitations and cost-effectiveness of microbial biodiesel production from bio-wastes are also discussed, in regard to its potential industrial development. Based on the overview on microbial biodiesel technologies, an integrated biodiesel production line incorporating all the critical technical steps is proposed for unified management and continuous optimization for highly efficient biodiesel production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
28
|
Yu M, Yang Q, Yuan X, Li Y, Chen X, Feng Y, Liu J. Boosting oxygen reduction and permeability properties of doped iron-porphyrin membrane cathode in microbial fuel cells. BIORESOURCE TECHNOLOGY 2021; 320:124343. [PMID: 33166886 DOI: 10.1016/j.biortech.2020.124343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
To achieve a membrane cathode with excellent performance, iron-porphyrin (Fe(por)) was doped to boost the catalytic and permeability properties in microbial fuel cell (MFC). The membrane cathode with the optimal 0.05 g of Fe(por) (denoted as Fe(por)-0.05) had the highest current density of 10.3 A m-2 and the lowest charge transfer resistance of 12.6 ± 0.3 Ω. The ring-disk electrode (RDE) results further proved that the oxygen reduction reaction (ORR) occurred on the Fe(por)-0.05 through a direct four-electron transfer pathway. Moreover, the membrane cathode performed better permeability properties under electric filed and the Fe(por)-0.05 + E (E was electric field) obtained the lowest flux attenuation ratio of 14.1 ± 0.2%, which was related to its superior hydrophilicity and strong electrostatic repulsion force. Iron-porphyrin can simultaneously enhance the ORR activity and permeability of membrane cathode, providing a new direction for the practical application in MFCs.
Collapse
Affiliation(s)
- Meiying Yu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qiao Yang
- School of Ocean Science and Technology, Dalian University of Technology, No. 2 Dagong Road, Panjin 124221, China
| | - Xiaole Yuan
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yunfei Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xuepeng Chen
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
29
|
Altun R, Esim N, Aykutoglu G, Baltaci MO, Adiguzel A, Taskin M. Production of linoleic acid‐rich lipids in molasses‐based medium by oleaginous fungus
Galactomyces geotrichum
TS61. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ramazan Altun
- Department of Molecular Biology and Genetics Science Faculty Ataturk University Erzurum Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics Science Faculty Bingol University Bingol Turkey
| | - Gurkan Aykutoglu
- Department of Molecular Biology and Genetics Science Faculty Bingol University Bingol Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics Science Faculty Ataturk University Erzurum Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics Science Faculty Ataturk University Erzurum Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics Science Faculty Ataturk University Erzurum Turkey
| |
Collapse
|
30
|
|
31
|
The Production of Lipids Using 5-Hydorxymethy Furfural Tolerant Rhodotorula graminis Grown on the Hydrolyzates of Steam Pretreated Softwoods. SUSTAINABILITY 2020. [DOI: 10.3390/su12030755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acid catalyzed (SO2) steam pretreated softwoods inevitably contain furans such as 5-hydorxymethy furfural (HMF) and furfural, which are derived from the respective degradation of component hexoses and pentoses. As these materials are known to be inhibitory to fermentation, six oleaginous yeasts were grown on corn steep liquor (CSL) medium containing HMF (0.2%) and furfural (0.1%) to assess their resistance to possible inhibition and its possible influence on lipid production. R. graminis showed the highest tolerance to HMF (0.2%) and furfural (0.1%) when they were added individually to the CSL medium. However, when both HMF (0.2%) and furfural (0.1%) were added together, this inhibited the growth of R. graminis. Subsequent evaporation of the CSL medium successfully removed furfural from the CSL medium and increased the sugar concentration. However, the residual concentration of HMF (0.4%) still inhibited R. graminis growth. To try to improve HMF tolerance, R. graminis was slowly acclimatized in medium containing HMF (0.4%) and was eventually able to produce 1.8 g/L of lipids after four days of growth in the HMF containing medium. This was close to the same amount of lipid produced as when R. graminis was grown in the CSL medium without HMF and furfural. This indicated that an acclimatization strategy is a promising way to enhance lipids production when R. graminis is grown on the hydrolyzates of SO2-catalyzed steam pretreated lignocellulosic substrates.
