1
|
Wu J, Zhuang X, Zhang W, Wang Y. Collaborative or competitive interactions between bacteria and methanogens on the biocorrosion of Q235A steel. ENVIRONMENTAL RESEARCH 2025; 268:120826. [PMID: 39798659 DOI: 10.1016/j.envres.2025.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Bio-corrosion of Fe (0) metals in the actual environments results from the combined action of multiple microbes rather than the single action of one type of microbe. Nevertheless, the interspecies interactions between the corrosive microorganism and co-existing microbes, as well as their effects on the bio-corrosion of Fe (0) metals, remain unclear, especially for the interspecies interactions between methanogens and co-existed bacteria in microbiota in the absence of sulfate. Herein, the interspecies interactions between methanogens and co-existed bacteria in three different kinds of methanogenic microbiota (Methanothrix, Methanospirillum, or Methanobacterium dominant) and their effects on methanogens-influenced corrosion of Q235A steel were investigated. The initial results showed that competitive interactions existed between Methanothrix/Methanospirllum and fermentative acetogenic bacteria (Clostridiaceae_1, Family_XI, Peptostreptococcaceae, Pirllulaceae, and Tannerellaceae), while collaborative interactions existed between Methanobacterium and acetate-oxidizing bacteria (Synergistaceae and Spirochaetaceae). Further analysis demonstrated that the competitive interactions obstructed the attachment of Methanothrix/Methanospirllum and promoted the formation of dense corrosion products layer on the steel surface, thereby inhibiting Methanothrix/Methanospirllum-influenced corrosion. Contrarily, the collaborative interactions promoted the attachment of Methanobacterium and the formation of porous and loose corrosion products layer on the steel surface, thereby promoting Methanobacterium-influenced corrosion. Ultimately, the corrosion rate of steel induced by the Methanobacterium dominant microbiota (0.216 ± 0.042 mm/y) was much higher than by the Methanothrix/Methanospirllum dominant microbiota (0.009-0.046 mm/y). This work provided new insights into the understanding of the effects of co-existed bacteria on the corrosion of Fe (0) metals induced by methanogens in microbiota.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Xiao Zhuang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Weidong Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Hu J, Zeng Y, Hu A, Wang X. Exploring the Molecular Composition of Dissolved Organic Matter and Its Connection to Microbial Communities in Industrial-Scale Anaerobic Digestion of Chicken Manure. TOXICS 2025; 13:49. [PMID: 39853047 PMCID: PMC11768681 DOI: 10.3390/toxics13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing. The results revealed that the DOM contained abundant free amino acids and protein-like compounds but fewer humic-like substances, identified as lignin/carboxylate-rich alicyclic molecules, lipids, and proteins/aliphatic compounds featuring enriched S5-6O1 and N1-5OX fragments. In addition, the 16S rRNA results revealed microorganisms that were centered on metabolic function in the production of volatile fatty acids, H2S/CH4, and the hydrolysis reaction in the AD process. Free amino acids and protein-like compounds were mainly associated with hydrolysis reactions and H2S production functional microorganisms. Lignin/carboxylate-rich alicyclic molecules were linked to microorganisms possessing hydrolysis reactions and, indirectly, CH4 production. This study elucidates the linkage with the microbial and molecular composition of DOM, establishing a theoretical foundation for employing AD in the disposal of CM.
Collapse
Affiliation(s)
- Juan Hu
- Collaborative Innovation Center for Emissions Trading System Co-Constructed by the Province and Ministry, Wuhan 430205, China;
- School of Discipline Inspection and Supervision, Huanggang Normal University, Huanggang 438000, China
| | - Yurui Zeng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (Y.Z.); (A.H.)
| | - Aibin Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (Y.Z.); (A.H.)
