1
|
Cai J, Wu X, Yang J, Ma Y, Sun B, Wu F. Does higher ratio of wheat straw addition decrease PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176533. [PMID: 39368507 DOI: 10.1016/j.scitotenv.2024.176533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
There are considerable studies focusing on impacts of straw returning on PAHs degradation and bioavailability in PAHs-contaminated upland soils, while similar research in paddy soils is limited. Incubation experiments and pot trials were conducted to study effects of straw returning on PAHs degradation in paddy soils and PAHs accumulation in rice, respectively. There are threshold effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils. The inflection point of PAHs degrading was recorded under 0.8 % wheat straw treatment (conventional (CS) and pretreated wheat straw (PS)), which increased PAHs degradation by 18.13-32.36 %. The lowest PAHs concentrations in rice were recorded under 1 % straw (CS and PS) treatment, which was attributed to the highest PAHs degradation in rhizosphere soils. Compared to CS treatment, PS treatment significantly (p < 0.05) increased PAHs degradation by 7.93-10.28 % and PAHs concentrations in rice by 12.38-45.87 % due to that increasing dissolved organic carbon (DOC) enhanced PAHs concentrations in porewater of rhizosphere soils. Higher diversity enhanced the metabolic pathways and function genes to degrade PAHs by improving bacterial phenotypes and biochemical processes under 1 % wheat straw and PS treatment. The present study firstly demonstrated that the effects of straw returning on PAHs degradation in PAHs-contaminated paddy soils and PAHs concentrations in rice depended on amount and methods of straw returning.
Collapse
Affiliation(s)
- Jun Cai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangyao Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Benhua Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Cao Z, Zhu R, Li Y, Kakade A, Zhang S, Yuan Y, Wu Y, Mi J. Mitigation of ammonia and hydrogen sulfide emissions during aerobic composting of laying hen waste through NaOH-modified biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121634. [PMID: 38943752 DOI: 10.1016/j.jenvman.2024.121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The impact of NaOH-modified biochar on the release of NH3 and H2S from laying hens' manure was examined for 44 days, using a small-scale simulated aerobic composting system. The findings revealed that the NaOH-modified biochar reduced NH3 and H2S emissions by 40.63% and 77.78%, respectively, compared to the control group. Moreover, the emissions of H2S were significantly lower than those of the unmodified biochar group (p < 0.05). The increased specific surface area and microporous structure of the biochar, as well as the higher content of alkaline and oxygenated functional groups, were found to facilitate the adsorption of NH3 and H2S. This enhanced adsorption capability was the primary reason for the significant reduction in NH3 emissions. Furthermore, during the high-temperature phase of composting, there was a notable alteration in the microbial community. The abundance of Limnochordaceae, Savagea, and IMCC26207 increased significantly which aided in the conversion of H2S to stable sulfate. These microorganisms also influenced the abundance of functional genes involved in sulfur metabolism, thereby inhibiting cysteine synthesis, along with the decomposition and conversion of sulfate to sulfite. This led to a significant decrease in H2S emissions. This study provides valuable data for the selection of deodorizers in the composting process of egg-laying hens. The results have significant implications for the application of NaOH-modified biochar for odor reduction in aerobic composting processes.
Collapse
Affiliation(s)
- Ze Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecocystems, International Centre of Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Run Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Apurva Kakade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecocystems, International Centre of Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shiyu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yilin Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Zhou L, Xie Y, Wang X, Wang Z, Sa R, Li P, Yang X. Effect of microbial inoculation on nitrogen transformation, nitrogen functional genes, and bacterial community during cotton straw composting. BIORESOURCE TECHNOLOGY 2024; 403:130859. [PMID: 38777228 DOI: 10.1016/j.biortech.2024.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The effects of microbial agents on nitrogen (N) conversion during cotton straw composting remains unclear. In this study, inoculation increased the germination index and total nitrogen (TN) by 24-29 % and 7-10 g/kg, respectively. Inoculation enhanced the abundance of nifH, glnA, and amoA and reduced that of major denitrification genes (nirK, narG, and nirS). Inoculation not only produced high differences in the assembly process and strong community replacement but also weakened environmental constraints. Partial least squares path modelling demonstrated that enzyme activity and bacterial community were the main driving factors influencing TN. In addition, network analysis and the random forest model showed distinct changing patterns of bacterial communities after inoculation and identified keystone microorganisms in maintaining network complexity and synergy, as well as system function to promote nitrogen preservation. Findings provide a novel perspective on high-quality resource recovery of agricultural waste.
Collapse
Affiliation(s)
- Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Renna Sa
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Pengbing Li
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi 830013, China.
| | - Xinping Yang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
4
|
Guo T, Zhang S, Song C, Zhao R, Jia L, Wei Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121145. [PMID: 38788406 DOI: 10.1016/j.jenvman.2024.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.
