1
|
Jaiswal A, Raj SI, Isiaka Adetunji A, Negadi L, Singh S, Tumba K, Bahadur I, Uddin I. Bioleaching as an Eco-Friendly Nano-Factory for Sustainable Inorganic Waste Management: Current Advancements, Challenges, and Opportunities. ChemistryOpen 2025:e2500104. [PMID: 40370264 DOI: 10.1002/open.202500104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Inorganic waste management and metal recovery technology pose significant challenges to the global research community and policymakers. Bioleaching is an economical, eco-friendly, and sustainable technology used for extracting metals and nanoparticles from inorganic waste streams, including e-waste, fly ash, ore, spent batteries, and petroleum catalysts. Valuable metals are recovered from these waste materials by microbial action. Bioleaching occurs by redoxolysis, acidolysis, and complexolysis processes. The present review provides insights into global trends and hazards of e-waste while also discussing the bioleaching of metals and nanoparticles from various inorganic wastes. In addition, the review focuses on the mechanistic pathway of the bioleaching process and computational aspects, such as the response surface method employed for enhanced recovery of metals from solid waste materials. Various physicochemical and biological parameters influencing metal bioleaching, as well as economic impacts and challenges affecting the bioleaching of metals from solid wastes, are discussed.
Collapse
Affiliation(s)
- Adhish Jaiswal
- Department of Chemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - S Irudhaya Raj
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Adegoke Isiaka Adetunji
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Latifa Negadi
- LATA2M, Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire, University of Tlemcen, Post Office Box 119, Tlemcen, 13000, Algeria
| | - Sangeeta Singh
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi, Durban, 4031, South Africa
| | - Kaniki Tumba
- Thermodynamics-Materials-Separations Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi, Durban, 4031, South Africa
| | - Indra Bahadur
- Department of Chemistry, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| | - Imran Uddin
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
2
|
Molaey R, Appels L, Yesil H, Tugtas AE, Çalli B. Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177020. [PMID: 39427892 DOI: 10.1016/j.scitotenv.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
By 2050, global sewage sludge production is expected to increase by 51 %, rising from its current level of over 45 million tons of dry solids to nearly 68 million tons. This growth is primarily driven by population growth and the implementation of increasingly stringent environmental regulations. This increase in sewage sludge volume poses substantial challenges for sustainable management due to its complex composition. While sewage sludge contains valuable nutrients such as nitrogen (N), phosphorus (P), and potassium (K) that make it suitable for agriculture use, the presence of heavy metals (HMs), including cadmium (Cd), lead (Pb), mercury (Hg), chrome (Cr), copper (Cu), nickel (Ni) and zinc (Zn) creates significant barriers to its safe reuse. Inadequately treated sewage sludge, when repeatedly applied to agricultural soils, can lead to the accumulation of HMs, posing risks to long-term soil fertility, crop productivity, and broader environmental health. This review discusses various techniques for de-metallization of sewage sludge, including aerobic- and anaerobic bioleaching, chemical leaching, electrokinetic treatment, and supercritical fluid extraction. Among these techniques, anaerobic bioleaching is identified as the most environmentally sustainable option, as it offers a lower-energy, less chemically intensive approach to decrease HM content in the solid fraction of sewage sludge. This approach utilizes microbial activity under anaerobic conditions to solubilize and remove HMs, while minimizing nutrient loss and preserving the ecological integrity of the treated sewage sludge. Future research should prioritize the optimizing of anaerobic bioleaching processes to enhance both HM removal efficiency and nutrient retention. Additionally, integrating anaerobic bioleaching with air-assisted ultrasonication as a post treatment technology could further improve metal removal efficiency. This review aims to provide a comprehensive reference for researchers and practitioners seeking environmentally friendly solutions for HM removal from sewage sludge, ensuring its safe reuse in land applications and contributing to a circular agro-economy.
Collapse
Affiliation(s)
- Rahim Molaey
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Hatice Yesil
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - A Evren Tugtas
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - Bariş Çalli
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| |
Collapse
|
3
|
Hu S, Wang H, Li X, He W, Ma J, Xu Y, Xu Y, Ming W. Recent advances in bioleaching and biosorption of metals from waste printed circuit boards: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123008. [PMID: 39488183 DOI: 10.1016/j.jenvman.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Electronic waste, commonly known as "e-waste", refers to electrical or electronic equipment that has been discarded. E-waste, especially waste-printed circuit boards (WPCBs), must be handled carefully; as they can cause serious environmental pollution and threaten the health of local residents. The most abundant metal in WPCBs is copper, in addition to gold, aluminum, nickel, and lead, with grades that are tens or even hundreds of times higher than those of natural deposits. Due to the superiority of biorecovery methods in terms of their environmental friendliness, low capital investment and low operating costs, this study focuses on recent advances in the bioleaching and biosorption of metals from WPCBs. First, the principles, methods, and efficiency of bioleaching are reviewed in detail, particularly acidolysis, redoxolysis, and complexolysis. Additionally, six major factors (microbes, pH, temperature, nutrients, aeration, and substrate) affecting bioleaching are analyzed. The principles, kinetics, and isotherms of biosorption are then reviewed, and the factors influencing biosorption, including temperature and pH, are elaborated on. Hybrid recovery with biorecovery is explored, as these integrated strategies are conducive to achieving selective and efficient metal recovery. Finally, we discuss the advantages and disadvantages of the bioleaching and biosorption processes for metal recovery from WPCBs, particularly in terms of recovery efficiency, recovery time, and cost. Furthermore, future developments in biorecovery are also examined, along with useful ideas on how to accomplish energy-efficient metal recovery from WPCBs in the future.
Collapse
Affiliation(s)
- Shunchang Hu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Hongyan Wang
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China; Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan, 523808, China.
| | - Xiaoke Li
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Wenbin He
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Jun Ma
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yingjie Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yapeng Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Aliyu GO, Ezugworie FN, Onwosi CO, Nnamchi CI, Ekwealor CC, Igbokwe VC, Sani RK. Multi-stress adaptive lifestyle of acidophiles enhances their robustness for biotechnological and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176190. [PMID: 39265677 DOI: 10.1016/j.scitotenv.2024.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms. The existing literature reveals a notable gap in understanding the multi-stress conditions confronting acidophiles and their corresponding coping mechanisms. Therefore, the current review aims to illuminate the intricacies of the metabolic lifestyles of acidophiles within these demanding habitats, exploring how their energy demands contribute to habitat acidification. In addition, the unique adaptive mechanisms employed by acidophiles were emphasized, especially the pivotal role of monolayer membrane-spanning lipids, and how these organisms effectively respond to a myriad of stresses. Beyond mere survival, understanding the adaptive mechanisms of these unique organisms could further enhance their use in some biotechnological and environmental applications. Lastly, this review explores the strategies used to engineer these organisms to promote their use in industrial applications.
Collapse
Affiliation(s)
- Godwin O Aliyu
- Department of Microbiology, Faculty of Natural Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Flora N Ezugworie
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Sciences, Federal College of Dental Technology and Therapy, Enugu, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | - Chukwudi I Nnamchi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; INSERM UMR-S 1121 Biomaterial and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Rajesh K Sani
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, SD, United States; Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States; Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States; BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
5
|
Fini EH, Kazemi M, Poulikakos L, Lazorenko G, Akbarzade V, Lamanna A, Lammers P. Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards. COMMUNICATIONS ENGINEERING 2024; 3:178. [PMID: 39604550 PMCID: PMC11603199 DOI: 10.1038/s44172-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks. These methods not only immobilize heavy metals and mitigate environmental hazards but also support carbon sequestration, contrasting with incineration and land application methods that release carbon into the atmosphere. The review also addresses emerging technologies like bio-adhesives, bio-binders for asphalt, hydrogels, bioplastics, and corrosion inhibitors. It highlights the recovery of valuable materials from sewage sludge, including phosphorus, oils, metals, cellulose, and polyhydroxyalkanoates as well as enzyme production. By focusing on these non-fertilizer applications, this review presents a compelling case for re-envisioning wastewater treatment plants as sources of valuable feedstock and carbon sequestration, supporting global efforts to manage waste effectively and enhance sustainability.
