1
|
Wang Z, Li L, Gao H, Jiang J, Zhao Q, Li X, Mei W, Gao Q, Zhou H, Wang K, Wei L. Simultaneously enhancement of methane production and active phosphorus transformation by sludge-based biochar during high solids anaerobic co-digestion of dewatered sludge and food waste: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 406:130987. [PMID: 38885724 DOI: 10.1016/j.biortech.2024.130987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biochar has been proved to improve methane production in high solids anaerobic co-digestion (HS-AcoD) of dewatered sludge (DS) and food waste (FW), but its potential mechanism for simultaneous methane production and phosphorus (P) transformation has not been sufficiently revealed. Results showed that the optimal preparation temperature and dosage of sludge-based biochar were selected as 300 °C and 0.075 g·g-1, respectively. Under this optimized condition, the methane production of the semi-continuous reactor increased by 54%, and the active phosphorus increased by 18%. The functional microorganisms, such as Methanosarcina, hydrogen-producing, sulfate-reducing, and iron-reducing bacteria, were increased. Metabolic pathways associated with sulfate reduction and methanogenesis, especially hydrogenotrophic methanogenesis, were enhanced, which in turn promoted methanogenesis and phosphorus transformation and release. This study provides theoretical support for simultaneously recovery of carbon and phosphorus resources from DS and FW using biochar.
Collapse
Affiliation(s)
- Zhaoxia Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lili Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyuan Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwen Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wangyang Mei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huimin Zhou
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Wang F, Ma S, Han X, Liu S, Sun K. Enhancing Phosphorus Release from Sewage Sludge in Anaerobic Digestion via Thermal Hydrolysis Pretreatment: Insights from Phosphorus Speciation and Molecular Biological Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10828-10838. [PMID: 38831418 DOI: 10.1021/acs.est.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This study explores the mechanisms enhancing phosphorus (P) release from sludge in anaerobic digestion (AD) with thermal hydrolysis pretreatment (THP) using sequential chemical extraction, X-ray absorption near-edge structure spectroscopy (XANES), 31P NMR, and multiomics. THP-treated sludge notably increased liquid-phase P by 53.8% over 3 days compared to sewage sludge (SS), identifying solid-phase Fe-P as the primary P source. The THP+AD also provided a higher abundance of bacteria that contributed to P release through multiple pathways (MPRPB), whereas SS+AD enriched some microbial species with single P release pathway. Moreover, species co-occurrence network analysis underlined the pivotal role of P-releasing bacteria in THP+AD, with 8 out of 16 keystones being P-releasers. Among the 63 screened genes that were related to P transformations and release, the poly beta-hydroxybutyrate (PHB) synthesis genes associated with polyphosphate bacteria-mediated P release were more abundant in THP+AD than in SS+AD. Furthermore, the upregulation of genes involved in methyl phosphonate metabolism in the THP-treated sludge enhanced the methane production potential of the AD process. These findings suggested that MPRPB were indeed the main contributors to P release, and enrichment in the THP+AD process enhanced their capability for P liberation.
Collapse
Affiliation(s)
- Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xiaomin Han
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
3
|
Liu B, Jun Y, Zhao C, Zhou C, Zhu T, Shao S. Using Fe(II)/Fe(VI) activated peracetic acid as pretreatment of ultrafiltration for secondary effluent treatment: Water quality improvement and membrane fouling mitigation. WATER RESEARCH 2023; 244:120533. [PMID: 37659184 DOI: 10.1016/j.watres.2023.120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ultrafiltration (UF) is a technology commonly used to treat secondary effluents in wastewater reuse; however, it faces two main challenges: 1) membrane fouling and 2) inadequate nitrogen (N), phosphorus (P), and organic micropollutants (OMPs) removal. To address these two issues, in this study, we applied peracetic acid (PAA), Fe(VI)/PAA, and Fe(II)/PAA as UF pretreatments. The results showed that the most effective pretreatment was Fe(II)/200 μM PAA, which reduced the total fouling resistance by 90.2%. In comparison, the reduction was only 29.7% with 200 μM PAA alone and 64.3% with Fe(VI)/200 μM PAA. Fe(II)/200 μM PAA could effectively remove fluorescent components and hydrophobic organics in effluent organic matter (EfOM), and enhance the repulsive force between foulants and membrane (according to XDLVO analysis), and consequently, mitigate pore blocking and delay cake layer formation. Regarding pollutant removal, Fe(II)/200 μM PAA effectively degraded OMPs (>85%) and improved P removal by 58.2% via in-situ Fe(Ⅲ) co-precipitation. The quencher and probe experiments indicated that FeIVO2+, •OH, and CH3C(O)OO•/CH3C(O)O• all played important roles in micropollutant degradation with Fe(II)/PAA. Interestingly, PAA oxidation produced highly biodegradable products such as acetic acid, which significantly elevated the BOD5 level and increased the BOD5/total nitrogen (BOD5/TN) ratio from 0.8 to 8.6, benefiting N removal with subsequent denitrification. Overall, the Fe(II)/PAA process exhibits great potential as a UF pretreatment to control membrane fouling and improve water quality during secondary effluent treatment.
