1
|
Li W, Huo R, Di Y, Liu C, Zhou S. Efficient nitrogen removal by the aerobic denitrifying bacterium Pseudomonas stutzeri RAS-L11 under triple stresses of high alkalinity, high salinity, and tetracycline: From performance to mechanism. BIORESOURCE TECHNOLOGY 2025; 430:132590. [PMID: 40288654 DOI: 10.1016/j.biortech.2025.132590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/31/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Efficient aerobic denitrification bacteria are rarely reported under triple stresses of high alkalinity, high salinity, and tetracycline. Here, strain Pseudomonas stutzeri RAS-L11 was isolated, under the optimal reaction conditions of C/N = 6, sodium acetate as carbon source, and pH 7.0-11.0. Moreover, RAS-L11 showed perfect nitrogen removal performance under dual and triple stresses. Specifically, the mean removal efficiency of total dissolved nitrogen for different medium (nitrate, nitrite, ammonia, nitrate and ammonia, and nitrite and ammonia) reached 92.35 %, 66.85 %, 71.33 %, 89.42 %, and 68.76 % under triple stresses. Nitrogen balance results indicated that biomass nitrogen accounted for a small percentage (4.48 % to 20.79 %). Furthermore, the nitrogen metabolism pathways and tetracycline, salinity, and alkaline tolerance-associated genes were also confirmed. Strain RAS-L11 achieved 42.67-70.72 % NO3--N and 83.72-88.53 % NH4+-N removal efficiencies in both sterilized and actual systems treating pharmaceutical wastewater. Our characterization of the RAS-L11 provides a reference for nitrogen removal of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chun Liu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Pan C, Zhao YG, Mupindu P, Zhao S. The denitrification ability and nitrogen metabolism pathway of aerobic denitrifier Marinobacter alkaliphilus SBY-1 under low C/N ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177651. [PMID: 39579907 DOI: 10.1016/j.scitotenv.2024.177651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Mariculture tail water is characterized as the low C/N ratios and thus blocks the conventional heterotrophic denitrification process due to insufficient carbon source. Therefore, oligotrophic marine bacteria with heterotrophic nitrification and aerobic denitrification (HN-AD) are urgently required to bioaugment aerobic biological filter. In this study, Marinobacter alkaliphilus SBY-1 was isolated and confirmed optimal nitrate removal capacity at a rate of 716 mg/L·d without ammonia production or nitrite accumulation under initial nitrate concentration of 800 mg/L, pH 7, salinity 20 ‰, sodium acetate as the carbon source, and low C/N ratios of 3.6. SBY-1 also demonstrated heterotrophic nitrification capability with a maximum ammonia removal rate reaching 69.21 % when ammonia was used as the nitrogen source. The enzymes involved in the HN-AD process including ammonia monooxygenase (AMO), nitrate reductase (NR), and nitrite reductase (NIR) were all detected in SBY-1 with superior activity observed for NR and NIR. Additionally, analysis of EPS and auto-aggregation revealed that SBY-1 exhibited excellent auto-aggregation ability under high influent nitrogen concentration conditions, making it more suitable for biofilm formation and further application in biofilm-based denitrification process. Genome analysis identified genes associated with Nar, Nap, Nas, Nir, Nif, Nrt, Nrf, Nor, Nos which confirmed that SBY-1 possessed a complete HN-AD pathway for nitrogen metabolism. The predicted nitrogen metabolism pathway of SBY-1 was NO3--N → NO2--N → NO→N2O → N2. These findings provide new insights into the efficient removal of nitrate by SBY-1 under lower C/N conditions.
Collapse
Affiliation(s)
- Chao Pan
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Lab of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuxue Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Yin J, Li J, Xie H, Wang Y, Zhao J, Wang L, Wu L. Unveiling cold Code: Acinetobacter calcoaceticus TY1's adaptation strategies and applications in nitrogen treatment. BIORESOURCE TECHNOLOGY 2024; 413:131449. [PMID: 39244103 DOI: 10.1016/j.biortech.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Overcoming low nitrogen removal efficiency at low temperatures is a challenge in biological treatment. This study investigated the cold-tolerant heterotrophic nitrification-aerobic denitrification by Acinetobacter calcoaceticus TY1. Transcriptomic and biochemical analyses indicated that strain TY1 upregulated genes for energy production, assimilation, cell motility, and antioxidant enzyme production under cold stress, maintaining functions such as energy supply, nitrogen utilization, and oxidative defense. Increasing the synthesis of extracellular polysaccharides, unsaturated fatty acids, and medium-chain fatty acids and secreting large amounts of antioxidant enzymes ensured cell membrane flexibility while enhancing the antioxidant system. Immobilization experiments showed that biofilms accelerated the removal of nitrogen pollutants and demonstrated good stability, with carriers being reusable to five times, maintaining high ammonia nitrogen (63.90 %) and total nitrogen (50.66 %) removal rates. These findings reveal the cold tolerance mechanisms of strain TY1 and its excellent practical potential as a candidate for wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Junyi Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Hongliang Xie
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Jialin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, PR China.
| |
Collapse
|
4
|
Yang L, He T, Yuan Y, Xiong Y, Lei H, Zhang M, Chen M, Yang L, Zheng C, Wang C. Enhancement of cold-adapted heterotrophic nitrification and denitrification in Pseudomonas sp. NY1 by cupric ions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 414:131574. [PMID: 39378533 DOI: 10.1016/j.biortech.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Cupric ions can restrain biological nitrogen removal processes, which comprise nitrite reductase and nitric oxide reductase. Here, Pseudomonas sp. NY1 can efficiently perform heterotrophic nitrification and aerobic denitrification with cupric ions at 15 °C. At optimal culturing conditions, low cupric ion levels accelerated nitrogen degradation, and ammonium and nitrite removal efficiencies increased by 2.33%-4.85% and 6.76%-12.30%, respectively. Moreover, the maximum elimination rates for ammonium and nitrite increased from 9.48 to 10.26 mg/L/h and 6.20 to 6.80 mg/L/h upon adding 0.05 mg/L cupric ions. Additionally, low cupric ion concentrations promoted electron transport system activity (ETSA), especially for nitrite reduction. However, high concentrations of cupric ions decreased the ETSA during nitrogen conversion processes. The crucial enzymes ammonia monooxygenase, nitrate reductase, and nitrite reductase possessed similarly trends as ETSA upon exposure to cupric ion. These findings deepen the understanding for the effect of cupric ions on nitrogen consumption and bioremediation in nitrogen-polluted waters.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Yulan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yufen Xiong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hongxue Lei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunxia Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cerong Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
5
|
Kou L, Huang T, Zhang H, Wen G, Li K. Aerobic denitrifying bacterial community with low C/N ratio remove nitrate from micro-polluted water: Metagenomics unravels denitrification pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175457. [PMID: 39137850 DOI: 10.1016/j.scitotenv.2024.175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
The efficient nitrogen removal from micro-polluted source water is an international challenge to be solved urgently. However, the inner denitrification mechanism of native aerobic denitrifying bacterial communities in response to carbon scarcity remains relatively unclear. Here, the bacterial community XT6, screened from an oligotrophic reservoir, exhibited aerobic denitrifying capacity under low-carbon environments. Up to 76.79-81.64 % of total organic carbon (TOC) and 51.48-67.60 % of NO3--N were removed by XT6 within 48 h at C/N ratios of 2.0-3.0. Additionally, the nitrogen balance experiments further manifested that 26.27-38.13 % of NO3--N was lost in gaseous form. As the C/N ratio decreased, XT6 tended to generate more extracellular polymeric substances (EPS), with the tightly bound EPS showing the largest increase. Pseudomonas and Variovorax were quite abundant in XT6, constituting 59.69 % and 28.65 % of the total sequences, respectively. Furthermore, metagenomics analysis evidenced that XT6 removed TOC and nitrate mainly through the tricarboxylic acid cycle and aerobic denitrification. Overall, the abovementioned results provide a deeper understanding of the nitrogen metabolic pathways of indigenous aerobic denitrifying bacterial communities with low C/N ratios and offer useful guidance for controlling nitrogen pollution in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Haihan Zhang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Kai Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
6
|
Xue B, Tian L, Liu Y, Peng L, Iqbal W, Li L, Mao Y. Enhanced nitrate reduction in hypotrophic waters with integrated photocatalysis and biodegradation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100390. [PMID: 38328509 PMCID: PMC10847995 DOI: 10.1016/j.ese.2024.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Addressing nitrate contamination in water bodies is a critical environmental challenge, and Intimately Coupling Photocatalysis and Biodegradation (ICPB) presents a promising solution. However, there is still debate about the effectiveness of ICPB in reducing nitrate under hypotrophic conditions. Further research is needed to understand its microbial metabolic mechanism and the functional changes in bacterial structure. Here we explored microbial metabolic mechanisms and changes in bacterial structure in ICPB reactors integrating a meticulously screened TiO2/g-C3N4 photocatalyst with biofilm. We achieved a 26.3% increase in nitrate reduction using 12.2% less organic carbon compared to traditional biodegradation methods. Metagenomic analysis of the microbial communities in ICPB reactors revealed evolving metabolic pathways conducive to nitrate reduction. This research not only elucidates the photocatalytic mechanism behind nitrate reduction in hypotrophic conditions but also provides genomic insights that pave the way for alternative approaches in water remediation technologies.