Collapse
Affiliation(s)
- Elham H Fini
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA.
| | | | - Lily Poulikakos
- EMPA Materials Science and Technology, Ueberlandstrasse, 1298600, Dübendorf, Switzerland
| | - Georgy Lazorenko
- Novosibirsk State University, Pirogov Street, 2, Novosibirsk, 630090, Russia
| | - Vajiheh Akbarzade
- University of Doha for Science and Technology, 24449 Arab League St, Doha, Qatar
| | - Anthony Lamanna
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| | - Peter Lammers
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| |
Collapse
|
6
|
Jia Y, Xiao E, Lan X, Lin W, Sun J, Xiao T. Microbial-mediated metal(loid) immobilization in mulch-covered tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116881. [PMID: 39151372 DOI: 10.1016/j.ecoenv.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Mulch coverage of mining tailings can create anaerobic conditions and consequently establish an anoxic environment that promotes the metabolic processes of anaerobic microorganisms. This anoxic environment has the potential to decrease heavy metal mobility and bioavailability. While tailings exposed to sunlight have been extensively studied, research on the effects of microbial-mediated geochemical cycling of heavy metals in mulch-covered tailings is scarce. This study aimed to examine the effects of mulch coverage-induced alterations in the structures of tailing microbial communities on the biogeochemical processes associated with heavy metals. Mulch coverage significantly reduced the pH of the tailings and the tailings exhibited heavy metal bioavailability. Random forest analysis demonstrated that mulch coverage-induced changes in the As/Cd-contaminated fractions and nutrients (total organic carbon and total nitrogen) were the most crucial predictors of microbial diversity and ecological clusters in the tailings. Notably, different from direct metal(loid) immobilization, mulch coverage can facilitate heavy metal immobilization in tailings by promoting microbial-mediated Fe, S, and As reduction. Overall, this study demonstrated that mulch coverage of tailings contributed to a reduction in heavy metal mobilization, which can be attributed to shifts in microbial-mediated Fe, S, and As reduction processes.The study provides valuable insights into the potential of mulch coverage as a remediation strategy and underscores the importance of microbial-mediated processes in managing heavy metal pollution in tailing systems.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Li Y, Chen Y, Fu C, Han S, Zhang Y, Li H, Lv J, Wang S. Enhancement of sludge dewaterability using combined technology of bioleaching and Fenton: Microscopic structure and hydrophilic/hydrophobic properties of sludge particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122089. [PMID: 39102785 DOI: 10.1016/j.jenvman.2024.122089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Bioleaching and Fenton technology are commonly used preconditioning techniques for sludge dewatering. This study compared the dewatering mechanisms of different conditioning technologies. The results showed that bound water, specific resistance to filtration (SRF), and capillary suction time decreased from 3.95 g/g, 6.16 × 1012 m/kg, and 130.6 s to 3.15 g/g, 2.81 × 1011 m/kg, and 33 s, respectively, under combined treatment condition. Moreover, the free radicals, including ·OH, O2-·and Fe (Ⅳ), further damaged the cell structure, thus increasing the concentration of DNA in the S-EPS layer. This intense degradation sludge particle size decreased by 15.6% and significantly increased zeta potential. Under the combined technology, the α-helix and β-sheet decreased by 42.2% and 56.5%, respectively, destabilizing the spatial structure of proteins and promoting the release of bound water. In addition, the combined technology decreased (Ala/Lys) ratio in the TB-EPS layer by 67.6%, indicating the weakening of protein water-holding capacity. Moreover, the conversion of oxygen-containing compounds to nonpolar hydrocarbons increased the hydrophobicity of the sludge under a combined treatment, thus enhancing dewatering performance.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Yiwen Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chunyan Fu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shuyue Han
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuxin Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hailong Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jinghua Lv
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shipeng Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Kamizela T, Kowalczyk M, Worwąg M, Wystalska K, Zabochnicka M, Kępa U. Possibilities of Managing Waste Iron Sorbent FFH after CO 2 Capture as an Element of a Circular Economy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2725. [PMID: 38893989 PMCID: PMC11173496 DOI: 10.3390/ma17112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
With a growing need to reduce greenhouse gas emissions, innovative carbon dioxide sorbents are being sought. One of the sorbents being tested is nanoparticle ferric hydrosol (FFH). In parallel with sorbent testing, it is also necessary to test the used sorbent after carbon dioxide capture (FFHCO2) and to develop an optimal method for its processing and management. The research described in this article evaluated the potential use of FFHCO2 in dewatering, coagulation and bioleaching processes. The research results indicate that the basic strategy for dealing with waste FFHCO2 sorbent should be to minimize the amount of waste by volume reduction-dewatering. Recycling of FFHCO2 as an iron waste coagulant or its processing products by bioleaching had no technological justification. It is only proposed to recover the material-iron compounds-if it is environmentally and economically justified.
Collapse
Affiliation(s)
| | | | - Małgorzata Worwąg
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland; (T.K.); (M.K.); (K.W.); (U.K.)
| | | | | | | |
Collapse
|
9
|
Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2024; 40:589-622. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sabna Ar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
10
|
Nkuna R, Matambo TS. Insights into metal tolerance and resistance mechanisms in Trichoderma asperellum unveiled by de novo transcriptome analysis during bioleaching. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120734. [PMID: 38520861 DOI: 10.1016/j.jenvman.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
This study investigates the genetic responses of the fungus Trichoderma asperellum (T. asperellum) during bioleaching of ore and tailing samples, comparing one-step, two-step, and spent media bioleaching processes. HPLC analysis quantified oxalic acid, citric acid, and propionic acids, with oxalic acid identified as the primary organic acid involved in metal bioleaching. Metal analysis revealed differences in recovery between ore and tailing samples and among bioleaching processes. The two-step bioleaching process yielded the highest zinc (>54%) and nickel (>60%) recovery in tailings and ore, respectively. Nickel's efficient recovery in ore bioleaching was attributed to the presence of manganese, while its precipitation as nickel oxalate in tailings hindered recovery. Additional metals such as Co, Mn, Mg, Cu, and As were also successfully recovered. Transcriptomic analyses showed significant upregulation of genes associated with biological processes and cellular components, particularly those related to cell membrane structure and function, indicating T. asperellum's adaptation to environmental stresses during metal bioleaching. These findings enhance our understanding of the diverse mechanisms influencing metal recovery rates in bioleaching processes.
Collapse
Affiliation(s)
- Rosina Nkuna
- Centre for Competence in Environmental Biotechnology, Department of Environmental Sciences, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, South Africa
| | - Tonderayi S Matambo
- Centre for Competence in Environmental Biotechnology, Department of Environmental Sciences, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, South Africa.
| |
Collapse
|
11
|
Rastegar SO, Samadi A, Ahmadnezhad P, Nazari T. Bioleaching of sewage sludge for copper extraction using Acidithiobacillus thiooxidans: Optimization and ecological risk assessment. CHEMOSPHERE 2024; 353:141466. [PMID: 38364921 DOI: 10.1016/j.chemosphere.2024.141466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
In this study, Acidithiobacillus thiooxidans was used for the bioleaching of copper (Cu) from sewage sludge. In order to find optimization conditions, three factors including solid-to-liquid ratio (S/L) (0.01-0.2 %(w/v)), initial element sulfur (S0) (1-10 g/L), and initial pH (1-3) have been investigated. Based on response surface methodology (RSM) determined a significant reduced quadratic model with a p-value of 0.0022 (<0.05 significant level). The maximum Cu recovery was 85.3% in the optimum condition of S/L = 0.16% (w/v), S0 = 8.2 g/L, and pH = 1.4. Furthermore, a kinetic study based on a shrinking core model was performed and the result showed that chemical reaction was rate limiting in the extraction. Toxicity Characteristic Leaching Procedure (TCLP) results after bioleaching showed the bioleaching process detoxified sludge and the bioleached sludge residue was well within the regulatory limits for disposal. The germination seed with adding bioleached and unbioleached sludge to the soil was determined. Various parameters such as Germination Index (GI), Tolerance Index (TI), Vigor Index (VI), and stem length showed that the sewage sludge indices significantly increased than the sample soil with unbioleached sludge.