Collapse
|
32
|
Gong G, Zhang X, Tan T. Simultaneously enhanced intracellular lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis by light exposure with sodium acetate as the substrate. BIORESOURCE TECHNOLOGY 2020; 295:122274. [PMID: 31670113 DOI: 10.1016/j.biortech.2019.122274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, light exposure was applied to simultaneously enhance lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis with sodium acetate as the sole carbon source. The results showed that cell growth, intracellular lipogenesis and carotene biosynthesis were improved with an optimal exposure condition at 10 g/L and 20 g/L sodium acetate. Under high light exposure condition (8000 lx), cell growth and lipid production were inhibited while β-carotene accumulation was promoted. The fatty acid compositions moreover revealed that more polyunsaturated fatty acids and linoleic acid were generated under light exposure, which demonstrated its crucial role in the oxidative stress resistance in R. glutinis. The expression levels of some genes in acetate consumption, lipogenesis and β-carotene biosynthesis were found significantly upregulated under light exposure. The results proved that light exposure could be applied as an effective method to improve lipid and β-carotene production with sodium acetate as the substrate in R. glutinis.
Collapse
Affiliation(s)
- Guiping Gong
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
33
|
Yu Y, Xu Z, Chen S, Jin M. Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis. BIORESOURCE TECHNOLOGY 2020; 295:122253. [PMID: 31630000 DOI: 10.1016/j.biortech.2019.122253] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Microbial lipid production from lignocellulosic biomass has attracted much attention recently. In this study, T. dermatis 32903 was selected from eleven promising oleaginous yeast strains. Carbon to nitrogen ratio (C/N) was investigated and optimized to maximize lipid production. Dilute acid (DA) pretreated corn stover (CS) and dilute alkali (AL) pretreated CS were then used for microbial lipid production, resulting in lipid concentrations of 7.46 g/L and 6.81 g/L, with sugar to lipid yields reached 0.104 g/g and 0.101 g/g, respectively. Washing of DA-CS and AL-CS enhanced lipid production to 11.43 g/L and 20.36 g/L with sugar to lipid yields improved to 0.156 g/g and 0.186 g/g, respectively. As degradation products in pretreated biomass showed severe inhibition on lipid fermentation, eight typical degradation products were further investigated for their effects on lipid fermentation. T. dermatis 32903 exhibited high tolerance to furan derivatives and week acids, but lower tolerance to phenolic compounds.
Collapse
Affiliation(s)
- Yang Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
34
|
Park S, Nguyen THT, Jin E. Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. BIORESOURCE TECHNOLOGY 2019; 292:121953. [PMID: 31405625 DOI: 10.1016/j.biortech.2019.121953] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 05/16/2023]
Abstract
Over the past decade, the number of original articles and reviews presenting microalgae as a promising feedstock for biodiesel has increased tremendously. Many improvements of microalgae have been achieved through selection and strain development for industrial applications. However, the large-scale production of lipids for commercialization is not yet realistic because the production is still much more expensive than that of agricultural products. This review summarizes recent research on the induction of lipid biosynthesis in microalgae and the various strategies of genetic and metabolic engineering for enhancing lipid production. Strain engineering targets are proposed based on these strategies. To address current limitations of strain engineering for lipid production, this review provides insights on recent engineering strategies based on molecular tools and methods, and also discusses further perspectives.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Thu Ha Thi Nguyen