Collapse
Affiliation(s)
- Tong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Ran Zhao
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Liming Jia
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
5
|
Jiang L, Dai J, Wang L, Chen L, Zeng G, Liu E, Zhou X, Yao H, Xiao Y, Fang J. Ca(H 2PO 4) 2 and MgSO 4 activated nitrogen-related bacteria and genes in thermophilic stage of compost. Appl Microbiol Biotechnol 2024; 108:331. [PMID: 38734749 PMCID: PMC11088556 DOI: 10.1007/s00253-024-13167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study was conducted to investigate the effects of Ca(H2PO4)2 and MgSO4 on the bacterial community and nitrogen metabolism genes in the aerobic composting of pig manure. The experimental treatments were set up as control (C), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), and 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2), which were used at the end of composting for potting trials. The results showed that Ca(H2PO4)2 and MgSO4 played an excellent role in retaining nitrogen and increasing the alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents of the composts. Adding Ca(H2PO4)2 and MgSO4 changed the microbial community structure of the compost. The microorganisms associated with nitrogen retention were activated. The complexity of the microbial network was enhanced. Genetic prediction analysis showed that the addition of Ca(H2PO4)2 and MgSO4 reduced the accumulation of nitroso-nitrogen and the process of denitrification. At the same time, despite the reduction of genes related to nitrogen fixation, the conversion of ammonia to nitrogenous organic compounds was promoted and the stability of nitrogen was increased. Mantel test analysis showed that Ca(H2PO4)2 and MgSO4 can affect nitrogen transformation-related bacteria and thus indirectly affect nitrogen metabolism genes by influencing the temperature, pH, and organic matter (OM) of the compost and also directly affected nitrogen metabolism genes through PO43- and Mg2+. The pot experiment showed that composting with 1.5% Ca(H2PO4)2 + 3% MgSO4 produced the compost product that improved the growth yield and nutrient content of cilantro and increased the fertility of the soil. In conclusion, Ca(H2PO4)2 and MgSO4 reduces the loss of nitrogen from compost, activates nitrogen-related bacteria and genes in the thermophilic phase of composting, and improves the fertilizer efficiency of compost products. KEY POINTS: • Ca(H2PO4)2 and MgSO4 reduced the nitrogen loss and improved the compost effect • Activated nitrogen-related bacteria and altered nitrogen metabolism genes • Improved the yield and quality of cilantro and fertility of soil.
Collapse
Affiliation(s)
- Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jiapeng Dai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lutong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangxi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Erlun Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangdan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Yao
- Board of Directors Department, Changsha IMADEK Intelligent Technology Company Limited, Changsha, 410137, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
6
|
Geng X, Yang H, Gao W, Yue J, Mu D, Wei Z. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. BIORESOURCE TECHNOLOGY 2024; 399:130575. [PMID: 38479629 DOI: 10.1016/j.biortech.2024.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.
Collapse
Affiliation(s)
- Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
7
|
Sun R, Li Q. Exogenous additive ferric sulfate regulates sulfur-oxidizing bacteria in cow manure composting to promote carbon fixation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32212-32224. [PMID: 38649605 DOI: 10.1007/s11356-024-33417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Enhancing carbon fixation in the composting process was of great significance in the era of massive generation of organic solid waste. In this study, the experimental results showed that the contents of dissolved organic matter (DOM) in the experimental group (CT) were 37.58% higher than those in the control group (CK). The CO2 emission peaked on day 5, and the value of CK was 1.34 times that of CT. Significant differences were observed between the contents of sulfur fractions in CT and CK. This phenomenon may be due to the suppression of sulfur-reducing gene expression in CT. On day 51 of composting, the abundance of sulfur-oxidizing bacteria (SOB) Rhodobacter (5.33%), Rhodovulum (14.76%), and Thioclava (23.83%) in CT was higher than that in CK. In summary, the composting fermentation regulated by Fe2(SO4)3 increased the sulfate content, enhanced the expression of sulfur-oxidizing genes and SOB, and ultimately promoted carbon sequestration during composting.