Collapse
Affiliation(s)
- Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yin Jun
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Changrong Zhao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
4
|
Zhang S, Chen Y, Zhang Z, Ping Q, Li Y. Co-digestion of sulfur-rich vegetable waste with waste activated sludge enhanced phosphorus release and hydrogenotrophic methanogenesis. WATER RESEARCH 2023; 242:120250. [PMID: 37354846 DOI: 10.1016/j.watres.2023.120250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Anaerobic co-digestion of sulfur-rich vegetable waste (SVW) with waste activated sludge (WAS) and the underlying mechanisms associated with methane production and phosphorus (P) release were investigated. Four types of SVW (Chinese cabbage, cabbage, rapeseed cake, and garlic) were utilized for co-digestion with WAS, and the methane yield increased by 7.3%-35.3%; in the meantime, the P release amount from WAS was enhanced by 9.8%-24.9%. The organic carbon in SVW promoted methane production, while organic sulfur and the formation of FeS facilitated P release. Among the four types of SVW, rapeseed cake was identified as the most suitable co-digestion substrate for enhancing both methane production and P release due to its balanced nutrients and relatively high sulfur content. Syntrophic bacteria working with hydrogenotrophic methanogens, iron-reducing bacteria, sulfate-reducing bacteria, and hydrogenotrophic methanogens were enriched. Metabolic pathways related to sulfate reduction and methanogenesis were facilitated, especially hydrogenotrophic methanogenesis. Enzymes involved in hydrogenotrophic methanogenesis were promoted by 76.05%-407.98% with the addition of Chinese cabbage, cabbage, or rapeseed cake. This study provides an eco-friendly technology for promoting P resource and energy recovery from WAS and an in-depth understanding of the corresponding microbial mechanisms.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Belibagli P, Isik Z, Dizge N, Mazmanci MA, Balakrishnan D, Shaik F, Mishra NK. Optimization of the anaerobic fermentation process for phosphate release using food waste. ENVIRONMENTAL RESEARCH 2023; 225:115498. [PMID: 36804319 DOI: 10.1016/j.envres.2023.115498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) problem worries the whole world due to the increasing demand for finite and non-renewable natural phosphate resources and the inadequacy of sustainable phosphate production technologies. In this study, bio-acidification processes using waste sludge and food waste for simultaneous sustainable phosphate release and biogas production were investigated. Response surface methodology (RSM) was used for bio-acidification optimization. High performance was achieved with the addition of 10% FW and a temperature of 45 °C, which provided 5.30 pH and 371 mg/L P release for 10 days. A total of 196 mL of cumulative biogas was produced. Using food waste potentially reduces operating costs, eliminating the need for external chemical additions for pH control. Also, this approach offers benefits such as waste management, recovery of valuable resources, cost reduction, and environmental friendly.
