1
|
Tang J, Mi H, Shen C, Ding K, Zhang S, Shangguan H, Fu T, Ye J, Lin H. Electric field as an activator of inoculated Bacillus clausii enhances humification during electric field-assisted aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125132. [PMID: 40154245 DOI: 10.1016/j.jenvman.2025.125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
A novel electric field-assisted aerobic composting (EAC) method effectively facilitates compost disposal by applying a low electric field to conventional aerobic composting (CAC). The humification effect of inoculation with Bacillus clausii in the EAC system was better than that in the CAC system, so this study focused on the enhancement effect of microbial inoculation in the EAC system. Compared with EAC, EAC with microbial inoculation (AMI-EAC) increased the degradation of cellulose, hemicellulose, and lignin. Furthermore, AMI-EAC improved the humification index by 42.89 % relative to EAC. AMI-EAC also increased the relative abundance of Bacillus, enriched thermophilic and electroactive microorganisms, and enhanced the activity of associated degradative enzymes, which promoted the decomposition and humification of organic matter. Partial least squares-path model analysis showed that Bacillus inoculation during AMI-EAC enhanced the direct positive effect of microorganisms on enzyme activity and strengthened the positive impacts of substance degradation and enzyme activity on compost maturation. This study provided new insights for inoculating microbial agents to enhance composting efficiency in future engineering applications of EAC.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Keren Ding
- Ag Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Shuqun Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; College of Tea and Food, Wuyi University, Wuyishan, 354300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| |
Collapse
|
2
|
Li X, Zeng C, Han X, Wang X, Li K. The bioavailability and component characteristics of the aging dissolved organic matter (DOM) from the macroalgae Ulva prolifera in seawater. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106946. [PMID: 39756245 DOI: 10.1016/j.marenvres.2025.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The world's largest green tide, caused by Ulva prolifera, in the Yellow Sea negatively affects the social and economic development of China's coastal region. The dissolved organic matter (DOM) released from U. prolifera is a potential threat to the offshore ecological health. The bioavailability and component characteristics of the DOM from U. prolifera vary at different aging stages in marine environments and are poorly understood. Here, a 1-year incubation experiment was conducted to understand this phenomenon. The bioavailable DOM (BDOM) mainly comprised the labile bioavailable DOM (LBDOM), which accounts for 58.7% (in dissolved organic nitrogen (DON)%) in the aging stages of 0-12 days. LBDOM mainly comprised three-dimensional fluorescent tyrosine B and tryptophan T components. The semi-labile bioavailable DOM (SLBDOM) accounted for 29.2% in the aging stages of 12-80 days, which mainly comprised fulvic acid C1 and A components. Both LBDOM and SLBDOM mainly contained amine groups in their structures. Conversely, the refractory bioavailable DOM (RBDOM) accounted for only 6.50% in the aging stages of 80-365 days. RBDOM mainly comprised a humin-like acid C2 component, whereas refractory dissolved organic matter (RDOM) mainly comprised humin-like acid C2, E, and fulvic acid A components, and the structures of both mainly included functional groups, such as hydroxyl, carboxyl, alkynyl, and aromatic rings. The hydrophobic component and dissolved organic carbon (DOC) proportion increased with the aging of DOM in seawater. Thus, the aging of DOM in seawater represents the processes of aromatization, hydrophobization, and humification, wherein the SUVA254, SUVA260, and humification index (HIX) increased by 55.7, 42.9, and 133.0%, respectively. The results of our study contribute to a deeper understanding of the ecological effects of DOM released during the extinction process of U. prolifera in the ocean.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Cui Zeng
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Xiurong Han
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China.
| | - Xiulin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China
| | - Keqiang Li
- Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China.
| |
Collapse
|
3
|
Jiang H, Yi Z, Chen Y, Li Y, Chen L, Wang J, Nie Y, Luo M, Wang Q, Zhang W, Wu Y, Zeng G. Unraveling the mechanisms of post-treatment to enhance humification and Cd remediation in compost through EDTA-Fenton-Like systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178236. [PMID: 39729843 DOI: 10.1016/j.scitotenv.2024.178236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to enhance humification and cadmium (Cd) remediation in compost by investigating the effects of three post-treatments: ultrapure water, citric acid, and ethylenediaminetetraacetic acid disodium (EDTA). The results revealed that the EDTA post-treatment significantly enhanced humification by facilitating an EDTA-Fenton-like system within compost comprising rice straw and river sediment to remediate Cd-contaminated sediment. EDTA post-treatment not only promoted humic substances and humic acid concentrations of up to 66.30 g/kg and 30.40 g/kg, respectively, but also led to a reduction in the Cd content and bioavailability factor by 75.02 % and 9.76 %, respectively. In addition, parallel factor analysis revealed two distinct components, while two-dimensional correlation spectroscopy showed that the polysaccharides and carboxyl groups in humic acid were preferentially bound to Cd. Overall, this study proposes a promising approach for enhancing humification and Cd remediation in compost by the EDTA post-treatment.
Collapse
Affiliation(s)
- Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Zhigang Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaoqin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Mengwei Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qianruyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wei Zhang
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Yanting Wu
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
4
|
Lin J, Wang D, Kong L, Mai L, Peng S, Li Q, Wu Y, Yuan J, Li G, Meng Z. Oriented regulation of earthworm production and vermicompost quality by carbon bioavailability management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176238. [PMID: 39277006 DOI: 10.1016/j.scitotenv.2024.176238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Vermicomposting is an efficient bioconversion technology for recycling nutrients from organic waste materials. The biodegradability of raw materials has a significant impact on the earthworm transformation product. However, the management of carbon bioavailability is often overlooked during the vermicomposting process due to the varying degradability of C-rich source in different organic waste. This research aims to investigate the impact of different bioavailable carbon compositions on vermicomposting and to develop a strategy for efficient carbon management. The study involved systematic vermicomposting using four different biodegradable carbon sources (pineapple peels, rice straw, tomato straw, and sawdust) with varying carbon‑nitrogen ratios (ranging from 24 to 42). The earthworm production and vermicompost quality were comprehensively evaluated, along with the influence of carbon components on microbial community structure. The results indicated that the optimal vermicomposting treatments were achieved at PCM24, RCM30, TCM30, and MCM30 treatments. Maintaining an approximate ratio of 1:(0.5-1.3) between available and recalcitrant carbon components based on the optimal carbon‑nitrogen ratio was found to be optimal for regulating vermicomposting products. Increasing the proportion of available carbon enhanced the quality of vermicompost fertilizer, while a higher proportion of recalcitrant carbon could improve earthworm biomass production efficiency. Labile carbon proportion I (LCP1) and available carbon component (ACC) were identified as key indicators in influencing the formation of microbial community structure. Different carbon compositions led to the specific development and formation of microbial communities, further resulting in significant variations in vermicompost quality under the mediation of microbes. This study, for the first time, clarifies the impact of vermicomposting performance and microbial community from the perspective of carbon bioavailability, which is of great significance for the oriented regulation the vermicomposting efficiency and product in practice.
Collapse
Affiliation(s)
- Jiacong Lin
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research station, National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Dingmei Wang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lingwei Kong
- College of Resource and Environmental Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liwen Mai
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shiliang Peng
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-circular Agriculture; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research station, National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Yupeng Wu
- College of Resource and Environmental Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yuan
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571199, China
| |
Collapse
|
5
|
Zhou X, Yu Z, Deng W, Deng Z, Wang Y, Zhuang L, Zhou S. Hyperthermophilic composting coupled with vermicomposting stimulates transformation of organic matter by altering bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176676. [PMID: 39383961 DOI: 10.1016/j.scitotenv.2024.176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Hyperthermophilic composting (HTC) has been proven to be an effective strategy to recycle organic wastes, while vermicomposting (VC) has been widely applied to produce humic fertilizer. The combination of HTC with VC (HVC) is expected to integrate the advantages of both. This study showed that HTC pre-fermentation provided plentiful substances such as dissolved organic matter (DOM) for the subsequent VC enriching humic acid (HA). Compared to thermophilic composting (TC), HVC significantly stimulated the degradation of organic matter (OM) and the production of N-rich HA, and incubated higher diversity of bacterial community. SHapley Additive exPlanations (SHAP), correlation network, Mantel test and PLS-LM model were constructed to identify the potential roles of the key bacterial groups contributing to OM transformation. Firmicutes (e.g., Bacillus and Tuberibacillus) dominant in HTC may mineralize and mobilize OM, providing affluent bioavailable nutrients as part of DOM for microbial metabolism and abundant precursors for HA formation in the further VC. Actinobacteriota (e.g., Microbacterium) and Bacteroidota (e.g., Flavobacterium and Parapedobacter) prominent in VC metabolized DOM, mineralized OM and produced HA probably by enhancing the metabolic activity involved in OM degradation and amino acid generation. However, when DOM was exhausted, some members especially Proteobacteria (e.g., Ochrobactrum, Devosia and Cellvibrio) would change their roles from promoter to inhibitor of mineralization and humification. Altering the nutrient bioavailability and the composition of bacterial community can regulate the mineralization, mobilization and humification of OM. Overall, this study provides new insights into the roles of bacteria participating in transforming organic wastes into HA-rich composts.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenkang Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ziwei Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Cai T, Ming Y, Zhang Y, Zhang Q. Unraveling the role of black soldier fly larvae in chicken manure conversion: Facilitating maturation and enhancing humification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175952. [PMID: 39222815 DOI: 10.1016/j.scitotenv.2024.175952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Black soldier fly larvae (BSFL) have garnered considerable attention for their efficacy in mitigating waste management challenges. However, their potential in treating antibiotics contaminated chicken manure remains uncertain. This study investigates the physicochemical properties changes and nutrient dynamics during the composting of contaminated-chicken manure using BSFL. The results indicate that BSFL treatment reduces electrical conductivity (by 6.01-58.09 %), organic matter, and dissolved organic carbon content in chicken manure throughout the composting process, while maintaining a more stable pH value (pH ∼ 6.0-8.0). This is attributed to the consumption of organic matter by BSFL and the subsequent promotion of organic acid formation. Additionally, BSFL treatment improves the degree of aromatization of dissolved organic matter (DOM) in chicken manure and increases the proportions of fulvic acid (up to 48.77 %) and humic acid (maximally 14.27 %) within the DOM. The germination index and pot experiments indicated improved compost maturity and plant growth in BSFL-treated composts. Furthermore, BSFL meal demonstrated high protein and essential fatty acid content, highlighting its potential as a protein supplement in animal feed. This study underscores the efficacy of BSFL in enhancing compost quality and nutrient availability, offering a sustainable solution for waste management and animal feed production.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yangboxuan Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, 200062 Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, 200062 Shanghai, China.