| | - Xiaofeng Wang
- School of Computer Science and Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
3
|
Liang Y, Chen Y, Chen C, Zhou X, Jia W, Wu Y, Wu Q, Guo L, Wang H, Guo WQ. Sequential bio-treatment of ammonia-rich wastewater from Chinese medicine residue utilization: Regulation of dissolved oxygen. BIORESOURCE TECHNOLOGY 2024; 406:131041. [PMID: 38925404 DOI: 10.1016/j.biortech.2024.131041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
To effectively treat actual ammonia-rich Chinese medicine residue (CMR) resource utilization wastewater, we optimized an anaerobic-microaerobic two-stage expanded granular sludge bed (EGSB) and moving bed sequencing batch reactor (MBSBR) combined process. By controlling dissolved oxygen (DO) levels, impressive removal efficiencies were achieved. Microaeration, contrasting with anaerobic conditions, bolstered dehydrogenase activity, enhanced electron transfer, and enriched the functional microorganism community. The increased relative abundance of Synergistetes and Proteobacteria facilitated hydrolytic acidification and fostered nitrogen and phosphorus removal. Furthermore, we examined the impact of DO concentration in MBSBR on pollutant removal and microbial metabolic activity, pinpointing 2.5 mg/L as the optimal DO concentration for superior removal performance and energy conservation.
Collapse
Affiliation(s)
- Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yihong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianjiao Zhou
- Heilongjiang Province Daqing Ecological and Environment Monitoring Center, Daqing 163000, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Wang Y, He C, Xu C, Yang J, Feng J, Wang W. Influence of oxygen partial pressure on homoacetogenesis and promotion of acetic acid accumulation through low pH regulation under microaerobic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42766-42778. [PMID: 38878240 DOI: 10.1007/s11356-024-33952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Homoacetogenesis is an important pathway for bio-utilization of CO2; however, oxygen is a key environmental influencing factor. This study explored the impact of different initial oxygen partial pressures (OPPs) on homoacetogenesis, while implementing low pH regulation enhanced acetic acid (HAc) accumulation under microaerobic conditions. Results indicated that cumulative HAc production increased by 18.2% in 5% OPP group, whereas decreases of 31.3% and 56.0% were observed in 10% and 20% OPP groups, respectively, compared to the control group. However, hydrogenotrophic methanogens adapted to microaerobic environment and competed with homoacetogens for CO2, thus limiting homoacetogenesis. Controlling influent pH 5.0 per cycle increased cumulative HAc production by 18.3% and 18.2% in 5% and 10% OPP groups, respectively, compared with the control group. Consequently, regulating low pH effectively inhibited methanogenic activity under microaerobic conditions, thus increasing HAc production. This study was expected to expand the practical application of homoacetogenesis in bio-utilization of CO2.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Changwen Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jing Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jingwei Feng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
| |
Collapse
|
5
|
Zeng Y, Liu H, Chen W, Li H, Dong H, Wu H, Xu H, Sun D, Liu X, Li P, Qiu B, Dang Y. Riboflavin-loaded carbon cloth aids the anaerobic digestion of cow dung by promoting direct interspecies electron transfer. ENVIRONMENTAL RESEARCH 2024; 241:117660. [PMID: 37979928 DOI: 10.1016/j.envres.2023.117660] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Cow dung generates globally due to increased beef and milk consumption, but its treatment efficiency remains low. Previous studies have shown that riboflavin-loaded conductive materials can improve anaerobic digestion through enhance direct interspecies electron transfer (DIET). However, its effect on the practical anaerobic digestion of cow dung remained unclear. In this study, carbon cloth loaded with riboflavin (carbon cloth-riboflavin) was added into an anaerobic digester treating cow dung. The carbon cloth-riboflavin reactor showed a better performance than other two reactors. The metagenomic analysis revealed that Methanothrix on the surface of the carbon cloth predominantly utilized the CO2 reduction for methane production, further enhanced after riboflavin addition, while Methanothrix in bulk sludge were using the acetate decarboxylation pathway. Furthermore, the carbon cloth-riboflavin enriched various major methanogenic pathways and activated a large number of enzymes associated with DIET. Riboflavin's presence altered the microbial communities and the abundance of functional genes relate to DIET, ultimately leading to a better performance of anaerobic digestion for cow dung.