Collapse
Affiliation(s)
- Pinar Belibagli
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Mehmet Ali Mazmanci
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Feroz Shaik
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Nirmith Kumar Mishra
- Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, 500043, India
| |
Collapse
|
6
|
Xu X, Xu Q, Du Z, Gu L, Chen C, Huangfu X, Shi D. Enhanced phosphorus release from waste activated sludge using ascorbic acid reduction and acid dissolution. WATER RESEARCH 2023; 229:119476. [PMID: 36516494 DOI: 10.1016/j.watres.2022.119476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Due to the widespread application of various iron (Fe)-derived substances used in phosphorus (P) removal during wastewater treatment, Fe-P species generated in this process constitute an important part of P speciation in non-digested sludge. SEM-EDS and sequential extraction methods were utilized to analyze the speciation, distribution, and spatial variation of P contained in the sludge. Inorganic P accounted for 91.3% of the total P, and Fe(III)-P represented the greatest percentage (68.5%) in the inorganic P fraction. Ascorbic acid, also known as vitamin C (VC), performed well in releasing P from sludge, especially in combination with subsequent pH adjustment to 3.0 using HCl. Fe(III)-P in sludge was first reduced to Fe(II)-P by VC, then dissolved in acidic conditions to release Fe2+ and PO43-. Other metal-P compounds were also partially dissolved and released. VC disrupted the sludge floc structure, releasing organic P via organic efflux. There was a positive correlation (R2>0.97, p<0.05) between the amount of released P and the amount of reductant (VC). There was a synergistic effect between 120 mmol/L VC and acidity, producing the greatest P release of 67.1% of total sludge P. The P release efficiency achieved in this study was higher than other reported methods. Additionally, VC provides a more sustainable option due to its natural biodegradability. Released P and Fe2+ can be recovered as vivianite with recovery rates of 88% and 99%, respectively. This finding provides a new direction for effective, sustainable sludge P recovery and utilization.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zexuan Du
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China.
| | - Cong Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Xiaoliu Huangfu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Dezhi Shi
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| |
Collapse
|
7
|
Gao W, Li Z, Yin S, Zhang M, Liu X, Liu Y. Phosphate removal from aqueous solutions with a zirconium-loaded magnetic biochar composite: performance, recyclability, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1938-1948. [PMID: 35927400 DOI: 10.1007/s11356-022-22354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Phosphate (P) removal is significant for water pollution control. In this paper, a novel penicillin biochar modified with zirconium (ZMBC) was synthesized and used to adsorb P in water. The results showed that ZMBC had a porous structure and magnetic properties, and the zirconium (Zr) was mainly present in the form of an amorphous oxide. P adsorption displayed strong pH dependence. The Freundlich model described the adsorption process well, and the saturated adsorption capacity was 27.97 mg/g (25 ℃, pH = 7). The adsorption kinetics were consistent with the pseudo-second-order model, and the adsorption rates were jointly controlled by the surface adsorption stage and intraparticle diffusion stage. Coexisting anion experiments showed that CO32- inhibited P adsorption, reducing the adsorption capacity by 62.63%. The adsorbed P was easily desorbed by washing with a 1 M NaOH solution, and after 5 cycles, the adsorbent had almost the same capacity. The mechanism for P adsorption was inner-sphere complexation and electrostatic adsorption.
Collapse
Affiliation(s)
- Wei Gao
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Zaixing Li
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Sijie Yin
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Miaoyu Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoshuai Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanfang Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China.
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
8
|
Saoudi MA, Dabert P, Vedrenne F, Daumer ML. Mechanisms governing the dissolution of phosphorus and iron in sewage sludge by the bioacidification process and its correlation with iron phosphate speciation. CHEMOSPHERE 2022; 307:135704. [PMID: 35940418 DOI: 10.1016/j.chemosphere.2022.135704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In the last two decades, phosphorus (P) recovery from sewage sludge liquors gained much interest for its high-quality product potential. However, the consistently reported constraints are the low phosphorus availability and the technical-economical difficulties to increase it through chemical acidification. This article discusses the mechanisms of phosphorus dissolution by the biological acidification process (Biological acidification or acidic fermentation) as an alternative to chemical acidification. In addition, we investigate the potential correlation between the phosphorus dissolution and iron phosphate speciation of several types of sludge from different sewage treatment plants and P removal technologies. The results show that the percentage of P dissolution by bioacidification is always higher than the P dissolution by chemical acidification at equal pH for all types of sludge except for the settled primary sludge. The highest P dissolution was recorded for the sludge from the Enhanced Biological P Removal process assisted with Chemical P Removal process (EBPR-CPR) with around 65% of P dissolution. Three mechanisms were identified as contributing to the increased P dissolution by bioacidification: P release by the Polyphosphate Accumulating Organisms (PAO), P dissolution by pH decrease, and P dissolution by a biological activity at acidic pH (3.7-4) that includes iron reduction and aluminum dissolution. The principal component analysis and Pearson's correlation indicate that P dissolution by bioacidification is negatively correlated with the P-bound to ferric iron, hence positively correlated with the P-bound to ferrous iron, which characterizes the sludge from the EBPR-CPR process. This study suggests that the choice of the P removal technology significantly influences the P recovery from sewage sludge liquors.