Collapse
Affiliation(s)
- Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Co-influence of biochar-supported effective microorganisms and seasonal changes on dissolved organic matter and microbial activity in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171476. [PMID: 38458471 DOI: 10.1016/j.scitotenv.2024.171476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
DOM (dissolved organic matter) play a crucial role in lakes' geochemical and carbon cycles. Eutrophication evolution would influence nutrient status of waters and investigating the DOM variation helps a better understanding of bioremediation on environmental behavior of DOM in eutrophic lakes. In our study, the contents, compositions and characteristics of systematic DOM&SOM (sediment organic matter) were greatly influenced by seasonal changes. But the effective bioremediations obviously reduced the DOM concentration and thus mitigated the eutrophication outbreak risks in water bodies due to the increased MBC (microbial biomass carbon), microbial activity and metabolism. In early summer, the overall DOM in each treatment were readily low levels and derived from both autochthonous and exogenous origins, dominated by fulvic acid-like. In midsummer, the DOM contents and characteristics in each treatment increased significantly as phytoplankton activity improved, and the majority of DOM were humic acid-like and mainly of biological origin. The greatest differences of enzymes, MBC, microbial metabolism and DOM&SOM removal among different treatments were observed in summer months. In autumn, the systematic DOM&SOM slightly reduced due to the deceased microbial activity, in which the microbial humic acids were main component and derived from endogenous sources. Additionally, the gradually decreased SOM with cultivated time in each treatment was a result of microbiological conversion of SOM into DOM. For various treatments, BE, BE.A, BE.C and BE.E increased the MBC, enzymatic and microbial activities due to the application of biochar-supported EMs. Among these, BE and BE.A, especially BE.A with oxygen supplement, achieved the most desirable effect on reducing systematic DOM&SOM levels and increasing enzymatic and microbial activities. The group of EM also reduced the levels of DOM&SOM as improved degradation of EMs for DOM. However, BC, BE.C and BE.E finally did not achieved the desirable effect on reducing DOM&SOM due to the suppression of microbial activities, respectively, from high dose of biochar, weakening of dominant species and additional introduction of EMs in low liveness.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
9
|
Jiang L, Dai J, Wang L, Chen L, Zeng G, Liu E, Zhou X, Yao H, Xiao Y, Fang J. Effect of nitrogen retention composite additives Ca(H 2PO 4) 2 and MgSO 4 on the degradation of lignocellulose, compost maturation, and fungal communities in compost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32992-w. [PMID: 38558335 DOI: 10.1007/s11356-024-32992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the effects of the nitrogen retention composite additives Ca(H2PO4)2 and MgSO4 on lignocellulose degradation, maturation, and fungal communities in composts. The study included control (C, without Ca(H2PO4)2 and MgSO4), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2). The results showed that Ca(H2PO4)2 and MgSO4 enhanced the degradation of total organic carbon (TOC) and promoted the degradation of lignocellulose in compost, with CaPM2 showing the highest TOC and lignocellulose degradation. Changes in the three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) of dissolved organic matter (DOM) components in compost indicated that the treatment group with the addition of Ca(H2PO4)2 and MgSO4 promoted the production of humic acids (HAs) and increased the degree of compost decomposition, with CaPM2 demonstrating the highest degree of decomposition. The addition of Ca(H2PO4)2 and MgSO4 modified the composition of the fungal community. Ca(H2PO4)2 and MgSO4 increased the relative abundance of Ascomycota, decreased unclassified_Fungi, and Glomeromycota, and activated the fungal genera Thermomyces and Aspergillus, which can degrade lignin and cellulose during the thermophilic stage of composting. Ca(H2PO4)2 and MgSO4 also increased the abundance of Saprotroph, particularly undefined Saprotroph. In conclusion, the addition of Ca(H2PO4)2 and MgSO4 in composting activated fungal communities involved in lignocellulose degradation, promoted the degradation of lignocellulose, and enhanced the maturation degree of compost.
Collapse
Affiliation(s)
- Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jiapeng Dai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lutong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangxi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Erlun Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangdan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Yao
- Board of Directors Department, Changsha IMADEK Intelligent Technology Company Limited, Changsha, 410137, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
10
|
Wang Y, Han Z, Liu J, Song C, Wei Z. The biotic effects of lignite on humic acid components conversion during chicken manure composting. BIORESOURCE TECHNOLOGY 2024; 398:130503. [PMID: 38442847 DOI: 10.1016/j.biortech.2024.130503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Han
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Junping Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
11
|
Jiao M, Yang Z, Xu W, Zhan X, Ren X, Zhang Z. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170279. [PMID: 38280577 DOI: 10.1016/j.scitotenv.2024.170279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The essential point of current study was to investigate the effect of a Fenton-like system established by oxalic acid and Fe(II) on gas emission, organic matter decomposition and humification during composting. Branches were pretreated with Fenton reagents (0.02 M FeCl2·4H2O + 1.5 M H2O2) and then adding 10 % oxalic acid (OA). The treatments were marked as B1 (control), B2 (Fenton reagent), B3 (10% OA) and B4 (Fenton-like reagent). The results collected from 80 d of composting showed that adding Fenton-like reagent benefited the degradation of organic substances, as reflected by the total organic carbon and dissolved organic carbon, and the maximum decomposition rate was observed in B4. In addition, the Fenton-like reagent could improve the synthesis of humus characterized by complex and stable compounds, which was consistent with the spectral parameters (SUVA254, SUVA280, E253/E203 and Fourier transform-infrared indicators) of DOC. Furthermore, the functional microbial succession performance and linear discriminant effect size analyses provided microbial evidence of humification improvement. Notably, compared with the control, the minimum value of CH4 cumulation was reported in B4, which decreased by 30.44 %. Concluded together, the addition of a Fenton-like reagent composed by OA and Fe(II) is a practical way to improve the humification. Furthermore, the mechanisms related to the promotion of humification should be investigated from free radicals, functional genes, and metabolic pathways.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
12
|
Pan C, Yang H, Gao W, Wei Z, Song C, Mi J. Optimization of organic solid waste composting process through iron-related additives: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119952. [PMID: 38171126 DOI: 10.1016/j.jenvman.2023.119952] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Composting is an environmentally friendly method that facilitates the biodegradation of organic solid waste, ultimately transforming it into stable end-products suitable for various applications. The element iron (Fe) exhibits flexibility in form and valence. The typical Fe-related additives include zero-valent-iron, iron oxides, ferric and ferrous ion salts, which can be targeted to drive composting process through different mechanisms and are of keen interest to academics. Therefore, this review integrated relevant literature from recent years to provide more comprehensive overview about the influence and mechanisms of various Fe-related additives on composting process, including organic components conversion, humus formation and sequestration, changes in biological factors, stability and safety of composting end-products. Meanwhile, it was recommended that further research be conducted on the deep action mechanisms, biochemical pathways, budget balance analysis, products stability and application during organic solid waste composting with Fe-related additives. This review provided guidance for the subsequent targeted application of Fe-related additives in compost, thereby facilitating cost reduction and promoting circular economy objectives.