Collapse
Affiliation(s)
- Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Huang J, Gao Y, Chang Y, Peng J, Yu Y, Wang B. Machine Learning in Bioelectrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306583. [PMID: 37946709 PMCID: PMC10787072 DOI: 10.1002/advs.202306583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 11/12/2023]
Abstract
At present, the global energy crisis and environmental pollution coexist, and the demand for sustainable clean energy has been highly concerned. Bioelectrocatalysis that combines the benefits of biocatalysis and electrocatalysis produces high-value chemicals, clean biofuel, and biodegradable new materials. It has been applied in biosensors, biofuel cells, and bioelectrosynthesis. However, there are certain flaws in the application process of bioelectrocatalysis, such as low accuracy/efficiency, poor stability, and limited experimental conditions. These issues can possibly be solved using machine learning (ML) in recent reports although the combination of them is still not mature. To summarize the progress of ML in bioelectrocatalysis, this paper first introduces the modeling process of ML, then focuses on the reports of ML in bioelectrocatalysis, and ultimately makes a summary and outlook about current issues and future directions. It is believed that there is plenty of scope for this interdisciplinary research direction.
Collapse
Affiliation(s)
- Jiamin Huang
- Department of Environmental Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| | - Yang Gao
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| | - Yanhong Chang
- Department of Environmental Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Jiajie Peng
- School of Computer ScienceNorthwestern Polytechnical UniversityXi'an710072China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211816China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| |
Collapse
|
7
|
Li H, Wang K, Xu J, Wu H, Ma Y, Zou R, Song HL. Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system. CHEMOSPHERE 2023; 338:139461. [PMID: 37437616 DOI: 10.1016/j.chemosphere.2023.139461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/16/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Manganese ore substrate up-flow microbial fuel cell constructed wetland (UCW-MFC(Mn)) as an innovative wastewater treatment technology for purifying antibiotics and electricity generation with few antibiotic resistance genes (ARGs) generation has attracted attention. However, antibiotic purifying effects should be further enhanced. In this study, a biofilm electrode reactor (BER) that needs direct current driving was powered by a Mn ore anode (UCW-MFC(Mn)) to form a coupled system without requiring direct-current source. Removal efficiencies of sulfadiazine (SDZ), ciprofloxacin (CIP) and the corresponding ARGs in the coupled system were compared with composite (BER was powered by direct-current source) and anaerobic systems (both of BER and UCW-MFC were in open circuit mode). The result showed that higher antibiotic removal efficiency (94% for SDZ and 99.1% for CIP) in the coupled system was achieved than the anaerobic system (88.5% for SDZ and 98.2% for CIP). Moreover, electrical stimulation reduced antibiotic selective pressure and horizontal gene transfer potential in BER, and UCW-MFC further reduced ARG abundances by strengthening the electro-adsorption of ARG hosts determined by Network analysis. Bacterial community diversity continuously decreased in BER while it increased in UCW-MFC, indicating that BER mitigated the toxicity of antibiotic. Degree of modularity, some functional bacteria (antibiotic degrading bacteria, fermentative bacteria and EAB), and P450 enzyme related to antibiotic and xenobiotics biodegradation genes were enriched in electric field existing UCW-MFC, accounting for the higher degradation efficiency. In conclusion, this study provided an effective strategy for removing antibiotics and ARGs in wastewater by operating a BER-UCW-MFC coupled system.
Collapse
Affiliation(s)
- Hua Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Kun Wang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Jiale Xu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Huifang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - YuanJiXiang Ma
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Rusen Zou
- Department of Sustain, Technical University of Denmark, Kgs Lyngby, 2800, Denmark.
| | - Hai-Liang Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
8
|
Fan M, Du L, Li H, Yuan Q, Wu X, Chen Y, Liu J. Bioelectrochemical stability improvement by Ce-N modified carbon-based cathode in high-salt stress and mechanism research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118351. [PMID: 37320923 DOI: 10.1016/j.jenvman.2023.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Although microbial fuel cells (MFCs) have potential for high-salt wastewater treatment, their application is limited by poor salt tolerance, deactivation and unstable catalytic performance. This study designed Ce-C, N-C, and Ce-N modified activated carbon (Ce-N-C) based on the catalytic mechanism and salt tolerance performance of Ce and N elements to address these limitations. With activated carbon (AC) as the control, this study analyzed the stability of the four cathodes under different salinity environments using norfloxacin (NOR) as a probe to assess the effect of cathodes and salinity on MFC degradation performance. After three months, comparing with other three cathodes, the Ce-N-C cathode demonstrated superior and stable electrochemical and power generation performance. In particular, the advantages of Ce-N-C in high-salt (600 mM NaCl) environment is more significant than no-salt or low-salt. The potential of Ce-N-C-End at current density of 0 was 14.0% higher than AC-End, and the power density of the MFC with Ce-N-C cathode was 105.7 mW/m2, which was 3.1 times higher than AC. Also, the stability of NOR removal under the function of Ce-N-C improved with the increase of NaCl concentration or operation time. The CeO2(111) crystal form, N-Ce-O bond and pyridine N might be the key factors in improving the catalytic performance and salt tolerance of the Ce-N modified carbon-based cathode using XPS and XRD analysis.
Collapse
Affiliation(s)
- Mengjie Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Lizhi Du
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Hui Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Qinglu Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Xiayuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
9
|
Pan W, Ouyang H, Tan X, Yan S, Zhang R, Deng R, Gu L, He Q. Effects of biochar addition towards the treatment of blackwater in anaerobic dynamic membrane bioreactor (AnDMBR): Comparison among room temperature, mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2023; 374:128776. [PMID: 36822557 DOI: 10.1016/j.biortech.2023.128776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Effects of biochar addition on the performance of anaerobic dynamic membrane bioreactor (AnDMBR) under different temperatures for blackwater treatment was investigated. When the organic load ratios (OLR) was 1.0 g COD/L·d, the specific methane yield for the three biochar-amended reactors were 125.7, 148.0 and 182.3 mLCH4/g CODremoved, respectively. Compare to those digesters without biochar participation, the methane production in the thermophilic reactor with biochar increased by 12% while the other two digesters increased by 6-10%. An analysis of membrane filtration resistance showed a reduction in total resistance (Rt) of 6.2 × 1011-7.3 × 1011 m-1 when biochar was added to the three reactors. The thermophilic reactors with biochar increased the relative abundance of Methanothermobacter and promoted gene expression of metabolic pathways related to hydrolysis, acid production and methane production. Overall, biochar showed great potential as an inexpensive conductive material to increase methane production with reduced membrane fouling in AnDMBR systems.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China.
| | - Honglin Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Shanji Yan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Ruihao Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
10
|
Liao Y, Wan Z, Cao X, Jiang L, Feng L, Zheng H, Ji F. The importance of rest phase and pollutant removal mechanism of tidal flow constructed wetlands (TFCW) in rural grey water treatment. CHEMOSPHERE 2023; 311:137010. [PMID: 36326517 DOI: 10.1016/j.chemosphere.2022.137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
This paper explored the effects of the rest phase of tidal flow constructed wetlands (TFCW) on pollutant removal and microbial communities, and further analyzed the mechanism of TFCW removal of pollutants from grey water. The results showed that the removal rate of organic matter was 69.91 ± 2.44% in the control group (NR-TFCW) without the rest phase, 94.95 ± 1.17% in the experimental group (TFCW), and 96.95 ± 2.43% in the control group (P-TFCW) with the ventilation pipe enhanced rest phase. Limiting and enhancing the oxygen supply in the emptying stage of TFCW will enhance the overlap rate of microorganisms in the upper, middle and lower layers of the reactor. Enhancing the rest phase of TFCW leaded to better aerobic removal of organic matter in the microbial community, while limiting the rest phase of TFCW results in the opposite. In addition, the species overlap rate of the top, middle and bottom layers of NR-TFCW (69.98%) and P-TFCW (54.29%) was higher than that of TFCW (11.34%). The removal of organic matter by TFCW mainly relied on the adsorption of biochar in the flood phase, and the microorganisms aerobic degraded the organic matter adsorbed on the biochar in the rest phase. And thus form a continuous cycle of adsorption and biological regeneration. The microbial community in TFCW did not have the ability to nitrify, but had the ability to remove phosphorus. Ammonia nitrogen in the influent was adsorbed by biochar or converted into cytoplasm. While the phosphorus in the influent was adsorbed by the biochar, it was also being biologically removed.
Collapse
Affiliation(s)
- Yong Liao
- Dongfang Electric Machinery Co., Ltd., Deyang, 618000, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhigang Wan
- Dongfang Electric Machinery Co., Ltd., Deyang, 618000, China
| | - Xuekang Cao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; China Municipal Engineering Southwest Design and Research Institute Co., Ltd., Chengdu, 266000, China
| | - Lei Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lihua Feng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hao Zheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
11
|
Noori MT, Min B. Fundamentals and recent progress in bioelectrochemical system-assisted biohythane production. BIORESOURCE TECHNOLOGY 2022; 361:127641. [PMID: 35863600 DOI: 10.1016/j.biortech.2022.127641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Biohythane, a balanced mixture of 10%-30% v/v of hydrogen and 70%-90% v/v of methane, could be the backbone of an all-purpose future energy supply. Recently, bioelectrochemical systems (BES) became a new sensation among environmental biotechnology processes with the potential to sustainably generate biohythane. Therefore, to unleash its full potential for scaling up, researchers are consistently improving microbial metabolic pathways, novel reactors, and electrode designs. This review presents a detailed analysis of recently discovered fundamental mechanisms and science and engineering intervention of different strategies to improve the biohythane composition and production rate from BES. However, several milestones are to be achieved, for instance, improving electrode kinetics using efficient catalysts, engineered microbial communities, and improved reactor configurations, for commercializing this sustainable technology. Thus, a future perspective section is included to recommend novel research lines, mainly focusing on the microbial communities and the efficient electrocatalysts, to enhance reactor performance.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, Republic of Korea.
| |
Collapse
|
12
|
Tian Y, Li C, Liang D, Xie T, He W, Li D, Feng Y. Fungus-sourced filament-array anode facilitates Geobacter enrichment and promotes anodic bio-capacitance improvement for efficient power generation in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155926. [PMID: 35588840 DOI: 10.1016/j.scitotenv.2022.155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFC) are emerging as new generation eco-friendly technology for the superiorities of energy harvest and simultaneous wastewater treatment. However, the power generation performance was strongly restricted by the material/biofilm electron transfer rate. In this research, the fungus-sourced electrode with filament-array structure was firstly proposed and prepared by one-step carbonization method. After 2 h pyrolysis, the functional groups containing N and O elements highly remained in the as-prepared material, which was beneficial to the electron transfer for the current generation. The lowest electron transfer resistance was obtained at 2.2 Ω, which showed a great reduction that compared with graphite sheet anode. With filament-array structure, the lowest mass diffusion resistance was obtained at 26.9 Ω for anodic oxidation reaction, which also supported the highest current generation performance. In addition, the relative abundance of typical electrochemical bacterium Geobacter was highly improved to 45.5% with an extraordinary electroactive biofilm loading of about 1203 ± 256 μg cm-2. More importantly, the high biocatalytic activity biofilm supported a remarkably observed bio-capacitance of about 1.14 F in 3DFfv anode, which exhibited the highest power density in 3.5 ± 0.2 W m-2. In addition, the fungus-sourced material was one kind of economical and readily available material. Overall, this work provided one efficient strategy for electrode preparation and higher power generation in MFCs, which would reduce the capital cost and improve the efficiency in further applications of MFCs.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - DanDan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
13
|
Li W, Liu Y, Wu B, Gu L, Deng R. Upgrade the high-load anaerobic digestion and relieve acid stress through the strategy of side-stream micro-aeration: biochemical performances, microbial response and intrinsic mechanisms. WATER RESEARCH 2022; 221:118850. [PMID: 35949076 DOI: 10.1016/j.watres.2022.118850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In high-load anaerobic digestion such as in kitchen waste, side-stream micro-aeration (SMA) shows excellent operational performance to direct micro-aeration (DMA). It immediately restores the acidification to stability. Methanogenic performance remained stable when organic load ratios (OLR) was further increased to 5.5 g VS/L. Enhanced enzyme activity, microbial aggregation, and proliferation of bacteria and archaea were observed in SMA. The results indicates that SMA enriched Methanosaeta (relative abundance exceeded 93%) and induced the change of the main methanogenic pathway to acetoclastic methanogenesis. Mechanisms was further explored by using metagenomic analysis, and the results show SMA avoids mass formation of ROS (reactive oxygen species) by cycling the aerated slurry, and retains benefits of trace O2 on material and energic metabolism, which poses great application potentials and deserves further investigation.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| |
Collapse
|
14
|
Qi X, Jia X, Wang Y, Xu P, Li M, Xi B, Zhao Y, Zhu Y, Meng F, Ye M. Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis. BIORESOURCE TECHNOLOGY 2022; 358:127385. [PMID: 35636677 DOI: 10.1016/j.biortech.2022.127385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The rapid startup of carbon dioxide reduction-methanogenic microbial electrosynthesis is crucial for its industrial application, and the development of cathode biofilm is the key to its industrialization. Based on the new discovery that biofilm formed by placing graphite felt in an anaerobic reactor was electroactive, with strong direct electron transfer and methanogenesis ability (24.52 mL/L/d), a new startup method was developed. The startup time was shortened by at least 20 days and charge transfer resistance was reduced by 4.45-10.78 times than common startup methods (inoculating cathode effluent or granular sludge into the cathode chamber). The new method enriched electroactive bacteria. Methanobacterium and Methanosaeta accounted for 62.04% and 34.96%, respectively. The common methods inoculating cathode effluent or granular sludge enriched hydrogenotrophic microorganisms (>95%) or Methanosaeta (54.10%) due to the local environments of cathode. This new rapid and easy startup method may support the scale-up of microbial electrosynthesis.
Collapse
Affiliation(s)
- Xuejiao Qi
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pei Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Zhao
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yusen Zhu
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Jiang X, Xie Y, Liu M, Bin S, Liu Y, Huan C, Ji G, Wang X, Yan Z, Lyu Q. Study on anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: Methane production, microbial community and three-dimension fluorescence excitation-emission matrix analysis. BIORESOURCE TECHNOLOGY 2022; 347:126748. [PMID: 35065225 DOI: 10.1016/j.biortech.2022.126748] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Constantly increased sewage sludge (SS) and fruit and vegetable wastes (FVW) are becoming the major organic solid wastes in human society. Thus, anaerobic digestion is employed as a low carbon energy strategy to reduce their environmental pollution risk. Anaerobic co-digestion system was developed based on the carbon to nitrogen ratio strategy. Results showed that the daily biogas production was higher in co-digester, and the volumetric biogas production rate (VBPR) significantly enhanced for 1.3 ∼ 3 folds, and the highest VBPR was 2.04 L/L • day with optimal OLR of 2.083 Kg L-1 d-1. Analytic results indicated that co-digestion could improve the biodegradable of feedstocks, which transforming to more VFAs and biogas. Compared with mono SS digester, mixed substrates relieved ammonia nitrogen inhibition and enhanced the hydrolytic acidification and methanogenesis. Meanwhile, the excessive humification of organics was suppressed. This study supported the concepts of improving carbon recovery from SS and FVW.
Collapse
Affiliation(s)
- Xinru Jiang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Yandong Xie
- College of Life Science, Guangxi Normal University, Guilin 541006, PR China.
| | - Minggang Liu
- Sichuan environmental protection industry group company, Chengdu 610106, PR China.
| | - Shiyu Bin
- College of Life Science, Guangxi Normal University, Guilin 541006, PR China.
| | - Yang Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Chenchen Huan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Gaosheng Ji
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Xinhui Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Zhiying Yan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Qingyang Lyu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
16
|
Wang X, Lyu T, Dong R, Wu S. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113914. [PMID: 34628280 DOI: 10.1016/j.jenvman.2021.113914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671-1479 μmol gHA-1) and thermophilic (774-1506 μmol gHA-1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.
Collapse
Affiliation(s)
- Xiqing Wang
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Tao Lyu
- Cranfield Water Science Institute, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| |
Collapse
|
17
|
Xie J, Zou X, Chang Y, Chen C, Ma J, Liu H, Cui MH, Zhang TC. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community. BIORESOURCE TECHNOLOGY 2021; 342:125959. [PMID: 34852439 DOI: 10.1016/j.biortech.2021.125959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 μm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 μm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 μm cathode were stimulated.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ji Ma
- Jiangsu Sujing Group Co., Ltd, Suzhou 215122, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept, University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| |
Collapse
|
18
|
Ayol A, Peixoto L, Keskin T, Abubackar HN. Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111683. [PMID: 34770196 PMCID: PMC8583215 DOI: 10.3390/ijerph182111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Microbial C1 gas conversion technologies have developed into a potentially promising technology for converting waste gases (CO2, CO) into chemicals, fuels, and other materials. However, the mass transfer constraint of these poorly soluble substrates to microorganisms is an important challenge to maximize the efficiencies of the processes. These technologies have attracted significant scientific interest in recent years, and many reactor designs have been explored. Syngas fermentation and hydrogenotrophic methanation use molecular hydrogen as an electron donor. Furthermore, the sequestration of CO2 and the generation of valuable chemicals through the application of a biocathode in bioelectrochemical cells have been evaluated for their great potential to contribute to sustainability. Through a process termed microbial chain elongation, the product portfolio from C1 gas conversion may be expanded further by carefully driving microorganisms to perform acetogenesis, solventogenesis, and reverse β-oxidation. The purpose of this review is to provide an overview of the various kinds of bioreactors that are employed in these microbial C1 conversion processes.
Collapse
Affiliation(s)
- Azize Ayol
- Department of Environmental Engineering, Dokuz Eylul University, Izmir 35390, Turkey;
| | - Luciana Peixoto
- Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal;
| | - Tugba Keskin
- Department of Environmental Protection Technologies, Izmir Democracy University, Izmir 35140, Turkey;
| | - Haris Nalakath Abubackar
- Chemical Engineering Laboratory, BIOENGIN Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15008 A Coruña, Spain
- Correspondence:
| |
Collapse
|
19
|
Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions. Processes (Basel) 2021. [DOI: 10.3390/pr9081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent in surface and ground waters as well as in wastewater or, at least, their concentration does not exceed permissible levels. However, no selective ion electrode, which would enable continuous measurement of nitrite ion concentration in wastewater by bioelectrochemical sensor, is available. Microbial fuel cell (MFC)-based biosensor offers a sustainable low-cost alternative to the monitoring by periodic sampling for laboratory testing. It has been determined, that at low (0.01–0.1 mg·L−1) and moderate (1.0–10 mg·L−1) concentration of nitrite ions in anolyte-model wastewater, the voltage drop in MFC linearly depends on the logarithm of nitrite ion concentration of proving the potential of the application of MFC-based biosensor for the quantitative monitoring of nitrite ion concentration in wastewater and other surface water. Higher concentrations (100–1000 mg·L−1) of nitrite ions in anolyte-model wastewater could not be accurately quantified due to a significant drop in MFC voltage. In this case MFC can potentially serve as a bioelectrochemical early warning device for extremely high nitrite pollution.
Collapse
|