Collapse
Affiliation(s)
- Bingjie Xue
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Li Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Yaqi Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Lingxiu Peng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Waheed Iqbal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| |
Collapse
|
7
|
Ceballos-Escalera A, Pous N, Bañeras L, Balaguer MD, Puig S. Advancing towards electro-bioremediation scaling-up: On-site pilot plant for successful nitrate-contaminated groundwater treatment. WATER RESEARCH 2024; 256:121618. [PMID: 38663208 DOI: 10.1016/j.watres.2024.121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
The potential of nitrate electro-bioremediation has been fully demonstrated at the laboratory scale, although it has not yet been fully implemented due to the challenges associated with scaling-up bioelectrochemical reactors and their on-site operation. This study describes the initial start-up and subsequent stable operation of an electro-bioremediation pilot plant for the treatment of nitrate-contaminated groundwater on-site (Navata site, Spain). The pilot plant was operated under continuous flow mode for 3 months, producing an effluent suitable for drinking water in terms of nitrates and nitrites (<50 mg NO3- L-1; 0 mg NO2- L-1). A maximum nitrate removal rate of 0.9 ± 0.1 kg NO3- m-3 d-1 (efficiency 82 ± 18 %) was achieved at a cathodic hydraulic retention time (HRTcat) of 2.0 h with a competitive energy consumption of 4.3 ± 0.4 kWh kg-1 NO3-. Under these conditions, the techno-economic analysis estimated an operational cost of 0.40 € m-3. Simultaneously, microbiological analyses revealed structural heterogeneity in the reactor, with denitrification functionality concentrated predominantly from the centre to the upper section of the reactor. The most abundant groups were Pseudomonadaceae, Rhizobiaceae, Gallionellaceae, and Xanthomonadaceae. In conclusion, this pilot plant represents a significant advancement in implementing this technology on a larger scale, validating its effectiveness in terms of nitrate removal and cost-effectiveness. Moreover, the results validate the electro-bioremediation in a real environment and encourage further investigation of its potential as a water treatment.
Collapse
Affiliation(s)
- Alba Ceballos-Escalera
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Narcís Pous
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Lluis Bañeras
- Group of Environmental Microbial Ecology, Institute of Aquatic Ecology, University of Girona, C/ Maria Aurèlia Capmany, 40, E-17003, Girona, Spain
| | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain.
| |
Collapse
|
8
|
Lin YT, Wang YC, Xue YM, Tong Z, Jiang GY, Hu XR, Crittenden JC, Wang C. Decoding the influence of low temperature on biofilm development: The hidden roles of c-di-GMP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172376. [PMID: 38604376 DOI: 10.1016/j.scitotenv.2024.172376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.
Collapse
Affiliation(s)
- Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Yi-Mei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
9
|
Li J, Wan X, Wang H, Zhang Y, Ma Z, Yang W, Hu Y. Electrospun nanofibers electrostatically adsorb heterotrophic nitrifying and aerobic denitrifying bacteria to degrade nitrogen in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120199. [PMID: 38316072 DOI: 10.1016/j.jenvman.2024.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/13/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
Nanofibers were prepared by electrospinning a mixture of polycaprolactone and silica, and modified to improve the hydrophilicity and stability of the material and to degrade nitrogenous wastewater by adsorbing heterotrophic nitrifying aerobic denitrifying (Ochrobactrum anthropic). The immobilized bacteria showed highly efficient simultaneous nitrification-denitrification ability, which could convert nearly 90 % of the initial nitrogen into gaseous nitrogen under aerobic conditions, and the average TN removal rate reached 5.59 mg/L/h. The average ammonia oxidation rate of bacteria immobilized by modified nanofibers was 7.36 mg/L/h, compared with 6.3 mg/L/h for free bacteria and only 4.23 mg/L/h for unmodified nanofiber-immobilized bacteria. Kinetic studies showed that modified nanofiber-immobilized bacteria complied with first-order degradation kinetics, and the effects of extreme pH, temperature, and salinity on immobilized bacteria were significantly reduced, while the degradation rate of free bacteria produced larger fluctuations. In addition, the immobilized bacterial nanofibers were reused five times, and the degradation rate remained stable at more than 80 %. At the same time, the degradation rate can still reach 50 % after 6 months of storage at 4 °C. It also demonstrated good nitrogen removal in practical wastewater treatment.
Collapse
Affiliation(s)
- Jixiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Xiaoru Wan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - HeTianai Wang
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Yanju Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Zilin Ma
- College of 2011, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China.
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
10
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
11
|
Wang L, Wang S, Chen C, Tang Y, Liu B. Multi-omics analysis to reveal key pathways involved in low C/N ratio stress response in Pseudomonas sp. LW60 with superior nitrogen removal efficiency. BIORESOURCE TECHNOLOGY 2023; 389:129812. [PMID: 37776911 DOI: 10.1016/j.biortech.2023.129812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
In practical engineering, nitrogen removal at low temperatures or low C/N ratios is difficult. Although strains can remove nitrogen well at low temperatures, there is no research on the performance and deep mechanism of strains under low C/N ratio stress. In this study, Pseudomonas sp. LW60 with superior nitrogen removal efficiency under low C/N ratio stress was isolated at 4 °C. With a C/N ratio of 2-10, the NH4+-N removal efficiency was 40.02 %-100 % at 4 °C. Furthermore, the resistance mechanism of Pseudomonas sp. LW60 to low C/N ratio stress was deeply investigated by multi-omics. The results of transcriptome, proteome, and metabolome revealed that the resistance of strain LW60 to low C/N ratio stress was attributed to enhanced central carbon metabolism, amino acid metabolism, and ABC transporters, rather than nitrogen removal pathways. This study isolated a strain with low C/N ratio tolerance and deeply explored its tolerance mechanism by multi-omics.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Shipeng Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China.
| |
Collapse
|
12
|
Yan L, Yin M, Miao J, Song X, Jiang J, Zhang S. Removal of nitrate nitrogen by Pseudomonas JI-2 under strong alkaline conditions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 388:129755. [PMID: 37696334 DOI: 10.1016/j.biortech.2023.129755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The nitrate nitrogen removal characteristics of Pseudomonas JI-2 under strong alkaline conditions and the composition and functional groups of extracellular polymeric substance were analyzed. Furthermore, nontargeted metabonomics and bioinformatics technology were used to investigate the alkaline tolerance mechanism. JI-2 removed 11.05 mg N/(L·h) of nitrate with the initial pH, carbon to nitrogen ratio and temperature were 11.0, 8 and 25 °C respectively. Even when the pH was maintained at 11.0, JI-2 could still effectively remove nitrate. JI-2 contains a large number of Na+/H+ antiporters, such as Mrp, Mnh (mnhACDEFG) and Pha (phaACDEFG), which can stabilize the intracellular acid-base environment, and SlpA can enable quick adaptation to alkaline conditions. Moreover, JI-2 responds to the strong alkaline environment by secreting more polysaccharides, acidic functional groups and compatible solutes and regulating key metabolic processes such as pantothenate and CoA biosynthesis and carbapenem biosynthesis. Therefore, JI-2 can survive in strong alkaline environments and remove nitrate efficiently.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shaoliang Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| |
Collapse
|
13
|
Zhang S, Su J, Liu S, Ren Y, Cao S. Regulating mechanism of denitrifier Comamonas sp. YSF15 in response to carbon deficiency: Based on carbon/nitrogen functions and bioaggregation. ENVIRONMENTAL RESEARCH 2023; 235:116661. [PMID: 37451570 DOI: 10.1016/j.envres.2023.116661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
There is an urgent demand to investigate mechanisms for the improvement of denitrification in carbon-deficient environment, which will effectively reduce the eutrophication in water bodies polluted by nitrate. In this study, denitrifying bacterium Comamonas sp. YSF15 was used to explore the differences in different carbon source concentrations, with the complete genome, metabolomics, and other detecting methods. Results showed that strain YSF15 was able to achieve efficient denitrification, with complete pathways for denitrification and central carbon metabolism. The carbon deficiency prompted the bacteria to use extracellular amino acid-like metabolites initially, to alleviate inhibition and maintain bioactivity, which also facilitated glycogen storage. The biogenic inhibitors (tautomycin, navitoclax, and glufosinate) at extremely low level potentially favored the competitiveness and intraspecific utilization of extracellular polysaccharides (PS). Optimal solutions for bioaggregation in carbon-deficient condition are achieved by regulating the hydrophobicity, and hydrogen bond in extracellular metabolites. The strategy contributes to the maintenance of bioactivity and adaptation to carbon deficiency. Overall, this study provides a new perspective on understanding the denitrification strategies in carbon-deficient environment, and helps to improve the nitrate removal in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
14
|
Liu Y, Zhang B, Yao Y, Wang B, Cao Y, Shen Y, Jia X, Xu F, Song Z, Zhao C, Gao H, Guo P. Insight into the plant-associated bacterial interactions: Role for plant arsenic extraction and carbon fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164960. [PMID: 37348724 DOI: 10.1016/j.scitotenv.2023.164960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
This study investigated the interactions between rhizosphere and endosphere bacteria during phytoextraction and how the interactions affect arsenic (As) extraction and carbon (C) fixation of plants. Pot experiments, high-throughput sequencing, metabonomics, and network analysis were integrated. Results showed that positive correlations dominated the interconnections within modules (>95 %), among modules (100 %), and among keystone taxa (>72 %) in the bacterial networks of plant rhizosphere, root endosphere, and shoot endosphere. This confirmed that cooperative interactions occurred between bacteria in the rhizosphere and endosphere during phytoextraction. Modules and keystone taxa positively correlating with plant As extraction and C fixation were identified, indicating that modules and keystone taxa promoted plant As extraction and C fixation simultaneously. This is mainly because modules and keystone taxa in plant rhizosphere, root endosphere, and shoot endosphere carried arsenate reduction and C fixation genes. Meanwhile, they up-regulated the significant metabolites related to plant As tolerance. Additionally, shoot C fixation increased peroxidase activity and biomass thereby facilitating plant As extraction was confirmed. This study revealed the mechanisms of plant-associated bacterial interactions contributing to plant As extraction and C fixation. More importantly, this study provided a new angle of view that phytoextraction can be applied to achieve multiple environmental goals, such as simultaneous soil remediation and C neutrality.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Ye Yao
- College of Physics, Jilin University, Changchun 130012, PR China
| | - Bo Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Fukai Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Ziwei Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Chengpeng Zhao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - HongJie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
15
|
Yan B, Jiang L, Zhou H, Okokon Atakpa E, Bo K, Li P, Xie Q, Li Y, Zhang C. Performance and microbial community analysis of combined bioreactors in treating high-salinity hydraulic fracturing flowback and produced water. BIORESOURCE TECHNOLOGY 2023; 386:129469. [PMID: 37451509 DOI: 10.1016/j.biortech.2023.129469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The anoxic/oxic systems are a widely used biological strategy for wastewater treatment. However, little is known about the performance and microbial community correlation of different combined bioreactors in the treatment of high-COD and high-salinity hydraulic fracturing flowback and produced water (HF-FPW). In this study, the performance of Up-flow anaerobic sludge bed-bio-contact oxidation reactor (UASB-BCOR) and Fixed-bed baffled reactor (FBR-BCOR) in treating HF-FPW was investigated and compared. The results suggested the FBR-BCOR could efficiently remove COD, SS, NH4+-N, and oil pollutants, and it exhibited better resistance to the negative interference of hydraulic shock load on it. Besides, the correlation analysis first disclosed the key functional genera during the degradation process, including Ignavibacterium, Ellin6067, and Zixibacteria. Moreover, network analysis revealed that the difference of microbial co-occurrence network structure is the main driving factor for the difference of bioreactor processing capacity. This work demonstrates the feasibility and potential of FBR-BCOR in treating HF-FPW.
Collapse
Affiliation(s)
- Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Edidiong Okokon Atakpa
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Kuiyong Bo
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Qinglin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
16
|
Wang L, Chen C, Tang Y, Liu B. A novel hypothermic strain, Pseudomonas reactans WL20-3 with high nitrate removal from actual sewage, and its synergistic resistance mechanism for efficient nitrate removal at 4 °C. BIORESOURCE TECHNOLOGY 2023; 385:129389. [PMID: 37369315 DOI: 10.1016/j.biortech.2023.129389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Nitrate can be well removed by bacteria at 25-30 °C. However, nitrate removal almost ceases at temperatures lower than 5 °C. In this study, a novel hypothermic strain, Pseudomonas reactans WL20-3 exhibited an excellent aerobic nitrate removal ability at 4 °C. It had high capability for the removal of nitrate, total dissolved nitrogen (TDN), and dissolved organic carbon (DOC) at 4 °C, achieving removal efficiencies of 100%, 87.91%, and 97.48%, respectively. The transcriptome analysis revealed all genes involved in the nitrate removal pathway were significantly up-regulated. Additionally, the up-regulation of ABC transporter genes and down-regulation of respiratory chain genes cooperated with the nitrate metabolism pathway to resist low-temperature stress. In actual sewage, inoculated with WL20-3, the nitrate removal efficiency was found to be 70.70%. Overall, these findings demonstrated the impressive capacity of the novel strain WL20-3 to remove nitrate and provided novel insights into the synergistic resistance mechanism of WL20-3 at low temperature.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, PR China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
17
|
Yue W, Genji Y, Bowen W, Yaozu M, Yang Z, Tian M, Hailian Z, Chuanwu X, Yi C, Chunyan L. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131994. [PMID: 37418966 DOI: 10.1016/j.jhazmat.2023.131994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The simultaneous bioremediation and bioconversion of papermaking wastewater by psychrotrophic microorganisms holds great promise for developing sustainable environments and economies in cold regions. Here, the psychrotrophic bacterium Raoultella terrigena HC6 presented high endoglucanase (26.3 U/mL), xylosidase (732 U/mL), and laccase (8.07 U/mL) activities for lignocellulose deconstruction at 15 °C. mRNA monitoring and phenotypic variation analyses confirmed that cold-inducible cold shock protein A (CspA) facilitated the expression of the cel208, xynB68, and lac432 genes to increase the enzyme activities in strain HC6. Furthermore, the cspA gene-overexpressing mutant (strain HC6-cspA) was deployed in actual papermaking wastewater and achieved 44.3%, 34.1%, 18.4%, 80.2% and 100% removal rates for cellulose, hemicellulose, lignin, COD, and NO3--N at 15 °C. Simultaneously, 2,3-butanediol (2,3-BD) was produced from the effluent with a titer of 2.98 g/L and productivity of 0.154 g/L/h. This study reveals an association between the cold regulon and lignocellulolytic enzymes and provides a promising candidate for simultaneous papermaking wastewater treatment and 2,3-BD production.
Collapse
Affiliation(s)
- Wang Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yang Genji
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wu Bowen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Mi Yaozu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhou Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ma Tian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zang Hailian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xi Chuanwu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cheng Yi
- College of Plant Protection, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Li Chunyan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| |
Collapse
|
18
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Gonzalez-Lopez J, Rosa-Masegosa A, Gorrasi S, Vilchez-Vargas R, Link A, Gonzalez-Martinez A. Granular biomass technology for providing drinking water: microbial versatility and nitrate performance in response to carbon source. APPLIED WATER SCIENCE 2023; 13:165. [DOI: 10.1007/s13201-023-01964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2023] [Indexed: 02/05/2025]
Abstract
AbstractThe aerobic granular biomass technology was optimized for treating nitrate-polluted groundwater based on the biological denitrification processes in order to provide drinking water. Reactors inoculated with granular biomass were operated at progressively lower C/N rate using acetate and methanol to encourage heterotrophic denitrification, in order to meet the recommended requirements described by European Drinking Water Framework Directive. The granulation and long-term stability of granular biomass under low C/N were successful for all stages, demonstrated compactness of granules and absence of filamentous microorganisms. The nitrate removal was similar in methanol- and acetate-fed reactors, occurring in both cases nitrate removal ratios > 80%, and fact allows the selection of one of both depending groundwater polluted case. Also, feeding reactors with 2 C/N ratio showed nitrate removal values of ≥ 95%, treating highly polluted groundwater (100 mg·L−1). The microbial diversity was higher in the methanol-fed reactor with representative phylotypes as Flavobacterium, Cytophagaceae, NS9 marine group, while species richness was higher in the acetate-fed reactor, which was mainly represented by Flavobacterium genus. Statistical analyses revealed the higher resilience of bacterial population on granules fed with acetate, showing more resistance under drop C/N ratio. Oscillating pollution in groundwater during seasonal periods should be treated using acetate as carbon source for denitrification carried out by granular biomass, while stable pollution concentrations over time allow the use of methanol as a carbon source since the greater microbial diversity allows the elimination of other contaminants present in groundwater.
Collapse
|
19
|
Wang L, Chen C, Tang Y, Liu B. Efficient nitrogen removal by a novel extreme strain, Pseudomonas reactans WL20-3 under dual stresses of low temperature and high alkalinity: Characterization, mechanism, and application. BIORESOURCE TECHNOLOGY 2023:129465. [PMID: 37429553 DOI: 10.1016/j.biortech.2023.129465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Although many studies report the resistance of heterotrophic nitrification-aerobic denitrification (HN-AD) strains to single environmental stress, there is no research on its resistance to dual stresses of low temperature and high alkalinity. A novel bacterium Pseudomonas reactants WL20-3 isolated in this study showed removal efficiencies of 100%, 100%, and 97.76% for ammonium, nitrate, and nitrite, respectively, at 4 °C and pH 11.0. Transcriptome analysis revealed that the resistance of strain WL20-3 to dual stresses was attributed not only to the regulation of genes in the nitrogen metabolic pathway, but also to genes in other pathways such as the ribosome, oxidative phosphorylation, amino acid metabolism, and ABC transporters. Additionally, WL20-3 removed 83.98% of ammonium from actual wastewater at 4 °C and pH 11.0. This study isolated a novel strain WL20-3 with superior nitrogen removal under dual stresses and provided a molecular understanding of its tolerance mechanism to low temperature and high alkalinity.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China.
| |
Collapse
|
20
|
Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162341. [PMID: 36828064 DOI: 10.1016/j.scitotenv.2023.162341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.
Collapse
Affiliation(s)
- Zehui Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jihong Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingran Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Boyu Yang
- Nanjing Academy of Resources and Ecology Sciences, No. 606, Ningliu Road, Jiangbei New District, 210044 Nanjing, China
| | - Lixin Zhu
- Sinopec Nanjing Chemical Industries Co., Ltd., No. 189, Geguan Road, Liuhe District, Jiangsu 210048, Nanjing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
21
|
Chen M, He T, Wu Q, Zhang M, He K. Enhanced heterotrophic nitrification and aerobic denitrification performance of Glutamicibacter arilaitensis EM-H8 with different carbon sources. CHEMOSPHERE 2023; 323:138266. [PMID: 36868423 DOI: 10.1016/j.chemosphere.2023.138266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Different carbon sources for Glutamicibacter arilaitensis EM-H8 were evaluated for ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) removal. Strain EM-H8 could rapidly remove NH4+-N, NO3--N and NO2--N. The highest removal rates measured for different forms of nitrogen with different carbon sources were 5.94 mg/L/h for NH4+-N with sodium citrate, 4.25 mg/L/h for NO3--N with sodium succinate, and 3.88 mg/L/h for NO2--N with sucrose. The Nitrogen balance showed that strain EM-H8 could convert 77.88% of the initial nitrogen into nitrogenous gas when NO2--N was selected as the sole nitrogen source. The presence of NH4+-N increased the removal rate of NO2--N from 3.88 to 4.02 mg/L/h. In an enzyme assay, ammonia monooxygenase, nitrate reductase and nitrite oxidoreductase were detected at 0.209, 0.314, and 0.025 U/mg protein, respectively. These results demonstrate that strain EM-H8 performs well for nitrogen removal, and shows excellent potential for simple and efficient removal of NO2--N from wastewater.
Collapse
Affiliation(s)
- Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
22
|
Stentella R, Cislaghi A, Rossi LMW, Giupponi L, Bona E, Zambonardi A, Rizzo L, Esposto F, Bischetti GB. Ecological design of constructed wetlands in cold mountainous region: from literature to experience. LANDSCAPE AND ECOLOGICAL ENGINEERING 2023. [DOI: 10.1007/s11355-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
23
|
Amanze C, Anaman R, Wu X, Alhassan SI, Yang K, Fosua BA, Yunhui T, Yu R, Wu X, Shen L, Dolgor E, Zeng W. Heterotrophic anodic denitrification coupled with cathodic metals recovery from on-site smelting wastewater with a bioelectrochemical system inoculated with mixed Castellaniella species. WATER RESEARCH 2023; 231:119655. [PMID: 36706471 DOI: 10.1016/j.watres.2023.119655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- College of Engineering, Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Erdenechimeg Dolgor
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, 14200, Mongolia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
24
|
Wang W, Li L, Wang Y, Wang Y, Han Y, Ma J, Chai F. Escape and functional alterations of microbial aerosol particles containing Pseudomonas sp. during wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 219:115129. [PMID: 36549495 DOI: 10.1016/j.envres.2022.115129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment plants (WWTP) are considered sources of bioaerosols emission that negatively affects the surrounding atmosphere. This study focused on Pseudomonas sp. Emissions in bioaerosols from a WWTP that adopts the A2O treatment process, and their inactivation through ultraviolet (UV) radiation. High-throughput sequencing was used to assay the microbial population, and functional composition profiles were predicted using 16 S rRNA sequencing data with PICRUSt2. Recorded emission levels of airborne bacteria and Pseudomonas sp. In WWTP were 130 ± 83-6113 ± 3015 CFU/m3 and 0-6431 ± 1945 CFU/m3, respectively. Bioaerosol emissions presented site-related and temporal variation. Over 80% of Pseudomonas sp. Were attached to coarse particles with sizes over 2.1 μm. Bioaerosol concentration and particle-size distribution in the air were closely related to ambient temperature, relative humidity, light intensity, and wind speed. Exposure to 45.67 μW/cm3 UV radiation led to a significant decline in bioaerosol concentrations in the air, and reduction rate reached 89.16% and 95.77% for airborne bacteria and Pseudomonas sp., respectively. The results suggested that UV radiation can be an effective method in reducing bioaerosols. Compared with other bacteria, Pseudomonas stutzeri and Bacillus sp. Are more resistant to UV radiation. The abundance of antibiotic resistance genes noticeably receded when exposed to UV irradiation. The relative abundance of cationic antimicrobial peptide resistance, categorized under human diseases in KEGG (level 3), significantly decreased in Pseudomonas sp. After 120 min of UV irradiation. This study provides a novel insight into the control of bioaerosol emissions carrying pathogenic bacteria.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Yanjie Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fengguang Chai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Li D, Li W, Zhang D, Zhang K, Lv L, Zhang G. Performance and mechanism of modified biological nutrient removal process in treating low carbon-to-nitrogen ratio wastewater. BIORESOURCE TECHNOLOGY 2023; 367:128254. [PMID: 36334870 DOI: 10.1016/j.biortech.2022.128254] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
For solving the challenge of difficult nutrient removal, high running cost and CO2 emission at low carbon-to-nitrogen (C:N) ratio, Bi-Bio-Selector for nitrogen and phosphorus removal (BBSNP) process was developed. Under parallel operation conditions, full-scale BBSNP was less influence by low C:N ratio (3.5-2) than Anaerobic-anoxic-aerobic (AAO) and achieved better nitrogen removal performance. The mechanism of performance advantage in BBSNP was analyzed by mass balance and high throughout sequencing. It demonstrated BBSNP developed unique microbial community at C:N ratio of 2. Higher abundance of Saccharibacteria, Ferruginibacter, Ottowia, Dokdonella, Candidatus_Nitrotoga and Nitrospira in BBSNP was responsible for better chemical oxygen demand (COD) utilization efficiency, denitrification, denitrifying phosphorus removal and nitrification. Meanwhile, under low C:N ratio, BBSNP could save 10% organic carbon and 15% oxygen requirement, reduce 53% running cost and 21% CO2 emission, which had practical value in relieving energy crisis and carbon emission of wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Donghui Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Kailei Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guanglin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
26
|
Jiang X, Guo Y, Li H, Li X, Liu J. Ecological evolution during the three-year restoration using rhizosphere soil cover method at a Lead-Zinc tailing pond in Karst areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158291. [PMID: 36030848 DOI: 10.1016/j.scitotenv.2022.158291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
A major challenge for the restoration of the Lead-Zinc tailing pond in Karst areas lies in how to establish vegetation with less soil and restore the ecological functions of the substrate. In this study, a novel method, rhizosphere soil cover method (RSC), was applied to recover the vegetation at a Pb-Zn tailing pond in Karst areas. Two local tolerate plants, Miscanthus sinensis and Pueraria phaseoloides, were planted as pioneer species. Although 68 % of the tailing pond was not covered with soil, the vegetation coverage has reached over 90 % after restoration for three years. Compared with the natural revegetation process (vegetation coverage was <5 % after 20 years of natural succession), the revegetation in the tailing pond was accelerated by RSC and planting pioneer species. Both the plant's diversity and richness have significantly increased in the tailings pond during the restoration (p < 0.05). The important value indicators of M. sinensis and P. phaseoloides were the highest in the plant community, indicating the dominant role of these two plants in revegetation. Moreover, the total organic carbon, total nitrogen, total phosphorus, and total potassium in the tailings increased annually (p < 0.05), which demonstrated that the revegetation has improved the chemical properties in the substrate. In addition, the Shannon diversity index of bacteria in the tailings increased significantly from 4.11 to 5.51. The relative abundance of microbial genes related to carbon fixation and nitrogen fixation in the tailings increased by 17 % and 43 %, respectively. Meanwhile, the physicochemical properties, microbial community structure, and nutrient cycling function in the tailings without topsoil were improved more obviously than those in soils. It is thereby concluded that RSC is an efficient means for ecological restoration of the tailing ponds in Karst areas to improve the ecosystem structure and function of Pb-Zn tailings.
Collapse
Affiliation(s)
- Xusheng Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yu Guo
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Xiangmin Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin 541004, China.
| |
Collapse
|
27
|
Yan L, Jiang J, Liu S, Yin M, Yang M, Zhang X. Performance and mechanism of nitrate removal by the aerobic denitrifying bacterium JI-2 with a strong autoaggregation capacity. BIORESOURCE TECHNOLOGY 2022; 365:128111. [PMID: 36252753 DOI: 10.1016/j.biortech.2022.128111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Here, a new strain JI-2 of the strongly autoaggregating aerobic denitrifying bacteria was screened. The nitrate removal ability and autoaggregation mechanism of JI-2 were analyzed using the nitrogen balance and genomics technology. The nitrate removal rate was 27.05 mg N/(L·h) at pH 9.0 and C/N 8.0. The strain JI-2 removes nitrate via the aerobic denitrification and dissimilation pathways and removes ammonium via the assimilation pathway. 66.81 % nitrate was converted to cellular components under aerobic conditions. Complex nitrogen metabolism genes were detected in strain JI-2. C-di-GMP mediates the motility behavior of JI-2 by binding the FleQ and PilZ proteins, and regulating the expression of PslA. Furthermore, the mechanism of autoaggregation was verified by extracellular polymeric substance analysis. Meanwhile, the nitrate removal rates of strain JI-2 was 11.13-12.50 mg N/(L·h) in wastewater. Thus, strain JI-2 has good prospects for application in the treatment of nitrate wastewater.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xiaoqi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
28
|
Complete genome sequence of the denitrifying Pseudomonas sp. strain DNDY-54 isolated from deep-sea sediment of ninety east ridge. Mar Genomics 2022; 66:100995. [DOI: 10.1016/j.margen.2022.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
29
|
Li T, Kong Z, Zhang X, Wang X, Chai L, Liu D, Shen Q. Deciphering the effect of exogenous lignocellulases addition on the composting efficiency and microbial communities. BIORESOURCE TECHNOLOGY 2022; 361:127751. [PMID: 35940325 DOI: 10.1016/j.biortech.2022.127751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to reveal the potential effects of exogenous lignocellulases addition on the composting efficiency and microbial communities. The lignocellulases addition at the mesophilic phase (MEP) greatly expedited the substrate conversion and the rise of temperature at the initial stage, driving the early arrival of thermophilic phase (THP), caused by the positive effects of Sphingobacterium and Brevundimonas. When being added at the THP, the potential functions and interactions of microbial communities were stimulated, especially for Thermobispora and Mycothermus, which prolonged the duration of the THP and expedited the humic acid formation. Simultaneous addition (MEP and THP) significantly altered the microbial community succession and activated the microbes that contributed to the lignocellulases secretion, exhibiting the highest cellobiohydrolase (36.19 ± 3.25 U· g-1 dw) and xylanase (47.51 ± 3.32 U·g-1 dw) activity at the THP. These findings provide new strategies that can be effectively utilized to improve the efficiency and quality of composting.
Collapse
Affiliation(s)
- Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhijian Kong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xiangkai Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xudong Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Lifang Chai
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, People's Republic of China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Li Y, Yuan H, Cao L, Liu L, Yu H, Gao J, Zhang Y. Performance enhancement and population structure of denitrifying phosphorus removal system over redox mediator at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115748. [PMID: 35842988 DOI: 10.1016/j.jenvman.2022.115748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The development of denitrifying polyphosphate accumulating organisms (DPAOs) presents a strategy to carbon competition between denitrifying bacteria and phosphorus removing bacteria. However, low temperature inhibits the rate of enzyme-catalyzed and substrate diffusion during denitrifying phosphorus removal (DPR). Therefore, the present study assessed the addition of NQS (100 μmol/L) for enhancing the removal of TP and TN in DPR reactors operated at alternating anaerobic and anoxic phases and different influent phosphate concentrations. The results showed that the removal efficiency of TP and TN in NQS-DPR system at 10 °C were 99.9% and 42.0%, respectively, which were 2.1 and 2.0 times higher than that of DPR system. Adding NQS significantly alleviated the increase of pH under anoxic condition and decreased the ORP value of the reactor, which in turn enhanced the PHAs accumulation process. The determination of functional genes (nirK, narG and phoD) showed that Dechloromonas, Lentimicrobium, and Terrimonas were the dominant functional bacteria in NQS-DPR system at 10 °C with the relative abundance of 3.09%, 2.99% and 2.28%, respectively. This study can provide valuable information for the effects of the addition of the redox mediator on denitrifying phosphorus removal technology.
Collapse
Affiliation(s)
- Yuanling Li
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongying Yuan
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Lei Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
| | - Lina Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongbing Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jie Gao
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yufeng Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
31
|
Wei B, Luo X, Ma W, Lv P. Biological nitrogen removal and metabolic characteristics of a novel cold-resistant heterotrophic nitrification and aerobic denitrification Rhizobium sp. WS7. BIORESOURCE TECHNOLOGY 2022; 362:127756. [PMID: 35952861 DOI: 10.1016/j.biortech.2022.127756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
For improving the poor de-nitrogen efficiency and effluent quality faced by wastewater treatment plants in winter, a novel cold-resistant strain, Rhizobium sp. WS7 was isolated. Strain WS7 presented dramatic de-nitrogen efficiencies including 98.73 % of NH4+-N, 99.98 % of NO3--N, 100 % of NO2--N and approximately 100 % of mixed nitrogen (NH4+-N and NO3--N) at 15 °C. Optimum parameters of WS7 for aerobic denitrification were determined. Additionally, functional genes (amoA, napA, nirK, norB, and nosZ) and key enzymes (nitrate reductase and nitrite reductase) activities were determined. Nitrogen balance analysis suggested that assimilation played a dominant role in de-nitrogen by WS7, the NH4+-N metabolic pathway was deduced as NH4+-N → NH2OH → NO → N2O → N2, and the NO3--N/NO2--N metabolic pathway was deduced as NO3--N → NO2--N → NO → N2O → N2. The cold-resistant Rhizobium sp. WS7 has great application feasibility in cold sewage treatment.
Collapse
Affiliation(s)
- Bohui Wei
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao Luo
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wenkai Ma
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pengyi Lv
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
32
|
Zhang H, Shi Y, Ma B, Huang T, Zhang H, Niu L, Liu X, Liu H. Mix-cultured aerobic denitrifying bacteria augmented carbon and nitrogen removal for micro-polluted water: Metabolic activity, coexistence and interactions, and immobilized bacteria for reservoir raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156475. [PMID: 35660604 DOI: 10.1016/j.scitotenv.2022.156475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Yang M, Yin M, Zheng Y, Jiang J, Wang C, Liu S, Yan L. Performance and mechanism of tetracycline removal by the aerobic nitrate-reducing strain Pseudomonas sp. XS-18 with auto-aggregation. BIORESOURCE TECHNOLOGY 2022; 359:127442. [PMID: 35688313 DOI: 10.1016/j.biortech.2022.127442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The coexistence of multiple pollutants has become a distinctive feature of water pollution. However, there are a few strains that can remove nitrate and tetracycline (TC). Here, the efficiency of strain XS-18 in removing nitrate and TC was analyzed, and the mechanism of tolerance and removal of TC was investigated by infrared spectroscopy, three-dimensional fluorescence spectroscopy, and genome analysis. XS-18 could efficiently remove TC (0.40 mg·L-1·h-1) at pH 7.0-11.0 with auto-aggregation. TC was removed via extracellular polymeric substance (EPS) (55.90%) and cell surface (44.10%) adsorption. TC (10 mg/L) could stimulate XS-18 to secrete more polysaccharides and hydrophobic proteins to improve its auto-aggregation ability. The findings also confirmed that TC resistance genes were present. Furthermore, the bacterial flagellum, signal transduction of the chemotactic system and regulatory genes were shown to be related to the auto-aggregation of the strain. XS-18 has potential applications in the treatment of wastewater containing nitrate and TC.
Collapse
Affiliation(s)
- Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Caixu Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
34
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Liu H, Liu X, Niu L, Yang F, Yu J. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. BIORESOURCE TECHNOLOGY 2022; 356:127313. [PMID: 35577220 DOI: 10.1016/j.biortech.2022.127313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jimeng Yu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
35
|
An F, Feng X, Dang Y, Sun D. Enhancing nitrate removal efficiency of micro-sized zero-valent iron by chitosan gel balls encapsulating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153641. [PMID: 35131244 DOI: 10.1016/j.scitotenv.2022.153641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The activity of micro-sized zero-valent iron (MZVI) material for nitrate removal in neutral pH and low C/N ratios water needs to be improved. In this study, micro-sized zero-valent iron@chitosan (MZVI@CS) material was synthesized through embedding MZVI particles into chitosan (CS) gel by sol-gel method, and was used for deep removal of NO3--N in the absence of organic carbon sources and neutral pH. The NO3--N removal rate of MZVI@CS was 0.37 mg-N·L-1·d-1 (dosage of 1%, initial pH = 7, 25 °C, initial nitrate concentration = 15 mg-N·L-1), which was 11.33 times higher than that of MZVI. The apparent activation energy (Ea) of MZVI@CS with nitrate was 38.23 kJ·mol-1. MZVI@CS can remove nitrate effectively at a low concentration (15 mg-N·L-1). A stable denitration rate (0.37-2.28 mg-N·L-1·d-1) could be maintained under weak acidic, neutral and alkaline conditions (pH = 5-9). More than 80% of reduced nitrate was converted to N2, and only a small amount was converted to NH4+ or NO2-. The gel structure of MZVI@CS eliminated the agglomeration between MZVI particles while the forming of Fe-CS chelates reduced the formation of iron oxide and solved the problems of passivation, hence successfully strengthened the NO3--N removal efficiency of MZVI. Therefore MZVI@CS has great application potential in NO3--N deep removal of water bodies with neutral pH and low C/N ratios.
Collapse
Affiliation(s)
- Facai An
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Xianlu Feng
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Lee YY, Lee SY, Lee SD, Cho KS. Seasonal Dynamics of Bacterial Community Structure in Diesel Oil-Contaminated Soil Cultivated with Tall Fescue ( Festuca arundinacea). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084629. [PMID: 35457496 PMCID: PMC9025128 DOI: 10.3390/ijerph19084629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022]
Abstract
The objective of this study was to explore the seasonal characteristics of rhizoremediation and the bacterial community structure over the course of a year in soil contaminated with diesel oil. The soil was contaminated with diesel oil at a total petroleum hydrocarbon (TPH) concentration of 30,000 mg-TPH·kg-soil−1. Tall fescue seedlings were planted in the contaminated soil and rhizoremediation performance was monitored for 317 days. The TPH concentration gradually declined, reaching 75.6% after day 61. However, the TPH removability decreased by up to 30% after re-contamination in the fall and winter. The bacterial community structure exhibited distinct seasonal dynamics. Genus Pseudomonas significantly increased up to 55.7% in the winter, while the genera Immundisolibacter and Lysobacter, well-known petroleum hydrocarbon (PH)-degrading bacteria, were found to be positively linked to the TPH removal rate. Consequently, knowledge of this seasonal variation in rhizoremediation performance and the bacterial community structure is useful for the improvement of rhizoremediation in PH-contaminated environments.
Collapse
Affiliation(s)
| | | | | | - Kyung-Suk Cho
- Correspondence: ; Tel.: +82-2-3277-2393; Fax: +82-2-3277-3275
| |
Collapse
|
37
|
Nitrogen Removal Characteristics of a Cold-Tolerant Aerobic Denitrification Bacterium, Pseudomonas sp. 41. Catalysts 2022. [DOI: 10.3390/catal12040412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrogen pollution of surface water is the main cause of water eutrophication, and is considered a worldwide challenge in surface water treatment. Currently, the total nitrogen (TN) content in the effluent of wastewater treatment plants (WWTPs) is still high at low winter temperatures, mainly as a result of the incomplete removal of nitrate (NO3−-N). In this research, a novel aerobic denitrifier identified as Pseudomonas sp. 41 was isolated from municipal activated sludge; this strain could rapidly degrade a high concentration of NO3−-N at low temperature. Strain 41 completely converted 100 mg/L NO3−-N in 48 h at 15 °C, and the maximum removal rate reached 4.0 mg/L/h. The functional genes napA, nirS, norB and nosZ were successfully amplified, which provided a theoretical support for the aerobic denitrification capacity of strain 41. In particular, the results of denitrification experiments showed that strain 41 could perform aerobic denitrification under the catalysis of NAP. Nitrogen balance analysis revealed that strain 41 degraded NO3−-N mainly through assimilation (52.35%) and aerobic denitrification (44.02%), and combined with the gene amplification results, the nitrate metabolism pathway of strain 41 was proposed. Single-factor experiments confirmed that strain 41 possessed the best nitrogen removal performance under the conditions of sodium citrate as carbon source, C/N ratio 10, pH 8, temperature 15–30 °C and rotation speed 120 rpm. Meanwhile, the bioaugmentation test manifested that the immobilized strain 41 remarkably improved the denitrification efficiency and shortened the reaction time in the treatment of synthetic wastewater.
Collapse
|
38
|
Guo F, Xu F, Cai R, Li D, Xu Q, Yang X, Wu Z, Wang Y, He Q, Ao L, Vymazal J, Chen Y. Enhancement of denitrification in biofilters by immobilized biochar under low-temperature stress. BIORESOURCE TECHNOLOGY 2022; 347:126664. [PMID: 34990859 DOI: 10.1016/j.biortech.2021.126664] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Efficient removal of nitrate under low temperature is challenging because of the reduction of the microbial activity. This study successfully explored the promotion on the performance of denitrification utilizing the immobilized biochar in biofilters under low temperature (6 ± 2 °C). The results showed that the immobilized biochar increased the denitrification rate by 76.8% and decreased the nitrous oxide emissions by 82.5%. Mechanistic studies revealed that the immobilized biochar increased the activities of the denitrifying enzymes and three enzymes involved in glycolysis. Furthermore, the immobilized biochar elevated the activity of the electron transport system by 31.8%. Finally, structural equation model explained that the increase of nitrate reductase activity was a crucial factor to enhance the total nitrogen removal efficiency in biofilters with immobilized biochar. Overall, the use of immobilized biochar can be a novel strategy to enhance nitrogen removal and reduce greenhouse gas emissions in biofilters under low temperature.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Fei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Ran Cai
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, China; Sichuan Shuihui Ecological Environment Treatment Co., Ltd., Neijiang 641100, Sichuan Province, China
| | - Dexiang Li
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, China; Sichuan Shuihui Ecological Environment Treatment Co., Ltd., Neijiang 641100, Sichuan Province, China
| | - Qinyuan Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiangyu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhengsong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Yubo Wang
- Dapartment of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Lianggen Ao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kymýcká 129, 16521 Praha 6, Czech Republic
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environmental and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
39
|
Zhang S, Ali A, Su J, Huang T, Li M. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes. WATER RESEARCH 2022; 209:117899. [PMID: 34861436 DOI: 10.1016/j.watres.2021.117899] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The acceleration of nitrate removal in wastewater treatment by redox mediator (RM) is greatly weakened due to wash-out loss and mass transfer resistance (low hydrophilia) of RM during operation. In this study, an RM reactor with the fixed 1-Amino-4-hydroxyanthraquinone (AHAQ) and three core strains was established and achieved high nitrate removal efficiency (NRE) under low carbon to nitrogen ratio (C/N) and short hydraulic retention time (HRT) conditions, with the maximum efficiency of 99.41% (14.00 mg L-1 h-1) and average improvement by 11.97% (1.41 mg L-1 h-1). This acceleration led to more proportion of carbon consumption by denitrifying bacteria and improved their competitiveness against others in carbon deficiency, although resulting in nitrite accumulation (NIA) in lower C/N. The RM reactor induced the decorrelation tendencies between NRE and active extracellular organics and more sensitive denitrification toward C/N, which favored the stability of effluent organics and biological activities. The increase of oxidative phosphorylation and ubiquinone and other terpenoid-quinone biosynthesis pathway suggested electron transport activity was potentially enhanced by AHAQ. Although the lower C/N deteriorated the reactor NRE, the abundances of amino acids-, fatty acids- and carbohydrate-related metabolisms (45% of the total up-regulating pathways) were enhanced to utilize carbon source effectively. Meanwhile, the enhanced phosphotransferase system facilitated the balance between carbon and nitrogen metabolism. These indicated the changes in biological strategy to grow better and resist the adverse condition. This study highlighted the superior NRE by AHAQ in an immobilized reactor with core strains and more importantly, extended the RM application in wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
40
|
Ren Z, Fu X, Zhang G, Li Y, Qin Y, Wang P, Liu X, Lv L. Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113859. [PMID: 34597949 DOI: 10.1016/j.jenvman.2021.113859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
In order to strengthen the treatment of low-concentration ammonia nitrogen wastewater at low temperature, iron-loaded activated carbon (Fe-AC) with ultrasonic impregnation method was used as the filter material of biofilter process. The performance and mechanism of ammonia nitrogen removal from simulated secondary wastewater by iron-loaded biological activated carbon filter (Fe-BACF) were studied at 10 °C. The characterization results showed that iron was loaded on the surface of AC in the form of Fe2O3, and the specific surface area, total pore volume, pore size and alkaline functional group content of Fe-AC were obviously increased. After the formation of biofilm on the surface of filter media, the average removal rate of ammonia nitrogen by Fe-BACF (97.9%) was significantly higher than that of conventional BACF (87.8%). The improved surface properties increased the number and metabolic activity of microorganisms, and promoted the secretion of EPS on the surface of Fe-BAC. The results of high-throughput sequencing showed that the existence of Fe optimized the bacterial community structure on the surface of Fe-BAC, with the increase of the abundances of psychrophilic bacteria and ammonia nitrogen removal bacteria. The mechanism of enhanced ammonia nitrogen removal by Fe-BACF was the joint action of many factors, among which the main causal relationship was that modification of iron could optimize the number and category of microorganisms on Fe-BAC surface by improving the surface properties, thus improving the biological nitrogen removal ability. Results of this study provided a practical way for the treatment of low ammonia nitrogen wastewater in cold regions.
