1
|
Dash SR, Choi H, Song JK, Ko D, Lee C, Kim J. Electrochemical improvement of methane production via surface engineering of graphitic cathodes in anaerobic sequential batch reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125826. [PMID: 40414121 DOI: 10.1016/j.jenvman.2025.125826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/28/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Five anaerobic sequential batch reactors (SBR), SBR 1-SBR 5 run in parallel were examined for biogas output trends under varying hydraulic retention times (HRT). SBR 1 was run without biomass for 1 month to study electrode stability and the effect of applied potential on sodium dodecyl sulfate (SDS) degradation. Polyaniline (PANI/Graphite) modification in reactors SBR 4 and iron-coated PANI (Fe-PANI/Graphite) in SBR 5 increased biogas production by almost 2.5 times compared to SBR 2 without electrodes. SBR 3 equipped with unmodified graphite rods was used as a control for cathode modifications. By decreasing HRT, cumulative methane production increased to 280 and 320 mL at 72 h and 350 and 500 mL at 48 h. Compared to SBR 2, an electric field increased daily biogas production. Methane composition in SBR 5 increased from 44% at 96-h to 71% at 48-h HRT after 30 days. SBR 4 recovered within 7 days after HRT modifications reduced methane output. The methane yield increased significantly with electric current in SBR 3 (2.6 times), SBR 4 (5.4 times), and SBR 5 (7.4 times). The effluent total organic carbon was stabilized at 15 mg/L for SBR 2 and SBR 3 and improved to below 5 mg/L for SBR 4 and SBR 5 during reactor operation. SBR 5, equipped with an Fe-PANI/Graphite cathode showing the lowest charge transfer resistance, developed distinct microbial community structures in both anodic and cathodic biofilms, compared to the other electrically assisted SBRs.
Collapse
Affiliation(s)
- Smruti Ranjan Dash
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inharo-100, Michuhol-gu, Incheon, Republic of Korea
| | - Hyungmin Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Keun Song
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inharo-100, Michuhol-gu, Incheon, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inharo-100, Michuhol-gu, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Ding L, Zamalloa C, Lin H, Hu B. Bio-electrochemically assisted sulfide, phosphorus, and nitrogen remediation in continuous anaerobic digestion of dairy manure with improved biogas production. CHEMOSPHERE 2025; 376:144288. [PMID: 40056813 DOI: 10.1016/j.chemosphere.2025.144288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Anaerobic digestion (AD) is an industrial practice to properly manage and valorize dairy manure, whereas impurities in biogas and excessive nutrients in digestate always require post-treatment. In this study, integration of bio-electrochemical (BEC) treatment with AD of dairy manure was proposed to simultaneously improve biogas production, reduce hydrogen sulfide (H2S) release, and remediate nutrients in digestate. A continuous stirred tank reactor (CSTR) and a BEC unit using stainless steel mesh electrodes at applied voltages of 0.5-0.8 V were integrated for continuous AD treatment of liquid dairy manure. At a relatively short hydraulic retention time of 20 d and a high voltage of 0.8 V, the biogas production of CSTR-BEC significantly outperformed that of the control operated in an open circuit mode. The methane (CH4) content in the biogas from CSTR-BEC at 0.8 V reached 71.1%, leading to a specific CH4 yield of CSTR-BEC (238.6 mL/gVS) higher by 42.5% than that of the control. The higher applied voltage of 0.8 V in CSTR-BEC also secured significant aqueous sulfide and gaseous H2S removals of 58.6% and 89%, respectively. Meanwhile, stronger electrochemical reactions in CSTR-BEC resulted in efficient removals of soluble and total phosphorus from dairy manure at a range of 49.5-63.7%. The compositional analysis of cathode precipitates implies that the release of iron ions from the sacrificial anode for further precipitation and adsorption might be the main route for sulfide and phosphorus removal. The average power consumption of the BEC unit (1.024 kWh/m3/d) at 0.8 V was 7.9-fold that at 0.5 V, whereas the net energy gain of CSTR-BEC (7.42 MJ/m3/d) was still comparable to that of the control because of the improved CH4 production. This bio-electrochemically assisted AD system offers a promising perspective in cleaner bioenergy production with concurrent considerable contaminants remediation from dairy manure.
Collapse
Affiliation(s)
- Lingkan Ding
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Carlos Zamalloa
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Hongjian Lin
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Hu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Liu C, Yan S, Luo X, Zheng Y, Zhen G. Iron-based materials maintain biofilm equilibrium and function as external capacitors to minimize electron loss under intermittent power supply in MEC-AD methane production. WATER RESEARCH 2025; 281:123677. [PMID: 40311348 DOI: 10.1016/j.watres.2025.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Microbial electrolysis cell-anaerobic digestion (MEC-AD) is a cost-effective approach for methane (CH₄) recovery from food waste, but its CH₄ conversion efficiency requires improvement. To address this, a MIL-100(Fe)-modified carbon cloth anode was developed to enhance anodic biofilm formation and CH₄ bioconversion efficiency. At an applied voltage of 0.8 V, the highest daily CH₄ yield reached 141.6 mL/g COD/d, a 61 % increase, and increased further to 227.5 mL/g COD/d under intermittent power supply. By facilitating extracellular electron transfer (EET) in electrogenic bacteria, MIL-100(Fe) regulated biofilm thickness and maintained dynamic biofilm equilibrium. Additionally, as an external capacitor, MIL-100(Fe) functioned as a "temporary storage site" for electrons under intermittent power supply, reducing bioelectron loss. Metagenomic analysis revealed that MIL-100(Fe) significantly enriched Bacteroidia and Methanosarcina, promoting carbohydrate metabolism and CH₄ production. Under intermittent power supply, MIL-100(Fe) further enriched Geobacter, enhancing electron transfer efficiency. This study demonstrates that iron-based anode modification effectively enhances CH₄ production from food waste by optimizing biofilm structure and metabolic pathways, providing a promising strategy for improving MEC-AD performance.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
| | - Shenghan Yan
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Li D, Ping Q, Mo R, Guo W, Zhang S, Wang L, Li Y. Revealing synergistic mechanisms of biochar-assisted microbial electrolysis cells in enhancing the anaerobic digestion performance of waste activated sludge: Extracellular polymeric substances characterization, enzyme activity assay, and multi-omics analysis. WATER RESEARCH 2024; 267:122501. [PMID: 39326182 DOI: 10.1016/j.watres.2024.122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Although biochar (BC)-assisted microbial electrolysis cells (MEC) has been shown to improve anaerobic digestion (AD) performance of waste activated sludge (WAS), the underlying mechanisms remain unclear. This study conducted an in-depth investigation into the mechanism based on analyses of extracellular polymeric substances (EPS) characteristics, enzyme activities and multi-omics. The results showed that compared with the control group, methane production improved by 16.73 %, 21.32 %, and 29.37 % in the BC, MEC, and BC-assisted MEC (BC-MEC) groups, respectively. The reconfiguration of the protein secondary structure increased the hydrophobicity of the EPS, thereby promoting microbial aggregation. In addition, partial least-squares path modeling (PLS-PM) and mantel test based on the enzyme activity and multi-omics analyses revealed that the promotional effect of MEC on the hydrolysis of WAS was superior to that of BC, while BC was more advantageous in promoting electron transfer and biofilm formation regulated by quorum sensing. The synergistic effects of BC and MEC were exemplified in the BC-MEC group. g_norank_Aminicenantales responsible for the hydrolysis of WAS was enriched (29.6 %), and the activities of hydrolytic enzymes including α-glucosidases and proteases were increased by 29.1 % and 43.6 %, respectively. Further, the expressions of genes related to acyl homoserine lactones (AHLs) and diffusible signal factor (DSF) in quorum sensing systems, as well as the genes related to hydrogenase involved in electron transfer (mbhJKL, hyfB-JR, hypA-F, and hoxFHUY), were up-regulated in the BC-MEC group. This facilitated electron transfer and microbial communication, consequently enhancing methane production. This research significantly advances the understanding of the mechanism by which BC-assisted MEC enhances AD performance and provides valuable insights into strategies for improving energy recovery from WAS.
Collapse
Affiliation(s)
- Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rongrong Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Gao Y, Liu Z, Wang S, Zhou A, Lv X, Yue X. Exploring the promoting behavior of weak electric mediation on indole and pyridine biodegradation under anaerobic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175599. [PMID: 39173775 DOI: 10.1016/j.scitotenv.2024.175599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Indole and pyridine, which are highly produced refractory compounds in the industrial wastewater, exhibit poor degradation capabilities in natural environments. In this study, we developed an anaerobic digestion system coupled with weak electric mediation (ED), and investigated the promoting effect of weak electricity on indole and pyridine biodegradation. The degradation characteristics were systematically explored, and the results showed that the degradation rate and mineralization of indole and pyridine were significantly enhanced, the production of CH4 was increased 1.4-fold, and the optimal voltages were 1.0 V and 0.8 V in the ED, respectively. Moreover, simultaneous removal of carbon and nitrogen was achieved. Gas chromatography-mass spectrometry analysis verified the transformation products, and possible pathways were proposed. Several byproducts of indole and pyridine were identified, with oxindole and glutaric dialdehyde being the main metabolites, respectively. Additionally, density functional theory (DFT) analysis was performed to investigated the radical indices and stabilities of the molecules to further confirm the degradation pathway. Microbial structure analysis demonstrated that the electrically mediated enhanced metabolism and activity of functional microbes, led to the promotion of indole and pyridine mineralization. Moreover, such species as degrading bacteria (Alicycliphilus, Shinella) and electroactive bacteria (Achromobacter), anaerobic ammonia-oxidizing bacteria (SM1A02), and denitrifying bacteria (Thiobacillus) coexisted. This study demonstrates that weak electric mediation is a promising methodology for enhancing the removal of indole and pyridine from wastewater under anaerobic conditions.
Collapse
Affiliation(s)
- Yanjuan Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China; Shanxi Construction Investment Group Co., Ltd., Taiyuan, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China
| | - Shaobo Wang
- Shanxi Construction Investment Group Co., Ltd., Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China
| | - Xvfeng Lv
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China.
| |
Collapse
|
6
|
Zhu J, Li M, Yu H, Zheng Y, Yuan L, Cao Y, Liu X, Sun F, Chen C. Magnetic biochar enhanced microbial electrolysis cell with anaerobic digestion for complex organic matter degradation in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175013. [PMID: 39069178 DOI: 10.1016/j.scitotenv.2024.175013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Combining microbial electrolytic cells with anaerobic digestion (MEC-AD) was considered as an important method for enhancing complex organic matter degradation. However, the magnetic biochar (MBC) addition would be an effective approach for enhancing biodegradation in MEC-AD. By designing orthogonal experiments, the optimal parameters of MBC-enhanced MEC-AD system for landfill leachate treatment were determined. The results indicated that the optimal conditions were identified as HRT of 72 h, electrode spacing of 2.5 cm, and applied voltage of 0.8 V. Under these conditions, the COD removal efficiency reached a maximum of 54.7 %. Additionally, the UV-vis, 3D-EEM, and GC-MS indicated the macromolecules 13-Docosenamide (Z), Bis(2-ethylhexyl) benzene-1,4-dicarboxylate and bis(2-ethylhexyl) phthalate were degraded. 13-Docosenamide (Z) was almost completely removed under the conditions of 0.8 V applied voltage, 2.5 cm electrode spacing and 24 h HRT, with a removal efficiency of 99.91 %. Significant differences were observed in the microbial core genera among the MEC-AD systems. The core genera in the anodic and cathodic biofilms were primarily fermentative and electroactive bacteria, including Soehngenia (2.2 % - 32.1 %, 3.2 % - 26.4 %) and Desulfomicrobium (1.1 % - 10.2 %, 2.0 % - 29.3 %). Fermentative bacteria, norank_f__Bacteroidetes_vadinHA17, established cooperative relationships with electroactive bacteria Acinetobacter. The enrichment of electrochemically active bacteria optimized microbial interactions, thereby synergistically enhancing the biotransformation of complex organic matter in landfill leachate.
Collapse
Affiliation(s)
- Jiachen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mengmeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hang Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yi Zheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Luqi Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yanxiao Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
7
|
Zhang M, Wang T, Han Y, Yan X, Zhu X, Sun Y, Jiang X, Wang X. Anode potential regulates gas composition and microbiome in anaerobic electrochemical digestion. BIORESOURCE TECHNOLOGY 2024; 412:131414. [PMID: 39226941 DOI: 10.1016/j.biortech.2024.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Anaerobic electrochemical digestion (AED) is an effective system for recovering biogas from organic wastes. However, the effects of different anode potentials on anaerobic activated sludge remain unclear. This study confirmed that biofilms exhibited the best electroactivity at -0.2 V (vs. Ag/AgCl) compared to -0.4 V and 0 V. Gas was further regulated, with the highest hydrogen content (47 ± 7 %) observed at -0.2 V. The 0 V system produced the largest amount of methane (70 ± 8 %) and exhibited the greatest presence of hydrogen-utilizing microorganisms. The gas yield at -0.4 V was the lowest, with no hydrogen detected. Excess bioelectrohydrogen at -0.2 V and 0 V caused the co-enrichment of Methanobacterium and Acetoanaerobium, establishing a thermodynamically feasible current-acetate-hydrogen electron cycle to improve electrogenesis. These results provide insights into the regulatory strategies of MEC technology during anaerobic digestion, which play a decisive role in determining the composition of biogas.
Collapse
Affiliation(s)
- Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yilian Han
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yue Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
8
|
Wang XT, Zhao L, Zhang Q, Wang B, Xing D, Nan J, Ren NQ, Lee DJ, Chen C. Linking performance to dynamic migration of biofilm ecosystem reveals the role of voltage in the start-up of hybrid microbial electrolysis cell-anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 411:131242. [PMID: 39122126 DOI: 10.1016/j.biortech.2024.131242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Applied voltage is a crucial parameter in hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) systems for enhancing methane production from waste activated sludge (WAS). This study explored the impact of applied voltage on the initial biofilm formation on electrodes during the MEC-AD startup using raw WAS (Rr) and heat-pretreated WAS (Rh). The findings indicated that the maximum methane productivity for Rr and Rh were 3.4 ± 0.5 and 3.4 ± 0.2 mL/gVSS/d, respectively, increasing 1.5 times and 2.6 times over the productivity at 0 V. The biomass on electrode biofilms for Rr and Rh at 0.8 V increased by 70 % and 100 % compared to 0 V. The core functional microorganisms in the cathode biofilm were Methanobacterium and Syntrophomonas, and Geobacter in the anode biofilm, enhancing methane production through syntrophism and direct interspecies electron transfer, respectively. These results offer academic insights into optimizing AD functional electrode biofilms by applying voltage.
Collapse
Affiliation(s)
- Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Bo Wang
- Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
9
|
Niu C, Zhang Z, Cai T, Pan Y, Lu X, Zhen G. Sludge bound-EPS solubilization enhance CH 4 bioconversion and membrane fouling mitigation in electrochemical anaerobic membrane bioreactor: Insights from continuous operation and interpretable machine learning algorithms. WATER RESEARCH 2024; 264:122243. [PMID: 39142046 DOI: 10.1016/j.watres.2024.122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Bound extracellular polymeric substances (EPS) are complex, high-molecular-weight polymer mixtures that play a critical role in pore clogging, foulants adhesion, and fouling layer formation during membrane filtration, owing to their adhesive properties and gelation tendencies. In this study, a novel electrochemical anaerobic membrane bioreactor (EC-AnMBR) was constructed to investigate the effect of sludge bound-EPS solubilization on methane bioconversion and membrane fouling mitigation. During the 150-days' operation, the EC-AnMBR demonstrated remarkable performance, characterized by an exceptionally low fouling rate (transmembrane pressure (TMP) < 4.0 kPa) and high-quality effluent (COD removal > 98.2 %, protein removal > 97.7 %, and polysaccharide removal > 98.5 %). The highest methane productivity was up to 38.0 ± 3.1 mL/Lreactor/d at the applied voltage of 0.8 V with bound-EPS solubilization, 107.6 % higher than that of the control stage (18.3 ± 2.4 mL/Lreactor/d). Morphological and multiplex fluorescence labeling analyses revealed higher fluorescence intensities of proteins, polysaccharides, total cells and lipids on the surface of the fouling layer. In contrast, the interior exhibited increased compression density and reduced activity, likely attributable to compression effect. Under the synergistic influence of the electric field and bound-EPS solubilization, biomass characteristics exhibited a reduced propensity for membrane fouling. Furthermore, the bio-electrochemical regulation enhanced the electroactivity of microbial aggregates and enriched functional microorganisms, thereby promoting biofilm growth and direct interspecies electron transfer. Additionally, the potential hydrogenotrophic and methylotrophic methanogenesis pathways were enhanced at the cathode and anode surfaces, thereby increasing CH₄ productivity. The random forest-based machine learning model analyzed the nonlinear contributions of EPS characteristics on methane productivity and TMP values, achieving R² values of 0.879 and 0.848, respectively. Shapley additive explanations (SHAP) analysis indicated that S-EPSPS and S-EPSPN were the most critical factors affecting CH₄ productivity and membrane fouling, respectively. Partial dependence plot analysis further verified the marginal and interaction effects of different EPS layers on these outcomes. By combining continuous operation with interpretable machine learning algorithms, this study unveils the intricate impacts of EPS characteristics on methane productivity and membrane fouling behaviors, and provides new insights into sludge bound-EPS solubilization in EC-AnMBR.
Collapse
Affiliation(s)
- Chengxin Niu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
10
|
Gao Y, Heng S, Wang J, Liu Z, Liu Y, Chen B, Han Y, Li W, Lu X, Zhen G. Bioelectrochemically altering microbial ecology in upflow anaerobic sludge blanket to enhance methanogenesis fed with high-sulfate methanolic wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131026. [PMID: 38917910 DOI: 10.1016/j.biortech.2024.131026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
A bioelectrochemical upflow anaerobic sludge blanket (BE-UASB) was constructed and compared with the traditional UASB to investigate the role of bioelectrocatalysis in modulating methanogenesis and sulfidogensis involved within anaerobic treatment of high-sulfate methanolic wastewater (COD/SO42- ratio ≤ 2). Methane production rate for BE-UASB was 1.4 times higher than that of the single UASB, while SO42- removal stabilized at 16.7%. Bioelectrocatalysis selectively enriched key functional anaerobes and stimulated the secretion of extracellular polymeric substances, especially humic acids favoring electron transfer, thereby accelerating the electroactive biofilms development of electrodes. Methanomethylovorans was the dominant genus (35%) to directly convert methanol to CH4. Methanobacterium as CO2 electroreduction methane-producing archaea appeared only on electrodes. Acetobacterium exhibited anode-dependence, which provided acetate for sulfate-reducing bacteria (norank Syntrophobacteraceae and Desulfomicrobium) through synergistic coexistence. This study confirmed that BE-UASB regulated the microbial ecology to achieve efficient removal and energy recovery of high-sulfate methanolic wastewater.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Shiliang Heng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhaobin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yisheng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
11
|
Ul Z, Sulonen M, Baeza JA, Guisasola A. Continuous high-purity bioelectrochemical nitrogen recovery from high N-loaded wastewaters. Bioelectrochemistry 2024; 158:108707. [PMID: 38653107 DOI: 10.1016/j.bioelechem.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Microbial electrolysis cells (MEC) have been identified as an energy efficient system for ammonium recovery from wastewater. However, high ammonium concentrations at the anode can have inhibitory effects. This work aims to determine the effects on current generation performance and active ammonia nitrogen recovery in wastewater containing 0.5 to 2.5 g N-NH4+/L. The study also evaluates the effect of two cathode materials, stainless steel (SS-MEC) and nickel foam (NF-MEC). When the concentration of ammonium in the feed was increased from 0.5 to 1.5 g N-NH4+/L the maximum current density increased from 3.2 to 3.9 A/m2, but a further increase to 2.5 g N-NH4+/L inhibited the biofilm activity, decreasing the current density to 0.5 A/m2. The maximum ammonium removal and recovery efficiencies were 71 % and 33 % at 0.5 g N-NH4+/L. The SS-MEC exhibited more energy efficient ammonium recovery compared to the NF-MEC, requiring 3.6 kWh/kgN,recovered at 0.5 gN-NH4+/L. The highest ammonium recovery rate of 33 gN/m2/d (1.5 gN-NH4+/L) was obtained with an energy consumption of 4.5 kWh/kgN,recovered. Conversely, a lower recovery rate (10 gN/m2/d for 2.5 gN-NH4+/L) resulted in reduced energy consumption at 2.1 kWh/kgN,recovered. This highlights the inherent trade-off between energy consumption and efficient ammonium recovery in the process.
Collapse
Affiliation(s)
- Zainab Ul
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Mira Sulonen
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Juan Antonio Baeza
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
12
|
Hou A, Fu H, Liu L, Su X, Zhang S, Lai J, Sun F. Exploring the distribution and co-occurrence of rpf-like genes and nitrogen-cycling genes in water reservoir sediments. Front Microbiol 2024; 15:1433046. [PMID: 39104579 PMCID: PMC11298755 DOI: 10.3389/fmicb.2024.1433046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Water reservoir sediments represent a distinct habitat that harbors diverse microbial resources crucial for nitrogen cycling processes. The discovery of resuscitation promoting factor (Rpf) has been recognized as a crucial development in understanding the potential of microbial populations. However, our understanding of the relationship between microorganisms containing rpf-like genes and nitrogen-cycling functional populations remains limited. The present study explored the distribution patterns of rpf-like genes and nitrogen-cycling genes in various water reservoir sediments, along with their correlation with environmental factors. Additionally, the co-occurrence of rpf-like genes with genes associated with the nitrogen cycle and viable but non-culturable (VBNC) formation was investigated. The findings indicated the ubiquitous occurrence of Rpf-like domains and their related genes in the examined reservoir sediments. Notably, rpf-like genes were predominantly associated with Bradyrhizobium, Nitrospira, and Anaeromyxobacter, with pH emerging as the primary influencing factor for their distribution. Genera such as Nitrospira, Bradyrhizobium, Anaeromyxobacter, and Dechloromonas harbor the majority of nitrogen-cycling functional genes, particularly denitrification genes. The distribution of nitrogen-cycling microbial communities in the reservoir sediments was mainly influenced by pH and NH4 +. Notably, correlation network analysis revealed close connections between microorganisms containing rpf-like genes and nitrogen-cycling functional populations, as well as VBNC bacteria. These findings offer new insights into the prevalence of rpf-like genes in the water reservoir sediments and their correlation with nitrogen-cycling microbial communities, enhancing our understanding of the significant potential of microbial nitrogen cycling.
Collapse
Affiliation(s)
- Aiqin Hou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Huayi Fu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Leilei Liu
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Jiahou Lai
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
13
|
Wang D, Hao Z, Tao S, Shi Z, Liu Z, Liu E, Long S. Enhanced methane production from waste activated sludge by microbial electrolysis cell assisted anaerobic digestion: Fate and effect of humic substances. BIORESOURCE TECHNOLOGY 2024; 403:130872. [PMID: 38777232 DOI: 10.1016/j.biortech.2024.130872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Humic substances as major components of waste activated sludge are refractory to degrade and have inhibition in traditional anaerobic digestion (AD). This study for the first time investigated the feasibility and mechanism of microbial electrolysis cell assisted anaerobic digestion (MEC-AD) to break the recalcitrance and inhibition of humic substances. The cumulative methane production of AD decreased from 134.7 to 117.6 mL/g-VS with the addition of humic acids and fulvic acids at 25.2-102.1 mg/g-VS. However, 0.6 V MEC-AD maintained stable methane production (155.5-158.2 mL/g-VS) under the effect of humic substances. 0.6 V MEC-AD formed electrical stimulation on microbial cells, provided anodic oxidation and cathodic reduction transformation pathways for humic substances (acting as carbon sources and electron shuttles), and aggregated functional microorganisms on electrodes, facilitating the degradation of humic substances and generation of methane. This study provides a theoretical basis for improving the energy recovery and system stability of sludge treatment.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zhixiang Hao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Siyi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zhiyuan Shi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zewei Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Enxu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
14
|
Qiang H, Liu Z, Yin X, Guo Z, Duan Y, Liu W, Yue X, Zhou A. Efficient phosphate and hydrogen recovery from sludge fermentation liquid by sacrificial iron anode in electro-fermentation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121110. [PMID: 38733846 DOI: 10.1016/j.jenvman.2024.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.
Collapse
Affiliation(s)
- Haifeng Qiang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030006, China.
| | - Xiaoyun Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanqing Duan
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030800, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| |
Collapse
|
15
|
Long S, Liu X, Xiao J, Ren D, Liu Z, Fu Q, He D, Wang D. Mitigation of Triclocarban Inhibition in Microbial Electrolysis Cell-Assisted Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9272-9282. [PMID: 38749055 DOI: 10.1021/acs.est.3c10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Triclocarban (TCC), as a widely used antimicrobial agent, is accumulated in waste activated sludge at a high level and inhibits the subsequent anaerobic digestion of sludge. This study, for the first time, investigated the effectiveness of microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) in mitigating the inhibition of TCC to methane production. Experimental results showed that 20 mg/L TCC inhibited sludge disintegration, hydrolysis, acidogenesis, and methanogenesis processes and finally reduced methane production from traditional sludge anaerobic digestion by 19.1%. Molecular docking revealed the potential inactivation of binding of TCC to key enzymes in these processes. However, MEC-AD with 0.6 and 0.8 V external voltages achieved much higher methane production and controlled the TCC inhibition to less than 5.8%. TCC in the MEC-AD systems was adsorbed by humic substances and degraded to dichlorocarbanilide, leading to a certain detoxification effect. Methanogenic activities were increased in MEC-AD systems, accompanied by complete VFA consumption. Moreover, the applied voltage promoted cell apoptosis and sludge disintegration to release biodegradable organics. Metagenomic analysis revealed that the applied voltage increased the resistance of electrode biofilms to TCC by enriching functional microorganisms (syntrophic VFA-oxidizing and electroactive bacteria and hydrogenotrophic methanogens), acidification and methanogenesis pathways, multidrug efflux pumps, and SOS response.
Collapse
Affiliation(s)
- Sha Long
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jun Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dejiang Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zewei Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dandan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
16
|
Zhao W, Chen X, Ma H, Li D, Yang H, Hu T, Zhao Q, Jiang J, Wei L. Impact of co-substrate molecular weight on methane production potential, microbial community dynamics, and metabolic pathways in waste activated sludge anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2024; 400:130678. [PMID: 38588784 DOI: 10.1016/j.biortech.2024.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
17
|
He W, Liu H, Fu B, Chen C, Zhang C, Li J. CO 2 sequestration in microbial electrolytic cell-anaerobic digestion system combined with mineral carbonation for sludge hydrolysate treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:331-338. [PMID: 38430747 DOI: 10.1016/j.wasman.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The combination of microbial electrolytic cells and anaerobic digestion (MEC-AD) became an efficient method to improve CO2 capture for waste sludge treatment. By adding CaCl2 and wollastonite, the CO2 sequestration effect with mineral carbonation under 0 V and 0.8 V was studied. The results showed that applied voltage could increase dissolved chemical oxygen demand (SCOD) degradation efficiency and biogas yield effectively. In addition, wollastonite and CaCl2 exhibited different CO2 sequestration performances due to different Ca2+ release characteristics. Wollastonite appeared to have a better CO2 sequestration effect and provided a wide margin of pH change, but CaCl2 released Ca2+ directly and decreased the pH of the MEC-AD system. The results showed methane yield reached 137.31 and 163.50 mL/g SCOD degraded and CO2 content of biogas is only 12.40 % and 2.22 % under 0.8 V with CaCl2 and wollastonite addition, respectively. Finally, the contribution of chemical CO2 sequestration by mineral carbonation and biological CO2 sequestration by hydrogenotrophic methanogenesis was clarified with CaCl2 addition. The chemical and biological CO2 sequestration percentages were 46.79 % and 53.21 % under 0.8 V, respectively. With the increased applied voltage, the contribution of chemical CO2 sequestration rose accordingly. The findings in this study are of great significance for further comprehending the mechanism of calcium addition on CO2 sequestration in the MEC-AD system and providing guidance for the later engineering application.
Collapse
Affiliation(s)
- Wanying He
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chao Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Yao S, Swanson CS, Cheng Z, He Q, Yuan H. Alternating polarity as a novel strategy for building synthetic microbial communities capable of robust Electro-Methanogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130374. [PMID: 38280409 DOI: 10.1016/j.biortech.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Electro-methanogenic microbial communities can produce biogas with high efficiency and have attracted extensive research interest. In this study an alternating polarity strategy was developed to build electro-methanogenic communities. In two-chamber bioelectrochemical systems amended with activated carbon, the electrode potential was alternated between +0.8 V and -0.4 V vs. standard hydrogen electrode every three days. Cumulative biogas production under alternating polarity increased from 45 L/L/kg-activated carbon after start-up to 125 L/L/kg after the 4th enrichment, significantly higher than that under intermittent cathode (-0.4 V/open circuit), continuous cathode (-0.4 V), and open circuit. The communities assembled under alternating polarity were electroactive and structurally different from those assembled under other conditions. One Methanobacterium population and two Geobacter populations were consistently abundant and active in the communities. Their 16S rRNA was up-regulated by electrode potentials. Bayesian networks inferred close associations between these populations. Overall, electro-methanogenic communities have been successfully assembled with alternating polarity.
Collapse
Affiliation(s)
- Shiyun Yao
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Clifford S Swanson
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
19
|
Jadhav DA, Yu Z, Hussien M, Kim JH, Liu W, Eisa T, Sharma M, Vinayak V, Jang JK, Wilberforce Awotwe T, Wang A, Chae KJ. Paradigm shift in Nutrient-Energy-Water centered sustainable wastewater treatment system through synergy of bioelectrochemical system and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 396:130404. [PMID: 38336215 DOI: 10.1016/j.biortech.2024.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Zhe Yu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Mohammed Hussien
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ju-Hyeong Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Jae-Kyoung Jang
- National Institute of Agricultural Sciences, Department of Agricultural Engineering Energy and Environmental Engineering Division, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Tabbi Wilberforce Awotwe
- Department of Engineering, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, United Kingdom
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
20
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
21
|
Guo M, Guo M, Wang Y, Li M, Qi X, Wei S, Jia X. The influencing mechanism of AD-MEC domesticated sludge to alleviates propionate accumulation and enhances methanogenesis. BIORESOURCE TECHNOLOGY 2024; 393:129996. [PMID: 37951554 DOI: 10.1016/j.biortech.2023.129996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Anaerobic digestion combined with microbial electrolysis cell (AD-MEC) could maintain stable reactor operation and alleviating the anaerobic digestion (AD) propionate accumulation. In this study, the addition of sludge to AD-MEC was examined as a way to enhance system performance and explore the microbial interaction mechanism after electric field domestication. The results showed that under 1000 and 4000 mg/L propionate, the methane production of the sludge from AD-MEC increased by 34.29 % and 9.70 %, respectively, as compared to the AD sludge. Gompertz fitting analysis showed that sludge after electric field domestication enhancing its continuous methanogenic capacity. Further analysis showed that sludge extracellular electron transfer capacity was enhanced in AD-MEC and that its domesticated granular sludge formed a microbial community function with acid-degrading synergistic methanogenesis. The results of the study may provide theoretical support and optimization strategies for the application of AD-MEC system.
Collapse
Affiliation(s)
- Meixin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Sijia Wei
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
22
|
Yee MO, Ottosen LDM, Rotaru A. Electrical current disrupts the electron transfer in defined consortia. Microb Biotechnol 2024; 17:e14373. [PMID: 38070192 PMCID: PMC10832552 DOI: 10.1111/1751-7915.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024] Open
Abstract
Improving methane production through electrical current application to anaerobic digesters has garnered interest in optimizing such microbial electrochemical technologies, with claims suggesting direct interspecies electron transfer (DIET) at the cathode enhances methane yield. However, previous studies with mixed microbial communities only reported interspecies interactions based on species co-occurrence at the cathode, lacking insight into how a poised cathode influences well-defined DIET-based partnerships. To address this, we investigated the impact of continuous and discontinuous exposure to a poised cathode (-0.7 V vs. standard hydrogen electrode) on a defined consortium of Geobacter metallireducens and Methanosarcina barkeri, known for their DIET capabilities. The physiology of DIET consortia exposed to electrical current was compared to that of unexposed consortia. In current-exposed incubations, overall metabolic activity and cell numbers for both partners declined. The consortium, receiving electrons from the poised cathode, accumulated acetate and hydrogen, with only 32% of the recovered electrons allocated to methane production. Discontinuous exposure intensified these detrimental effects. Conversely, unexposed control reactors efficiently converted ethanol to methane, transiently accumulating acetate and recovering 88% of electrons in methane. Our results demonstrate the overall detrimental effect of electrochemical stimulation on a DIET consortium. Besides, the data indicate that the presence of an alternative electron donor (cathode) hinders efficient electron retrieval by the methanogen from Geobacter, and induces catabolic repression of oxidative metabolism in Geobacter. This study emphasizes understanding specific DIET-based interactions to enhance methane production during electrical stimulation, providing insights for optimizing tailored interspecies partnerships in microbial electrochemical technologies.
Collapse
Affiliation(s)
- Mon Oo Yee
- Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
- Nature EnergyOdenseDenmark
| | | | | |
Collapse
|
23
|
Lee T, Choi D, Park J, Tsang YF, Andrew Lin KY, Jung S, Kwon EE. Valorizing spent mushroom substrate into syngas by the thermo-chemical process. BIORESOURCE TECHNOLOGY 2024; 391:130007. [PMID: 37952593 DOI: 10.1016/j.biortech.2023.130007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
This study investigated the conversion of agricultural biomass waste (specifically, spent mushroom substrate) into syngas via pyrolysis. Carbon dioxide was used to provide a green/sustainable feature in the pyrolysis process. All the experimental data highlight the mechanistic role of carbon dioxide (CO2) in the process, demonstrated by the enhanced carbon monoxide (CO) yield from pyrolysis under CO2. Carbon dioxide was indeed reactive at ≥ 500 ˚C. Carbon dioxide was reduced and subsequently oxidized volatiles stemming from the thermolysis of spent mushroom substrate via the gas-phase reaction, thereby resulting in the enhanced formation of CO. Carbon dioxide radically diverted the carbon distribution patterns of the pyrogenic products, as more carbon in the oil was allocated to syngas by the gas-phase reaction of volatiles and CO2. To enhance the mechanistic role of CO2, a Ni-based catalyst was added to the pyrolysis process, which greatly accelerated the gas-phase reaction of volatiles and CO2.
Collapse
Affiliation(s)
- Taewoo Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Dongho Choi
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jonghyun Park
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Kun-Yi Andrew Lin
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Li M, Zhang Q, Liu Y, Zhu J, Sun F, Cui MH, Liu H, Zhang TC, Chen C. Enhancing degradation of organic matter in microbial electrolytic cells coupled with anaerobic digestion (MEC-AD) systems by carbon-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165805. [PMID: 37506904 DOI: 10.1016/j.scitotenv.2023.165805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Currently, little information is available on relative contributions among biochar (BC), activated carbon (AC), magnetic BC (MBC), and magnetic AC (MAC) to enhance the effectiveness of a microbial electrolytic cells coupled with anaerobic digestion (MEC-AD) system and the impact of carbon-based materials on microbial community. In this study, six anaerobic reactors were constructed to demonstrate the effects of different carbon-based materials on organic matter elimination in the MEC-AD system. Remarkably, the reactor containing MBC exhibited a significant increase in organic removal, achieving 95.0 % chemical oxygen demand (COD) eradication. Additionally, the MBC-added MEC-AD reactor yields acetic acid at a rate 2.9 times higher than that of the BC-added reactor. Electrical stimulation enriched electro-producing bacteria such as Pseudomonas (18.1 %) and Gordonia (6.8 %), which were further promoted by the addition of MBC, indicating that the microbial communities cultivated with the MBC could provide the necessary microbiome for the MEC.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yang Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiachen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Min-Hua Cui
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
25
|
Song Y, Zhang Z, Fang Y, Liu Y, Li D, Feng Y. Evaluating the stability and performance of a novel core-shell ZVI@C-montmorillonite particle for anaerobic treatment of chloramphenicol wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132389. [PMID: 37666169 DOI: 10.1016/j.jhazmat.2023.132389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation. ZVI@C-MP was synthesized through a hydrothermal process and calcination, with montmorillonite as binder, it exhibits stability, iron-carbon microelectrolysis (ICME) properties, and strong adsorption for CAP. Its ICME actions include releasing iron ions (0.70 mg/L) and COD (11.3 mg/L), generating hydrogen (3.82%), and raising the pH from 6.30 to 7.71. With minimal structural changes, it achieved release equilibrium. ZVI@C-MP boasts high removal efficiency of CAP (98.96%) by adsorption, attributed to surface characteristics (surface area: 167.985 m2/g; pore volume: 0.248 cm3/g). The addition of ZVI@C-MP increases COD removal (10.16%), methane production (72.86%), and reduces extracellular polymeric substances (EPS) from 70.58 to 52.72 mg/g MLVSS. It reduces microbial by-products and toxic effects, enhancing CAP biodegradation and microbial metabolic activity. ZVI@C-MP's electrical conductivity and biocompatibility bolster functional flora for interspecies electron transfer. It's a novel approach to antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Dongyi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
26
|
Zheng T, Bian C, Xiao B, Chen X, Wang J, Li L. Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages. BIORESOURCE TECHNOLOGY 2023; 386:129562. [PMID: 37506942 DOI: 10.1016/j.biortech.2023.129562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effects of microbial electrolysis cell (MEC) integration stage on two-stage anaerobic digestion (TSAD) of food waste (FW) were studied via semi-continuous experiments. The results showed that both MEC (with 1.2 V) integrations enhanced the performances of the TSADs, with the enhancement of electro-two stages being higher. The methane production of TSAD increased from 1.36 ± 0.04 L/L/d to 1.53 ± 0.05 L/L/d (electro-methanogenic stage) and 1.54 ± 0.04 L/L/d (electro-two stages) during the steady period. Electro-acidogenesis decreased propionic acid production and enhanced hydrogen production, while electro-methanogenesis promoted the conversion of volatile fatty acids to methane. The MEC integration improved energy recovery from the organic matter in FW by 11.65-16.15% and reduced the mass loss, with those of the electro-two stages being higher and the electro-methanogenic stage being dominant in the electro-two stages. The integration of MEC enhanced anaerobic fermentation by enriching Olsenella, norank_f__ST-12K33 and Proteiniphilum and improved methanogenesis by enriching Methanobacterium and Candidatus_Methanofastidiosum.
Collapse
Affiliation(s)
- Tianlong Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Bian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Chen X, Xiao B, Tang X, Bian C, Liu J, Li L. Microbial electrolysis cell simultaneously enhancing methanization and reducing hydrogen sulfide production in anaerobic digestion of sewage sludge. CHEMOSPHERE 2023; 337:139445. [PMID: 37423410 DOI: 10.1016/j.chemosphere.2023.139445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The effects of microbial electrolysis cells (MECs) at three applied voltages (0.8, 1.3, and 1.6 V) on simultaneously enhancing methanization and reducing hydrogen sulfide (H2S) production in the anaerobic digestion (AD) of sewage sludge were studied. The results showed that the MECs at 1.3 V and 1.6 V simultaneously enhanced the methane production by 57.02 and 12.70% and organic matter removal by 38.77 and 11.13%, and reduced H2S production by 94.8 and 98.2%, respectively. MECs at 1.3 V and 1.6 V created a micro-aerobic conditions for the digesters with oxidation-reduction potential as -178∼-232 mv, which enhanced methanization and reduced H2S production. Sulfur reduction, H2S and elemental sulfur oxidation occurred simultaneously in the ADs at 1.3 V and 1.6 V. The relative abundances of sulfur-oxidizing bacteria increased from 0.11% to 0.42% and those of sulfur-reducing bacteria decreased from 1.24% to 0.33% when the applied voltage of MEC increased from 0 V to 1.6 V. Hydrogen produced by electrolysis enhanced the abundance of Methanobacterium and changed the methanogenesis pathway.
Collapse
Affiliation(s)
- Xiangyu Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China.
| | - Xinyi Tang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Chunlin Bian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
28
|
Yang L, Chen L, Chen K, Zhu H. Improved net energy recovery in a sludge anaerobic digestion process by coupling an electrochemical system: electrode material and its impact on suspended microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99473-99483. [PMID: 37612553 DOI: 10.1007/s11356-023-29335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Despite its great potential to recover energy from waste sludge, anaerobic digestion (AD) still needs to solve issues such as slow hydrolysis and H2 inhibition. This study investigated the effects of coupling microbial electrolysis cell (MEC) with AD on the CH4 yield. Results and analysis show that the CH4 yield was significantly improved in MEC-AD reactors by two factors, i.e., enhanced and accelerated hydrolysis and acidogenesis, and enrichment of hydrogenotrophic methanogens in suspended culture. Compared with graphite rod and carbon fiber brush, carbon felt (CF) as an electrode showed the best performance in terms of net energy output. The CH4 yield of MEC-AD-CF was 40.2 L CH4/kg VS, 92.3% higher than in the control group, and the VS removal rate was also increased by 47.2%. Acetoclastic methanogens were dominant in the control AD reactor, while the relative abundance of Methanobacterium, which is electroactive and known as hydrogenotrophic methanogen, increased to 24.6% in MEC-AD with CF as electrodes.
Collapse
Affiliation(s)
- Lisha Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
29
|
Wang G, Li B, Zhang Y. Ammonia-mediated iron cycle for oxidizing agent activation in advanced oxidation process. WATER RESEARCH 2023; 242:120295. [PMID: 37429134 DOI: 10.1016/j.watres.2023.120295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Removing ammonia (NH4+-N) and recalcitrant organics from low carbon/nitrogen wastewater requires a large amount of chemical reagents and energy. This work reports a new advanced oxidation process to remove recalcitrant organics with the assistant of NH4+-N in low carbon/nitrogen wastewater. Specifically, NH4+-N in wastewater mediated Fe(II)/Fe(III) cycle for the activation of oxidation reagent (e.g., H2O2) (ammonia-mediated AOP) to improve the removal of recalcitrant organics. In ammonia-mediated AOP, NH4+-N, recalcitrant organics, and PO4-P in wastewater were removed by 88.2%, 80.5% and 84%, respectively, with a low H2O2 consuming of only 5 mg/L. The removal efficiency of recalcitrant organics in the ammonia-mediated AOP increased as the concentration of NH4+-N in wastewater increased. Recalcitrant organics can be removed with an efficiency of 74∼82%, when the influent pH was 6∼6.8. This work provides a new and cost-effective approach to drive the iron cycle in Fenton treatment using NH4+-N from wastewater as mediator.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
30
|
Yu Q, Mao H, Zhao Z, Quan X, Zhang Y. Electromotive force induced by dynamic magnetic field electrically polarized sediment to aggravate methane emission. WATER RESEARCH 2023; 240:120097. [PMID: 37224670 DOI: 10.1016/j.watres.2023.120097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
As a primary driving force of global methane production, methanogens like other living organisms are exposed to an environment filled with dynamic electromagnetic waves, which might induce electromotive force (EMF) to potentially influence the metabolism of methanogens. However, no reports have been found on the effects of the induced electromotive force on methane production. In this study, we found that exposure to a dynamic magnetic field enhanced bio-methanogenesis via the induced electromotive force. When exposed to a dynamic magnetic field with 0.20 to 0.40 mT of intensity, the methane emission of the sediments increased by 41.71%. The respiration of methanogens and bacteria was accelerated by the EMF, as the ratios of F420H2/F420 and NAD+/NADH of the sediment increased by 44.12% and 55.56%, respectively. The respiratory enzymes in respiration chains might be polarized with the EMF to accelerate the proton-coupled electron transfer to enhance microbial metabolism. Together with the enriched exoelectrogens and electrotrophic methanogens, as well as the increased sediment electro-activities, this study indicated that the EMF could enhance the electron exchange among extracellular respiratory microorganisms to increase the methane emission from sediments.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haohao Mao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
31
|
Huy Hoang Phan Q, Pham Phan T, Khanh Thinh Nguyen P. Mathematical modeling of dark fermentative hydrogen and soluble by-products generations from water hyacinth. BIORESOURCE TECHNOLOGY 2023:129266. [PMID: 37271462 DOI: 10.1016/j.biortech.2023.129266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The production of hydrogen and soluble metabolite products from water hyacinth via dark fermentation was modeled. The model was built on the assumption that the substrate exists in two forms (i.e., soluble and particulate) and undergoes two stages (i.e., hydrolysis and acidogenesis) in the dark fermentation process. The modified Michaelis-Menten and surface-limiting models were applied to describe the hydrolysis of soluble and particulate forms, respectively. Meanwhile, the acidogenesis stage was modeled based on the multi-substrate-single-biomass model. The effects of temperature, pH, and substrate concentration were integrated into the model to increase flexibility. As a result, the model prediction agreed with the experimental and literature data of water hyacinth-fed dark fermentation, with high coefficient of determination values of 0.92 - 0.97 for hydrogen and total soluble metabolite products. These results indicate that the proposed model could be further applied to dark fermentation's downstream and hybrid processes using water hyacinth and other substrates.
Collapse
Affiliation(s)
- Quang Huy Hoang Phan
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Thi Pham Phan
- Faculty of Food Science and Engineering, Lac Hong University, 10 Huynh Van Nghe Street, Buu Long Ward, Bien Hoa City, Dong Nai Province, Viet Nam
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
32
|
Wang N, Yang Y, Xu K, Long X, Zhang Y, Liu H, Chen T, Li J. Distinguishing anaerobic digestion from electrochemical anaerobic digestion: Metabolic pathways and the role of the microbial community. CHEMOSPHERE 2023; 326:138492. [PMID: 36963582 DOI: 10.1016/j.chemosphere.2023.138492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, we explored why electrochemical anaerobic digestion (EAD) results in higher methane conversion and lower CO2 emissions than anaerobic digestion (AD). Single-chamber AD and EAD reactors were used in this experiment, and the temperature was set as the disturbance factor. Current, pH, electrode potential, gas content, and microbial community were used as indicators for our analysis. Flux balance analysis (FBA) and high-pass next-generation sequencing (NGS) were used to explore the relationships between AD and EAD methane-producing metabolic fluxes and microorganisms. The results showed that the average methane fluxes were 22.27 (AD) and 29.65 (EAD). Compared with AD, EAD had improved hydrogen-dependent CO2 reduction pathway. Trichloromonas was the dominant electricity-producing microorganism on the EAD anode film, which was closely related to the H2 flux at the cathode. Oscillibacter and Syntrophomonas were the dominant bacteria in the fermentation broth, specific to EAD. The abundance of Oscillibacter was positively correlated with the H2 flux, and the presence of Oscillibacter enhanced CO2 reduction by hydrogen. Methanosaeta was the only dominant methanogenic bacterium in AD and EAD, and its abundance was higher in the experimental group with a greater methane flux.
Collapse
Affiliation(s)
- Nan Wang
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yutong Yang
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Kunde Xu
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiangang Long
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yurui Zhang
- School of Economics & Management, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hongzhou Liu
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Tiezhu Chen
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Jianchang Li
- School of Energy and Environmental Science, Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
33
|
Zhen G, Pan Y, Han Y, Gao Y, Ibrahim Gadow S, Zhu X, Yang L, Lu X. Enhanced co-digestion of sewage sludge and food waste using novel electrochemical anaerobic membrane bioreactor (EC-AnMBR). BIORESOURCE TECHNOLOGY 2023; 377:128939. [PMID: 36958678 DOI: 10.1016/j.biortech.2023.128939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Membrane fouling remains a big challenge hindering the wide-application of anaerobic membrane bioreactor (AnMBR) technology. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) was developed by coupling electrochemical regulation to enhance co-digestion of sewage sludge and food waste and mitigate membrane fouling. The highest methane production (0.12 ± 0.02 L/Lreactor/day) and net energy recovery (31.82 kJ/day) were achieved under the optimum conditions of 0.8 V, hydraulic retention time of 10 days and solids retention time of 50 days. Electrochemical regulation accelerated the mineralization of high-molecular-weight organics and reinforced the membrane antifouling ability by inducing electrostatic repulsive force and electrochemical oxidation. Besides, symbiotic relationships among functional microorganisms (Spirochaetes, Methanolinea, etc.) were enhanced, improving the hydrolysis and methanogenesis processes of complex organics and the long-term stability. This study confirms the technical feasibility of EC-AnMBR in treating high-solid biowastes, and provides the fundamental data to support its application in real-world scenarios.
Collapse
Affiliation(s)
- Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Samir Ibrahim Gadow
- Agriculture and Biology Research Division National Research Center, 12622, 32 El Buhouth St., Dokki, Cairo, Egypt
| | - Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liying Yang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| |
Collapse
|
34
|
Li Y, Wang S, Dong R, Li X. A large cathode surface area promotes electromethanogenesis at a proper external voltage in a single coaxial microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161721. [PMID: 36682571 DOI: 10.1016/j.scitotenv.2023.161721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) is currently encountering constraints on electromethanogenesis. The electrode configuration modification can be a simple yet efficient way to improve electromethanogenesis. This study evaluated two coaxial electrode configurations (large anode and small cathode: A10C1; small anode and large cathode: A1C10) using carbon felt as the electrode material. At an external voltage of 1.7 V, CH4 content was found exclusively higher in A1C10 (11 % and 13 % higher for acetate-fed and cow manure-fed, respectively) than that of the control reactors. Consequently, CH4 production was 13 % and 29 % higher in acetate-fed and CM-fed A1C10, respectively. The strengthened electromethanogenesis was attributed to the enrichment of interspecies hydrogen transfer microbes (i.e., Mesotoga and Bathyarchaeia). The coaxial configuration with a large cathode surface area demonstrated a viable stereotype in MEC-AD for improved waste treatment and energy recovery.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Siqi Wang
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Renjie Dong
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Xin Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China.
| |
Collapse
|
35
|
Sun ZF, Zhao L, Wu KK, Wang ZH, Wu JT, Chen C, Yang SS, Wang AJ, Ren NQ. Overview of recent progress in exogenous hydrogen supply biogas upgrading and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157824. [PMID: 35931172 DOI: 10.1016/j.scitotenv.2022.157824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of renewable and sustainable energy, biogas upgrading for producing high-quality biomethane as an alternative to natural gas has attracted worldwide attention. This paper comprehensively reviews the current state of biogas upgrading technologies. The advances in physicochemical, photosynthetic autotrophic, and chemical autotrophic biogas upgrading technologies are briefly described with particular attention to the key challenges. New chemical autotrophic biogas upgrading strategies, such as direct and indirect exogenous hydrogen supply, for overcoming barriers to biogas upgrading and realizing highly efficient bioconversion of carbon dioxide are summarized. For each approach to exogenous hydrogen supply for biogas upgrading, the key findings and technical limitations are summarized and critically analyzed. Finally, future developments are also discussed to provide a reference for the development of biogas upgrading technology that can address the global energy crisis and climate change issues related to the application of biogas.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kai-Kai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
36
|
Artificial intelligence-based modeling and optimization of microbial electrolysis cell-assisted anaerobic digestion fed with alkaline-pretreated waste-activated sludge. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Lee YJ, Lin BL, Xue M, Tsunemi K. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review. BIORESOURCE TECHNOLOGY 2022; 363:127927. [PMID: 36096326 DOI: 10.1016/j.biortech.2022.127927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Mianqiang Xue
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kiyotaka Tsunemi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
38
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
39
|
Jiao Y, Yuan Y, He C, Liu L, Pan X, Li P. Enrichment culture combined with microbial electrochemical enhanced low-temperature anaerobic digestion of cow dung. BIORESOURCE TECHNOLOGY 2022; 360:127636. [PMID: 35853591 DOI: 10.1016/j.biortech.2022.127636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Enrichment culture combined with the microbial electrochemical system was used to co-enhance the low-temperature (20 °C) anaerobic digestion. The results showed that enrichment culture combined with microbial electrochemical system increased the cumulative methane production in low-temperature anaerobic digestion system by 39.64 % and 133.29 % compared to single and no enrichment culture, respectively. Enrichment culture combined with microbial electrochemical system increased the relative abundance of methanogenic archaea (Methanomassiliicoccus, Methanocorpusculum, unclassified Methanomicrobiaceae, Methanobacterium, Methanoculleus, Methanocalculus) and the relative abundance of cold-tolerant hydrolytic acidifying bacteria (unclassified Bacteroidetes, Treponema). The expressions of specific enzyme genes in the methanogenesis pathway were enhanced, including acetyl-CoA synthetase, formylmethanofuran dehydrogenase, methanol cobalamin methyltransferase, etc. These results indicated that enrichment culture combined with microbial electrochemical system enhanced low-temperature anaerobic digestion methanogenesis by altering microbial communities and stimulating enzyme gene expression to affect volatile fatty acids, pH, redox potential, and reducing sugar parameters.
Collapse
Affiliation(s)
- Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongkang