1
|
Guo H, Song L, Wang X, Huang J, Zhang X, Zhang Y, Zhu W, Song W, Chen H, Bo J, Zhang P, Cao G, Luo Z. Cold adaptation of harmful dinoflagellate facilitates their poleward colonization: Insights into extracellular polymeric substances and intracellular bio-macromolecules dynamics through in-situ FTIR imaging. Int J Biol Macromol 2025; 309:143054. [PMID: 40220838 DOI: 10.1016/j.ijbiomac.2025.143054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
While higher latitudes are becoming relatively warm ecosystem for phytoplankton, the rapid and active adaptation of harmful algal cells to cold conditions also contributes to their poleward colonization, which has scarcely been studied. We examined the adaptive mechanism to cold stress in Gymnodinium catenatum, a eurythermic species that has been recently reported to spread to higher latitudes. Using the in-situ focal plane array Fourier transform infrared spectroscopy (FPA-FTIR) imaging combined with transmission electron microscopy, we demonstrated that this dinoflagellate could adapt to cold stress by establishing two cell barriers: one consisting of the massive extracellular polymeric substances (EPS) that accumulated outside the cell and the other represented by lipid phase separation within the reshaped cellular microenvironment. Two-dimensional correlation (2D-COS) spectroscopy further revealed that intracellular bio-macromolecules (lipids, proteins, and carbohydrates) were organized in an ordered and purposeful manner to resist cold. Transcriptome analysis confirmed the inhibition of nicotinamide adenine dinucleotide (NADH) dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) involved in protein and carbohydrate metabolism, in cold-treated cells. This study elucidated a flexible adaptation strategy of G. catenatum at the bio-macromolecular level and generally discussed the widespread colonization of harmful microalgae at higher latitudes.
Collapse
Affiliation(s)
- Huige Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Linjie Song
- Department of Colorectal and Anorectal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266001, China
| | - Xiaochen Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jieliang Huang
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Xuhui Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wenting Zhu
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116000, China
| | - Wenpeng Song
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116000, China
| | - Hongzhe Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Bo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ping Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
2
|
Papapanagiotou G, Samara C, Psachoulia P, Chatzidoukas C. Microalgae bioprospecting for the food industry: insights into the autotrophic biomass production and macromolecular accumulation of four microalgal species. World J Microbiol Biotechnol 2024; 41:12. [PMID: 39690311 DOI: 10.1007/s11274-024-04229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
In this study, four microalgal strains were evaluated for their biomass production capacity and macromolecule biosynthesis. These include three strains from the phylum Chlorophyta: Monoraphidium sp. LB2PC 0120, Stichococcus sp. LB2PC 0117, and Tetraselmis sp. LB2PC 0320, and one strain from the phylum Haptophyta: Isochrysis sp. LB2PC 0220. The experiments were conducted under typical laboratory-scale setups. Additionally, phylogenetic analysis based on the 18-28 S rRNA internal transcribed spacer (ITS) was performed to validate the taxonomic identity of the strains. Each strain was exposed to four different cultivation conditions based on two levels of illumination intensity [25-(LI) and 50-(HI) µmol m- 2 s- 1] and nitrogen loading [100-(LΝ) and 300-(HΝ) mg NaNO3 L- 1] in a full factorial design. All the microalgae achieved maximum biomass production under HI-HN conditions, which amounted to 1495, 919, 844, and 708 mg/L for Monoraphidium sp. LB2PC 0120, Stichococcus sp. LB2PC 0117, Tetraselmis sp. LB2PC 0320 and Isochrysis sp. LB2PC 0220, respectively, after 16 days of cultivation. Among them, Stichococcus sp. LB2PC 0117 had the highest protein content (49.9% wt.) under LI-HN conditions and Monoraphidium sp. LB2PC 0120 had the highest lipid content (44.3% wt.) under HI-LN conditions. Both Monoraphidium sp. LB2PC 0120 and Tetraselmis sp. LB2PC 0320 accumulated the highest carbohydrate content (~ 37% wt.) under LI-LN and HI-LN conditions, respectively. Based on biomass and macromolecule production, Monoraphidium sp. LB2PC 0120 was identified as the most promising candidate for upscaling studies, expecting its highly manipulatable compositional profile to support multiple applications in the food industry, rendering this microalga a valuable resource.
Collapse
Affiliation(s)
- Georgia Papapanagiotou
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
| | - Christina Samara
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
| | - Paraskevi Psachoulia
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
| | - Christos Chatzidoukas
- Laboratory of Biochemical and Biotechnological Processes (LB²P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece.
| |
Collapse
|
3
|
Park SB, Lee YR, Yun JH, Choi HI, Sim EJ, Choi DY, Cho DH, Kim HS, Lee YJ. Towards maximizing biomass and lipid productivity: high-throughput screening assay for prospecting heterotrophic growth for new microalgal isolates. Microb Cell Fact 2024; 23:299. [PMID: 39511591 PMCID: PMC11545793 DOI: 10.1186/s12934-024-02550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Microalgae have emerged as sustainable alternatives to fossil fuels and high-value petrochemicals. Despite the commercial potential of microalgae, their low biomass productivity is a significant limiting factor for large-scale production. In the photoautotrophic cultivation of microalgae, achievable cell density levels depend on the light transmittance of the production system, which can significantly decrease the photosynthetic rate and biomass production. In contrast, the mixotrophic cultivation of microalgae using heterotrophic carbon sources enables high-density cultivation, which significantly enhances biomass productivity. The identification of optimal production conditions is crucial for improving biomass productivity; however, it is typically time- and resource-consuming. To overcome this problem, high-throughput screening (HTS) system presents a practical approach to maximize biomass and lipid production and enhance the industrial applicability of microalgae. RESULTS In this study, we proposed a two-step HTS assay that allows effective screening of heterotrophic conditions compatible with new microalgal isolates. To confirm the effectiveness of the HTS assay, three microalgal isolates with distinctive morphological and genetic traits were selected. Suitable cultivation conditions, including various heterotrophic carbon sources, substrate concentrations, and temperatures, were investigated using a two-step HTS assay. The optimized conditions were validated at the flask scale, which confirmed a significant enhancement in the biomass and lipid productivity of each isolate. Moreover, the two-step HTS assay notably enhanced economic and temporal efficiency compared to conventional flask-based optimization. CONCLUSIONS These results suggest that our two-step HTS assay is an efficient strategy for investigating and optimizing microalgal culture conditions to maximize biomass and lipid productivity. This approach has the potential to enhance the industrial applicability of microalgae and facilitate the seamless transition from laboratory to field applications.
Collapse
Affiliation(s)
- Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yu Rim Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Rasmussen N, Mohieddin Abukhdeir N, Ward VCA. Hydrogel-based photobioreactor for Solid-State cultivation of Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2024; 408:131105. [PMID: 39002883 DOI: 10.1016/j.biortech.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Solid-state cultivation is a promising technology for algal biomass production, achieving high productivities without the need for dewatering. However, such systems have suffered from high evaporation, and capital costs. Here is described a hydrogel photobioreactor (hPBR) with the aim of reducing water demand in solid-state cultivations. Two designs are described with "Design A" offering better humidity control overgrowth conditions. A biomass productivity of 2.41gm-2d-1, and 2.87gm-2d-1 when using physically crosslinked poly(vinyl alcohol) (pPVA) and chemically crosslinked PVA (cPVA) respectively were achieved with Chlorella vulgaris with a water demand around 0.44 kg g-1 of biomass. Over the 23 days of growth, the lipid content increased from 18.9 % to 56.6 % and 13.8 % to 43.2 % for pPVA and cPVA respectively, and the chlorophyll content decreased by more than 81 %. However, cell viability stayed high at over 98 % and surface coverage analysis showed good coverage of the gel surface.
Collapse
Affiliation(s)
- Nicholas Rasmussen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Valerie C A Ward
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
5
|
Zheng S, Sun S, Zou S, Song J, Hua L, Chen H, Wang Q. Effects of culture temperature and light regimes on biomass and lipid accumulation of Chlamydomonas reinhardtii under carbon-rich and nitrogen-limited conditions. BIORESOURCE TECHNOLOGY 2024; 399:130613. [PMID: 38513922 DOI: 10.1016/j.biortech.2024.130613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study investigated the impacts of various culture temperatures and light regimes on growth and biochemical constituents of Chlamydomonas reinhardtii under carbon-supply and nitrogen-limited conditions to improve oil production in algal cells. Results displayed that under a 30 ℃ and 150 μE/m2/s regime, there was a significant increase in biomass, total lipids, and lipid productivity. Specifically, these parameters reached 1.83 g/L, 36.25 %, and 130.73 mg/L/d, respectively. Remarkably, prolonging the photoperiod further enhanced the aforementioned three parameters, reaching peak levels of 1.92 g/L, 41.10 %, and 157.54 mg/L/d, respectively, recorded at a 24/0h photoperiod. Compared with cultures grown under normal conditions, these values displayed increments of 1.21-fold, 74.88 %, and 3.01-fold, respectively. Additionally, under optimal conditions, the soluble sugar content reached 79.72 mg/g, and the biodiesel properties were improved. These findings indicate that moderately increasing temperature, light intensity, and photoperiod could achieve the co-production of biomass, lipids, and sugars in C. reinhardtii.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiamei Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lan Hua
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Mohanta A, Prasad N, Khadim SR, Singh P, Singh S, Singh A, Kayastha AM, Asthana RK. Optimizing light regimes for neutral lipid accumulation in Dunaliella salina MCC 43: a study on physiological status and carbon allocation. World J Microbiol Biotechnol 2024; 40:82. [PMID: 38285311 DOI: 10.1007/s11274-024-03893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Dunaliella salina is a favourable source of high lipid feedstock for biofuel and medicinal chemicals. Low biomass output from microalgae is a significant barrier to industrial-scale commercialisation. The current study aimed to determine how photosynthetic efficiency, carbon fixation, macromolecular synthesis, accumulation of neutral lipids, and antioxidative defence (ROS scavenging enzyme activities) of D. salina cells were affected by different light intensities (LI) (50, 100, 200, and 400 µmol m-2 s-1). The cells when exposed to strong light (400 µmol m-2 s-1) led to reduction in chlorophyll a but the carotenoid content increased by 19% in comparison to the control (LI 100). The amount of carbohydrate changed significantly under high light and in spite of stress inflicted on the cells by high irradiation, a considerable increase in activity of carbonic anhydrase and fixation rate of CO2 were recorded, thus, preserving the biomass content. The high light exposed biomass when subjected to nitrogen-deficient medium led to increase in lipid content (59.92% of the dry cell weight). However, neutral lipid made up 78.26% of the total lipid while other lipids like phospholipid and glycolipid content decreased, showing that the lipid was redistributed in these cells under nitrogen deprivation, making the organism more appropriate for biodiesel/jet fuel use. Although D. salina cells had a relatively longer generation time (3.5 d) than other microalgal cells, an economic analysis concluded that the amount of carotenoid they produced and the quality of their lipids made them more suited for commercialization.
Collapse
Affiliation(s)
- Abhishek Mohanta
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Nitesh Prasad
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- P.G. Department of Botany, Dhenkanal Autonomous College, Dhenkanal, Odisha, India
| | - Prabhakar Singh
- Biochemistry Department, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Savita Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Avinash Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - A M Kayastha
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, India
| | - R K Asthana
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Senousy HH, El-Sheekh MM, Khairy HM, El-Sayed HS, Mahmoud GAE, Hamed AA. Biodiesel Production from the Marine Alga Nannochloropsis oceanica Grown on Yeast Wastewater and the Effect on Its Biochemical Composition and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2898. [PMID: 37631110 PMCID: PMC10459201 DOI: 10.3390/plants12162898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Microalgae-based biodiesel synthesis is currently not commercially viable due to the high costs of culture realizations and low lipid yields. The main objective of the current study was to determine the possibility of growing Nannochloropsis oceanica on Saccharomyces cerevisiae yeast wastewater for biodiesel generation at an economical rate. N. oceanica was grown in Guillard F/2 synthetic medium and three dilutions of yeast wastewater (1, 1.25, and 1.5%). Biodiesel properties, in addition to carbohydrate, protein, lipid, dry weight, biomass, lipid productivity, amino acids, and fatty acid methyl ester (FAMEs) content, were analyzed and the quality of the produced biodiesel is assessed. The data revealed the response of N. oceanica to nitrogen-deficiency in the three dilutions of yeast wastewater. N. oceanica in Y2 (1.25%) yeast wastewater dilution exhibited the highest total carbohydrate and lipid percentages (21.19% and 41.97%, respectively), and the highest lipid productivity (52.46 mg L-1 day -1) under nitrogen deficiency in yeast wastewater. The fatty acids profile shows that N. oceanica cultivated in Y2 (1.25%) wastewater dilution provides a significant level of TSFA (47.42%) and can be used as a feedstock for biodiesel synthesis. In addition, N. oceanica responded to nitrogen shortage in wastewater dilutions by upregulating the gene encoding delta-9 fatty acid desaturase (Δ9FAD). As a result, the oleic and palmitoleic acid levels increased in the fatty acid profile of Y2 yeast wastewater dilution, highlighting the increased activity of Δ9FAD enzyme in transforming stearic acid and palmitic acid into oleic acid and palmitoleic acid. This study proved that the Y2 (1.25%) yeast wastewater dilution can be utilized as a growth medium for improving the quantity of specific fatty acids and lipid productivity in N. oceanica that affect biodiesel quality to satisfy global biodiesel requirements.
Collapse
Affiliation(s)
- Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Hanan M. Khairy
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (H.M.K.); (H.S.E.-S.)
| | - Heba S. El-Sayed
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (H.M.K.); (H.S.E.-S.)
| | | | - Amal A. Hamed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| |
Collapse
|
9
|
Oliveira CYB, Jacob A, Nader C, Oliveira CDL, Matos ÂP, Araújo ES, Shabnam N, Ashok B, Gálvez AO. An overview on microalgae as renewable resources for meeting sustainable development goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115897. [PMID: 35947909 DOI: 10.1016/j.jenvman.2022.115897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 05/27/2023]
Abstract
The increased demands and dependence on depleted oil reserves, accompanied by global warming and climate change have driven the world to explore and develop new strategies for global sustainable development. Among sustainable biomass sources, microalgae represent a promising alternative to fossil fuel and can contribute to the achievement of important Sustainable Development Goals (SDGs). This article has reviewed the various applications of microalgal biomass that includes (i) the use in aquaculture and its sustainability; (ii) commercial value and emerging extraction strategies of carotenoids; (iii) biofuels from microalgae and their application in internal combustion engines; (iv) the use and reuse of water in microalgae cultivation; and (v) microalgae biotechnology as a key factor to assist SDGs. The future prospects and challenges on the microalgae circular bio economy, issues with regard to the scale-up and water demand in microalgae cultivation are also highlighted.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil.
| | - Ashwin Jacob
- School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Camila Nader
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cicero Diogo L Oliveira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Ângelo P Matos
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Evando S Araújo
- Grupo de Pesquisa em Aplicações de Eletrofiação e Nanotecnologia (GPEA-Nano), Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Nisha Shabnam
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Czech Republic
| | - Bragadeshwaran Ashok
- Division of Thermal and Automotive, Vellore Institute of Technology, Vellore, India
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
10
|
Munir N, Hasnain M, Sarwar Z, Ali F, Hessini K, Abideen Z. Changes in environmental conditions are critical factors for optimum biomass, lipid pattern and biodiesel production in algal biomass. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Bright as day and dark as night: light-dependant energy for lipid biosynthesis and production in microalgae. World J Microbiol Biotechnol 2022; 38:70. [PMID: 35257233 DOI: 10.1007/s11274-022-03245-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 10/18/2022]
Abstract
Microalgae are photosynthetic organisms functioning as the green bio-factories for various pharmaceutical and biofuel products. To date, numerous attempts have been carried out to manipulate culture conditions to maximize the production of the desired metabolites. Because light is the energy source of microalgae for their growth and metabolites biosynthesis, it has been one of the most investigated variables emphasized on the deep understanding of how microalgae respond towards light changes as an external stimulus. This review discusses the effects of different light sources, light intensities, light wavelengths and length of photoperiod on various microalgae species, especially in terms of biomass and lipid productivity. Additionally, the relationship between photoregulation processes and lipid productivity of microalgae are also deliberated. The current available approaches of microalgae mass cultivation, including different types of open and closed systems are recapitulated with the intention to highlight the significant insights for the design of future photoreactors.