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Patel A, Rova U, Christakopoulos P, Matsakas L. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:255. [PMID: 31687043 PMCID: PMC6820942 DOI: 10.1186/s13068-019-1593-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/16/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recent evidence points to the nutritional importance of docosahexaenoic acid (DHA) in the human diet. Thraustochytrids are heterotrophic marine oleaginous microorganisms capable of synthesizing high amounts of DHA, as well as other nutraceutical compounds such as squalene, in their cellular compartment. Squalene is a natural triterpene and an important biosynthetic precursor to all human steroids. It has a wide range of applications in the cosmetic and pharmaceutical industries, with benefits that include boosting immunity and antioxidant activity. Apart from its nutritional quality, it can also be utilized for high-grade bio-jet fuel by catalytic conversion. RESULTS In the present study, the potential of thraustochytrid strain Aurantiochytrium sp. T66 to produce DHA and squalene was evaluated. When the strain was cultivated on organosolv-pretreated birch hydrolysate (30 g/L glucose) in flask, it resulted in 10.39 g/L of cell dry weight and 4.98 g/L of total lipids, of which 25.98% was DHA. In contrast, when the strain was grown in a bioreactor, cell dry weight, total lipid, and DHA increased to 11.24 g/L, 5.90 g/L, and 35.76%, respectively. The maximum squalene yield was 69.31 mg/gCDW (0.72 g/L) when the strain was cultivated in flask, but it increased to 88.47 mg/gCDW (1.0 g/L), when cultivation shifted to a bioreactor. CONCLUSIONS This is the first report demonstrating the utilization of low cost non-edible lignocellulosic feedstock to cultivate the marine oleaginous microorganism Aurantiochytrium sp. for the production of nutraceutical vital compounds. Owing to the simultaneous generation of DHA and squalene, the strain is suitable for industrial-scale production of nutraceuticals.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
36
|
Wang Y, Yan R, Tang L, Zhu L, Zhu D, Bai F. Dimorphism of Trichosporon cutaneum and impact on its lipid production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:203. [PMID: 31485269 PMCID: PMC6714079 DOI: 10.1186/s13068-019-1543-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Compared to the oleaginous yeast Yarrowia lipolytica, Trichosporon cutaneum can metabolize pentose sugars more efficiently, and in the meantime is more tolerant to inhibitors, which is suitable for lipid production from lignocellulosic biomass. However, this species experiences dimorphic transition between yeast-form cells and hyphae during submerged fermentation, which consequently affects the rheology and mass transfer performance of the fermentation broth and its lipid production. RESULTS The strain T. cutaneum B3 was cultured with medium composed of yeast extract, glucose and basic minerals. The experimental results indicated that yeast-form morphology was developed when yeast extract was supplemented at 1 g/L, but hyphae were observed when yeast extract supplementation was increased to 3 g/L and 5 g/L, respectively. We speculated that difference in nitrogen supply to the medium might be a major reason for the dimorphic transition, which was confirmed by the culture with media supplemented with yeast extract at 1 g/L and urea at 0.5 g/L and 1.0 g/L to maintain total nitrogen at same levels as that detected in the media with yeast extract supplemented at 3 g/L and 5 g/L. The morphological change of T. cutaneum B3 affected not only the content of intracellular lipids but also their composition, due to its impact on the rheology and oxygen mass transfer performance of the fermentation broth, and more lipids with less polyunsaturated fatty acids such as linoleic acid (C18:2) were produced by the yeast-form cells. When T. cutaneum B3 was cultured at an aeration rate of 1.5 vvm for 72 h with the medium composed of 60 g/L glucose, 3 g/L yeast extract and basic minerals, 27.1 g (dry cell weight)/L biomass was accumulated with the lipid content of 46.2%, and lipid productivity and yield were calculated to be 0.174 g/L/h and 0.21 g/g, respectively. Comparative transcriptomics analysis identified differently expressed genes for sugar metabolism and lipid synthesis as well as signal transduction for the dimorphic transition of T. cutaneum B3. CONCLUSIONS Assimilable nitrogen was validated as one of the major reasons for the dimorphic transition between yeast-form morphology and hyphae with T. cutaneum, and the yeast-form morphology was more suitable for lipid production at high content with less polyunsaturated fatty acids as feedstock for biodiesel production.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240 China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Lijuan Tang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Libin Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Du Zhu
- School of Life Science, Jiangxi Science and Technology Normal University, 605 Fenglin Rd., Nanchang, 330013 China
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, School of Life Science, Jiangxi Normal University, 99 Ziyang Rd., Nanchang, 330022 China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240 China
| |
Collapse
|
37
|