| |
Collapse
|
7
|
He Y, Chen W, Xiang Y, Zhang Y, Xie L. Unveiling the effect of PFOA presence on the composting process: Roles of oxidation stress, carbon metabolism, and humification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135682. [PMID: 39236542 DOI: 10.1016/j.jhazmat.2024.135682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 μg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.
Collapse
Affiliation(s)
- Yingying He
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weizhen Chen
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yuankun Xiang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yue Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Li Xie
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Zhang Y, Sun H, Lu C, Li H, Guo J. Role of molybdenum compounds in enhancing denitrification: Structure-activity relationship and the regulatory mechanisms. CHEMOSPHERE 2024; 367:143433. [PMID: 39393586 DOI: 10.1016/j.chemosphere.2024.143433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
The effect and regulatory mechanisms of molybdenum compounds (MoO2, MoS2, MoSe2 and MoSi2) on denitrification were investigated by structure-activity relationships, electrochemical characteristics, microbial metabolism analysis and bacterial community distribution. All the assessed molybdenum compounds exhibited the enhancement effect on denitrification, in the order of MoS2 > MoSi2 > MoSe2 > MoO2, with MoS2 increasing 7.08-fold in 12 h. Analysis of structure-activity relationships suggested that the molybdenum compounds with lower negative redox potential and higher redox reversibility were favorable for promoting denitrification. According to the morphology observation, the interactions between Mo compounds and denitrifying bacteria may be beneficial to extracellular electron transfer. Molybdenum compounds with electron transfer capability facilitated an increase in electron capacitance from 835.1 to 1011.3 μF, promoting the electron exchange rate during denitrification. In the denitrification electron transport chain, the molybdenum compounds upregulated nicotinamide adenine dinucleotide and denitrifying enzyme activity, as well as facilitated the abundance of quinone pools, ATP translocation, and cytochrome c related proteins. Moreover, Mo compounds enriched functional bacteria such as electroactive bacteria and denitrifying functional bacteria. Notably, Mo ions in molybdenum compounds may provide active sites for nitrate reductase, optimizing the electron distribution of the denitrification process and thus improved the partial denitrification efficiency. This work aimed to further understand the regulatory mechanisms of molybdenum on denitrification electron transfer in the compound state and to anticipate the catalytic role of Mo compounds for sustainable water treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hejiao Sun
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Caicai Lu
- Experimental Education Center, Beijing Normal University at Zhuhai, Jinfeng Road 18, Zhuhai, 519000, China.
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
9
|
Feng D, Cui Y, Zeng Y, Wang D, Zhang H, Zhang Y, Song W. Enhancing compost quality through biochar and oyster shell amendments in the co-composting of seaweed and sugar residue. CHEMOSPHERE 2024; 366:143500. [PMID: 39384133 DOI: 10.1016/j.chemosphere.2024.143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Aquaculture and agricultural production generate substantial amounts of waste, including seaweed (which has plant-stimulating properties), oyster shells, and sugar residues. Through composting and appropriate management, these wastes have the potential to be converted into beneficial soil amendments. However, there is a lack of research exploring the potential of composting in promoting the conversion of seaweed into more stable humified forms, as well as in assessing whether composted seaweed retains its beneficial effects on plant growth. Additionally, studies on using oyster shells as additives to reduce waste pressure and comparing their effectiveness with biochar are relatively scarce. This study examines the impact of incorporating 5% corn stover biochar (T1), 10% biochar (T2), and 10% oyster shell powder (T3) on key physicochemical properties, product quality, and microbial community dynamics during the co-composting of seaweed and sugar residues. Results indicate that organic matter (OM) loss in T1 and T2 increased by 31.2% and 26.4%, respectively, compared to the control (CK). Moreover, Excitation-emission matrix (EEM) fluorescence spectroscopy revealed that humic substances in T1 and T2 surged by 434% and 423%, respectively, far exceeding the 289% increase in CK. The 10% biochar treatment also improved alginate degradation and seed germination index, due to the presence of biostimulants in seaweed and an increased abundance of Cobetia. Microbial analysis post-composting showed that T2 and T3 significantly enhanced the diversity and richness of bacterial communities. Notably, although oyster shell powder did not improve the humification degree of compost as significantly as biochar, it achieved effective weight reduction of waste (OM loss of 43.57%, far exceeding CK's 35.34%) without hindering the composting process. All four compost treatments retained the plant-stimulating effects of seaweed and facilitated alginate degradation. These results underscore the potential of biochar to enhance composting efficiency and utilize composting to process large quantities of oyster shell waste.
Collapse
Affiliation(s)
- Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yinjie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Wanlin Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
10
|
Chen H, Yin L, He Y, Bai L, Wu Y, Zhao Y, Reguyal F, Sarmah AK, Yang X, Ge C, Wang H. Biogas slurry-derived dissolved organic matter inhibited oxytetracycline adsorption by tropical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174785. [PMID: 39009170 DOI: 10.1016/j.scitotenv.2024.174785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The increasing presence of oxytetracycline (OTC) in agricultural soils has raised global environmental concerns. We investigated the environmental behavior and fate of OTC in two types of tropical agricultural soils, focusing on the impact of dissolved organic matter (DOM) from biogas slurry. Techniques such as three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and Ultraviolet-visible spectrophotometer (UV-vis) were used to explore the adsorption mechanisms. Our findings revealed that biogas slurry-derived DOM decreased the OTC adsorption on soils and extended the time to reach adsorption equilibrium. Specifically, the equilibrium adsorption of OTC by the two soils decreased by 19.41 and 15.32 %, respectively. These adsorption processes were effectively modelled by Elovich, intraparticle diffusion, linear, and Freundlich thermodynamic models. Thermodynamic parameters suggested that OTC adsorption onto soils was spontaneous and endothermic, with competitive interactions between biogas slurry-derived DOM and OTC molecules intensifying at higher DOM concentrations. The adsorption mechanisms were governed by both physical and chemical processes. Furthermore, the presence of Ca2+ and Na+ ions significantly inhibited OTC adsorption. These insights advanced our understanding of the fate and risk of OTC in soil environments influenced by DOM, contributing to more informed agricultural and environmental management practices.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingfei Yin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuan He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Liangtai Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuejun Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
11
|
Zheng H, Wang M, Fan Y, Yang J, Zhao Z, Chen H, Ye Z, Zheng Z, Yu K. Reuse of composted food waste from rural China as vermicomposting substrate: effects on earthworms, associated microorganisms, and economic benefits. ENVIRONMENTAL TECHNOLOGY 2024; 45:2685-2697. [PMID: 36846968 DOI: 10.1080/09593330.2023.2184728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTAerobic composting of food waste (FW) from rural China using a composting device results in a substantial financial burden on the government. This study aimed to assess the feasibility of mitigating this cost using vermicomposting of composted FW. The specific aims were to elucidate the effects of composted FW on earthworm growth and reproduction, reveal the changes in the physical and chemical properties of earthworm casts during vermicomposting, identify the microbial community structure associated with vermicomposting, and perform a financial analysis based on the yield of earthworms and earthworm casts. Mixing composted FW and mature cow dung in an equal ratio achieved the highest earthworm reproduction rate, where 100 adult earthworms produced 567 juvenile earthworms and 252 cocoons in 40 d. Earthworms reduce salt content of vermicomposting substrates by assimilating Na+ and promoting humification by transforming humin into humic and fulvic acid, thus producing earthworm casts with a high generation index > 80%. When composted FW was added to a vermicomposting substrate, a distinctive microbial community structure with alkaliphilic, halophilic, and lignocellulolytic microorganisms dominated the microflora. The dominant bacterial species was Saccharopolyspora rectivirgula, and the dominant fungal species changed from Kernia nitida to Coprinopsis scobicola. Furthermore, microbial genes for refractory organic matter and fat degradation were observed in Vibrio cholerae, Kernia nitida, and Coprinopsis scobicola. Financial analysis showed that vermicomposting has the potential to reduce the cost associated with FW disposal from $ 57 to $ 18/t.