Collapse
Affiliation(s)
- Chaonan Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Jiaying Mi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
13
|
Tan Z, Dong B, Xing M, Sun X, Xi B, Dai W, He C, Luo Y, Huang Y. Electric field applications enhance the electron transfer capacity of dissolved organic matter in sludge compost. ENVIRONMENTAL TECHNOLOGY 2024; 45:283-293. [PMID: 35900008 DOI: 10.1080/09593330.2022.2107951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in heavy metal passivation and organic pollutant degradation owing to its redox ability. The structure and composition of DOM are determinants of redox ability changes during composting. Electric field-assisted aerobic composting (EAAC) has been shown to promote the degradation and humification of organic matter in compost. However, how EAAC affects the redox ability of DOM remains unclear. Hence, electron transfer capacity (ETC) of DOM extracted from EAAC was studied using the electrochemical method. Various spectral methods, such as excitation-emission matrix and ultraviolet and visible spectrophotometry were used to study the relationship of ETC with the compositional and structural changes of DOM. Results indicated that EAAC enhanced ETC of DOM at the later stage of composting, and ETC of DOM extracted from the final EAAC product was 10.4% higher than that of the control group. Spectral and correlation analyses showed that EAAC resulted in structural and compositional changes of DOM, and humification degree, aromatic compounds, molecular weight, and fulvic- and humic-like substance contents were improved in EAAC. This conversion increased ETC of DOM. Results of this study will contribute to the understanding of the redox of DOM and in expanding the application of EAAC products.
Collapse
Affiliation(s)
- Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Wenfeng Dai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Chaojie He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yumu Luo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yanmei Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
14
|
Ren X, Jiao M, Zhang Z, Syed A, Bahkali AH. The efficient solution to decline the greenhouses emission and enrich the bacterial community during pig manure composting: Regulating the particle size of cornstalk. BIORESOURCE TECHNOLOGY 2023; 387:129596. [PMID: 37541547 DOI: 10.1016/j.biortech.2023.129596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
In present study, four lengths of chopped cornstalks were amended with pig manure respectively for 100 days aerobic fermentation, which aimed to evaluate the impact of different length of agricultural solid wastes on gaseous emission and dominating bacterial community succession and connection. The result revealed that the maximum ammonia volatilization was observed in 5 cm of straw samples attributed to the prominent mineralization, which was opposite to the emission of CH4 and N2O. As for global warming potential, the minimum value was detected in 5 cm of straw samples, which decreased by 5.03-24.75% compared with other samples. Additionally, the strongest correlation and complexity of bacterial community could be detected in 5 cm of straw treatment, representing the most vigorous bacterial metabolic ability could be recorded by optimizing the microbial habitat. Therefore, in order to decline the greenhouse effect in livestock manure composting, the 5 cm of corn straw was recommended.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Ahmed T, Noman M, Qi Y, Shahid M, Hussain S, Masood HA, Xu L, Ali HM, Negm S, El-Kott AF, Yao Y, Qi X, Li B. Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3550. [PMID: 37896014 PMCID: PMC10609736 DOI: 10.3390/plants12203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microbial compost plays a crucial role in improving soil health, soil fertility, and plant biomass. These biofertilizers, based on microorganisms, offer numerous benefits such as enhanced nutrient acquisition (N, P, and K), production of hydrogen cyanide (HCN), and control of pathogens through induced systematic resistance. Additionally, they promote the production of phytohormones, siderophore, vitamins, protective enzymes, and antibiotics, further contributing to soil sustainability and optimal agricultural productivity. The escalating generation of organic waste from farm operations poses significant threats to the environment and soil fertility. Simultaneously, the excessive utilization of chemical fertilizers to achieve high crop yields results in detrimental impacts on soil structure and fertility. To address these challenges, a sustainable agriculture system that ensures enhanced soil fertility and minimal ecological impact is imperative. Microbial composts, developed by incorporating characterized plant-growth-promoting bacteria or fungal strains into compost derived from agricultural waste, offer a promising solution. These biofertilizers, with selected microbial strains capable of thriving in compost, offer an eco-friendly, cost-effective, and sustainable alternative for agricultural practices. In this review article, we explore the potential of microbial composts as a viable strategy for improving plant growth and environmental safety. By harnessing the benefits of microorganisms in compost, we can pave the way for sustainable agriculture and foster a healthier relationship between soil, plants, and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan;
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Attalla F. El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Xingjiang Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