Ertuğrul Karatay S, Demiray E, Dönmez G. Efficient approaches to convert Coniochaeta hoffmannii lipids into biodiesel by in-situ transesterification. BIORESOURCE TECHNOLOGY 2019; 285:121321. [PMID: 30974382 DOI: 10.1016/j.biortech.2019.121321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Coniochaeta hoffmannii was isolated from soils contaminated with biscuit factory wastes showed the maximum lipid accumulation capacity in the study. Lipid production was optimized in terms of pH, carrot pomace loading, nitrogen type and amount, incubation time. Solvent, alcohol type and catalyst concentration, dried/wet biomass concentration, reaction approaches and time were optimized for lipid extraction and transesterification. The highest lipid accumulation was found as 52.0% at pH 4 in the presence of 10% carrot pomace, 0.5 g/L cheese whey at the end of the 48 h incubation. The maximum total C16 and C18 FAME rates were detected at the 25 °C, in the presence of 4 g/L dried C. hoffmannii biomass, methanol and 3% NaOH by using the in-situ transesterification process at the end of the 0.5 h as 96.3%. This is the first report about the usage of C. hoffmannii lipids obtained from carrot pomace for sustainable biodiesel production.
Collapse
Affiliation(s)
- Sevgi Ertuğrul Karatay
- Department of Biology, Faculty of Science, Ankara University, 06100 Beşevler, Ankara, Turkey.
| | - Ekin Demiray
- Department of Biology, Faculty of Science, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Gönül Dönmez
- Department of Biology, Faculty of Science, Ankara University, 06100 Beşevler, Ankara, Turkey
| |
Collapse
|
38
|
Prioretti L, Carriere F, Field B, Avilan L, Montané MH, Menand B, Gontero B. Targeting TOR signaling for enhanced lipid productivity in algae. Biochimie 2019; 169:12-17. [PMID: 31265860 DOI: 10.1016/j.biochi.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
Microalgae can produce large quantities of triacylglycerols (TAGs) and other neutral lipids that are suitable for making biofuels and as feedstocks for green chemistry. However, TAGs accumulate under stress conditions that also stop growth, leading to a trade-off between biomass production and TAG yield. Recently, in the model marine diatom Phaeodactylum tricornutum it was shown that inhibition of the target of rapamycin (TOR) kinase boosts lipid productivity by promoting TAG production without stopping growth. We believe that basic knowledge in this emerging field is required to develop innovative strategies to improve neutral lipid accumulation in oleaginous microalgae. In this minireview, we discuss current research on the TOR signaling pathway with a focus on its control on lipid homeostasis. We first provide an overview of the well characterized roles of TOR in mammalian lipogenesis, adipogenesis and lipolysis. We then present evidence of a role for TOR in controlling TAG accumulation in microalgae, and draw parallels between the situation in animals, plants and microalgae to propose a model of TOR signaling for TAG accumulation in microalgae.
Collapse
Affiliation(s)
- Laura Prioretti
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Frédéric Carriere
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Marie-Hélène Montané
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France.
| |
Collapse
|
39
|
Vyas S, Chhabra M. Assessing oil accumulation in the oleaginous yeast Cystobasidium oligophagum JRC1 using dairy waste cheese whey as a substrate. 3 Biotech 2019; 9:173. [PMID: 30997310 DOI: 10.1007/s13205-019-1701-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/02/2019] [Indexed: 10/27/2022] Open
Abstract
This study assesses the potential for the lipid production by the oleaginous yeast Cystobasidium oligophagum JRC1 using dairy industry waste cheese whey as a substrate. Cheese whey was used either untreated (UCW) or deproteinized (DCW) at different concentrations (25-100%) to serve as the carbon and energy source. Both UCW and DCW supported high biomass and lipid productivities. The biomass productivity of 0.076 ± 0.0004 and 0.124 ± 0.0021 g/L h, lipid productivity of 0.0335 ± 0.0004 and 0.0272 ± 0.0008 g/L h, and the lipid content of 44.12 ± 0.84 and 21.79 ± 1.00% were achieved for 100% DCW and UCW, respectively. The soluble chemical oxygen demand (sCOD) removal rate was 8.049 ± 0.198 and 10.61 ± 0.0165 g/L day (84.91 ± 0.155 and 86.82 ± 0.067% removal) for 100% DCW and UCW, respectively. Fatty acid methyl ester (FAME) composition obtained using GC-FID studies revealed the presence of C16 and C18 fatty acid in the lipid extract and the biodiesel properties were found to be in accordance with ASTM and EN standards. The study presents a method for the valorization of cheese whey waste into a feasible feedstock for biodiesel.