Collapse
Affiliation(s)
| | - Patrick Dabert
- INRAE, UR1466 OPAALE, 17 av. De Cucillé, F-35044, Rennes, France.
| | - Fabien Vedrenne
- Veolia Environment, STED, 291 Av. Daniel Dreyfous-Ducas, 78520, Limay, France.
| | | |
Collapse
|
9
|
Liu Y, Gao W, Liu R, Zhang W, Niu J, Lou X, Li G, Liu H, Li Z. Removal of phosphorus using biochar derived from Fenton sludge: Mechanism and performance insights. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10763. [PMID: 35822693 DOI: 10.1002/wer.10763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
A phosphorus removal biochar adsorbent was prepared from Fenton sludge. The adsorption process was optimized, and its phosphorus adsorption mechanism was discussed. It was found that the phosphorus adsorption performance of biochar prepared from single Fenton sludge (FBC-400) was better than that of co-pyrolysis of Fenton sludge and bamboo powder. The optimum condition was that Fenton sludge pyrolyzed at 400°C (FBC-400). FBC-400 had a larger specific surface area than that prepared by co-pyrolysis with bamboo powder. And the high content of iron element could provide a higher surface charge of the biochar, thereby increasing the electrostatic adsorption of phosphorus onto FBC-400. The phosphorus adsorption was highly pH dependent by FBC-400, which can enhance electrostatic adsorption and increase adsorption capacity in acidic conditions. The effect of coexisting anion on adsorption performance was mainly affected by CO3 2- , reducing the adsorption capacity by at least 49%, whereas other anions had no obvious interference. The adsorption process of FBC-400 accorded with the pseudo-second-order kinetic model and the Langmuir model, which indicated that the adsorption process was monolayer adsorption and mainly chemical adsorption, and the maximum saturated phosphorus adsorption capacity was 8.77 mg g-1 . The mechanisms for phosphorus adsorption were electrostatic adsorption and inner-sphere complexing. 1 M NaOH was used for desorption, and the adsorption capacity remained at 81% in the fifth cycle. PRACTITIONER POINTS: The Fenton sludge biochar usage as an adsorbent could be a win-win strategy to convert waste biomass to valuable - product. The adsorption process accorded with the Langmuir model, the maximum phosphorus adsorption capacity was 8.77 mg/g at 25°C. The adsorption mechanisms were electrostatic adsorption and inner-sphere complexing. 1M NaOH was used for desorption, and the adsorption capacity remained at 81% in the fifth cycle.
Collapse
Affiliation(s)
- Yanfang Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Wei Gao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Rui Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenjing Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Jianrui Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| | - Xiaoyue Lou
- Tianjin Redsun Water Industry Company Limited, Tianjin, China
| | - Gong Li
- Tianjin Redsun Water Industry Company Limited, Tianjin, China
| | - Haoyun Liu
- Tianjin Redsun Water Industry Company Limited, Tianjin, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
10
|
Nadeem K, Alliet M, Plana Q, Bernier J, Azimi S, Rocher V, Albasi C. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151109. [PMID: 34688739 DOI: 10.1016/j.scitotenv.2021.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL-1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale wastewater treatment facilities (capacity >100,000 m3d-1). This paper documents the knowledge of P-removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration, and fouling. This paper analyses the design configurations and the parameters affecting the biological and chemical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to MBRs for assessing their effectiveness with default stoichiometric and kinetic parameters and the extent to which these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief overview and comparison of seven (7) chemical precipitation models, along with a quick comparison of commercially available simulators. In addition to advantages associated with chemical precipitation for P-removal, its role in changing the relative abundance of the microbial community responsible for P-removal and denitrification and the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dosing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-removal performance.