Collapse
Affiliation(s)
- S O Rastegar
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanadaj, Iran.
| | - A Samadi
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanadaj, Iran
| | - P Ahmadnezhad
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanadaj, Iran
| | - T Nazari
- Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Danouche M, Bounaga A, Oulkhir A, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Advances in bio/chemical approaches for sustainable recycling and recovery of rare earth elements from secondary resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168811. [PMID: 38030017 DOI: 10.1016/j.scitotenv.2023.168811] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Rare Earth Elements (REEs) are indispensable in the growing smart technologies, such as smart phones and electronic devices, renewable energy, new generation of hybrid cars, etc. These elements are naturally occurring in specific geological deposits (bastnäsite, monazite, and xenotime), primarily concentrated in the regions of China, Australia, and the USA. The extraction and processing of REEs and the mismanagement of secondary REE resources, such as industrial waste, end-of-life materials, and mining by-products, raise major environmental and health concerns. Recycling represents a convincing solution, avoiding the necessity to separate low-value or coexisting radioactive elements when REEs are recovered from raw ore. Despite these advantages, only 1 % of REEs are usually recycled. This review overreached strategies for recycling REEs from secondary resources, emphasizing their pivotal role. The predominant approach for recycling REEs involves hydrometallurgical processing by leaching REEs from their origins using acidic solutions and then separating them from dissolved impurities using techniques like liquid-liquid extraction, membrane separation, chromatography, adsorption, flotation, and electrochemical methods. However, these methods have notable disadvantages, particularly their over requirements for water, reagents, and energy. Biohydrometallurgy introduces an innovative alternative using microorganisms and their metabolites to extract REEs through bioleaching. Other investigations are carried out to recover REEs through biological strategies, including biosorption, affinity chromatography with biological ligands, bioflotation employing biological surfactants, and bioelectrochemical methods. However, biohydrometallurgical processes can also be relatively slow and less suitable for large-scale applications, often lacking specificity for targeted REEs recovery. Overcoming these challenges necessitates ongoing research and development efforts to advance recycling technologies.
Collapse
Affiliation(s)
- M Danouche
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Bounaga
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Oulkhir
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France
| | - R Boulif
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Y Zeroual
- Situation Innovation, OCP Group BP 118, Jorf Lasfar, El Jadida 24000, Morocco
| | - R Benhida
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France.
| | - K Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, AgroBioScience Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
13
|
Dong Y, Mingtana N, Zan J, Lin H. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119354. [PMID: 37864939 DOI: 10.1016/j.jenvman.2023.119354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The rapid proliferation of electronic waste (e-waste), including waste printed circuit boards (WPCBs), has exerted immense pressure on the environment. The recovery of precious metals from WPCBs not only serves as an effective means of alleviating this environmental burden but also generates economic value. This review focuses on bioleaching, an environmentally friendly method for extracting precious metals from WPCBs. Under various conditions, this method has achieved leaching rates of 30%-73% for Au and 33.8%-90% for Ag. However, there is a relative scarcity of studies on the bioleaching of precious metals from WPCBs. In this paper, we provide an overview of the current status of bioleaching for precious metals from WPCBs and describe the underlying mechanisms. We also briefly outline the influence of various process factors on leaching efficiency. While this review underscores the considerable potential of bioleaching in WPCBs applications, certain limitations hinder the engineering-scale application of the technology. Consequently, this paper describes the current enhanced processes for enhancing leaching efficiency. Overall, this review can serve as a valuable reference for future research endeavors, ultimately promoting the widespread utilization of bioleaching for the recovery of precious metals from WPCBs.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Nuo Mingtana
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinyu Zan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
14
|
García-Balboa C, Martínez-Alesón P, López-Rodas V, Costas EC, Díaz MF. An exploratory study on the possibilities of microalgal biotechnology to obtain the essential 6Li isotope as fusion fuel. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:141. [PMID: 37735438 PMCID: PMC10515020 DOI: 10.1186/s13068-023-02394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Future energy supply needs to overcome two challenges: environmental impact and dependence on geopolitically unstable countries. A very promising alternative is based on lithium, an element for batteries, and whose isotope 6Li will be essential in nuclear fusion. The objective of this research has been to determine if it is possible to achieve isotopic fractionation of lithium through a process mediated by microalgae. For this purpose, Chlamydomonas reinhardtii was selected and grown in presence of 5 mg/L of lithium. Results revealed that this specie survives at the selected lithium concentration, discriminates isotopes and preferentially capture 6Li (6δ = 10.029 ± 3.307) through a process independent of the cellular growth. Concomitate recovered up 0.206 mg/L of lithium along a process of 21 days. The result of this study lets to affirm that Chlamydomonas reinhardtii might be used to obtain lithium enriched in the lighter isotope.
Collapse
Affiliation(s)
- Camino García-Balboa
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Paloma Martínez-Alesón
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Victoria López-Rodas
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Eduardo Costas Costas
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Marta Fernández Díaz
- Spanish Research Centre for Energy, Environment and Technology (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
15
|
Naseri T, Beiki V, Mousavi SM, Farnaud S. A comprehensive review of bioleaching optimization by statistical approaches: recycling mechanisms, factors affecting, challenges, and sustainability. RSC Adv 2023; 13:23570-23589. [PMID: 37555097 PMCID: PMC10404936 DOI: 10.1039/d3ra03498d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
A serious environmental problem is associated with the accumulation of solid waste on the Earth. Researchers are encouraged to find an efficient and sustainable method to recover highly profitable heavy metals and precious and base metals. Bioleaching is a green method of recovering valuable metals from solid waste. Optimizing the variables and conditions of the bioleaching process is crucial to achieving maximum metal recovery most cost-effectively. The conventional optimization method (one factor at a time) is well-studied. However, it has some drawbacks, such as the necessity of more experiments, the need to spend more time, and the inability to illuminate the synergistic effect of the variables. Optimization studies are increasingly utilizing response surface methodology (RSM) because it provides details about the interaction effects of variables with fewer experiments. This review discusses the application of RSM for bioleaching experiments from other solid wastes. It discusses the Central Composite and Box-Behnken designs as the most commonly used designs for optimizing bioleaching methods. The most influential factors for increasing the heavy metal recovery rate in applying RSM using the bioleaching process are recognized, and some suggestions are made for future research.
Collapse
Affiliation(s)
- Tannaz Naseri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University Tehran Iran +98-21-82884931 +98-21-82884917
| | - Vahid Beiki
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University Tehran Iran +98-21-82884931 +98-21-82884917
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University Tehran Iran +98-21-82884931 +98-21-82884917
- Modares Environmental Research Institute, Tarbiat Modares University Tehran Iran
| | - Sebastien Farnaud
- CSELS, Faculty of Health & Life Sciences, Coventry University Coventry UK
| |
Collapse
|
16
|
Han Z, Levett A, Edraki M, Jones MWM, Howard D, Southam G. Accelerating bioleaching of tungsten mining wastes using indigenous acidophilic bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131490. [PMID: 37121042 DOI: 10.1016/j.jhazmat.2023.131490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
The growing amount of W mining waste produced globally is of concern for its proven hazard to the environment and to human health. While uncontrolled biooxidation can result in environmental harm, bioleaching, where pregnant leach solutions are controlled, has been widely used in the mining industry for valuable metals recovery, often from low-grade materials. This bioleaching study was developed to evaluate whether the biogeochemical reprocessing of W tailings could be employed for the decontamination of W-bearing mine waste, combined with valuable metals recovery, i.e., turning a waste into a resource. Using an in-vitro laboratory model, the susceptibility of wolframite [(Fe,Mn)WO4] to acid dissolution during the concomitant oxidation of co-localized sulfidic minerals represented the basic strategy for enhanced W recovery. Encouragingly, geochemistry and synchrotron-based X-ray absorption near edge structure of weathered W tailings demonstrated that early-stage wolframite dissolution occurred. However, W dissolution was limited by the formation of secondary W minerals; weathering produced two secondary W minerals i.e., gallium-rich tungstate and minor sanmartinite [(Zn,Fe)WO4]. The dissolution and re-precipitation of W minerals may provide a strategy for W waste reprocessing if the two processes can be separated by initially putting W into solution, and allowing for its extraction from tailings, followed by its' recovery by secondary W mineral formation.