Collapse
|
40
|
Tonato D, Luft L, Confortin TC, Zabot GL, Mazutti MA. Enhancement of fatty acids in the oil extracted from the fungus Nigrospora sp. by supercritical CO2 with ethanol as a cosolvent. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Patel A, Matsakas L. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. ULTRASONICS SONOCHEMISTRY 2019; 52:364-374. [PMID: 30559080 DOI: 10.1016/j.ultsonch.2018.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
There are only a few reports available about the assimilation of hydrophobic substrates by microorganisms, however, it is well known that oleaginous microorganisms are capable of utilizing both hydrophilic and hydrophobic substrates and accumulate lipids via two different pathways namely de novo and ex novo lipid synthesis, respectively. In the present study, an oleaginous yeast, Cryptococcus curvatus, was investigated for its potentials to utilize a waste substrate of hydrophobic nature (waste cooking oil - WCO) and compared with its ability to utilize a hydrophilic carbon source (glucose). To facilitate the utilization of WCO by C. curvatus, the broth was sonicated to form a stable oil-in-water emulsion without adding any emulsifier, which was then compared with WCO samples without any ultrasound treatment (unsonicated) for the yeast cultivation. Ultrasonication reduces the size of hydrophobic substrates and improves their miscibility in an aqueous broth making them easily assimilated by oleaginous yeast. Under de novo lipid fermentation, the yeast synthesized 9.93 ± 0.84 g/L of cell dry weight and 5.23 ± 0.49 g/L lipids (lipid content of 52.66 ± 0.93% w/w) when cultivated on 40 g/L of glucose (C/N ratio of 40). The amount of cell dry weight, lipid concentration, and lipid content were considerably higher during the ex novo lipid synthesis. More specifically, the highest lipid content achieved was 70.13 ± 1.65% w/w with a corresponding dry cell weight and lipid concentration of 18.62 ± 0.76 g/L and 13.06 ± 0.92 g/L respectively, when grown on 20 g/L sonicated WCO. The highest lipid concentration, however, was observed when the yeast was cultivated on 40 g/L sonicated WCO. Under these conditions, 20.34 g/L lipids were produced with a lipid content of 57.05% w/w. On the other hand, lipid production with unsonicated WCO was significant lower, reaching 11.16 ± 1.02 g/L (69.14 ± 1.34% w/w of lipid content) and 12.21 ± 1.34 g/L (47.39 ± 1.67% w/w of lipid content) for 20 g/L and 40 g/L of WCO, respectively. This underpins the significance of the sonication treatment, especially at elevated WCO concentrations, to improve the accessibility of the yeast to the WCO. Sonication treatment that was used in this study assisted the utilization of WCO without the need to add emulsifiers, thus reducing the need for chemicals and in turn has a positive impact on the production costs. The microbial lipids produced presented a different fatty acid composition compared to the WCO, making them more suitable for biodiesel production as suggested by the theoretical estimation of the biodiesel properties.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
42
|
Zhang X, Chen J, Wu D, Li J, Tyagi RD, Surampalli RY. Economical lipid production from Trichosporon oleaginosus via dissolved oxygen adjustment and crude glycerol addition. BIORESOURCE TECHNOLOGY 2019; 273:288-296. [PMID: 30448680 DOI: 10.1016/j.biortech.2018.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The effect of dissolved oxygen concentration on lipid accumulation in Trichosporon oleaginosus has been investigated. The experiment was performed in 15 L fermenters. The dissolved oxygen concentration varied by adjusting the agitation and aeration. High dissolved oxygen level at 50%-60% enhanced cell growth. Maintaining low dissolved oxygen concentration at 20%-30% during lipogenesis phase led to high final lipid content (51%) in Trichosporon oleaginosus. The consumptions of energy and cost of the process were evaluated. The energy consumption in the dissolved oxygen level optimized process was 41% less than that with dissolved oxygen level at 50%-60%. In addition, the cost was also reduced around one time in the dissolved oxygen level optimized process compared to the one with dissolved oxygen level at 50%-60%. The study provided a feasible way of enhancing lipid accumulation in Trichosporon oleaginosus and reducing the consumption of energy and cost of lipid production from Trichosporon oleaginosus.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | | | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105 Lincoln, NE 68588-6105, USA
| |
Collapse
|
43
|
Xu Z, Lei P, Zhai R, Wen Z, Jin M. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:32. [PMID: 30815030 PMCID: PMC6376720 DOI: 10.1186/s13068-019-1376-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
Lignin is the most abundant aromatic substrate on Earth and its valorization technologies are still under developed. Depolymerization and fragmentation are the predominant preparatory strategies for valorization of lignin to chemicals and fuels. However, due to the structural heterogeneity of lignin, depolymerization and fragmentation typically result in diverse product species, which require extensive separation and purification procedures to obtain target products. For lignin valorization, bacterial-based systems have attracted increasing attention because of their diverse metabolisms, which can be used to funnel multiple lignin-based compounds into specific target products. Here, recent advances in lignin valorization using bacteria are critically reviewed, including lignin-degrading bacteria that are able to degrade lignin and use lignin-associated aromatics, various associated metabolic pathways, and application of bacterial cultures for lignin valorization. This review will provide insight into the recent breakthroughs and future trends of lignin valorization based on bacterial systems.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Peng Lei
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211111 China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| |
Collapse
|
44
|
Guo D, Kong S, Zhang L, Pan H, Wang C, Liu Z. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 269:577-580. [PMID: 30181019 DOI: 10.1016/j.biortech.2018.08.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Diminishing petroleum reserves and the rapid accumulation of greenhouse gases lead to increasing interest in microbial biofuels. In this study, a heterologous farnesyl acetate biosynthesis pathway was constructed in Escherichia coli for the first time. Firstly, the AtoB, ERG13, tHMG1, ERG12, ERG8, MVD1, Idi, IspA and PgpB were expressed to accumulate farnesol in the E. coli cells. Then the alcohol acetyltransferase (ATF1) was heterologous overexpressed for the subsequent esterification farnesol to farnesyl acetate. The engineered strain DG 106 accumulated 128 ± 10.5 mg/L of farnesyl acetate. Finally, the isopentenyl-diphosphate isomerase was further overexpressed, and the recombinant strain DG107 produced 201 ± 11.7 mg/L of farnesyl acetate. This study shows the novel method for the biosynthesis of the advanced biofuel farnesyl acetate directly from glucose and highlight the enormous designing strategies for metabolic engineering of bioproducts.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lihua Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
45
|
Kwan TA, Kwan SE, Peccia J, Zimmerman JB. Selectively biorefining astaxanthin and triacylglycerol co-products from microalgae with supercritical carbon dioxide extraction. BIORESOURCE TECHNOLOGY 2018; 269:81-88. [PMID: 30149258 DOI: 10.1016/j.biortech.2018.08.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 05/21/2023]
Abstract
Clustering behavior of supercritical carbon dioxide, triacylglycerides, and astaxanthin solutes were analyzed using Kamlet-Taft solvatochromic properties of dipolarity/polarizability, π∗, and hydrogen-bond acceptance, β. Both parameters were decreased for supercritical carbon dioxide with TAG at low densities and with astaxanthin at high densities. These results indicated supercritical carbon dioxide could selectively extract triacylglycerides at low densities followed by astaxanthin at higher densities from microalgae. Accordingly, Haematococcus pluvialis microalgae were subject to a two-stage continuous extraction scheme where a density of 642 mg/ml was employed to extract triacylglycerides followed by a density of 971 mg/ml, by an increase in pressure, to extract astaxanthin. The first, lower density extract yielded over 78% of the total triacylglycerides and was composed of less than 1% astaxanthin. The sequential, higher density extract yielded less than 5% of the total microalgae triacylglycerides, over 70% of the total astaxanthin, and was composed of 60-76% astaxanthin by mass.