Collapse
Affiliation(s)
- Kashif Nadeem
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Queralt Plana
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Jean Bernier
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Sam Azimi
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Vincent Rocher
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
11
|
Xia WJ, Wang H, Yu LQ, Li GF, Xiong JR, Zhu XY, Wang XC, Zhang JR, Huang BC, Jin RC. Coagulants put phosphate-accumulating organisms at a competitive disadvantage with glycogen-accumulating organisms in enhanced biological phosphorus removal system. BIORESOURCE TECHNOLOGY 2022; 346:126658. [PMID: 34974097 DOI: 10.1016/j.biortech.2021.126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) process is susceptible to the changed operation condition, which results in an unstable treatment performance. In this work, long-term effect of coagulants addition, aluminum salt for the reactor R1 and iron salt for the reactor R2, on EBPR systems was comprehensively evaluated. Results showed that during the initial 30 days' coagulant addition, effluent chemical oxygen demand and phosphorus can be reduced below 25 and 0.5 mg·L-1, respectively. Further supply of metal salts would stimulate microbial extracellular polymeric substance excretion and induce reactive oxygen species accumulation, which destroyed the cell membrane integrity and deteriorated the phosphorus removal performance. Moreover, coagulants would decrease the relative abundance of Candidatus Accumulibacter while increase the relative abundance of Candidatus Competibacter, leading phosphors accumulating organisms in a disadvantage position. The results of this work might be valuable for the operation of chemical assisted biological phosphorus removal bioreactor.
Collapse
Affiliation(s)
- Wen-Jing Xia
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin-Qian Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Rui Xiong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Yan Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Chao Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Rui Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Yu B, Luo J, Xie H, Yang H, Chen S, Liu J, Zhang R, Li YY. Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147437. [PMID: 33971595 DOI: 10.1016/j.scitotenv.2021.147437] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus recovery from municipal sewage sludge is a promising way to alleviate the shortage of phosphorus resources. However, the recovery efficiency and cost depend greatly on phosphorus species and fractions in different sewage sludges, i.e., waste activated sludge and chemically enhanced primary sludge. In this review, the phosphorous (sub-)species and fractions in waste activated sludge and chemically enhanced primary sludge are systematically overviewed and compared. The factors affecting phosphorus fractions, including wastewater treatment process, as well as sludge treatment methods and conditions are summarized and discussed; it is found that phosphorus removal method and sludge treatment process are the dominant factors. The characterization methods of phosphorus species and fractions in sewage sludge are reviewed; non-destructive extraction of poly-P and microscopic IP characterization need more attention. Anaerobic fermentation is the preferable solution to achieve advanced phosphorus release both from waste activated sludge and chemically enhanced primary sludge, because it can make phosphorus species and fractions more suitable for recovery. A post low strength acid extraction after anaerobic fermentation is recommended to facilitate phosphorous release and improve the total recovery rate.
Collapse
Affiliation(s)
- Bohan Yu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huanhuan Xie
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shanping Chen
- Shagnhai Environmental & Sanitary Engineering Design Institute Co., Ltd, No.11, Lane 345, Shilong Road, Shanghai 200232, PR China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Ruina Zhang
- Shagnhai Environmental & Sanitary Engineering Design Institute Co., Ltd, No.11, Lane 345, Shilong Road, Shanghai 200232, PR China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
13
|
Xu L, Su J, Huang T, Li G, Ali A, Shi J. Simultaneous removal of nitrate and diethyl phthalate using a novel sponge-based biocarrier combined modified walnut shell biochar with Fe 3O 4 in the immobilized bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125578. [PMID: 34030419 DOI: 10.1016/j.jhazmat.2021.125578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
A novel biological carrier combining sponge and modified walnut shell biochar with Fe3O4 (MWSB@Fe3O4) was fabricated to achieve simultaneous removal of nitrate and diethyl phthalate (DEP). The optimal reaction conditions of the immobilized bioreactor were: carbon to nitrogen (C/N) ratio of 1.5, Fe2+ concentration of 20 mg L-1, and hydraulic retention time (HRT) of 8 h. Under the optimal conditions and DEP concentration of 800 μg L-1, the highest removal efficiency of DEP and nitrate in the immobilized bioreactor with the novel biological carrier were 67.87% and 83.97% (68.43 μg L-1 h-1 and 1.71 mg L-1 h-1), respectively. Scanning electron microscopy (SEM) showed that the novel biological carrier in this study carried more bio-sediments which is closely related to the denitrification efficiency. The gas chromatography (GC) data showed that the nitrogen production of the immobilized bioreactor (99.85%) was higher than that of another experimental group (97.84%). Fluorescence excitation-emission matrix (EEM) and Fourier transform infrared spectrometer (FTIR) indicated the immobilized bioreactor emerged more extracellular polymeric substances (EPS) which was related to favourable biological stability under the DEP environment. Moreover, according to high-throughput sequencing data, the Zoogloea sp. L2 responsible for iron-reduction and denitrification was the main strain in this immobilized bioreactor.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tingling Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guoqing Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
14
|
Zhuang H, Xie Q, Shan S, Fang C, Ping L, Zhang C, Wang Z. Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140285. [PMID: 32783862 DOI: 10.1016/j.scitotenv.2020.140285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
In current study, the UASB reactor was enhanced by nitrogen-doped sewage sludge based activated carbon supported Fe3O4 (Fe3O4/N-SBAC) for coal gasification wastewater treatment. The results showed that COD removal efficiency was increased to 64.4% with Fe3O4/N-SBAC assistance and the corresponding methane production rate achieved up to 1093.6 mL/d. Fe3O4/N-SBAC promoted microbial growth and enzymatic activity, leading to high extracellular polymeric substances and coenzyme F420 concentrations. Fe3O4/N-SBAC also facilitated the sludge granulation process with high particle size, substantial interspecific signal molecules and low diffusible signal factor. Microbial community analysis revealed that Fe3O4/N-SBAC might support direct interspecies electron transfer process, in which the enriched Geobacter was likely to communicate with Methanothrix via electrical connection, improving anaerobic degradation of coal gasification wastewater. Total phenols shock and pH impact revealed that reactor stability was enhanced in the Fe3O4/N-SBAC-supplemented system.
Collapse
Affiliation(s)
- Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Qiaona Xie
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changai Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhirong Wang
- Rural Ecological and Energy Station of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
15
|
Su JF, Gao J, Huang TL, Zhang YM. Simultaneous nitrate, nickel ions and phosphorus removal in a bioreactor containing a novel composite material. BIORESOURCE TECHNOLOGY 2020; 305:123081. [PMID: 32135349 DOI: 10.1016/j.biortech.2020.123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
This study presents the novel composite material TMCC/PAA/SA@Fe(TPSA), a bacteria immobilized carrier for use in bioreactor systems to enhance the simultaneous removal efficiency of nitrate, Ni(II) and phosphorus. The influence of various operational factors were evaluated on the performance of nitrate, phosphorus and Ni(II) removal. Results demonstrate that under optimum conditions of an hydraulic retention time (HRT) of 8 h and pH 7.0, nitrate and phosphorus removal reached nearly 100% and 61.7%, respectively. When the initial Ni(II) concentration was 1 mg/L, approximately 100% Ni(II) removal efficiency was achieved. Furthermore, the morphology and components of the TPSA immobilized bacterial pellets were analyzed to investigate the mechanism of simultaneous nitrate, Ni(II) and phosphorus removal. Microbial metabolism was more active in the experimental reactor compared with control, although high concentrations of Ni(II) could inhibit bacterial activity.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jing Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuan Ming Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
16
|
Wang H, Xiao K, Yang J, Yu Z, Yu W, Xu Q, Wu Q, Liang S, Hu J, Hou H, Liu B. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: A potential phosphorus fertilizer. WATER RESEARCH 2020; 174:115629. [PMID: 32113013 DOI: 10.1016/j.watres.2020.115629] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
A novel technique for phosphorus recovery from the liquid phase of anaerobic digestate was developed using biochar derived from iron-rich sludge (dewatered sludge conditioned with Fenton's reagent). The biochar pyrolyzed from iron-rich sludge at a low temperature of 300 °C (referred to as Fe-300 biochar) showed a better phosphorus (P) adsorption capacity (most of orthophosphate and pyrophosphate) than biochars pyrolyzed at other higher temperatures of 500-900 °C, with the maximum P adsorption capacity of up to 1.843 mg g-1 for the liquid phase of anaerobic digestate. Adsorption isotherms study indicated that 70% P was precipitated through chemical reaction with Fe elements, i.e., Fe(II) and Fe(III) existed on the surface of the Fe-300 biochar, and other 30% was through surface physical adsorption as simulated by a dual Langmuir-Langmuir model using the potassium dihydrogen orthophosphate (KH2PO4) as a model solution. The seed germination rate was increased up to 92% with the addition of Fe-300 biochar after adsorbing most of P, compared with 66% without the addition of biochar. Moreover, P adsorbed by the chemical reaction in form of iron hydrogen phosphate can be solubilized by a phosphate-solubilizing microorganism of Pseudomonas aeruginosa, with the total solubilized P amount of 3.045 mg g-1 at the end of an incubation of 20 days. This study indicated that the iron-rich sludge-derived biochar could be used as a novel and beneficial functional material for P recovery from the liquid phase of anaerobic digestate. The recovered P with biochar can be re-utilized in garden soil as an efficient P-fertilizer, thus increasing the added values of both the liquid phase of anaerobic digestate and the iron-rich sludge.
Collapse
Affiliation(s)
- Hui Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China.
| | - Zecong Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Qi Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Qiongxiang Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei, 430074, China
| |
Collapse
|
17
|
Li RH, Cui JL, Hu JH, Wang WJ, Li B, Li XD, Li XY. Transformation of Fe-P Complexes in Bioreactors and P Recovery from Sludge: Investigation by XANES Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4641-4650. [PMID: 32167751 DOI: 10.1021/acs.est.9b07138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transformation of Fe-P complexes in bioreactors can be important for phosphorus (P) recovery from sludge. In this research, X-ray absorption near-edge structure analysis was conducted to quantify the transformation of Fe and P species in the sludge of different aging periods and in the subsequent acidogenic cofermentation for P recovery. P was readily removed from wastewater by Fe-facilitated coprecipitation and adsorption and could be extracted and recovered from sludge via acidogenic cofermentation and microbial iron reduction with food waste. The fresh Fe-based sludge mainly contained fresh ferrihydrite and amorphous FePO4 with sufficient accessible surface area, which was favorable for Fe-P mobilization and dissolution via microbial reaction. Ferric iron dosed into wastewater underwent rapid hydrolysis, clustering, aggregation, and slow crystallization to form hydrous iron oxides (HFO) with various complicated structures. With the aging of sludge in bioreactors, the HFO densified into phases with much reduced surface area and reactivity (e.g., goethite), which greatly increased the difficulty of P release and recovery. Thus, aging of P-containing sludge should be minimized in wastewater treatment systems for the purpose of P recovery.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jia-Hui Hu
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wei-Jun Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
18
|
Leyva-Díaz JC, Monteoliva-García A, Martín-Pascual J, Munio MM, García-Mesa JJ, Poyatos JM. Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. BIORESOURCE TECHNOLOGY 2020; 299:122631. [PMID: 31902639 DOI: 10.1016/j.biortech.2019.122631] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Over the last years, an increasing concern has emerged regarding the eco-friendly management of wastewater. Apart from the role of wastewater treatment plants (WWTPs) for wastewater and sewage sludge treatment, the increasing need of the recovery of the resources contained in wastewater, such as nutrients and water, should be highlighted. This would allow for transforming a wastewater treatment plant (WWTP) into a sustainable technological system. The objective of this review is to propose a moving bed biofilm reactor (MBBR) as a novel technology that contributes to the circularity of the wastewater treatment sector according to the principles of circular economy. In this regard, this paper aims to consider the MBBR process as the initial step for water reuse, and nutrient removal and recovery, within the circular economy model.