Collapse
Affiliation(s)
- Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xiaolin Fu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| |
Collapse
|
41
|
Yan L, Wang C, Jiang J, Liu S, Zheng Y, Yang M, Zhang Y. Nitrate removal by alkali-resistant Pseudomonas sp. XS-18 under aerobic conditions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 344:126175. [PMID: 34678448 DOI: 10.1016/j.biortech.2021.126175] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
To improve poor nitrate removal by microorganisms under strong alkaline conditions, a new type of aerobic nitrification-reducing bacteria was isolated in this study. Using nitrogen balance and genome information, the capacity of Pseudomonas XS-18 to remove nitrate and the mechanism of alkali tolerance were analyzed. At pH 11.0, XS-18 could remove 12.17 mg N/(L·h) nitrate. At C/N ratios of 13.0 and 25 °C, nitrite and ammonia nitrogen were barely enriched. XS-18 could reduce nitrate through dissimilation and assimilation, and 21.74% and 77.39% of nitrate was converted into cellular components and organic nitrogen, respectively. Meanwhile, functional genes (nirBD, nasAB, gdhA, glnA, and gltBD) associated with nitrogen metabolism were determined. In addition, Na+/H+ antiporters (MnhACDEFG, PhaACDEFG, NhaCD and TrkAH) and a cell surface protein (SlpA) from the XS-18 genome, as well as compatible solutes that help stabilize intracellular pH, were also characterized. XS-18 possessed significant potential in alkaline wastewater treatment.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China.
| | - Caixu Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Ying Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China.
| |
Collapse
|
42
|
Shi M, Liu C, Zhao Y, Wei Z, Zhao M, Jia L, He P. Insight into the effects of regulating denitrification on composting: Strategies to simultaneously reduce environmental pollution risk and promote aromatic humic substance formation. BIORESOURCE TECHNOLOGY 2021; 342:125901. [PMID: 34555754 DOI: 10.1016/j.biortech.2021.125901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Denitrification during composting is a hidden danger that causes environmental pollution risk and aromatic humic substance damage, which needs to be better regulate urgently. In this study, two denitrification regulation methods, moisture and biochar amendment, were conducted during chicken manure composting. Denitrification performance data showed two regulation methods obviously reduced NO3--N, NO2--N and N2 contents. Humic substance increased by 25.3 % and 29.1 % under two regulations. Microbiological analysis indicated that two regulation methods could decreasing denitrifying functional microbes with aroma degradation capability. Subsequently, denitrification gene narG, nirS, nosZ were significantly inhibited (p < 0.05) and the aromatic degradation metabolism pathways were down-regulated. Correlation analysis further revealed the important influence of interspecific interactions and non-biological characteristics on functional microbes. These results provided important scientific basis to denitrification regulation in the practice of composting, which achieved the purpose of simultaneously controlling environmental pollution risk and conducing end-product formation.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin 150056, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
43
|
Jiang L, Zhang Y, Shen Q, Mao Y, Zhang Q, Ji F. The metabolic patterns of the complete nitrates removal in the biofilm denitrification systems supported by polymer and water-soluble carbon sources as the electron donors. BIORESOURCE TECHNOLOGY 2021; 342:126002. [PMID: 34852445 DOI: 10.1016/j.biortech.2021.126002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, two denitrification bio-filters adopted polycaprolactone (PCL) and sodium acetate (NaAc) as polymer and water-soluble carbon sources respectively. With the increasing influent nitrate concentrations, NaAc bio-filter always had shorter HRT to achieve complete nitrate removal. Furthermore, the optimal volumetric denitrification rate in NaAc bio-filter was 0.728 g N/(L·d), which was higher than 0.561 g N/(L·d) in PCL bio-filter. For nitrates removal, the costs of bio-filters supported by NaAc and PCL were 24.93 and 120.25 CNY/kg N respectively. Although Proteobacteria in PCL bio-filter was abundant with 83.98%, NaAc bio-filter had better denitrification performance, due to the appropriate ratio of nitrate removal microorganisms and organic matters degradation organisms. The total abundance value of the denitrification genera is NaAc (16.06%) < PCL (41.19%). However, PCL bio-filter had poor denitrification performance, due to the lower adequacy of PCL depolymerization enzymes and the low expression of the key genes for denitrification.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yifang Zhang
- North China Municipal Engineering Design and Research Institute, Tianjin 300381, PR China
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanxiang Mao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
44
|
Zhao L, Bao M, Zhao D, Li F. Correlation between polyhydroxyalkanoates and extracellular polymeric substances in the activated sludge biosystems with different carbon to nitrogen ratio. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Qi H, Zhao Y, Wang X, Wei Z, Zhang X, Wu J, Xie X, Kang K, Yang H, Shi M, Su X, Zhang C, Wu Z. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting. BIORESOURCE TECHNOLOGY 2021; 330:124960. [PMID: 33744737 DOI: 10.1016/j.biortech.2021.124960] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
This study revealed core bacterial metabolic mechanisms involved in carbon (C) and nitrogen (N) in composting with adding MnO2. Two tests (control group (CK), adding MnO2 (M)) were performed. The results indicated that the MnO2 accelerated the transformation of carbon and nitrogen in composting. Core bacteria involved in the C and N conversion were identified, the complementarity effects of core bacteria were stimulated in M composting. Additionally, the influence of core bacteria on the C and N conversion could be divided into two pathways in M composting. One was that core bacteria promoted C and N conversion by accelerating the flow of amino acids into the tricarboxylic acid cycle. Another was that the complementarity effects of core bacteria increased the overall bacterial diversity, which contributed to C and N conversion. These findings showed that the addition of MnO2 to composting was a promising application to treat agricultural organic waste.
Collapse
Affiliation(s)
- Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Hongyan Yang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinya Su
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanhai Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|