Collapse
|
12
|
Li Z, Yang ST, Zhou ZY, Peng SY, Zhang QH, Long HZ, Li HG. Enhancement of lipid production in Desmodesmus intermedius Z8 by ultrasonic stimulation coupled with nitrogen and phosphorus stress. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Calhoun S, Bell TAS, Dahlin LR, Kunde Y, LaButti K, Louie KB, Kuftin A, Treen D, Dilworth D, Mihaltcheva S, Daum C, Bowen BP, Northen TR, Guarnieri MT, Starkenburg SR, Grigoriev IV. A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Commun Biol 2021; 4:333. [PMID: 33712730 PMCID: PMC7955037 DOI: 10.1038/s42003-021-01859-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Microalgae efficiently convert sunlight into lipids and carbohydrates, offering bio-based alternatives for energy and chemical production. Improving algal productivity and robustness against abiotic stress requires a systems level characterization enabled by functional genomics. Here, we characterize a halotolerant microalga Scenedesmus sp. NREL 46B-D3 demonstrating peak growth near 25 °C that reaches 30 g/m2/day and the highest biomass accumulation capacity post cell division reported to date for a halotolerant strain. Functional genomics analysis revealed that genes involved in lipid production, ion channels and antiporters are expanded and expressed. Exposure to temperature stress shifts fatty acid metabolism and increases amino acids synthesis. Co-expression analysis shows that many fatty acid biosynthesis genes are overexpressed with specific transcription factors under cold stress. These and other genes involved in the metabolic and regulatory response to temperature stress can be further explored for strain improvement.
Collapse
Affiliation(s)
- Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tisza Ann Szeremy Bell
- Applied Genomics Team, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Division of Biological Sciences, Genome Core, University of Montana, Missoula, MT, USA
| | - Lukas R Dahlin
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Yuliya Kunde
- Applied Genomics Team, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrea Kuftin
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Treen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sirma Mihaltcheva
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin P Bowen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael T Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Shawn R Starkenburg
- Applied Genomics Team, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Li X, Slavens S, Crunkleton DW, Johannes TW. Interactive effect of light quality and temperature on Chlamydomonas reinhardtii growth kinetics and lipid synthesis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Su H, Feng J, Lv J, Liu Q, Nan F, Liu X, Xie S. Molecular Mechanism of Lipid Accumulation and Metabolism of Oleaginous Chlorococcum sphacosum GD from Soil under Salt Stress. Int J Mol Sci 2021; 22:ijms22031304. [PMID: 33525606 PMCID: PMC7865546 DOI: 10.3390/ijms22031304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
The oleaginous microalgae species Chlorococcum sphacosum GD is a promising feedstock for biodiesel production from soil. However, its metabolic mechanism of lipid production remains unclear. In this study, the lipid accumulation and metabolism mechanisms of Chlorococcum sphacosum GD were analyzed under salt stress based on transcriptome sequencing. The biomass and lipid content of the alga strain were determined under different NaCl concentrations, and total RNA from fresh cells were isolated and sequenced by HiSeq 2000 high throughput sequencing technology. As the salt concentration increased in culture medium, the algal lipid content increased but the biomass decreased. Following transcriptome sequencing by assembly and splicing, 24,128 unigenes were annotated, with read lengths mostly distributed in the 200-300 bp interval. Statistically significant differentially expressed unigenes were observed in different experimental groups, with 2051 up-regulated genes and 1835 down-regulated genes. The lipid metabolism pathway analysis showed that, under salt stress, gene-related fatty acid biosynthesis (ACCase, KASII, KAR, HAD, FATA) was significantly up-regulated, but some gene-related fatty acid degradation was significantly down-regulated. The comprehensive results showed that salt concentration can affect the lipid accumulation and metabolism of C. sphacosum GD, and the lipid accumulation is closely related to the fatty acid synthesis pathway.
Collapse
|
16
|
Wang S, Wang Y, Liang Y, Cao W, Sun C, Ju P, Zheng L. The interactions between microplastic polyvinyl chloride and marine diatoms: Physiological, morphological, and growth effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111000. [PMID: 32736119 DOI: 10.1016/j.ecoenv.2020.111000] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are identified as a great threat to marine environments. However, knowledge of their impacts on phytoplankton, especially for the diatoms is scarce. Herein, the effects of different polyvinyl chloride (PVC) microplastic concentrations and contact times (24, 48, 72 and 96 h) on the Fv/Fm and cell density of Phaeodactylum tricornutum (B255), Chaetoceros gracilis (B13) and Thalassiosira sp. (B280) were investigated to evaluate the toxic effects of microplastics on marine diatoms. The effects of PVC microplastics on the morphology of the diatoms was observed by SEM. The order of sensitivity to 1 μm PVC microplastics among three marine diatoms was B13 > B280 > B255, showing that the toxic effects varied with different microalgae species. Furthermore, the presence of a siliceous cell wall played a minimal role in protecting cells from the physical attack of PVC microplastics, with no significant difference from the common cell wall. PVC microplastics caused dose-dependent adverse effects on three marine diatoms. High PVC concentrations (200 mg/L) reduced the chlorophyll content, inhibited Fv/Fm, and affected the photosynthesis of three marine diatoms. The PVC microplastics adsorbed and caused physical damage on the structure of algal cells. Interactions between PVC microplastics and diatoms may be the probable reason for the negative effects of PVC on diatoms.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yue Wang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ying Liang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wei Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
17
|
Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products. SUSTAINABILITY 2020. [DOI: 10.3390/su12135445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The microalgal strain Scenedesmus rubescens KNUA042 was identified in freshwater in Korea and characterized by evaluating its stress responses in an effort to increase lipid and carotenoid production. Under a two-stage cultivation process, the algal strain that generally exhibits optimal growth at a nitrate (source of nitrogen) concentration of 0.25 g L−1 was challenged to different exogenous stimuli—salinity (S), light intensity (L), combined L and S (LS), and nitrogen deficiency (C)—for 14 days. Lipid production and carotenoid concentration increased in a time-dependent manner under these physicochemical conditions during the culture periods. Lipid accumulation was confirmed by thin layer chromatography, BODIPY staining, and fatty acid composition analysis, which showed no differences in the algal cells tested under all four (C, S, L, and LS) conditions. The quality of biodiesel produced from the biomass of the algal cells met the American Society for Testing and Materials and the European standards. Total carotenoid content was increased in the LS-treated algal cells (6.94 mg L−1) compared with that in the C-, S-, and L-treated algal cells 1.75, 4.15, and 1.32 mg L−1, respectively). Accordingly, the concentration of canthaxanthin and astaxanthin was also maximized in the LS-treated algal cells at 1.73 and 1.11 mg g−1, respectively, whereas lutein showed no differences in the cells analyzed. Conversely, chlorophyll a level was similar among the C-, S-, and LS-treated algal cells, except for the L-treated algal cells. Thus, our results suggested that S. rubescens KNUA042 was capable of producing carotenoid molecules, which led to the maximum values of canthaxanthin and astaxanthin concentrations when exposed to the combined LS condition compared with that observed when exposed to the salinity condition alone. This indicates that the algal strain could be used for the production of high-value products as well as biofuel. Furthermore, this article provides the first evidence of carotenoid production in S. rubescens KNUA042.
Collapse
|
18
|
Yusuf SNA, Rahman AMA, Zakaria Z, Subbiah VK, Masnan MJ, Wahab Z. Morphological Variability Identification of Harumanis Mango ( Mangifera indica L.) Harvested from Different Location and Tree Age. Trop Life Sci Res 2020; 31:107-143. [PMID: 32922671 PMCID: PMC7470483 DOI: 10.21315/tlsr2020.31.2.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Harumanis is one of the main signatures of Perlis with regards to its delightful taste, pleasant aroma and expensive price. Harumanis authenticity and productivity had become the remarks among the farmers, entrepreneurs, consumers and plant breeders due to the existence of morphological characteristics variation among the fruits and high production cost. Assessment of Harumanis morphological characteristics of natural population and different tree ages may represent a possible source of important characteristics for development and breeding purposes of Harumanis. The aim of this study is to evaluate the morphological variation of Harumanis collected from different location in Perlis and tree age. A total of 150 Harumanis fruits from 50 trees with three different stages of development (young, middle-aged and old) were characterised using 11 traits; 10 quantitative and one qualitative morphological trait. The ANOVA analyses in combination with Dunn's pairwise and Kruskal-Wallis multiple comparison test able to point out the existence of environmental factor and age influence towards the significant different of identified morphological traits except for Total Soluble Solid (TSS) and pulp percentage. Five clusters of 50 Harumanis accessions reflect a grouping pattern which not according to neither geographical region nor age. The result of Principal Component Analysis (PCA) using the first two principal components (PCs) provided a good approximation of the data explaining 84.09% of the total variance which majorly contributed by parameters of weight, fruit dimensional characteristics, peel percentage and hue angle, h. Preliminary screening of important morphological characteristics which contribute to the phenotypic diversity of Harumanis is successfully achieved. The findings can be employed by the plant breeders and farmers for the establishment of standard grading of Harumanis and advancement of breeding crop of Harumanis in future.
Collapse
Affiliation(s)
- Siti Nur Arina Yusuf
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
| | - Ahmad Mukhlis Abdul Rahman
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
| | - Zarina Zakaria
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Maz Jamilah Masnan
- Institute of Engineering Mathematics, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis, Malaysia
| | - Zakaria Wahab
- Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
| |
Collapse
|
19
|
|
20
|
Chen Z, Qiu S, Amadu AA, Shen Y, Wang L, Wu Z, Ge S. Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater. BIORESOURCE TECHNOLOGY 2020; 297:122517. [PMID: 31830719 DOI: 10.1016/j.biortech.2019.122517] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Effects of different mixing ratios between synthetic municipal wastewater (MW) and magnesium (Mg2+)-enriched nickel laterite ore wastewater (NLOWW) on growth of Chlorella sorokiniana (C. sorokiniana), photosynthetic activities, cellular biocomposition, nutrient and Mg2+ removal were investigated in photobioreactors. In the culture without NLOWW, wrinkled cells were observed with low biomass production. The culture mixed with 0.13% NLOWW obtained 1.89-fold higher biomass yield, 3.77-fold enhanced photosynthetic activity (Fv/Fm value), and improved nutrient removal (nitrogen by 102.2%, phosphorus by 39.3%). However, excessive Mg2+ at 100% NLOWW produced highest reactive oxygen species suppressing microalgal growth. The Mg2+ removal capacity increased with NLOWW loading. Moreover, microalgal assimilation primarily contributed to nutrient removal while absorption was the dominant Mg2+ removal pathway. Carbohydrate content in biomass increased with Mg2+ loading. Finally, the approach for MW/NLOWW treatment was demonstrated as economically feasible with revenue of $75.6 per kilogram biomass through a comprehensive economic model.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yeting Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Lingfeng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
21
|
Abo-State MAM, Shanab SMM, Ali HEA. Effect of nutrients and gamma radiation on growth and lipid accumulation of Chlorella vulgaris for biodiesel production. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1662216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mervat Aly Mohamed Abo-State
- Department of Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Hamdy Elsayed Ahmed Ali
- Department of Radiation Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
22
|
Che CA, Kim SH, Hong HJ, Kityo MK, Sunwoo IY, Jeong GT, Kim SK. Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system. BIORESOURCE TECHNOLOGY 2019; 285:121323. [PMID: 30981013 DOI: 10.1016/j.biortech.2019.121323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The optimal light intensity and photoperiod required to produce high biomass and lipid contents in Isochrysis galbana cultured in a 14-L bioreactor with LED wavelengths was studied. The cell biomass production was monitored in the first phase comprising of mixed blue (465 nm) and red (640 nm) LED wavelengths, then green (520 nm) LED were used in the second phase for lipid production. The optimal light intensity was 400 µmol/m2/s giving a maximum cell biomass of 1.05 g dcw/L and total lipid content of 65.2% (w/w) cultured under 12:12 h L/D cycle. The optimal light intensity of 400 µmol/m2/s was applied at different L/D cycles, the maximum cell biomass (1.25 g dcw/L) and lipid content (71.1% w/w) were obtained at 18:6 h L/D cycle. Stearic acid was the main fatty acid ranging from 42.91 (500 µmol/m2/s) to 65.57% w/w (100 µmol/m2/s) and 53.84 (18:6 h) to 65.44% w/w (24:0 h).
Collapse
Affiliation(s)
- Clovis Awah Che
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - So Hee Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hee Jun Hong
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Moses Katongole Kityo
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - In Yung Sunwoo
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Gwi-Taek Jeong
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung-Koo Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
23
|
Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol (Praha) 2019; 64:615-625. [DOI: 10.1007/s12223-019-00738-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
|
24
|
Physiological Changes of Parachlorella Kessleri TY02 in Lipid Accumulation under Nitrogen Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071188. [PMID: 30987041 PMCID: PMC6479445 DOI: 10.3390/ijerph16071188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022]
Abstract
In order to study the effects of nitrogen stress on the lipid synthesis of Parachlorella kessleri TY02 and to understand the changes in growth, photosynthetic pigments, total protein and total carbohydrate contents during lipid accumulation, the cells of the strain were cultured in nitrogen-deficient (N−) and nitrogen-rich (N+) media for one week. Changes in cell growth, chlorophyll content, chlorophyll fluorescence parameters, neutral lipid and total lipid content, total protein content and total carbohydrate content were measured and analyzed. The results showed that, under nitrogen stress, the algal strain grew slowly, and chlorophyll and total protein contents decreased, while total carbohydrate and total lipid contents increased. This indicated that, under nitrogen stress, most of the carbon flowed to the synthesis of lipids and carbohydrates. Meanwhile, reducing the nitrogen content was a relatively economical and easy to operate method of promoting lipid accumulation.
Collapse
|
25
|
Ramírez-López C, Perales-Vela HV, Fernández-Linares L. Biomass and lipid production from Chlorella vulgaris UTEX 26 cultivated in 2 m 3 raceway ponds under semicontinuous mode during the spring season. BIORESOURCE TECHNOLOGY 2019; 274:252-260. [PMID: 30529329 DOI: 10.1016/j.biortech.2018.11.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
A Chlorella vulgaris UTEX 26 semicontinuous culture was implemented in 2000 L raceways with M medium during spring season at greenhouse conditions. Areal biomass productivities between 20 and 26 g m-2 d-1 were reached on the third day. The maximal areal lipid productivity obtained was 6.1 g m-2 d-1 and an increment in the saturated fatty acids (SFA) proportion (C14-C18) was favored in comparison with the fatty acids obtained with M medium in photobioreactors of 1 L and photoperiod light:darkness 12:12 h. After the eighth day of the culture or biomass concentrations above 0.25 g L-1, the microalgal cultures were prone to contamination by ciliates and amoebae, due to the sugars excreted by C. vulgaris UTEX 26. The periodical addition of NH4HCO3 to the microalgal culture maintained the ammonium concentration between 25 and 50 mg L-1, which contributed to diminish the contamination risks by protozoa.
Collapse
Affiliation(s)
- Citlally Ramírez-López
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto S/N, Col. Barrio La Laguna Ticomán, 07340 Ciudad de México, Mexico
| | - Hugo Virgilio Perales-Vela
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Barrio de los Árboles/Barrio de los Héroes, 54090 Tlalnepantla, Estado de México, Mexico
| | - Luis Fernández-Linares
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto S/N, Col. Barrio La Laguna Ticomán, 07340 Ciudad de México, Mexico.
| |
Collapse
|
26
|
Zhao Y, Wang HP, Han B, Yu X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. BIORESOURCE TECHNOLOGY 2019; 274:549-556. [PMID: 30558833 DOI: 10.1016/j.biortech.2018.12.030] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 05/03/2023]
Abstract
Microalgae can produce lipids and high-value by-products under abiotic stress conditions, including nutrient starvation, high light intensity, extreme temperature, high salinity and the presence of heavy metals. However, the growth and development of microalgae and the accumulation of metabolites may be inhibited by adverse stresses. In recent years, phytohormones have emerged as a topic of intense focus in microalgae research. Phytohormones could sustain the growth of microalgae under abiotic stress conditions. In addition, the combination of plant hormones and abiotic stresses could further promote the biosynthesis of metabolites and improve the ability of microalgae to tolerate abiotic stresses. This review primarily focuses on the regulatory effects of exogenous phytohormones on the biosynthesis of metabolites by microalgae under adverse environmental conditions and discusses the mechanisms of phytohormone-mediated cell growth, stress tolerance and lipid biosynthesis in microalgae under abiotic stress conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
27
|
Ye Y, Huang Y, Xia A, Fu Q, Liao Q, Zeng W, Zheng Y, Zhu X. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. BIORESOURCE TECHNOLOGY 2018; 270:80-87. [PMID: 30212777 DOI: 10.1016/j.biortech.2018.08.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 05/06/2023]
Abstract
In order to solve the technical bottleneck that the biomass yield and lipid accumulation cannot be increased simultaneously during microalgae growth, a heterotrophic-assisted photoautotrophic biofilm (HAPB) growth mode of Chlorella vulgaris was constructed. The light penetration capability of the microalgae biofilm formed through heterotrophic-assisted photoautotrophic growth was 64% stronger than that formed by photoautotrophic growth. Due to the different demands of autotrophic and heterotrophic growth of microalgae, the nutrient environment and growth conditions were optimized to fully utilize the advantages and potentials of the HAPB culture model. An optimized molar ratio of total inorganic carbon (CO2) to total organic carbon (glucose) (20:1) and a molar ratio of total carbon to total nitrogen (72:1) were obtained. The maximum specific growth rate of Chlorella vulgaris increased by 78% compared to that before optimization. Meanwhile, the lipid content and yield increased by 120% and 147%, respectively, up to 47.53% and 41.95 g m-2.
Collapse
Affiliation(s)
- Yangli Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Weida Zeng
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yaping Zheng
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|