Collapse
Affiliation(s)
- Huabao Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Min Wang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Yueqin Fan
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Jian Yang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhuoqun Zhao
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Hengyuan Chen
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhenwei Ye
- Office of Qingshanhu strict, Government of Linan district, Linan, People's Republic of China
| | - Zhanwang Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
- Zhejiang Sunda Public Environmental Protection Co. Ltd., Hangzhou, People's Republic of China
| | - Kefei Yu
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| |
Collapse
|
12
|
Zhao M, Luo Z, Wang Y, Liao H, Yu Z, Zhou S. Phage lysate can regulate the humification process of composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:221-230. [PMID: 38412754 DOI: 10.1016/j.wasman.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Phages play a crucial role in orchestrating top-down control within microbial communities, influencing the dynamics of the composting process. Despite this, the impact of phage-induced thermophilic bacterial lysis on humification remains ambiguous. This study investigates the effects of phage lysate, derived explicitly from Geobacillus subterraneus, on simulated composting, employing ultrahigh-resolution mass spectrometry and 16S rRNA sequencing techniques. The results show the significant role of phage lysate in expediting humus formation over 40 days. Notably, the rapid transformation of protein-like precursors released from phage-induced lysis of the host bacterium resulted in a 14.8 % increase in the proportion of lignins/CRAM-like molecules. Furthermore, the phage lysate orchestrated a succession in bacterial communities, leading to the enrichment of core microbes, exemplified by the prevalence of Geobacillus. Through network analysis, it was revealed that these enriched microbes exhibit a capacity to convert protein and lignin into essential building blocks such as amino acids and phenols. Subsequently, these components were polymerized into humus, aligning with the phenol-protein theory. These findings enhance our understanding of the intricate microbial interactions during composting and provide a scientific foundation for developing engineering-ready composting humification regulation technologies.
Collapse
Affiliation(s)
- Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhibin Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Lin J, Mao Y, Mai L, Li G, Liu H, Peng S, Wang D, Li Q, Yu Z, Yuan J, Li G. Accelerating the humification of mushroom waste by regulating nitrogen sources composition: Deciphering mechanism from bioavailability and molecular perspective. CHEMOSPHERE 2024; 349:140816. [PMID: 38040259 DOI: 10.1016/j.chemosphere.2023.140816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Regulating nitrogen source composition is efficient approach to accelerate the spent mushroom substrate (SMS) composting process. However, currently, most traditional composting study only focuses on total C/N ratio of initial composting material. Rarely research concerns the effect of carbon or nitrogen components at different degradable level and their corresponding decomposed-substances on humification process. This study deciphers and compares the mechanism of mixed manure-N sources on SMS humification from bioavailability and molecular perspective. Two different biodegradable manure-N sources, cattle manure (CM) and Hainan chicken manure (CH), were added into the SMS composting with the different CM:CH ratio of 1:0, 3:1, 1:1, 1:3, and 0:1, respectively. The physicochemical properties and humic substances were determined to evaluate the compost quality. Coupling analysis of spectroscopy, fluorescence, and humic intermediate precursors were conducted to characterizing molecular formation process of humic acid (HA). The results indicated that regulating the carbon-nitrogen nutrient biodegradability of composting material by adding mixed nitrogen sources is an effective strategy to accelerate the SMS humification process. The C1H3 (CM:CH ratio of 1:3) and CH treatments obtained great physicochemical properties and the highest growth rate of HA (31.96% and 27.02%, respectively). The rapid reaction of polysaccharide, ketone, quinone, and amide in DOM (LCP1) might be the key for the fast humification in C1H3 and CH. The polyphenol, reducing sugar and amino acid originated from the labile-carbon-proportion I (LCP1) and recalcitrant-carbon-proportion (RCP), labile-carbon-proportion II (LCP2) and RCP, and labile-nitrogen-proportion I (LNP1), respectively, were the main driving intermediate precursors for the formation of HA. This study deciphers the SMS humification mechanism at molecular level and provides a strategy in accelerating-regulating the composting process. which will be beneficial for enhancing the disposing efficiency of SMS, producing high-quality organic fertilizer, and even popularizing to the similar types of organic waste in practical field.
Collapse
Affiliation(s)
- Jiacong Lin
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station/National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Yilin Mao
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liwen Mai
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guangyi Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - He Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shiliang Peng
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Dingmei Wang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station/National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station/National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Jing Yuan
- College of Resource and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- College of Resource and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Wang D, Mai L, Yu Z, Wang K, Meng Z, Wang X, Li Q, Lin J, Wu D. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level. BIORESOURCE TECHNOLOGY 2024; 391:129947. [PMID: 37914056 DOI: 10.1016/j.biortech.2023.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Studies on compost dissolved organic matter (DOM) previously focus on its composition and humification, without considering DOM bioavailability to understand compost fertility. To decipher the fertility basis of compost, DOM bioavailability in thermophilic compost (TC) and vermicompost (VC) was investigated and linked with its molecular composition. Results showed that DOM bioavailability of VC (36 % BDOC) was generally higher than that of TC (22 % BDOC) due to containing more tannin-like substances. Inversely, only lipid-/carbohydrate-/protein-like substances contributed to DOM bioavailability in TC. Moreover, these differences of bioavailability expanded with C/N decreased in composting materials. Specifically, the %BDOC of VC with N-rich materials (C/N < 25) was 2.1-3.0 times higher than that in TC, while it was only 1.2-1.4 times for C-rich materials (C/N < 25), because N-surplus facilitated the formation of O-/N-containing aromatics (e.g., CHON and tannin) in VC, but inhibited the decomposition of organic materials into small bioactive molecules in TC.
Collapse
Affiliation(s)
- Dingmei Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Liwen Mai
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kongtan Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Institute of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Xiongfei Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Jiacong Lin
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| |
Collapse
|
15
|
Tan Z, Dong B, Xing M, Sun X, Xi B, Dai W, He C, Luo Y, Huang Y. Electric field applications enhance the electron transfer capacity of dissolved organic matter in sludge compost. ENVIRONMENTAL TECHNOLOGY 2024; 45:283-293. [PMID: 35900008 DOI: 10.1080/09593330.2022.2107951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in heavy metal passivation and organic pollutant degradation owing to its redox ability. The structure and composition of DOM are determinants of redox ability changes during composting. Electric field-assisted aerobic composting (EAAC) has been shown to promote the degradation and humification of organic matter in compost. However, how EAAC affects the redox ability of DOM remains unclear. Hence, electron transfer capacity (ETC) of DOM extracted from EAAC was studied using the electrochemical method. Various spectral methods, such as excitation-emission matrix and ultraviolet and visible spectrophotometry were used to study the relationship of ETC with the compositional and structural changes of DOM. Results indicated that EAAC enhanced ETC of DOM at the later stage of composting, and ETC of DOM extracted from the final EAAC product was 10.4% higher than that of the control group. Spectral and correlation analyses showed that EAAC resulted in structural and compositional changes of DOM, and humification degree, aromatic compounds, molecular weight, and fulvic- and humic-like substance contents were improved in EAAC. This conversion increased ETC of DOM. Results of this study will contribute to the understanding of the redox of DOM and in expanding the application of EAAC products.
Collapse
Affiliation(s)
- Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Wenfeng Dai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Chaojie He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yumu Luo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yanmei Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
16
|
Liu L, Li C, Xie F, Li H, Liu Q, Lai L. Study on the mechanism of co-pyrolysed biochar on soil DOM evolution in short-term cabbage waste decomposition. CHEMOSPHERE 2023; 344:140291. [PMID: 37769915 DOI: 10.1016/j.chemosphere.2023.140291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Cabbage waste returned soil was studied to assess the short-term influences of the application of cabbage waste biochar (CB), pine wood biochar (PB), and co-pyrolysed biochar (PCB) on soil dissolved organic matter (DOM) evolution. The decrease in DOM and soil organic matter (SOM) content was greater in the biochar-added soils during 35 days of decomposition. The DOM and SOM content in PCB added group decreased by 26.96 mg L-1 and 4.48 g kg-1, respectively. The increase in relative abundance of humic acid-like substances in DOMs was higher in the biochar-added soils during decomposition, which increased by 4.29% in PCB added group. PCB addition also resulted in a high SOM content (initial content of 78.82 g kg-1), and mineral elements were introduced into the soil, thus increasing soil pH (7.81) and electrical conductivity (574.67 μs cm-1). Moreover, the addition of biochars attenuated the decrease in average relative abundance of Bacillaceae and promoted bacterial proliferation during decomposition. The application of biochars regulated the soil bacterial community and promoted organic matter conversion and soil DOM evolution.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Fengxing Xie
- The Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, PR China
| | - Haixiao Li
- School of Environmental Science and Engineering, Hubei Polytechnic University, Hubei, Huangshi, 435003, PR China
| | - Qinglong Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Lisong Lai
- Tianjin Agricultural Development Service Center, Tianjin, 300061, PR China.
| |
Collapse
|
17
|
Song W, Zeng Y, Wu J, Huang Q, Cui R, Wang D, Zhang Y, Xie M, Feng D. Effects of oyster shells on maturity and calcium activation in organic solid waste compost. CHEMOSPHERE 2023; 345:140505. [PMID: 37866493 DOI: 10.1016/j.chemosphere.2023.140505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
With the rapid development of aquaculture, the production of oyster shells has surged, posing a potential threat to the environment. While oyster shell powder is widely recognized for its inherent alkalinity and rich calcium carbonate content, making it a superior soil conditioner, its role in organic solid waste composting remains underexplored. To investigate the effects of varying concentrations of oyster shell powder on compost maturation and calcium activation, this study employed thermophilic co-composting with acidic sugar residue and bean pulp, incorporating 0% (control), 10% (T1), 20% (T2), 30% (T3), and 40% (T4) oyster shell powder. Findings revealed that appropriate proportions of oyster shell powder significantly enhance temperature stability during composting and elevate maturation levels, notably reducing ammonia emissions between 62.5% and 76.7%. Intriguingly, the calcium in the oyster shell powder was significantly activated during composting, with the 40% addition group achieving the highest calcium activation rate of 48.5%. In summation, the inclusion of oyster shell powder not only optimizes the composting process but also efficiently activates the calcium, resulting in an alkaline organic-inorganic composite soil conditioner with high exchangeable calcium content. This research holds significant implications for promoting the high-value utilization of oyster shells.
Collapse
Affiliation(s)
- Wanlin Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jiali Wu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qian Huang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266237, China
| | - Ruirui Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266237, China
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Min Xie
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
18
|
Li Q, Bu Q, Bai Z, Wu X, Yu G, Cao H, Yang L, Tang J. The microbial oxidation of pharmaceuticals in an anaerobic aqueous environment: Effect of dissolved organic matter fractions from different sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165682. [PMID: 37478923 DOI: 10.1016/j.scitotenv.2023.165682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Previous studies have demonstrated the importance of dissolved organic matter (DOM) on the biodegradation of trace organic contaminants occurred in the hyporheic zone. However, the role of diverse DOM fractions with distinct physicochemical properties on the biodegradation of pharmaceuticals under reducing conditions is scarcely known. To address this knowledge gap, DOMs derived from road-deposited sediment, soil, and active sludge (namely allochthonous DOM) and algae (namely autochthonous DOM) were collected and isolated into different fractions. Thereafter, the effect of DOM fractions on the anaerobic microbial oxidation of two typical pharmaceuticals, i.e., ritonavir (RTV) and tetracycline (TC) was explored by using simulated anaerobic microcosms. Mechanistic insights into how DOM fractions from different sources influence pharmaceutical biodegradation processes were provided by optical and electrochemical analyses. Results showed that humic acid and fulvic acid fractions from allochthonous DOM could enhance the biodegradation of TC (12.2 % per mgC/L) and RTV (14.5 % per mgC/L), while no significant impact was observed for that of hydrophilic fractions. However, autochthonous DOM promoted the biodegradation of TC (4.17 % per mgC/L) and inhibited that of RTV. Mechanistic analysis showed that the higher of humification and aromatization level of DOM components, the stronger their promotive effect on the biodegradation of TC and RTV. Further, the promotive mechanism could be attributed to the response of quinone moieties in DOM as extracellular electron acceptors that yields more energy to support microbial metabolism. These results provide a more comprehensive understanding of diverse DOM fractions mediating microbial anaerobic oxidation of trace organic pollutants, and extend our insights into contamination control and remediation technologies.
Collapse
Affiliation(s)
- Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China.
| | - Zhuoshu Bai
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Xiaoze Wu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Beijing 102206, PR China
| | - Hongmei Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, PR China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
19
|
Li K, Shahab A, Li J, Huang H, Sun X, You S, He H, Xiao H. Compost-derived humic and fulvic acid coupling with Shewanella oneidensis MR-1 for the bioreduction of Cr(Ⅵ). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118596. [PMID: 37421722 DOI: 10.1016/j.jenvman.2023.118596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The compost-derived humic acids (HA) and fulvic acids (FA) contain abundant active functional groups with strong redox capacity, which can function as an electron shuttles for promoting the reduction of heavy metals, thus changing the form of the pollutants in the environment and reducing their toxicity. Therefore, in this study, UV-Vis, FTIR, 3D-EEM, electrochemical analysis were applied to study the spectral characteristics and electron transfer capacity (ETC) of HA and FA. Upon analysis, the results showed an increasing trend of ETC and humification degree (SUVA254) for both HA and FA during composting. However, the aromatic degree (SUVA280) of HA was higher than FA. After 7 days of culture, 37.95% of Cr (Ⅵ) was reduced by Shewanella oneidensis MR-1 (MR-1) alone. Whereas, only if HA or FA existed, the diminution of Cr (Ⅵ) reached 37.43% and 40.55%, respectively. However, the removal rate of Cr (Ⅵ) by HA/MR-1 and FA/MR-1 increased to 95.82% and 93.84% respectively. It indicated that HA and FA acted as electron shuttles, mediating the transfer of electrons between MR-1 and the final electron acceptor, effectively facilitating the bioreduction of Cr (Ⅵ) to Cr (Ⅲ) and also determined via correlation analysis. This study suggested compost-derived HA and FA coupling with MR-1 exhibited excellent performance for the bioreduction of Cr (Ⅵ) to Cr (Ⅲ).
Collapse
Affiliation(s)
- Kemeng Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Jieyue Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, PR China
| | - Hongwei Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Xiaojie Sun
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Huijun He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China
| | - He Xiao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, PR China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, PR China.
| |
Collapse
|
20
|
Zhu L, Huang C, Li W, Wu W, Tang Z, Tian Y, Xi B. Ammonia assimilation is key for the preservation of nitrogen during industrial-scale composting of chicken manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:50-61. [PMID: 37544234 DOI: 10.1016/j.wasman.2023.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Nitrogen loss from compost is a serious concern, causing severe environmental pollution. The NH4+-N content reflects the release of NH3. However, the nitrogen conversion pathway that has the greatest impact on NH4+-N content is still unclear. This study attempted to explore the key pathways, core functional microorganisms, and mechanisms involved in the transformation of ammonia nitrogen during composting. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathways revealed that ammonia assimilation was dominated by the glutamate dehydrogenase (GDH) pathway (53.4%), which is crucial for nitrogen preservation. The combined analysis of KEGG, NR species annotation, and co-occurrence network identified 20 easy-to-regulate obligate core nitrogen-transforming functional microorganisms, including 18 ammonia-assimilating bacteria. Furthermore, the effects of environmental parameters on the obligate core functional microorganisms were investigated. The present study results provided a theoretical basis for the utilization of ten ammonia-assimilating bacteria, such as Paenibacillus, Erysipelatoclostridium, and Defluviimonas to improve the quality of compost.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Zhurui Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
21
|
Jia Y, Chen Y, Qi G, Yu B, Liu J, Zhou P, Zhou Y. Molecular insight into the transformation of dissolved organic matter during sewage sludge composting: An investigation of a full-scale composting plant. ENVIRONMENTAL RESEARCH 2023; 233:116460. [PMID: 37354931 DOI: 10.1016/j.envres.2023.116460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
The aim of the study was to explore the molecular dynamics and transformation pathways of dissolved organic matter (DOM) in sewage sludge (SS) during composting, and the DOM of raw material, material experiencing thermophilic phase and material collected from humification phase were characterized using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. The results indicated that there were approximately 85% of aliphatic/proteins and 75% of carbohydrate preferentially decomposed in the thermophilic phase. Moreover, lignins/carboxylic-rich alicyclic molecules (CRAM) were the main N-containing substances evolved in the decomposition, which leading to a reduction of N/C ratio from 0.073 to 0.041. Whereas aliphatic acids and tryptophan in lignins/CRAM with high oxidizing capacities are preferentially decomposed in the thermophilic phase. As for maturity phase, the carbon of the newly generated compounds (belonging to lignins/CRAM and tannins), possessed an oxidation state that similar to sulfonates and sulfonamides, and these DOM are beneficial for the humic substances formation. Moreover, it was found that the newly formed N2Ox and N3Ox compounds had a more significant contribution to the double bond equivalent (DBE) of the compost, corresponding to 1.0 and 1.7 DBE, respectively. The results would help explore the understanding of DOM transformation and humification during SS composting in the microscopic molecular level.
Collapse
Affiliation(s)
- Yufeng Jia
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yue Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guangxia Qi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Bao Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Ping Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| | - Yucheng Zhou
- Kunming Dianchi Water Treatment Co., Ltd, Kunming, 650228, China
| |
Collapse
|
22
|
Chen X, Liu X, Mao Z, Fan D, Deng Z, Wang Y, Zhu Y, Yu Z, Zhou S. Black soldier fly pretreatment promotes humification and phosphorus activation during food waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:137-146. [PMID: 37433257 DOI: 10.1016/j.wasman.2023.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Black soldier fly (BSF) and thermophilic composting (TC) treatments are commonly adopted to manage food waste. In this study, 30 days of TC of food waste following seven days BSF pretreatment (BC) was compared to 37 days of TC of food waste (TC, the control). Fluorescence spectrum and 16S rRNA high-throughput sequencing analysis were used to compare the BC and TC treatments. Results showed that BC could decrease protein-like substances and increase humus substances more quickly, and that the humification index of compost products was 106.8% higher than that of TC, suggesting that the humification process was accelerated by BSF pretreatment resulting in a 21.6% shorter maturity time. Meanwhile, the concentrations of total and available phosphorus rose from 7.2 and 3.3 g kg-1 to 44.2 and 5.5 g kg-1, respectively, which were 90.5% and 118.8% higher in compost products from BC as compared to those in TC. Furthermore, BC had higher richness and diversity of humus synthesis and phosphate-solubilizing bacteria (PSB), with Nocardiopsis (53.8%) and Pseudomonas (47.0%) being the dominant PSB. Correlation analysis demonstrated that the introduction of BSF gut bacteria contributed to the effectiveness of related functional bacteria, resulting in a rapid humification process and phosphorus activation. Our findings advance understanding of the humification process and provide novel perspectives on food waste management.
Collapse
Affiliation(s)
- Xu Chen
- College of Resources and Environment, Yangtze University, Wuhan 430100, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoming Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhichao Mao
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Dakai Fan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Deng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China.
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Liu L, Li C, Li H. Long-term microbial community succession and mechanisms of regulation of dissolved organic matter derivation in livestock manure fermentation system. CHEMOSPHERE 2023; 329:138588. [PMID: 37019405 DOI: 10.1016/j.chemosphere.2023.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Industrial-scale aerobic fermentation was conducted with livestock manures. Microbial inoculation promoted the growth of Bacillaceae and consolidated its position as the dominant microorganism. Microbial inoculation substantially influenced dissolved organic matter (DOM) derivation and variations of related components in the fermentation system. The relative abundance of humic acid-like substances of DOM increased from 52.19% to 78.27% in microbial inoculation system, resulting in a high humification level. Moreover, lignocellulose degradation and microbial utilization were the important factors influencing DOM content in fermentation systems. The fermentation system was regulated by microbial inoculation, thus achieving a high level of fermentation maturity.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| |
Collapse
|
24
|
Zhang J, Mostofa KMG, Yang X, Mohinuzzaman M, Liu CQ, Senesi N, Senesi GS, Sparks DL, Teng HH, Li L, Yuan J, Li SL. Isolation of dissolved organic matter from aqueous solution by precipitation with FeCl 3: mechanisms and significance in environmental perspectives. Sci Rep 2023; 13:4531. [PMID: 36941375 PMCID: PMC10027667 DOI: 10.1038/s41598-023-31831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Ferric ions can bind strongly with dissolved organic matter (DOM), including humic acids (HA), fulvic acids (FA), and protein-like substances, whereas isolation of Fe-DOM precipitates (Fe-DOMP) and their biochemical characteristics remain unclear. In this work FeCl3 was used to isolate DOM components from various sources, including river, lake, soil, cow dung, and standard tryptophan and tyrosine, through precipitation at pH 7.5-8.5. The Fe-DOMP contribute to total DOM by approximately 38.6-93.8% of FA, 76.2% of HA and 25.0-30.4% of tryptophan and tyrosine, whilst fluorescence spectra allowed to monitor/discriminate the various DOM fractions in the samples. The relative intensity of the main infrared peaks such as 3406‒3383 cm-1 (aromatic OH), 1689‒1635 cm-1 (‒COOH), 1523-1504 cm-1 (amide) and 1176-1033 cm-1 (‒S=O) show either to decline or disappear in Fe‒DOMP. These results suggest the occurrence of Fe bonds with various functional groups of DOM, indicating the formation of π-d electron bonding systems of different strengths in Fe‒DOMP. The novel method used for isolation of Fe-DOMP shows promising in opening a new frontier both at laboratory and industrial purposes. Furthermore, results obtained may provide a better understanding of metal-organic complexes involved in the regulation of the long-term stabilization/sequestration of DOM in soils and waters.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Xuemei Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mohammad Mohinuzzaman
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università Degli Studi Di Bari "Aldo Moro", Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giorgio S Senesi
- CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - Sede Di Bari Via Amendola, 122/D, 70126, Bari, Italy
| | - Donald L Sparks
- Department of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware, Newark, DE, 19716-7310, USA
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Longlong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jie Yuan
- College of Resources and Environment, Xingtai University, Quanbei East Road 88, Qiaodong District, Xingtai City, Hebei Province, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
25
|
Xie J, Xia H, Guan M, Huang K, Chen J. Accelerating the humification mechanism of dissolved organic matter using biochar during vermicomposting of dewatered sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 159:102-113. [PMID: 36746047 DOI: 10.1016/j.wasman.2023.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The use of biochar can accelerate the vermicomposting process of dewatered sludge. However, the underlying mechanism of vermicompost maturity with biochar is still unclear. This study investigated the effect of biochar on sludge maturation during vermicomposting by analyzing the spectroscopic characteristics of dissolved organic matter. For this, dewatered sludge mixed with and without 5 % biochar were separately vermicomposted. The results showed that the biochar could significantly increase the biomass of earthworms as well as the activity and abundances of bacteria and eukaryotes (P < 0.05) during vermicomposting of sludge. The addition of biochar resulted in a 23.35 % increase in the ratio of absorbances at wavelengths of 250 nm and 365 nm (E250/E365), and a 20.50 % decrease in aromatic proteins of sludge during vermicomposting, compared to the control. The ratio of fulvic acid to humic acid contents rapidly increased from 10 to 15 days in biochar added treatment, which was earlier than that in the control. Compared to control, the biochar addition enhanced the contents of fulvic acid and humic acid in sludge vermicompost by 79.97 % and 91.54 %, respectively. During vermicomposting, the DOM maturated parameter displayed stronger correlation (P < 0.05) between each other in the treatment with biochar, rather than the control. This study suggests that the biochar addition significantly modifies the degradation pathway of dissolved organic matter, thus promoting sludge maturation during vermicomposting.
Collapse
Affiliation(s)
- Jiachen Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Mengxin Guan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China.
| | - Jin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
26
|
Ma Y, Shang X, Zhao Y, Lu X, Liu X. Insights into organic matter evolution during food waste stabilization induced by 14-hour high-temperature fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35064-35075. [PMID: 36522576 DOI: 10.1007/s11356-022-24717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Large amounts of secondary pollutants are released during traditional composting, and rapid fermentation is desirable for the stabilization of food wastes. Food wastes were mixed with rice husk, placed in a bioreactor, and stirred continuously to achieve high-temperature fermentation for 14 h. The transformations of the mixtures were analyzed using elemental and spectral analysis combined with kinetic equations and two-dimensional correlation spectroscopy. The carbohydrates, proteins, and aliphatic compounds of food waste were degraded after 4 h of fermentation. Transformations of dissolved organic and sulfur- and nitrogen-containing substances followed first-order kinetic equations with reaction rate constants of 0.142 h-1, 0.098 h-1, and 0.016 h-1, respectively. Organic matter conversion was in the following order: aliphatic → protein → carbohydrate and followed the order, acrylamide C → O-alkyl C → anomeric C at the molecular level. The fermentation process was characterized by the increase in protein- and fulvic-like compounds. Fulvic acid substances gradually accumulated during the late fermentation period. Thus, dissolved organic matter components were gradually transformed into humic substances with increasing fermentation time. The sequence of transformation during the fermentation process was, tyrosine-like → tryptophan-like → fulvic-like substances. Humification mainly occurred in the mature stage of composting; therefore, it was verified that the food waste was stabilized by a 14-h fermentation.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiufang Shang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xufei Lu
- BESG New-Energy Environmental Technology Co., Ltd., Beijing, 100020, China
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
27
|
Wang D, Mao Y, Mai L, Yu Z, Lin J, Li Q, Yuan J, Li G. Insight into humification of mushroom residues under addition of Rich-N sources: Comparing key molecular evolution processes using EEM-PARAFAC and 2D-FTIR-COS analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117079. [PMID: 36565502 DOI: 10.1016/j.jenvman.2022.117079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Accelerating the humification of organic solid waste is one of the most important issues in composting. This present study aims to study and compare the humification process of different rich-N sources (chicken manure, cattle manure, and urea) addition during the composting of mushroom residues, from macro physicochemical properties to micro humic molecular structure evolution process. The physicochemical elements and humic components were determined for evaluating the compost quality and humification degree as composting proceed. The coupled analysis of excitation-emission matrix with parallel factor analysis (EEM-PARAFAC) and two-dimensional correlation with Fourier transform infrared spectrum (2D-FTIR-COS) were used to characterize the functional molecular structure evolution of dissolved organic matter during humification process. The results indicated that the rank order for humification level were the treatments of chicken manure (HM), urea (UM), cattle manure (CM), and single mushroom residue treatment (CK), with their humification index of 22.18%, 22.05%, 18.47%, and 16.52%, respectively. Humic substance, humic acid, and fulvic acid were obtained the highest in HM treatment with contents of 35.41 ± 0.86%, 23.32 ± 1.57%, and 10.97 ± 0.52%, respectively. The rich-N source addition enhanced the degradation of protein-like and polysaccharides-like substances in dissolved organic matter, thus accelerating the humification process of mushroom residues. The key structure evolution of dissolved organic matter in the HM treatment, in which the CO and CC stretching of quinone, amide, or ketone, and the C-O stretching of polysaccharides may be responsible for the faster formation of humus compared to the other nitrogen treatments. In this study, redundancy analysis indicated that the total nitrogen (TN) and nitrate nitrogen (NO3--N) may be the potential indicators for determining the humification level as composting proceed. The result provides significant insight into the humification mechanism of mushroom residue under different types of nitrogen sources at the molecular level, and will be reference for improving the composting technique in practical field.
Collapse
Affiliation(s)
- Dingmei Wang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou,571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station/National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Yilin Mao
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou,571101, China
| | - Liwen Mai
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou,571101, China
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Jiacong Lin
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou,571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station/National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, PR China/Hainan Key Laboratory of Tropical Eco-circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou,571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station/National Agricultural Experimental Station for Agricultural Environment, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Jing Yuan
- College of Resource and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- College of Resource and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Quadar J, Chowdhary AB, Dutta R, Angmo D, Rashid F, Singh S, Singh J, Vig AP. Characterization of vermicompost of coconut husk mixed with cattle dung: physicochemical properties, SEM, and FT-IR analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87790-87801. [PMID: 35831646 DOI: 10.1007/s11356-022-21899-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The present work evaluated the potential of vermicomposting in management of different ratios of coconut husk waste (CH) and cattle dung (CD) viz (waste: CD) 0:100 (CH0), 25:75 (CH25), 50:50 (CH50), 75:25 (CH75), and 100:0 (CH100) using Eisenia fetida for 120 days. The physicochemical properties were analyzed in vermicompost samples taken on the 0 and 120th day. Co-composting with cattle manure improved their acceptability for E. fetida as well as their physicochemical properties. In a 50:50 (CH50) ratio, the lowest mortality and maximum growth in terms of number and biomass of earthworms were observed. The results revealed that during pre-vermicompost to post-vermicompost, nutrients such as nitrogen, phosphorus, and sodium increased, whereas in all vermicomposting end products organic carbon and the C:N ratio decreased significantly. Except zinc, all heavy metals decreased significantly (p < 0.05) over initial in all the feed mixtures. Seed germination tests indicated that the mature and non-phytotoxic vermicompost has been formed at the end of the experiment. The Fourier transmission infrared spectroscopy (FT-IR) and scanning electron microscopic (SEM) images of vermicompost demonstrated the excellent maturity of the compost.
Collapse
Affiliation(s)
- Jahangeer Quadar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
| | - Anu Bala Chowdhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
| | - Jaswinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005
- P.G. Department of Zoology, Khalsa College, Amritsar, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, 143005.
| |
Collapse
|
29
|
Wei J, Shangguan H, Shen C, Mi H, Liu X, Fu T, Tang J, Zhou S. Deciphering the structural characteristics and molecular transformation of dissolved organic matter during the electrolytic oxygen aerobic composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157174. [PMID: 35809732 DOI: 10.1016/j.scitotenv.2022.157174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Electrolytic oxygen aerobic composting (EOAC) effectively treats organic solid waste by using in-situ electrolytic oxygen for aeration. However, the fundamental mechanism of compost maturity is still unclear. Therefore, we comprehensively characterized dissolved organic matter (DOM) transformation closely related to compost maturity during EOAC. Excitation-emission matrix-parallel factor (EEM-PARAFAC) and Fourier transform infrared (FTIR) analysis confirmed that EOAC quickly decreased organic matter and increased humus substances, accelerating the compost humification process compared with conventional aerobic composting. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis reveals that the double bound equivalent and aromaticity index during EOAC are higher than in conventional aerobic composting (CAC), suggesting more aromatic compounds in EOAC. DOM's detailed transformation investigation suggested that low O/C and high H/C compounds were preferentially decomposed during EOAC. Our investigation firstly extends the in-depth molecular mechanisms of humification during EOAC, and reveals its practical engineering applications.
Collapse
Affiliation(s)
- Junrong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoming Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
30
|
Li W, Siddique MS, Liu M, Graham N, Yu W. The migration and microbiological degradation of dissolved organic matter in riparian soils. WATER RESEARCH 2022; 224:119080. [PMID: 36113239 DOI: 10.1016/j.watres.2022.119080] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Riparian zones are important natural means of water purification, by decreasing the aqueous concentration of terrestrial organic matter (OM) through adsorption and microbial degradation of the organic matter within the aquatic ecosystem. Limited studies have been reported so far concerning the migration of dissolved organic matter (DOM) in the horizontal and vertical planes of riparian zones. In this study, the migration of DOM in riparian zones, from forest soil to wetland soil, and with soil depth, were explored, based on a case study reservoir. Results showed that riparian wetlands can absorb the OM from the forest soils and adjacent reservoir, and act as a major OM sink through microbial action. Methylomirabilota and GAL15 bacteria increased with soil depth for the two soil systems, and the wetland soil system also contained microbial sulfates, nitrates and carbonates. These microorganisms successfully utilize the Fe3+, SO4-, and CO3- as electron acceptors in the wetland system, resulting in enhanced OM removal. Although the variation of soil DOM in the vertical direction was the same for both forest and wetland soils, the Chemical structure of the DOM was found to be significantly different. Furthermore, the soil was found to be the main source of DOM in the forest ecosystem, with lignin as the main ingredient. The lignin structure was gradually oxidized and decomposed, with an increase in carboxyl groups, as the lignin diffused down into the soil and the adjacent reservoir. PLS-PM analysis showed that the soil physicochemical properties were the main factors affecting DOM transformation. However, microbial metabolism was still the goes deeper affecting factor. This study will contribute to the analysis that migration and transform of soil organic matter in riparian zone.
Collapse
Affiliation(s)
- Weihua Li
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
31
|
Tan Z, Zhu H, He X, Xi B, Tian Y, Sun X, Zhang H, Ouche Q. Effect of ventilation quantity on electron transfer capacity and spectral characteristics of humic substances during sludge composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70269-70284. [PMID: 35589896 DOI: 10.1007/s11356-022-20808-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Humic substances (HSs) can ameliorate soil pollution by mediating electron transfer between microorganisms and contaminants. This capability depends on the redox-active functional structure and electron transfer capacity (ETC) of HS. This study mainly aimed to analyze the effects of different ventilation quantities on the ETC and spectral characteristics of HS (including humic acids (HAs) and fulvic acids (FAs)) during sludge composting. HS was extracted from compost with different ventilation quantities (0.1, 0.2, and 0.3 L kg-1 dry matter min-1, denoted as VQ1, VQ2, and VQ3, respectively). The ETC of HS was measured by electrochemical method. Excitation-emission matrix (EEM) spectroscopy, ultraviolet and visible (UV-Vis) spectrophotometry, and Fourier transform infrared (FT-IR) spectroscopy were conducted to understand the evolution of HS composition during composting. Results indicated that the ETC of HA and FA increased during composting, and VQ2 had stronger ETC and electron recycling rate than VQ1 and VQ3 at the end of composting. UV-Vis analysis revealed that the humification degree, aromatization degree, and molecular weight of HA and FA increased during composting, while the content of lignin decreased. EEM-PARAFAC results suggested that VQ2 accelerated the degradation of protein-like substances. FT-IR revealed a decrease trend in polysaccharide and aliphatic, and the carboxyl content increased in VQ2 and VQ3 while decreased in VQ1. Correlation analysis was used to study the relationship between HS components and ETC. The results advance our further understanding of the pollution remediation mechanism of HS.
Collapse
Affiliation(s)
- Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hongxiang Zhu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaosong He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuxin Tian
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Quanyi Ouche
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
32
|
Fu T, Tang J, Wu J, Shen C, Shangguan H, Zeng RJ, Zhou S. Alternating electric field enables hyperthermophilic composting of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154439. [PMID: 35288129 DOI: 10.1016/j.scitotenv.2022.154439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hyperthermophilic composting (HTC) achieves compost temperatures above 80 °C, usually depending on the inoculated hyperthermophilic bacteria, which has been well used in full-scale plants. However, the scarcity of hyperthermophilic bacteria and the high cultivation cost hinder the development of HTC. Recently, a direct-current electric field applied on conventional aerobic composting raised compost temperature to 70-75 °C, but gradient moisture distribution under the action of the direct-current electric field affected microbial metabolic heat and limited the temperature rise. Herein the effects of alternating electric field (AEF) promoting a uniform water distribution and further raising the temperature to achieve HTC were investigated. Our results demonstrated that AEF raised the compost temperature to 90 °C, and the period with temperatures above 80 °C lasted 4 days. The physicochemical properties and maturity index showed that the AEF improved the biodegradation and humification of organic matter due to the generation of metabolic heat. The AEF enriched thermophilic bacteria (Ureibacillus: by 52.36% on day 3; Navibacillus: by 46.54% on day 41). A techno-economic analysis indicated that the proposed approach with the AEF had a cost advantage over HTC with the inoculation of hyperthermophilic bacteria. Therefore, the AEF composting system represents a novel and applicable strategy for HTC.
Collapse
Affiliation(s)
- Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
33
|
Fu T, Shangguan H, Wei J, Wu J, Tang J, Zeng RJ, Zhou S. In-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127846. [PMID: 34838365 DOI: 10.1016/j.jhazmat.2021.127846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Aerobic composting is an effective recycling method for the disposal and resource utilization of organic solid waste. However, the inappropriate aeration mode used during conventional aerobic composting (CAC) often results in low oxygen utilization efficiency and loss of temperature, which further leads to a long maturation period and large odorous gas (NH3) pollution. Herein, a novel electrolytic oxygen aerobic composting (EOAC) process was invented first using in-situ oxygen generation for aeration by the electrolysis of water in compost. Our results demonstrated that the germination index (GI) significantly increased during EOAC, and the maturation time of compost was shortened by nearly 50% during EOAC compared to CAC, indicating higher oxygen utilization efficiency during EOAC. Meanwhile, NH3 emissions, N2O emissions, and nitrogen loss during the EOAC process decreased by 61%, 46%, and 21%, respectively, compared to CAC. The total relative abundance of thermophilic and electroactive bacteria during EOAC increased remarkably. EOAC inhibited ammoniation, nitrification, and denitrification, and weakened N-associated functional genes. A techno-economic analysis indicated that EOAC had greater technical superiority and cost advantages compared to CAC. This study represents proof-of-principle for EOAC and suggests that in-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting.
Collapse
Affiliation(s)
- Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junrong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Fu T, Shangguan H, Shen C, Mi H, Wu J, Li L, Tang J, Zeng RJ, Zhou S. Moisture migration driven by the electric field causes the directional differentiation of compost maturity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152415. [PMID: 34923006 DOI: 10.1016/j.scitotenv.2021.152415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Electric field-assisted aerobic composting (EAC) has been recently believed as a novel and effective process for the resource utilization of organic solid waste. However, the effect of electric field in composting process needs to be further clarified. Herein, moisture migration and compost maturity along electric-field-direction (from anode to cathode) in EAC was first to be explored. It was found that moisture content and compost maturity changed regularly from anode to cathode. At the end of composting, the moisture content of S3 (cathodic zone) was 30% and 62% higher than that of S2 (middle zone) and S1 (anodic zone), respectively. The germination index (a key parameter for compost maturity) in S3 (138.92%) was significantly higher than that of S2 (104.98%) and S1 (84.45%). However, temperatures in S3 were lower than that of S1 and S2, indicating the moisture content played a more important role than temperature for compost maturity in EAC. Furthermore, the microbial activities in S3 were also higher than that of S1 and S2, supporting the trend of compost maturity. This pioneering study demonstrates the electric field can drive moisture gradient migration to control the directional differentiation of compost maturity, showing a great application potential in aerobic composting.
Collapse
Affiliation(s)
- Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
35
|
Sun B, Li Y, Song M, Li R, Li Z, Zhuang G, Bai Z, Zhuang X. Molecular characterization of the composition and transformation of dissolved organic matter during the semi-permeable membrane covered hyperthermophilic composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127496. [PMID: 34896709 DOI: 10.1016/j.jhazmat.2021.127496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Current knowledge of dissolved organic matter (DOM) in semi-permeable membrane-covered thermophilic compost (smHTC) is limited. Therefore, this study provided a comprehensive characterization of composition and transformation of DOM in smHTC using multiple spectroscopic methods and ultrahigh resolution mass spectrometry. The results showed that the values of SUVA280, SUVA254, A240-400 (0.042, 0.048, 34.193) in smHTC were higher than those of conventional thermophilic composting (cTC) (0.030, 0.037, 18.348), and the increment of PV,n in smHTC were 2.4 times higher than that of cTC. These results suggested that smHTC accelerated the humification process by promoting the degradation of labile DOM and the production of humus-like substances. Mass spectrometry further confirmed that the DOM of smHTC possessed higher degree of aromatization and humification, based on the lower H/C (1.14), higher aromaticity index (0.34) and double bond equivalence (10.36). Additionally, smHTC increased the proportion of carboxyl-rich, unsaturated and aromatic compounds, and simultaneously improved the degradation of aliphatic/proteins, lipids, carbohydrates, along with even some refractory substances such as CHO subcategory (24.1%), especially lignin-like structures (14.8%). This investigation provided molecular insights into the composition and transformations of DOM in smHTC, and extended the current molecular mechanisms of humification in composting.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuang Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Manjiao Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Microbial Activity during Composting and Plant Growth Impact: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacing harmful chemical pesticides with compost extracts is steadily gaining attention, offering an effective way for plant growth enhancement and disease management. Food waste has been a major issue globally due to its negative effects on the environment and human health. The methane and other harmful organisms released from the untreated waste have been identified as causes of this issue. Soil bacteria impart a very important role in biogeochemical cycles. The interactions between plants and bacteria in the rhizosphere are some of the factors that determine the health and fertility of the soil. Free-living soil bacteria are known to promote plant growth through colonizing the plant root. PGPR (Plant Growth Promoting Rhizobacteria) inoculants in compost are being commercialized as they help in the improvement of crop growth yield and provide safeguard and resistance to crops from disease. Our focus is to understand the mechanism of this natural, wet waste recycling process and implementation of a sustainable operative adaptation with microbial association to ameliorate the waste recycling system.
Collapse
|
37
|
Ferraz Ramos R, Almeida Santana N, de Andrade N, Scheffer Romagna I, Tirloni B, de Oliveira Silveira A, Domínguez J, Josemar Seminoti Jacques R. Vermicomposting of cow manure: Effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost. BIORESOURCE TECHNOLOGY 2022; 345:126572. [PMID: 34921917 DOI: 10.1016/j.biortech.2021.126572] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Vermicomposting is a biological process for efficient cattle manure treatment, but the vermicomposting time determines the quality of the vermicompost. The objective of this study was to evaluate the effect of cattle manure vermicomposting time on earthworm biomass and the changes in physical, chemical, and biological in properties of the vermicompost. The cattle manure was inoculated with Eisenia andrei earthworms and conducted vermicomposting for 0, 15, 30, 45, 60, and 120 days. The analysis of 44 chemical, physical, and biological properties allowed the vermicomposting process to be divided into initial (<45 days) and final (45-120 days) phases. The initial phase was characterized by high microbial activity and the final by high physical-chemical transformation of the vermicompost and an increase in earthworm density. The organic matter aromaticity increased until the 45th day, subsequently decreasing. Although 30 d of vermicompost are sufficient to obtain a high-quality organic fertilizer, 120 d are necessary for producing matrices.
Collapse
Affiliation(s)
- Rodrigo Ferraz Ramos
- Department of Soil, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Natielo Almeida Santana
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Nariane de Andrade
- Department of Soil, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Izabelle Scheffer Romagna
- Department of Soil, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Bárbara Tirloni
- Department of Chemistry, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Roraima Ave., 1000, Camobi, Santa Maria, RS, Brazil
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Pontevedra, Spain
| | | |
Collapse
|
38
|
Ren L, Yan B, Kumar Awasthi M, Zhang J, Huang H, Zhang L, Luo L. Accelerated humification and alteration of microbial communities by distillers' grains addition during rice straw composting. BIORESOURCE TECHNOLOGY 2021; 342:125937. [PMID: 34543820 DOI: 10.1016/j.biortech.2021.125937] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This research explored the influence of distillers' grains amendment on the humification performance and microbial communities during rice straw composting. The composition of dissolved organic matter and maturity index were analyzed by the fluorescence excitation emission matrix spectroscopy and parallel factor analysis. High-throughput sequencing and redundancy analysis were employed for revealing the structure dynamics for microbial community and their shaping factors, respectively. Results indicated that addition of distillers' grains effectively increased the microbial activity, which was beneficial to the organic matter degradation and nitrogen conservation. Microbial community structures were significantly changed with different amendment strategies. Nitrate, water soluble carbon, organic matter, ammonium were the key parameters influencing the variation of bacterial community in different treatments. Water soluble carbon significantly affected the dominant fungal community dynamics. These results showed that addition of distillers' grains effectively improved the nutritional status and changed the microbial communities during rice straw composting.
Collapse
Affiliation(s)
- Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
39
|
Che J, Bai Y, Li X, Ye J, Liao H, Cui P, Yu Z, Zhou S. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124281. [PMID: 33097342 DOI: 10.1016/j.jhazmat.2020.124281] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 05/23/2023]
Abstract
This study explored the interactions between dissolved organic matter (DOM) composition and microbial community structure during an industrial-scale composting by Fourier transform ion cyclotron resonance mass spectrometry and 16S rRNA sequencing analysis. The results revealed that DOM from matured compost contained primarily lignins/carboxylic-rich alicyclic molecules (73.6%), the higher double bond equivalent (5.97) and aromaticity index (0.18), indicating that the molecular composition of DOM had changed substantially. Drastic changes in microbial community structure were also observed along with the DOM transformation process of composting. Network analysis further indicated that Caldicoprobacter, Bacillus, and Dechloromonas were associated with the most DOM subcategories. Caldicoprobacter could degrade carbohydrates, Bacillus accelerated the humification by transforming N-containing compounds, and Dechloromonas could degrade polycyclic aromatic hydrocarbons distributed in low O/C. These findings are helpful for understanding the molecular mechanisms of DOM transformation and humification of sludge composting.
Collapse
Affiliation(s)
- Jiangang Che
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
40
|
Huang W, Li Y, Liu X, Wang W, Wen P, Yu Z, Zhou S. Linking the electron transfer capacity with the compositional characteristics of dissolved organic matter during hyperthermophilic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142687. [PMID: 33049538 DOI: 10.1016/j.scitotenv.2020.142687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Redox-active functional groups in dissolved organic matter (DOM) can mediate reductions in organic pollutants and the passivation of heavy metals, which are related to the humification process of composting. Hyperthermophilic composting (HTC) has been shown to promote changes in the composition and structure of DOM and accelerate humification. However, how HTC affects the redox properties of DOM remains unclear. Here, we fractionated DOM into humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fraction to study their electron transfer capacities (ETC) and the relationship between ETC and compositional characteristics using electrochemical method and excitation-emission matrix-parallel factor analysis. HTC accelerated the formation of component 3 containing quinone-like moieties, which mainly existed in the HA, improving the electron accepting capacity (EAC) of DOM. The rapid degradation of component 4 containing tryptophan-like substances of HA, FA and HyI strengthened the electron donating capacity of DOM in HTC. Partial least squares path model also showed that compositional changes and the stronger ETC of DOM in HTC had a positive effect on the maturity degree, revealing that the EAC of HA could be used as a maturity index for compost. This study advances our understanding of the humification process and the contamination control mechanism of HTC.
Collapse
Affiliation(s)
- Wenfeng Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Youming Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoming Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weiwu Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ping Wen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
41
|
Zziwa A, Jjagwe J, Kizito S, Kabenge I, Komakech AJ, Kayondo H. Nutrient recovery from pineapple waste through controlled batch and continuous vermicomposting systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111784. [PMID: 33310239 DOI: 10.1016/j.jenvman.2020.111784] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The largest portion of pineapple peels and pulp generated from production points is disposed of haphazardly contributing to a number of environmental and health challenges. However, these wastes contain valuable plant nutrients that could be recovered to boost soil fertility, and increase agricultural production. This study evaluated the variation in physico-chemical parameters in batch and continuous vermicomposting systems as potential pathways for nutrient recovery from pineapple waste. The study compared the efficiency of waste reduction and nutrient recovery for batch (B), and continuous (C) vermicomposting systems during a 60-day period. The substrates were pineapple peels (PW), and cattle manure (CM) fed in a ratio of 4:1 (w/w). Control reactors were fed with 100% CM in both the feeding modes. Results indicated that waste degradation was 60%, and 54% while earthworm biomass increased by 57% and 129% for BPW, and CPW, respectively. pH significantly decreased with time in both systems. Total phosphorous increased with vermicomposting time with that of B being significantly higher than C systems. Nitrogen, potassium, and sodium significantly increased in the control experiments while the three elements significantly reduced for BPW, and CPW owing to high leachate production in the latter. The N, P, K, and C retention in vermicompost was 24.2%, 90.4%, 67.5%, 41.1%, and 32.6%, 91.2%, 79.3%, 46.1%, for BPW and CPW, respectively. Continuous systems produced higher earthworm biomass and retained more nutrients in vermicompost than batch systems, and can therefore, be recommended as better systems for pineapple waste vermicomposting.
Collapse
Affiliation(s)
- Ahamada Zziwa
- Department of Agricultural and Biosystems Engineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. BOX, 7062, Kampala, Uganda.
| | - Joseph Jjagwe
- Department of Agricultural and Biosystems Engineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. BOX, 7062, Kampala, Uganda
| | - Simon Kizito
- Department of Forestry, Biodiversity and Tourism, P.O.BOX, 7062, Makerere University, Kampala, Uganda
| | - Isa Kabenge
- Department of Agricultural and Biosystems Engineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. BOX, 7062, Kampala, Uganda
| | - Allan John Komakech
- Department of Agricultural and Biosystems Engineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. BOX, 7062, Kampala, Uganda
| | - Henry Kayondo
- Department of Agricultural and Biosystems Engineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. BOX, 7062, Kampala, Uganda
| |
Collapse
|
42
|
Wang W, Hou Y, Huang W, Liu X, Wen P, Wang Y, Yu Z, Zhou S. Alkali lignin and sodium lignosulfonate additives promote the formation of humic substances during paper mill sludge composting. BIORESOURCE TECHNOLOGY 2021; 320:124361. [PMID: 33181477 DOI: 10.1016/j.biortech.2020.124361] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Alkali lignin (AL) and sodium lignosulfonate (SLS) are by-products of the papermaking industry and could influence composting processes due to their rich aromatic structures. In this study, the roles of AL and SLS additives in the formation of humic substances (HS) during paper mill sludge composting were investigated. Results showed that HS content and degree of polymerization of the final products in AL (44.42 mg·g-1 and 0.70, respectively) and SLS (45.87 mg·g-1 and 1.14, respectively) treatments were appreciably higher than those of the control sample (34.36 mg·g-1 and 0.67). Excitation-emission matrix-parallel factor coupled with two-dimensional FT-IR correlation spectroscopy analysis suggested that AL and SLS additives could speed the transformation of quinone-like substances by increasing the amounts of low molecular weight lignin depolymerized products, which led to higher HS concentrations. This work provided a way of promoting HS formation and the comprehensive utilization of papermaking wastes.
Collapse
Affiliation(s)
- Weiwu Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wenfeng Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoming Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ping Wen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
43
|
Rini J, Deepthi MP, Saminathan K, Narendhirakannan RT, Karmegam N, Kathireswari P. Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. BIORESOURCE TECHNOLOGY 2020; 313:123690. [PMID: 32585456 DOI: 10.1016/j.biortech.2020.123690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study nutrient recovery and vermicompost production from livestock solid wastes of indigenous and exotic cow breeds with epigeic earthworms. Fourteen days pre-decomposed dung of Vechur native (CD1) and exotic Jersey (CD2) breeds were vermicomposted with Perionyx excavatus and Eudrilus eugeniae for 45 days (Cycle I) and 90 days (Cycle II) including respective controls without earthworms. Vermicomposts from CD1 and CD2 substrates during Cycle I and II showed increase in NPK, Ca and micro-nutrients (P < 0.05); whereas, pH, total organic carbon, C/N and C/P ratios disclosed decrease (P < 0.05) over initial levels for both the earthworms. E. eugeniae was found efficient in vermicomposting cattle solid wastes in 45 days and CD1 yielded nutrient rich vermicompost. The study concludes that Cycle I is suitable for nutrient recovery and vermicompost production, in addition to mass multiplication of earthworms in Cycle II.
Collapse
Affiliation(s)
- Joseph Rini
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
| | - Madathil Peedika Deepthi
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
| | - Kulandaivel Saminathan
- Department of Chemistry, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
| | | | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Palanisamy Kathireswari
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India.
| |
Collapse
|
44
|
Valorization of Orange Peel Waste Using Precomposting and Vermicomposting Processes. SUSTAINABILITY 2020. [DOI: 10.3390/su12187626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The industrialization process of oranges generates waste, which is inadequately disposed of; this produces adverse effects on the environment. Among the alternatives for valorization is the vermicomposting process, which consists of the degradation of organic waste through the action of earthworms and microorganisms. Therefore, this research aimed to study this process using orange peel (OP) waste at the laboratory level. For this purpose, it was necessary to determine the degradation conditions through the monitoring of physicochemical parameters (temperature, pH, humidity, organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and the carbon/nitrogen (C/N) ratio). To balance the substrate’s nutrients, load material (LM) that included vegetable waste and eggshells was added to three different mixtures: M1 (50% OP + 50% LM), M2 (40% OP + 60% LM) and M3 (60% OP + 40% LM). To condition the substrate for earthworm (Eisenia fetida) activity, a previous precomposting process was performed. The results showed that all the mixtures fulfilled the requirements for a quality and mature vermicompost; however, the highest concentrations for TN were in the mixtures M1 and M2. The total time required for degradation of the OP waste was 13 weeks.
Collapse
|