16
|
Mu D, Ma K, He L, Wei Z. Effect of microbial pretreatment on degradation of food waste and humus structure. BIORESOURCE TECHNOLOGY 2023; 385:129442. [PMID: 37399958 DOI: 10.1016/j.biortech.2023.129442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The study aimed to investigate the pretreatment characteristics of food waste (FW) by Bacillus licheniformis and Bacillus oryzaecorticis, and to determine the contribution of microbial hydrolysis in the structure of fulvic acid (FA) and humic acid (HA). FW was pretreated with Bacillus oryzaecorticis (FO) and Bacillus licheniformis (FL), and the resulting solution was heated to synthesize humus. The results showed that the acidic substances produced by microbial treatments led to a decrease in pH. In addition, Bacillus oryzaecorticis degraded starch and released a large amount of reducing sugar, providing OH and COOH to FA molecules. Bacillus licheniformis showed a positive effect on the HA structure, which had higher OH, CH3 and aliphatics. FO is more beneficial to retain OH and COOH, while FL is more beneficial to retain amino and aliphatics. This study provided evidence for the application of Bacillus licheniformis and Bacillus oryzaecorticis in waste management.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kexin Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liangzi He
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
17
|
Jiao M, Ren X, Zhan X, Hu C, Wang J, Syed A, Bahkali AH, Zhang Z. Exploring gaseous emissions and pivotal enzymatic activity during co-composting of branch and pig manure: The effect of particle size of bulking agents. BIORESOURCE TECHNOLOGY 2023; 382:129199. [PMID: 37201868 DOI: 10.1016/j.biortech.2023.129199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The purpose of current study was to probe the effect of various length of branch on gaseous emissions and vital enzymatic activity. Four lengths (< 2 cm, 2 cm, 5 cm, and > 5 cm) of clipped branch were mingled with collected pig manure for 100 days aerobic fermentation. The consequence demonstrated that the amendment of 2 cm of branch showed conducive to decline the greenhouse gas emissions, which the CH4 emissions decreased by 1.62-40.10%, and the N2O emissions decreased by 21.91-34.04% contrasted with other treatments. Furthermore, the peak degree of enzymatic activities was also observed in 2 cm of branch treatment by the optimizing living condition for microbes. In view of microbiological indicators, the most abundant and complex bacterial community could be monitor in 2 cm of branch composting pile, which verified the microbial facilitation. Summing up, the strategy of 2 cm branch amendment would be recommended.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
18
|
Deng Z, Geng X, Shi M, Chen X, Wei Z. Effect of different moisture contents on hydrogen sulfide malodorous gas emission during composting. BIORESOURCE TECHNOLOGY 2023; 380:129093. [PMID: 37100296 DOI: 10.1016/j.biortech.2023.129093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
The sulfate reduction reaction releases malodorous gases (H2S) during composting, with potential pollution risks to the environment. In this study, chicken manure (CM) with high sulfur content and beef cattle manure (BM) with low sulfur content were used to investigate the effect of control (CK) and low moisture content (LW) on sulfur metabolism. The results showed that compared to CK composting, the cumulative H2S emission of CM and BM composting decreased by 27.27% and 21.08% under LW condition, respectively. Meanwhile, the abundance of core microorganisms related to sulfur components was reduced under LW condition. Furthermore, the KEGG sulfur pathway and network analysis suggested that LW composting weakened the sulfate reduction pathway, and reduced the number and abundance of functional microorganisms and genes. These results indicated that low moisture content had important effects on inhibiting the release of H2S during composting, which provided a scientific basis to control environmental pollution.
Collapse
Affiliation(s)
- Ze Deng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
19
|
Wang F, Xie L, Gao W, Wu D, Chen X, Wei Z. The role of microbiota during chicken manure and pig manure co-composting. BIORESOURCE TECHNOLOGY 2023:129360. [PMID: 37336450 DOI: 10.1016/j.biortech.2023.129360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Co-composting is an excellent and effective technology for treating livestock manure in which microorganisms play a crucial function. Therefore, this study aimed at investigating the changes of microbial interactions during co-composting. Six different addition ratios of chicken and pig manure were used in composting experiment. The results showed that the co-composting system using 60% chicken manure and 40% pig manure significantly altered the microbial diversity and community structure. In addition, the complexity and tightness of its microbial community network structure reached the maximum, as did the strength of its cooperative and competitive microbial interactions. The higher microbial abundance and microbial interaction have the potential to promote the decomposition and transformation of compost components. Therefore, this study preliminarily revealed the changes of microbial community in co-composting, which provided a theoretical basis for optimizing microbial community interaction in composting systems by mixing different ratios of materials in practice.