Collapse
Affiliation(s)
- Thomas Alan Kwan
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, CT 06511, United States
| | - Sarah Elizabeth Kwan
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, CT 06511, United States
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, CT 06511, United States
| | - Julie Beth Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, CT 06511, United States; School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06520, United States.
| |
Collapse
|
46
|
Howlader MS, Rai N, Todd French W. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. BIORESOURCE TECHNOLOGY 2018; 267:743-755. [PMID: 30064900 DOI: 10.1016/j.biortech.2018.07.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Lipid extraction directly from the wet oleaginous microorganisms for biodiesel production is preferred as it reduces the energy input for traditional processes which require extensive drying of the biomass prior to the extraction. The high water content (≥80% on cell dry weight) in the wet biomass hinders the extraction efficiency due to the mass transfer limitation. This limitation can be overcome by pretreating wet biomass prior to the lipid extraction using pressurized gas that can be used alone or combined with other pretreatments to disrupt the cell wall. In this review, an extensive discussion on different pretreatments and the subsequent lipid extraction using these pretreatments is presented. Furthermore, a detailed account of the cell disruption using pressurized gas (e.g., CO2) treatment for microbial cell lysing is also presented. Finally, a new technique on lipid extraction directly from wet biomass using the combination of pressurized CO2 and microwave pretreatment is proposed.
Collapse
Affiliation(s)
- Md Shamim Howlader
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States; Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, United States
| | - William Todd French
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
47
|
Rigouin C, Croux C, Borsenberger V, Ben Khaled M, Chardot T, Marty A, Bordes F. Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering. Microb Cell Fact 2018; 17:142. [PMID: 30200978 PMCID: PMC6130074 DOI: 10.1186/s12934-018-0989-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oleaginous yeast Yarrowia lipolytica is an organism of choice for the development of biofuel and oleochemicals. It has become a chassis for metabolic engineering in order to produce targeted lipids. Understanding the function of key-enzymes involved in lipid metabolism is essential to design better routes for enhanced lipid production and for strains producing lipids of interest. Because medium chain fatty acids (MCFA) are valuable compounds for biokerosene production, we previously generated strains capable of producing MCFA up to 12% of total lipid content (Rigouin et al. in ACS Synth Biol 6:1870-1879, 2017). In order to improve accumulation and content of C14 fatty acid (FA), the elongation, degradation and accumulation of these MCFA in Yarrowia lipolytica were studied. RESULTS We brought evidence of the role of YALI0F0654 (YlELO1) protein in the elongation of exogenous or de novo synthesized C14 FA into C16 FA and C18 FA. YlELO1 deletion into a αFAS_I1220W expressing strain leads to the sole production of C14 FA. However, because this strain does not provide the FA essential for its growth, it requires being cultivated with essential fatty acids and C14 FA yield is limited. To promote MCFA accumulation in Y. lipolytica without compromising the growth, we overexpressed a plant diglyceride acyltransferase specific for MCFA and reached an accumulation of MCFA up to 45% of total lipid content. CONCLUSION We characterized the role of YlELO1 in Y. lipolytica by proving its involvement in Medium chain fatty acids elongation. We showed that MCFA content can be increased in Yarrowia lipolytica by promoting their accumulation into a stable storage form (triacylglycerides) to limit their elongation and their degradation.
Collapse
Affiliation(s)
- Coraline Rigouin
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Christian Croux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Maher Ben Khaled
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Thierry Chardot
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Alain Marty
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Florence Bordes
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|