Collapse
Affiliation(s)
- Zhengdong Han
- WH Bryan Mining Geology Research Centre, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4068, Australia.
| | - Alan Levett
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Michael W M Jones
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, Qld 4000, Australia
| | - Daryl Howard
- Australian Synchrotron, Melbourne, Vic 3168, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
17
|
Sanghani AD, Patel RK, Dave SR, Tipre DR. Culturable heterotrophic bacterial diversity study from an Indian lignite mine habitat. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:649. [PMID: 37160469 DOI: 10.1007/s10661-023-11176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 05/11/2023]
Abstract
Diversity lifts the productivity of any ecosystem as all the species have a vital role to play that is present within the ecosystem. The characterization is essential to delve into the ecological functions of microbial communities and discover the type of microorganisms present within the ecosystem. As microbial diversity in ecosystems responds to environmental disturbances, it functions as a marker to indicate the change in such ecosystems. Mine ecology differs significantly from other habitats due to the presence of acidic runoff. This paper provides insight into the diversity of cultivable bacteria isolated from lignite mines located in south Gujarat. A total of 67 heterotrophic isolates were successfully cultivated from the collected solid and water samples of the Rajpardi and Tadkeshwar Lignite mine sites. The isolates were characterized morphologically and biochemically, and intra- and extracellular enzyme synthesis were studied. Moreover, the relative density and frequency of cultivated isolates from the samples were calculated. The similarity and evenness of the heterotrophic isolated were studied by calculating diversity indices such as Shannon and Simpson. Alpha diversity was calculated in PAST software to analyse the similarity between the selected two mine sites. This research also explored the relationship between the variance in heterotrophic microbial diversity and substrate utilization richness of the studied lignite mines of Gujarat.
Collapse
Affiliation(s)
- Anjana D Sanghani
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
- Bioinformatics and Supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat, 395007, India
| | - Rajesh K Patel
- Bioinformatics and Supercomputer Lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat, 395007, India
| | - Shailesh R Dave
- Xavier's Research Foundation, Loyola Centre for R & D, St. Xavier College Campus, Navarangpura, Ahmedabad, 380009, India
| | - Devayani R Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
18
|
Funari V, Toller S, Vitale L, Santos RM, Gomes HI. Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59128-59150. [PMID: 37041362 DOI: 10.1007/s11356-023-26790-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Metals are essential in our daily lives and have a finite supply, being simultaneously contaminants of concern. The current carbon emissions and environmental impact of mining are untenable. We need to reclaim metals sustainably from secondary resources, like waste. Biotechnology can be applied in metal recovery from waste streams like fly ashes and bottom ashes of municipal solid waste incineration (MSWI). They represent substantial substance flows, with roughly 46 million tons of MSWI ashes produced annually globally, equivalent in elemental richness to low-grade ores for metal recovery. Next-generation methods for resource recovery, as in particular bioleaching, give the opportunity to recover critical materials and metals, appropriately purified for noble applications, in waste treatment chains inspired by circular economy thinking. In this critical review, we can identify three main lines of discussion: (1) MSWI material characterization and related environmental issues; (2) currently available processes for recycling and metal recovery; and (3) microbially assisted processes for potential recycling and metal recovery. Research trends are chiefly oriented to the potential exploitation of bioprocesses in the industry. Biotechnology for resource recovery shows increasing effectiveness especially downstream the production chains, i.e., in the waste management sector. Therefore, this critical discussion will help assessing the industrial potential of biotechnology for urban mining of municipal, post-combustion waste.
Collapse
Affiliation(s)
- Valerio Funari
- Institute of Marine Sciences (ISMAR-CNR), Department of Earth System Sciences and Environmental Technologies, National Research Council of Italy (CNR), Bologna Research Area, 40129, Bologna, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Via Ammiraglio F. Acton 55, 80133, Napoli, Italy.
| | - Simone Toller
- Institute of Marine Sciences (ISMAR-CNR), Department of Earth System Sciences and Environmental Technologies, National Research Council of Italy (CNR), Bologna Research Area, 40129, Bologna, Italy
- Department of Chemical, Life and Environmental Sustainability Sciences (SCVSA), University of Parma, Parco Area delle Scienze, 17/A, Parma, Italy
| | - Laura Vitale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Via Ammiraglio F. Acton 55, 80133, Napoli, Italy
| | - Rafael M Santos
- School of Engineering, University of Guelph, Thornbrough Building, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Helena I Gomes
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
19
|
Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D, Gu T. Advances in bioleaching of waste lithium batteries under metal ion stress. BIORESOUR BIOPROCESS 2023; 10:19. [PMID: 38647921 PMCID: PMC10992134 DOI: 10.1186/s40643-023-00636-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Damilola Daramola
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|
20
|
Sarkodie EK, Jiang L, Li K, Yang J, Guo Z, Shi J, Deng Y, Liu H, Jiang H, Liang Y, Yin H, Liu X. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front Microbiol 2022; 13:1049277. [PMID: 36569074 PMCID: PMC9767989 DOI: 10.3389/fmicb.2022.1049277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations. These limitations include high operational costs, high energy demands, post-waste disposal difficulties, and secondary pollution. Bioleaching has proven to be a promising alternative to these conventional approaches in removing toxic metal(loid)s from contaminated soil as it is cost-effective, environmentally friendly, and esthetically pleasing. The bioleaching process is influenced by factors including pH, temperature, oxygen, and carbon dioxide supply, as well as nutrients in the medium. It is crucial to monitor these parameters before and throughout the reaction since a change in any, for instance, pH during the reaction, can alter the microbial activity and, therefore, the rate of metal leaching. However, research on these influencing factors and recent innovations has brought significant progress in bioleaching over the years. This critical review, therefore, presents the current approaches to bioleaching and the mechanisms involved in removing toxic metal(loid)s from contaminated soil. We further examined and discussed the fundamental principles of various influencing factors that necessitate optimization in the bioleaching process. Additionally, the future perspectives on adding omics for bioleaching as an emerging technology are discussed.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
21
|
Wang J, Zhang S, Qian C, Cui Y, Shi G, Cheng J, Li X, Xin B. Heat treatment-enhanced bioleaching of new electroplating sludge containing high concentration of CuS and its mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Bioleaching of Typical Electronic Waste-Printed Circuit Boards (WPCBs): A Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127508. [PMID: 35742757 PMCID: PMC9224389 DOI: 10.3390/ijerph19127508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
The rapid pace of innovations and the frequency of replacement of electrical and electronic equipment has made waste printed circuit boards (WPCB) one of the fastest growing waste streams. The frequency of replacement of equipment can be caused by a limited time of proper functioning and increasing malfunctions. Resource utilization of WPCBs have become some of the most profitable companies in the recycling industry. To facilitate WPCB recycling, several advanced technologies such as pyrometallurgy, hydrometallurgy and biometallurgy have been developed. Bioleaching uses naturally occurring microorganisms and their metabolic products to recover valuable metals, which is a promising technology due to its cost-effectiveness, environmental friendliness, and sustainability. However, there is sparse comprehensive research on WPCB bioleaching. Therefore, in this work, a short review was conducted from the perspective of potential microorganisms, bioleaching mechanisms and parameter optimization. Perspectives on future research directions are also discussed.
Collapse
|
23
|
The advanced design of bioleaching process for metal recovery: A machine learning approach. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Kremser K, Maltschnig M, Schön H, Jandric A, Gajdosik M, Vaculovic T, Kucera J, Guebitz GM. Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:182-190. [PMID: 35378357 DOI: 10.1016/j.wasman.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The biological leaching of metals from different waste streams by bacteria is intensively investigated to address metal recycling and circular economy goals. However, usually external addition of sulfuric acid is required to maintain the low pH optimum of the bacteria to ensure efficient leaching. Extremely acidophilic Acidithiobacillus spp. producing sulfuric acid and ferric iron have been investigated for several decades in the bioleaching of metal-containing ores. Their application has now been extended to the extraction of metals from artificial ores and other secondary sources. In this study, an optimized process for producing biogenic sulfuric acid from elemental sulfur by two sulfur-oxidizing species, A. thiooxidans and A. caldus and their combinations, was investigated in batch and stirred tank experiments. Using a combined culture of both species, 1.05 M and 1.4 M biogenic sulfuric acid was produced at 30 °C and 6% elemental sulfur in batch and semi continuous modes, respectively. The acid produced was then used to control the pH in a heap bioleaching system in which iron- and sulfur-oxidizing A. ferrooxidans was applied to biologically leach metals from waste incineration residuals. Metals like Cu, Ni, Al, Mn, and Zn were successfully recovered by 99, 93, 84, 77 and 68%, respectively within three weeks of heap bioleaching. Overall, a potential value recovery of incorporated metals >70% could be achieved. This highlights the potential and novelty of applying extremely acidophilic sulfur-oxidizing bacteria for cheap and efficient production of biogenic sulfuric acid and its use in pH control.
Collapse
Affiliation(s)
- Klemens Kremser
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| | - Melanie Maltschnig
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Herta Schön
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Aleksander Jandric
- University of Natural Resources and Life Sciences Vienna BOKU, Department of Water-Atmosphere-Environment, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria
| | - Martin Gajdosik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|
25
|
Yuan B, Huang L, Liu X, Bai L, Liu H, Jiang H, Zhu P, Xiao Y, Geng J, Liu Q, Hao X. Application of mixotrophic acidophiles for the bioremediation of cadmium-contaminated soils elevates cadmium removal, soil nutrient availability, and rice growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113499. [PMID: 35405525 DOI: 10.1016/j.ecoenv.2022.113499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
A major challenge in radically alleviating the threats posed by Cd-contaminated paddy fields to human health is to reduce the Cd levels in both soils and rice grains. In this study, the microbial extraction (ME) treatment using a mixotrophic acidophilic consortium was used for the bioremediation of Cd-contaminated soils. The results showed that the ME treatment enhanced the total Cd (40%) and diethylenetriamine pentaacetic acid-soluble Cd (DTPA-Cd, 64%) removal efficiencies in contaminated soils. In addition, ME treatment decreased the levels of Cd acid-soluble and reducible fractions and thereby reduced Cd uptake in rice tissues. Microbial community analysis indicated that the indigenous soil microbial diversity and composition were not changed after the ME treatment, but the relative abundance of functional microbes associated with Cd removal was improved. Notably, soil available nutrient levels were elevated upon inoculation with mixotrophic acidophiles, resulting in an increase in rice growth and grain weight. This study provides a scientific basis for the potential application and evaluation of ME treatment in the field for remediating Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Baoxing Yuan
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Lihua Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lianyang Bai
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huidan Jiang
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ping Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jibiao Geng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xiaodong Hao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
26
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
27
|
Nili S, Arshadi M, Yaghmaei S. Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114524. [PMID: 35085974 DOI: 10.1016/j.jenvman.2022.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Mobile phones are known as the most widely used electronic instruments, and an enormous number of discarded mobile phones are generated. The present work used a pure culture of Penicillium simplicissimum in a bubble column bioreactor to extract Cu and Ni from mobile phone printed circuit boards (MPPCBs) waste. Molasses was used as an efficient carbon source to enhance bioleaching efficiency and increase the cost benefits. The adaptation phase was done at Erlenmeyer flasks to reach 40 g/L of MPPCBs powder. The most significant parameters, including the mass of MPPCBs powder, aeration, molasses concentration, and their interaction, were optimized in order to leach the maximum possible Cu and Ni using central composite design in response surface methodology (RSM). The model p-values for Cu and Ni recovery were 0.0030 and 0.0348, respectively, emphasizing the model's accuracy. 96.94% of Cu was recovered under 8.8% (v/v) of molasses, aeration rate of 0.29 (l/min), and MPPCBs powder of 10 g/L. The optimized condition of Ni leaching was 1.9% (v/v) of molasses, aeration rate of 0.37 (l/min), and MPPCBs powder of 10 g/L, resulting in 71.51% recovery. The present article demonstrated the great potential of P. simplicissimum to improve metal recovery from e-waste utilizing molasses and bubble column bioreactors.
Collapse
Affiliation(s)
- Sheida Nili
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Mahdokht Arshadi
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Soheila Yaghmaei
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
28
|
Bioleaching and Selective Precipitation for Metal Recovery from Basic Oxygen Furnace Slag. Processes (Basel) 2022. [DOI: 10.3390/pr10030576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Decreasing ore grades and an increasing consumption of metals has led to a shortage of important primary raw materials. Therefore, the urban mining of different deposits and anthropogenic stocks is of increasing interest. Basic oxygen furnace (BOF) slag is produced in huge quantities with the so-called Linz-Donawitz process and contains up to 5.2, 0.9, 0.1, and 0.07% of Mn, Al, Cr, and V, respectively. In the present study, sulfur-oxidizing Acidithiobacillus thiooxidans and iron- and sulfur-oxidizing Acidithiobacillus ferridurans were applied in batch and stirred tank experiments to investigate the biological extraction of metals from BOF slag. In the batch experiments, up to 96.6, 52.8, 41.6, and 29.3% of Cr, Al, Mn, and V, respectively, were recovered. The stirred tank experiments, with increasing slag concentrations from 10 to 75 g/L, resulted in higher extraction efficiencies for A. ferridurans and lower acid consumption. Selective metal precipitation was performed at pH values ranging between 2.5 and 5.0 to study the recovery of Mn, Al, Cr, and V from the biolixiviant. Selective precipitation of V and Cr was achieved at pH 4.0 from A. thiooxidans biolixiviant, while Fe and V could be selectively recovered from A. ferridurans biolixiviant at pH 3.0. This work revealed the potential of BOF slag as an artificial ore for urban mining and demonstrated that combining bioleaching and selective precipitation is an effective method for sustainable metal recovery.
Collapse
|
29
|
Zhang X, Li J, Yang W, Chen J, Wang X, Xing D, Dong W, Wang H, Wang J. The combination of aerobic digestion and bioleaching for heavy metal removal from excess sludge. CHEMOSPHERE 2022; 290:133231. [PMID: 34902386 DOI: 10.1016/j.chemosphere.2021.133231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, bioleaching is employed for removing heavy metals from excess sludge generated during municipal wastewater treatment. To avoid organic matter impact on bioleaching, aerobic digestion was performed as pretreatment of the bioleaching or accompanied with the bioleaching. The results showed that the leaching amounts of heavy metals from the process of aerobic digestion accompanied with bioleaching was 2.3 times more than that of the process of aerobic digestion followed by bioleaching. The stable-state proportions of Zn, Cu, Ni and Mn increased by 83%, 94%, 96% and 91%, respectively, in the process of aerobic digestion accompanied with bioleaching, and moreover, the reduction rate of MLSS increased by 22.7%. Although the content of ammonia nitrogen and total phosphorus in sludge decreased after bioleaching treatment, they were still much higher than the soil background value. It indicates that the treated sludge still has agricultural value. High throughput sequencing analysis showed that the relative abundance of acid-producing bacteria (Romboutsia, Clostridium, Tricibacter, and Intestinibacter) significantly increased from 0% to 28.6%, 6.9%, 3.9%, and 2.4%. The enrichment of these acidogenic bacteria was the main reason for the pH decrease, which was conducive to the removal of heavy metals from sludge.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Wei Yang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Xiaochun Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| | - Dingyu Xing
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Hongjie Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Key Laboratory of Water Resource Application and Environmental Pollution Control, Shenzhen, Shenzhen, Shenzhen, 518055, PR China
| | - Jiawen Wang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, PR China
| |
Collapse
|
30
|
Jiang SJ, Sun J, Tong G, Ding H, Ouyang J, Zhou Q, Fu Y, Zhong ME. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review. CHEMOSPHERE 2022; 290:133266. [PMID: 34914959 DOI: 10.1016/j.chemosphere.2021.133266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phytoextraction is an effective approach for remediation of heavy metal (HM) contaminated soil. After the enhancement of phytoextraction efficiency has been systematically investigated and illustrated, the harmless disposal and value-added use of harmful phytoextraction biomass (HPB) become the major issue to be addressed. Therefore, in recent years, a large number of studies have focused on the disposal technologies for HPB, such as composting, enzyme hydrolysis, hydrothermal conversion, phyto-mining, and pyrolysis. The present review introduces their operation process, reaction parameters, economic/ecological advantages, and especially the migration and transformation behavior of HMs/biomass. Since plenty of plants possess comparable extraction abilities for HMs but with discrepancy constitution of biomass, the phytoextraction process should be combined with the disposal of HPB after harvested in the future, and thus a grading handling strategy for HPB is also presented. Hence, this review is significative for disposing of HPB and popularizing phytoextraction technologies.
Collapse
Affiliation(s)
- Si-Jie Jiang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jingchun Sun
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Gongsong Tong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiewei Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yunxiang Fu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
31
|
Kominko H, Gorazda K, Wzorek Z. Effect of sewage sludge-based fertilizers on biomass growth and heavy metal accumulation in plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114417. [PMID: 34991023 DOI: 10.1016/j.jenvman.2021.114417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This study was focused on an assessment of the agronomic efficiency of organo-mineral fertilizers based on sewage sludge and possible accumulation of heavy metals in plant biomass. Fertilizers optimized for industrial crops (rape, maize, sunflower) were used in the study. The impact of fertilizers based on sewage sludge on early stage plant growth was assessed using germination tests, and the impact on further growth and development was assessed using pot trials. The germination index of cress, sorghum and mustard was in the range of 50-92% depending on the type and dose of fertilizer and on the plant tested, which corresponded to moderate to zero toxicity. The results of pot trials showed a significant impact of fertilizers based on sewage sludge on the biomass growth of selected plants. The use of fertilizers caused an increase in fresh mass of 75-138% for rape, 96-138% for maize and 23-54% for sunflower with respect to the control sample. An increase in the dose of fertilizers for rape did not significantly affect the heavy metal content in plants, except for the content of Ni. In the case of fertilizers optimized for maize and sunflower, an increase in the dose caused an accumulation of Cd, Ni, Pb and Cr in the biomass of the tested plants. However, it should be noted that the pollution level of plant biomass for all treatments was zero to medium (1.00-1.66).
Collapse
Affiliation(s)
- Halyna Kominko
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Warszawska 24, 31-155, Cracow, Poland.
| | - Katarzyna Gorazda
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Warszawska 24, 31-155, Cracow, Poland.
| | - Zbigniew Wzorek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Warszawska 24, 31-155, Cracow, Poland.
| |
Collapse
|
32
|
Lee H, Coulon F, Wagland ST. Influence of pH, depth and humic acid on metal and metalloids recovery from municipal solid waste landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150332. [PMID: 34555612 DOI: 10.1016/j.scitotenv.2021.150332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The recovery of metal(loid)s from municipal solid waste (MSW) samples <10 years old and >10 years old was investigated using a series of pH-dependence leaching batch tests ranging between pH 2 and 10. Further to this, the influences of various parameters, including depth, and humic acid (HA) concentrations on the recovery of metal(loid)s including Li, Al, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Hg were investigated. The Visual MINTEQ geochemical software was then used to model the metal(loid)s release in the presence of different HA concentrations ranging from 28 mg/L to 100 mg/L, which can be found in landfill sites and pH ranging from 2 to 10. The results showed that the release amount of Li, Al, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Hg are in the range of 0.03-0.14 mg/L, 0.65-83.33 mg/L, 0.01-0.19 mg/L, 0.18-18.17 mg/L, 0.01-0.09 mg/L, 0.06-0.38 mg/L, 0.12-5.2 mg/L, 0.14-11.57 mg/L, 0.02-0.10 mg/L, 0.00-26.17 mg/L, 0.03-25.17 mg/L, and 0.00-0.01 mg/L with deionised water as leachant at different pH. The release amount of HA was relatively increased from 0 to 2% in 48-55 m compared to 3-9 m in the MSW landfill. HA can promote the leaching rate of metals with an appropriate amount. Base on the study results, the optimal condition of leaching metals was pH 2, and HA 28 mg/L at less than 10 m depth. The high concentration of metals in landfill leachate may be enhanced to effectively recover metals as the critical challenge of recovering metals from leachate is the low concentration of metals. Thus, the information can be useful for economically feasible in the recovery of metals.
Collapse
Affiliation(s)
- H Lee
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - F Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - S T Wagland
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
33
|
Zhou S, Liao X, Li S, Fang X, Guan Z, Ye M, Sun S. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114192. [PMID: 34861501 DOI: 10.1016/j.jenvman.2021.114192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Unwieldy fine sulfide ores are produced during mining; without being appropriately disposed of, they can cause environmental pollution and waste resources. This study investigated the leaching performance of a moderately thermophilic consortia (Leptospirillum ferriphilum + Acidithiobacillus caldus + Sulfobacillus benefaciens) for fine lead-zinc sulfide raw ore. The results showed this microbial community created a low pH, high ORP, and high cell concentration environment for mineral leaching, improving bioleaching efficiency. Under the action of this consortia, the zinc leaching rate reached 96.44 in 8 days, and reached 100% after 12 days. EPS analysis indicated that the consortia could mediate the secretion of more polysaccharides to ensure leaching efficiency. EPS levels and amino acids were the main factors affecting bioleaching. An analysis of mineral surface characteristics showed the consortia effectively leached pyrite and sphalerite from the fine sulfide ore, and prevented the mineral surface forming the jarosite that could hinder bioleaching. This study found that bioleaching reduced the potential environmental toxicity of the minerals, providing an important reference for guiding the bioleaching of unwieldy fine sulfide raw ore.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| |
Collapse
|
34
|
Li Z, Wang X, Wang J, Yuan X, Jiang X, Wang Y, Zhong C, Xu D, Gu T, Wang F. Bacterial biofilms as platforms engineered for diverse applications. Biotechnol Adv 2022; 57:107932. [DOI: 10.1016/j.biotechadv.2022.107932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
|
35
|
Gavrilescu M. Microbial recovery of critical metals from secondary sources. BIORESOURCE TECHNOLOGY 2022; 344:126208. [PMID: 34715340 DOI: 10.1016/j.biortech.2021.126208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The continuous development of technologies involving critical metals, both in Europe and over the world, and geopolitical challenges in areas rich in critical metal sources, imposed increased research efforts to recover them from secondary sources, by eco-efficient processes. Yet, microbes-metal interactions are not sufficiently exploited to recover metals from secondary sources, although they are already used in ore extraction. This review examines and compare strategies and processes involving microorganisms for critical metals recovery, since conventional physico-chemical methods are energy-intensive and often polluting. Two groups of microbial assisted recovery processes are discussed: metal mobilization from metal bearing waste, and selective metal separation from leaching solutions by immobilization on microbial biomass. Because most of the identified microbial technologies are developed on laboratory scale, the increase of biorecovery efficiency is compulsory for enhancing scaling-up potential. Future developments focused on novel microorganisms and high-performance strategies for critical metal recovery by microbial processes are considered.
Collapse
Affiliation(s)
- Maria Gavrilescu
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Mangeron Blvd., 700050 Iasi, Romania.
| |
Collapse
|
36
|
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. CHEMOSPHERE 2021; 282:131108. [PMID: 34119723 DOI: 10.1016/j.chemosphere.2021.131108] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.
Collapse
Affiliation(s)
| | - Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
37
|
Masoum HG, Rastegar SO, Khamforoush M. Ultrasound‐Assisted Leaching of Vanadium and Yttrium from Coal Ash: Optimization, Kinetic and Thermodynamic Study. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hero Ghasemi Masoum
- University of Kurdistan Department of Chemical Engineering Faculty of Engineering Sanandaj Iran
| | - Seyed Omid Rastegar
- University of Kurdistan Department of Chemical Engineering Faculty of Engineering Sanandaj Iran
| | - Mehrdad Khamforoush
- University of Kurdistan Department of Chemical Engineering Faculty of Engineering Sanandaj Iran
| |
Collapse
|
38
|
Cui J, Zhu N, Mao F, Wu P, Dang Z. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148151. [PMID: 34111782 DOI: 10.1016/j.scitotenv.2021.148151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Using Aspergillus niger (A. niger) to produce low-concentration organic acids is challenging for dissolving In3O2 from waste LCD (liquid crystal display) panels with high toxicity. In this study, three bioleaching approaches from the general and the optimized fermentation systems were investigated respectively to compare indium recovery effects and firstly clarified its bioleaching mechanism. The indium bioleaching efficiency can be improved from 12.3% to 100% by fermentation method optimization. Carboxy groups from organic acids and proteins were the critical substances to release H+ for leaching indium mainly competed with iron via reactions analysis. The effective components increased after optimizing, including the dissociative H+ concentration, the effective carboxyl groups for leaching metal oxides, and the output of oxalic acid. A. niger biomass prevented the contact between H+ and In3O2 and adsorbed In3+ adverse to indium recovery. The bioleaching effects of fermentation broth for indium can be further promoted by controlling bioleaching process parameters.
Collapse
Affiliation(s)
- Jiaying Cui
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment, Tsinghua University, Beijing 100083, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Fulin Mao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
39
|
Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted A. ferrooxidans in a bubble column bioreactor. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Honarjooy Barkusaraey F, Mafigholami R, Faezi Ghasemi M, Khayati G. Zn bio extraction from a zinc rich paint sludge by indigenous Pseudomonas aeruginosa. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1974410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Roya Mafigholami
- Department of Environmental Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Gholam Khayati
- Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| |
Collapse
|
41
|
Wang H, Zhu F, Liu X, Han M, Zhang R. A mini-review of heavy metal recycling technologies for municipal solid waste incineration fly ash. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:1135-1148. [PMID: 33818201 DOI: 10.1177/0734242x211003968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This mini-review article summarizes the available technologies for the recycling of heavy metals (HMs) in municipal solid waste incineration (MSWI) fly ash (FA). Recovery technologies included thermal separation (TS), chemical extraction (CE), bioleaching, and electrochemical processes. The reaction conditions of various methods, the efficiency of recovering HMs from MSWI FA and the difficulties and solutions in the process of technical development were studied. Evaluation of each process has also been done to determine the best HM recycling method and future challenges. Results showed that while bioleaching had minimal environmental impact, the process was time-consuming. TS and CE were the most mature technologies, but the former process was not cost-effective. Overall, it has the greatest economic potential to recover metals by CE with scrubber liquid produced by a wet air pollution control system. An electrochemical process or solvent extraction could then be applied to recover HMs from the enriched leachate. Ongoing development of TS and bioleaching technologies could reduce the treatment cost or time.
Collapse
Affiliation(s)
- Huan Wang
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Fenfen Zhu
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Xiaoyan Liu
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Meiling Han
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Rongyan Zhang
- Department of Environmental Engineering, School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| |
Collapse
|
42
|
Moazzam P, Boroumand Y, Rabiei P, Baghbaderani SS, Mokarian P, Mohagheghian F, Mohammed LJ, Razmjou A. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. CHEMOSPHERE 2021; 277:130196. [PMID: 33784558 DOI: 10.1016/j.chemosphere.2021.130196] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Sorour Salehi Baghbaderani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parastou Mokarian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fereshteh Mohagheghian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Layth Jasim Mohammed
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
43
|
Qiu C, Xie S, Liu N, Meng K, Wang C, Wang D, Wang S. Removal behavior and chemical speciation distributions of heavy metals in sewage sludge during bioleaching and combined bioleaching/Fenton-like processes. Sci Rep 2021; 11:14879. [PMID: 34290308 PMCID: PMC8295269 DOI: 10.1038/s41598-021-94216-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The removal and chemical speciation changes of heavy metals in the sewage sludge during the single bioleaching and combined bioleaching/Fenton-like processes were compared in this study. The improvement in the dewaterability of the treated sludge was also investigated. The single bioleaching led to a removal of Zn, Cu, Cd, Cr, Mn, Ni, As and Pb of 67.28%, 50.78%, 64.86%, 6.32%, 56.15%, 49.83%, 20.78% and 10.52% in 10 days, respectively. The chemical speciation analysis showed that the solubilization of heavy metals in mobile forms (exchangeable/acid soluble and reducible forms) and oxidizable form was the main reason for their removal. Subsequent Fenton-like treatment was carried out at different bioleaching stages when the bioleached sludge dropped to certain pH values (4.5, 4.0 and 3.0), by adding H2O2 at different dosages. The highest removal ratio of Zn, Cu, Cd, Cr, Mn and Ni could reach 75.53%, 52.17%, 71.91%, 11.63%, 66.29% and 65.19% after combined bioleaching/Fenton-like process, respectively, with appropriate pH and H2O2 dosages in less than 6 days. The solubilization efficiencies of these heavy metals in mobile forms were further improved by Fenton-like treatment. The removal efficiencies of As and Pb decreased due to their transformation into insoluble forms (mostly residual fraction) after Fenton treatment. The capillary suction times (CST) of the raw sludge (98.7 s) decreased by 79.43% after bioleaching and 87.44% after combined process, respectively.
Collapse
Affiliation(s)
- Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Shangyu Xie
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China. .,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China.
| | - Kequan Meng
- CNOOC Ener Tech-Drilling & Production Co., Tianjin, 300452, People's Republic of China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| |
Collapse
|
44
|
Golzar-Ahmadi M, Mousavi SM. Extraction of valuable metals from discarded AMOLED displays in smartphones using Bacillus foraminis as an alkali-tolerant strain. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:226-236. [PMID: 34171827 DOI: 10.1016/j.wasman.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
With the alarming rate of e-waste generation, resource recovery from secondary metal sources is essential for sustainable resource utilization and to prevent the release of potentially toxic elements into the environment. In the current study, the first-time extraction of Ag, Mo, and Cu from active-matrix organic light-emitting diode (AMOLED) screens of discarded smartphones have been achieved using organic acids produced by Bacillus foraminis cultured on a modified Horikoshi medium. The influences of initial pH, inoculation size, and pulp density on the bioleaching process were evaluated over six-day experiment. Maximum extraction of Ag, Mo, and Cu (100, 56.8, and 41.4%) at optimal values of three investigated factors was obtained over a 12-day bioleaching experiment. A diverse assemblage of organic acid was produced in the optimized bioleaching condition, including tartaric (12.1 mM), formic (49.8 mM), acetic (21.5 mM), lactic (78.5 mM), citric (2.7 mM), and propionic (69.6 mM) acid. The contact angle analysis highlighted more hydrophobicity of powder after the bioleaching. FTIR and CHNO data also confirmed the role of bioleaching in the powder wettability alteration. The sequential extraction method revealed high mobility of In, Fe, Co, Cu, Cr, and Mo and low mobility of Ag. The results exhibited high tolerance of alkali-tolerant bacteria to potentially toxic elements and its superior performance in the bioleaching of discarded mobile screens at high pulp density.
Collapse
Affiliation(s)
- Mehdi Golzar-Ahmadi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
45
|
Hosseinzadeh F, Rastegar SO, Ashengroph M. Bioleaching of rare earth elements from spent automobile catalyst as pretreatment method to improve Pt and Pd recovery: Process optimization and kinetic study. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Alias C, Bulgari D, Bilo F, Borgese L, Gianoncelli A, Ribaudo G, Gobbi E, Alessandri I. Food Waste-Assisted Metal Extraction from Printed Circuit Boards: The Aspergillus niger Route. Microorganisms 2021; 9:microorganisms9050895. [PMID: 33922043 PMCID: PMC8143491 DOI: 10.3390/microorganisms9050895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.