Collapse
Affiliation(s)
- Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xie
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Di Wu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
20
|
Wang Y, Wei Y, Zhou K, Gao X, Chang Y, Zhang K, Deng J, Zhan Y, Li J, Li R, Li J, Xu Z. Regulating pH and Phanerochaete chrysosporium inoculation improved the humification and succession of fungal community at the cooling stage of composting. BIORESOURCE TECHNOLOGY 2023:129291. [PMID: 37295477 DOI: 10.1016/j.biortech.2023.129291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the effect of regulating pH and Phanerochaete chrysosporium inoculation at the cooling stage of composting on the lignocellulose degradation, humification process and related precursors as well as fungal community for secondary fermentation. Results showed that composting with P. chrysosporium inoculation and pH regulation (T4) had 58% cellulose decomposition, 73% lignin degradation and improved enzyme activities for lignin decomposition. There was 81.98% increase of humic substance content and more transformation of polyphenols and amino acids in T4 compared to control. Inoculating P. chrysosporium affected the fungal community diversity, and regulating pH helped to increase the colonization of P. chrysosporium. Network analysis showed that the network complexity and synergy between microorganisms was improved in T4. Correlation and Random Forest analysis suggested that enriched Phanerochaete and Thermomyces in the mature stage of T4 were key taxa for lignocellulose degradation, and humic acid formation by accumulating precursors.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuquan Wei
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Kaiyun Zhou
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Yuan Chang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Kui Zhang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jie Deng
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yabin Zhan
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Jun Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ruoqi Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
21
|
Xu P, Shu L, Li Y, Zhou S, Zhang G, Wu Y, Yang Z. Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 2023; 9:e16311. [PMID: 37305492 PMCID: PMC10256924 DOI: 10.1016/j.heliyon.2023.e16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
With the continuous development of agriculture, Agricultural organic waste (AOW) has become the most abundant renewable energy on earth, and it is a hot spot of research in recent years to realize the recycling of AOW to achieve sustainable development of agricultural production. However, lignocellulose, which is difficult to degrade in AOW, greenhouse gas emissions, and pile pathogenic fungi and insect eggs are the biggest obstacles to its return to land use. In response to the above problems researchers promote organic waste recycling by pretreating AOW, controlling composting conditions and adding other substances to achieve green return of AOW to the field and promote the development of agricultural production. This review summarizes the ways of organic waste treatment, factors affecting composting and problems in composting by researchers in recent years, with a view to providing research ideas for future related studies.
Collapse
Affiliation(s)
- Peng Xu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Luolin Shu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yang Li
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Shun Zhou
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Guanzhi Zhang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yongjun Wu
- College of Life Sciences, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Zhenchao Yang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
22
|
Wu D, Ren H, Xie L, Zhang G, Zhao Y, Wei Z. Strengthening Fenton-like reactions to improve lignocellulosic degradation performance by increasing lignocellulolytic enzyme core microbes during rice straw composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:72-83. [PMID: 36870299 DOI: 10.1016/j.wasman.2023.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the effect of Fenton-like reactions on lignocellulosic degradation performance and identify their driving factors during composting. Rice straw was pretreated by inoculating Aspergillus fumigatus Z1 and then adding Fe (II), which resulted in Fenton-like reactions. The treatment groups included CK (control), Fe (addition of Fe (II)), Z1 (inoculation of A. fumigatus Z1), and Fe + Z1 (inoculation of A. fumigatus Z1 and addition of Fe (II)). The results suggested that Fenton-like reactions can produce lignocellulolytic enzymes and degrade lignocellulose, due to the variation in microbial community composition and diversity. In addition, functional modular microbes were identified by network analysis, which can produce endoglucanase and xylanase. Regarding ligninase, bacteria were more favorable for producing manganese peroxidase, and fungi were more favorable for producing laccase. Additionally, reducing sugars, organic matter, total nitrogen and amino acids were key microhabitat factors of functional modular bacteria, while organic matter, reducing sugars, amino acids and C/N were key microhabitat factors of functional modular fungi, thereby promoting the degradation of lignocellulose. This study provides technical support for lignocellulosic degradation based on Fenton-like reactions.
Collapse
Affiliation(s)
- Di Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China; Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
| | - Hao Ren
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
23
|
Zhao M, Zhao Y, Xie L, Zhang G, Wei Z, Li J, Song C. The effect of calcium superphosphate addition in different stages on the nitrogen fixation and ammonification during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 374:128731. [PMID: 36774988 DOI: 10.1016/j.biortech.2023.128731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen losses through ammonia (NH3) emission were an unavoidable issue during chicken manure composting. Calcium superphosphate can be added to effectively limit the emission of NH3. The results show that adding calcium superphosphate in the heating, high temperature and cooling stages reduces ammonia emission by 18.48 %, 28.19 % and 0.91 % respectively. Furthermore, adding calcium superphosphate at high temperature stage increased the ammonium nitrogen content (NH4+-N), reducing the conversion of organic nitrogen (HON) to NH4+-N. Network analysis indicated that adding calcium superphosphate during the high temperature stage reduced NH3-related microorganisms and effectively inhibited ammonification. Moreover, the results of qPCR of the ammonification gene gdh and structural equation model (SEM) verify that adding calcium superphosphate at the high temperature stage reduced ammonification and drove ammonification-related bacterial communities to decrease ammonia emissions. Adding superphosphate at high temperature can effectively increase the nitrogen content and reduce gas pollution during composting.