Collapse
Affiliation(s)
- J C Leyva-Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain.
| | - A Monteoliva-García
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - J Martín-Pascual
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - M M Munio
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - J J García-Mesa
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - J M Poyatos
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| |
Collapse
|
19
|
Ji B, Zhu L, Wang S, Qin H, Ma Y, Liu Y. A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135453. [PMID: 31810675 DOI: 10.1016/j.scitotenv.2019.135453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Ferrous salts have been widely used to enhance phosphorus removal in full-scale wastewater treatment plants, with an average dosage of 0.24-0.35 mM. However, such high dosage inevitably caused serious concerns on operation, potential biological toxicity and excessive sludge production. Thus, this study investigated the effect of micro-dosing of ferrous salt at the level of 0.02 mM on enhanced biological phosphorus removal (EBPR) in sequencing batch reactors. Results showed that micro-dosing of ferrous salt enhanced the overall performance, with average COD, TN and TP removal of more than 4.2%, 2.0% and 5.8%, respectively. In addition, the sequencing analysis further revealed that micro-ferrous dosing could significantly improve the diversity and richness of the microbial community (p < 0.05), whereas the regular dosing of ferrous salts (0.25 mM) negatively impacted on the EBPR performance. It was found that the abundances of phosphorus accumulating organisms (PAOs) in R2 (micro-dosing) were nearly 1.5-fold and 2-fold higher than those in R1 (control) and R3 (regular dosing). The contributions of biological and chemical pathways towards the observed phosphorus removal were also determined according to the phosphorus releasing rate. For micro-dosage and regular dosage of ferrous salts, phosphorus removal mainly relied on biological phosphorus removal and chemical phosphorus removal, respectively. It appears from this this study that the micro-ferrous dosing strategy is practically feasible and economically viable for enhanced phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Lin Zhu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hui Qin
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
20
|
Zhuang H, Zhu H, Zhang J, Shan S, Fang C, Tang H, Xie Q. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe 3O 4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 296:122306. [PMID: 31677402 DOI: 10.1016/j.biortech.2019.122306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Fe3O4 supported on water hyacinth biochar (Fe3O4/WHB) was successfully used in anaerobic degradation of 2,4,6-trichlorophenol and coal gasification wastewater (CGW). Chemical oxygen demand removal efficiency and methane production were significantly improved to 98.9% and 2.0 L with Fe3O4/WHB assisted. Fe3O4/WHB facilitated the conversion of CO2 to methane and reduce H2 production. A higher coenzyme F420 concentration of 1.32 μmol/(g-mixed liquor volatile suspended solids) was found with the presence of Fe3O4/WHB, which might result in a faster conversion of acetate to methane. More interspecific signal molecules, lower diffusible signal factor, and higher mean particle size indicated that Fe3O4/WHB accelerated the sludge granulation process. Microbial community analysis revealed that enriched bacteria Geobacter along with archaea Methanothrix and Methanosarcina may be involved in direct interspecies electron transfer by Fe3O4/WHB stimulation, enhancing the performance of 2,4,6-trichlorophenol fermentation. It is shown that use of Fe3O4/WHB is feasible for enhanced CGW treatment.
Collapse
Affiliation(s)
- Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Hao Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haojie Tang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Qiaona Xie
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
21
|
Yang C, Qiu C, He C, Hu Z, Wang W. Influence of aluminium accumulation on biological nitrification and phosphorus removal in an anoxic-oxic membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28127-28134. [PMID: 31363979 DOI: 10.1007/s11356-019-06004-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Poly-aluminium chloride (PAC) is often used to enhance phosphorus removal and control membrane fouling in membrane bioreactors (MBRs). However, the influence of aluminium accumulation on the biological nitrification and phosphorus removal of MBRs has not been well assessed. In the present study, the effects of accumulated aluminium on sludge activity and morphology were investigated in a lab-scale anoxic-oxic membrane bioreactor. The reasonably high removal efficiencies of NH4+-N, TN, and COD, i.e. 94.9%, 84.8%, and 92.8%, respectively, were achieved in the reactor when the percentage of atomic aluminium on sludge surface increased to 14.2%. However, the decreases in the ammonia oxidation rate, nitrite oxidation rate, and specific oxygen uptake rate of sludge by 82.1%, 79.8%, and 46.4%, respectively, were observed. Meanwhile, the activity of phosphate-accumulating organisms was completely inhibited. Furthermore, the protein content in the extracellular polymeric substances of sludge decreased substantially, and the sludge became more dispersed due to the alum accumulation, compared with that of the initial phase. Therefore, long-term dosing of PAC in the MBR should be managed to avoid excessive aluminium accumulation in the sludge.
Collapse
Affiliation(s)
- Chuanhe Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chenggang Qiu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, China.
| |
Collapse
|