Collapse
Affiliation(s)
- Carlotta Alias
- B+LabNet-Environmental Sustainability Lab, University of Brescia, Via Branze 45, 25123 Brescia, Italy;
| | - Daniela Bulgari
- Agri-Food and Environmental Microbiology Platform (PiMiAA), Department of Molecular and Translational Medicine, University of Brescia, Via Branze 45, 25123 Brescia, Italy;
- Correspondence:
| | - Fabjola Bilo
- Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (F.B.); (L.B.)
| | - Laura Borgese
- Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (F.B.); (L.B.)
| | - Alessandra Gianoncelli
- Piattaforma di Proteomica, AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.G.); (G.R.)
| | - Giovanni Ribaudo
- Piattaforma di Proteomica, AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.G.); (G.R.)
| | - Emanuela Gobbi
- Agri-Food and Environmental Microbiology Platform (PiMiAA), Department of Molecular and Translational Medicine, University of Brescia, Via Branze 45, 25123 Brescia, Italy;
| | - Ivano Alessandri
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, UdR Brescia, Via Branze 38, 25123 Brescia, Italy
- Istituto Nazionale di Ottica—INO-CNR, UdR Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
47
|
Zhang Q, Zou D, Zeng X, Li L, Wang A, Liu F, Wang H, Zeng Q, Xiao Z. Effect of the direct use of biomass in agricultural soil on heavy metals __ activation or immobilization? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115989. [PMID: 33190985 DOI: 10.1016/j.envpol.2020.115989] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the biomass was directly used extensively in agriculture due to its low cost and convenience. Increasingly serious soil pollution of heavy metals may pose threats and risks to human health. Directly addition of biomass to soil may affect the bioavailability and content of heavy metals. Here, we reviewed the impact of direct application of oil cake, manure, sewage sludge, straw and municipal waste to soil on the form and concentration of heavy metals in soil, and also emphasized the role of biomass in soil heavy metals remediation. Heavy metals can be activated in a short term by the content of heavy metals in biomass, the production of low-molecular-weight organic acids by biomass application, and the oxidation of sulfides (except for ammoniation). However, heavy metals in soil can be immobilized by humic substances. These can be produced by biomass during a long-term application to soil. Moreover, the degree of immobilization depended on the kind of biomass. Biomass contaminated by heavy metals cannot be returned to the field directly. Therefore, Mitigating the activation of heavy metals in the early stage of biomass application is meaningful, especially for application of these biomass such as straw, sewage sludge and municipal waste. Future researches should focus on the heavy metal control on direct use of biomass in agricultural.
Collapse
Affiliation(s)
- Qiuguo Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Longcheng Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Andong Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China.
| |
Collapse
|
48
|
Kremser K, Thallner S, Strbik D, Spiess S, Kucera J, Vaculovic T, Vsiansky D, Haberbauer M, Mandl M, Guebitz GM. Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111734. [PMID: 33288317 DOI: 10.1016/j.jenvman.2020.111734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/21/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Hazardous waste disposal via incineration generates a substantial amount of ashes and slags which pose an environmental risk due to their toxicity. Currently, these residues are deposited in landfills with loss of potentially recyclable raw material. In this study, the use of acidophilic bioleaching bacteria (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans) as an environmentally friendly, efficient strategy for the recovery of valuable metals from incineration residues was investigated. Zinc, Cobalt, Copper, and Manganese from three different incineration residues were bio-extracted up to 100% using A. ferrooxidans under ferrous iron oxidation. The other metals showed lower leaching efficiencies based on the type of culture used. Sulfur-oxidizing cultures A. ferrooxidans and A. thiooxidans, containing sulfur as the sole substrate, expressed a significantly lower leaching efficiency (up to 50%). According to ICP-MS, ashes and slags contained Fe, Zn, Cu, Mn, Cr, Cd, and Ni in economically attractive concentrations between 0.2 and 75 mg g-1. Compared to conventional hydrometallurgical and pyrometallurgical processes, our biological approach provides many advantages such as: the use of a limited amount of used strong acids (H2SO4 or HCl), recycling operations at lower temperatures (~30 °C) and no emission of toxic gases during combustion (i.e., dioxins and furans).
Collapse
Affiliation(s)
- Klemens Kremser
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430, Tulln and der Donau, Austria
| | | | - Dorina Strbik
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430, Tulln and der Donau, Austria
| | | | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Dalibor Vsiansky
- Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martin Mandl
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences Vienna BOKU, Dept. of Agrobiotechnology, IFA-Tulln, Inst. of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430, Tulln and der Donau, Austria.
| |
Collapse
|
49
|
Zheng J, Qiu C, Wang C, Zhao J, Wang D, Liu N, Wang S, Yu J, Sun L. Influence of thermal hydrolysis treatment on chemical speciation and bioleaching behavior of heavy metals in the sewage sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:372-380. [PMID: 33504701 DOI: 10.2166/wst.2020.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the transformation of chemical speciation of Cr, Mn, As and Cd in the sewage sludge before and after thermal hydrolysis treatment was investigated using modified BCR method. The effect of thermal hydrolysis treatment and chemical speciation change on the subsequent bioleaching behavior was also researched. The results showed that the concentrations of Cr, Mn, As and Cd in oxidizable fraction decreased in the sludge treated by thermal hydrolysis. Meanwhile, the proportions of Cr, Mn and As in the mobile fractions (acid-soluble/exchangeable and reducible fraction) all decreased, while Cd was concentrated in the sludge treated by thermal hydrolysis. The final pH value of bioleached sludge treated by thermal hydrolysis was lower than that in the bioleached raw sewage sludge. And faster increase of oxidation-reduction potential (ORP) was also found in the bioleaching process of the sludge treated by thermal hydrolysis. The removal percentage of Mn and Cd increased in the bioleached sludge treated by thermal hydrolysis. Thermal hydrolysis treatment can promote the bioleaching to some extent. Furthermore, the environmental risk of Cr, Mn, As and Cd in the bioleached sludge treated by thermal hydrolysis was all alleviated according to risk assessment analysis compared with the bioleached raw sewage sludge.
Collapse
Affiliation(s)
- Jinxin Zheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Jiaqi Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Liping Sun
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
50
|
Abbasi M, Aminian-Dehkordi J, Mousavi SM. A novel computational simulation approach to study biofilm significance in a packed-bed biooxidation reactor. CHEMOSPHERE 2021; 262:127680. [PMID: 32763572 DOI: 10.1016/j.chemosphere.2020.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Fe (II) biooxidation has recently gained significant interest. It plays a key role in a number of environmental and industrial processes such as bioleaching, acid mine drainage treatment, desulphurization of sour gases, and coal desulphurization. In this work, a three-dimensional CFD model for gas-liquid flow in a lab-scale packed-bed biooxidation reactor is used. The reactor is randomly packed with spherical particles, and the particles are covered with Leptospirillum ferrooxidans biofilm for Fe (II) biooxidation. A modified Jodrey-Tory algorithm is used to generate random packing with actual porosity of 0.42, and biofilm layer with constant thickness is considered over the particles. A simplified Eulerian-Eulerian model is used to obtain detailed flow field. The concentration profile in the reactor and the conversion of Fe (II) from the present simulations are obtained and validated using experimental data reported in the literature. The results of the study indicate that about three-quarters of the conversion occurs in the upper half of the reactor and Fe (II) concentration on the biofilm surface at the lower quarter of the reactor does not exceed 5 mM (The inlet concentration is 89.6 mM). The findings reveal that rate-limiting phenomena may vary in different parts of the reactor. The results obtained through the simulations represent advantages for the design and optimization of packed-bed biofilm reactors.
Collapse
Affiliation(s)
- Mohammad Abbasi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Javad Aminian-Dehkordi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|