Collapse
Affiliation(s)
- Meiyang Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
24
|
Piao M, Li A, Du H, Sun Y, Du H, Teng H. A review of additives use in straw composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57253-57270. [PMID: 37012566 DOI: 10.1007/s11356-023-26245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023]
Abstract
Straw composting is not only a process of decomposition and re-synthesis of organic matter, but also a process of harmless treatment, avoiding air pollution caused by straw burning. Many factors, including raw materials, humidity, C/N, and microbial structure, may determine the composting process and the quality of final product. In recent years, many researches have focused on composting quality improvement by adding one or more exogenous substances, including inorganic additives, organic additives, and microbial agents. Although a few review publications have compiled the research on the use of additives in composting, none of them has specifically addressed the composting of crop straw. Additives used in straw composting can increase degradation of recalcitrant substances and provide ideal living surroundings for microorganism, and thus reduce nitrogen loss and promote humus formation, etc. This review's objective is to critically evaluate the impact of various additives on straw composting process, and analyze how these additives enhance final quality of composting. Furthermore, a vision for future perspectives is provided. This paper can serve as a reference for straw composting process optimization and composting end-product improvement.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Ang Li
- College of Engineering, Jilin Normal University, Siping, China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Engineering, Jilin Normal University, Siping, China.
| |
Collapse
|
25
|
Zhang W, Zhao Y, Lu Q, Feng W, Wang L, Wei Z. Evaluating differences in humic substances formation based on the shikimic acid pathway during different materials composting. BIORESOURCE TECHNOLOGY 2022; 364:128060. [PMID: 36195217 DOI: 10.1016/j.biortech.2022.128060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate differences in humic substance (HS) formation based on the shikimic acid pathway (SAP) during five different materials composting. The results showed that compared with other three materials, gallic acid, protocatechuic acid and shikimic acid of the SAP products in lawn waste (LW) and garden waste (GW) compost decreased significantly. Furthermore, as important indicators for evaluating humification, humic acid and degree of polymerization increased by 39.4%, 79.5% and 21.8%, 87.9% in LW and GW, respectively. Correlation analysis showed that SAP products were strongly correlated with HS fractions in LW and GW. Meanwhile, network analysis indicated that more core bacteria associated with both SAP products and HS were identified in LW and GW. Finally, the structural equation model proved that SAP had more significant contribution to humification improvement in LW and GW. These findings provided theoretical foundation and feasible actions to improve compost quality by the SAP.
Collapse
Affiliation(s)
- Wenshuai Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Wenxuan Feng
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Zhang X, Zhang X, Cui H, Zhao R, Zhao M, Wei Z. Characteristics of oxytetracycline stress-sensitive microbe-dissolved organic matter component interactions during composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119975. [PMID: 35988676 DOI: 10.1016/j.envpol.2022.119975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) has important impacts on the transportation of antibiotics through chemical and biological processes in composting. The interaction between DOM and antibiotics is reciprocal. The interaction between DOM ligands and antibiotics could be characterized based on a technique combining parallel factor analysis (PARAFAC) and microbial community structure analysis. However, PARAFAC cannot reveal the dynamic changes in each DOM peak in one PARAFAC component under antibiotic stress. In this study, two-dimensional correlation spectroscopy (2DCOS) combined with PARAFAC and bacterial community diversity analyses were employed to reveal the effects of oxytetracycline (OTC) stress and the key microorganisms on the transformation of different fluorescent peaks from DOM PARAFAC components during chicken manure composting. The results showed that OTC inhibits the transformation between DOM PARAFAC components by inhibiting the core microbial activities involved in the transformation of DOM components. Protein-like components (C1 and C2) were more sensitive to OTC residue, and components with a high humification degree promoted the degradation of OTC. The interaction between special DOM PARAFAC components and certain bacteria affects the degradation of OTC. The DOM PARAFAC components A2(C1), B1(C2), B2(C2) and Z1(C4) enhanced OTC degradation by stimulating the genera Pseudomonas, Glycomyces and Hyphomicrobium. With these promising results, the true effect of DOM PARAFAC components on the degradation of OTC can be revealed, which is helpful for addressing antibiotic contamination to improve the bioavailability of compost products.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinlin Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ran Zhao
- Environmental Monitoring Center of Heilongjiang Province, Harbin, 150056, China
| | - Meiyang Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Zhang R, Deng Z, Li J, Zhang Y, Wei Z, Cao H. Effect of leaching time on phytotoxicity of dissolved organic matter derived from black carbon based on spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119595. [PMID: 35688387 DOI: 10.1016/j.envpol.2022.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) exports huge amounts of its derived DOM from terrestrial ecosystems annually through a variety of ways (i.e., erosion or runoff migration). The pyrolytic feedstock type and temperature resulted in DOM derived from highly condensed aromatic and non-aromatic BC. However, the behaviors of low aromatic BC-derived DOM at diverse leaching time are poorly understood. In this work, low aromatic BCs were prepared by pyrolysis corn straws at 250 °C, 350 °C and 450 °C. Extraction experiments for four leaching time (6 h, 10 h, 15 h and 21 h) were set up to simulate BC-derived DOM generative process in nature. The phytotoxicity of BC-derived DOM was evaluated via germination index (GI). Spectral characteristics were discussed to analyze the phytotoxicity variations of fluorescence components composition at different time, including the excitation-emission matrix-parallel factor, two-dimensional correlation spectra and Fourier transform infrared spectroscopy. The results suggested that low aromatic BC-derived DOM might contain aromatic phenolic compounds. A longer time contributed to accumulate the complex, hard-to-use organic matters, leading to lower GI. These results would supplement the dynamic spectral characteristics of low aromatic BC-derived DOM and its environmental risks during the leaching process.
Collapse
Affiliation(s)
- Ruju Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ze Deng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiulong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunxian Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Cao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
28
|
Mu D, Qu F, Zhu Z, Wu D, Qi H, Ahmed Mohamed T, Liu Y, Wei Z. Effect of Maillard reaction on the formation of humic acid during thermophilic phase of aerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 357:127362. [PMID: 35618190 DOI: 10.1016/j.biortech.2022.127362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to explore the main pathway of humic acid (HA) formation during the thermophilic phase (TP) of aerobic fermentation, clarify the contribution of Maillard reaction. These experiments were carried out on cow dung, chicken manure and rice straw. Results indicated that the maximum temperature reached 60.2℃ during TP led to a sharp decrease in microbial abundance, while the production of HA increased. The network analysis indicated that microorganisms did not participate in the formation of HA and may be dominated by abiotic pathways. In addition, proteins and sugars were consumed at the highest rate during TP, and the trends were similar to HA formation. These findings suggested that the formation of HA has relationship to Maillard reaction, because TP provided suitable reaction conditions for Maillard reaction. Therefore, these results elucidated the contribution of Maillard reaction in HA formation during TP, and provided theoretical support for directional humification.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Di Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yumeng Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Wang L, Qu F, Zhu Z, Zhao Y, Chen X, Shi M, Wei Z. The important role of tricarboxylic acid cycle metabolism pathways and core bacterial communities in carbon sequestration during chicken manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:20-29. [PMID: 35785624 DOI: 10.1016/j.wasman.2022.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
As a kind of livestock manure, chicken manure (CM) was rich in organic matter and microorganisms. However, a large amount of foul gas discharged by its random stacking not only threatened the environment, but also caused harm to human health. In view of the serious carbon loss and the unclear action mechanism of microbial community on carbon metabolism during CM composting, the effect of adding regulators on the sequestration of organic carbon was explored. Therefore, the purpose of this study was to explore the regulation mechanism of adding tricarboxylic acid cycle (TCA cycle) regulators on the core carbon metabolism pathway during CM composting. The results showed that the adenosine triphosphate (ATP) and malonic acid (MA) slowed down organic carbon degradation, resulting in lower carbon loss rate, which were 64.99% (CK), 62.35% (MA), and 61.26% (ATP) in each treatment. By comparing the abundance and structure of the carbon-related bacterial communities in different treatments, it was found that adding ATP and MA not only reduced the bacterial community abundance, but also tended to be similar in bacterial community composition. Moreover, the microbial specificity related to carbon metabolism pathway was enhanced, while the related gene expression and gene abundance were weakened. The regulation of TCA cycle metabolism pathway was confirmed to be the main way to improve organic carbon content. These findings revealed the positive effects of ATP and MA on carbon fixation from the perspective of gene metabolism.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Sajid S, Kudakwashe Zveushe O, Resco de Dios V, Nabi F, Lee YK, Kaleri AR, Ma L, Zhou L, Zhang W, Dong F, Han Y. Pretreatment of rice straw by newly isolated fungal consortium enhanced lignocellulose degradation and humification during composting. BIORESOURCE TECHNOLOGY 2022; 354:127150. [PMID: 35429593 DOI: 10.1016/j.biortech.2022.127150] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The slow decomposition rate of the reluctant structure of lignocellulose in agricultural waste is the great limitation of composting processes, which can be averted by pretreatment-strategies. This study focused on the impacts of pretreating rice straw using a consortium of newly isolated fungal species on lignocellulose degradation and humic substances during composting. Fungal pretreatment had a significant impact on lignocellulose degradation (84%) of rice straw by producing higher lignocellulytic enzymes than chemical pretreatments (79%) or the control (61%). The compost with fungal pretreated rice straw (FPT) showed significantly high composting temperature in the late mesophilic stage, which enhanced the degradation of lignocellulose. The fluorescence excitation emission spectroscopy revealed that significantly more humic acid-like compounds were formed in FPT. These findings suggest that fungal pretreatment is a feasible method to accelerate straw degradation and humification.
Collapse
Affiliation(s)
- Sumbal Sajid
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, Spain
| | - Farhan Nabi
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Abdul Rasheed Kaleri
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|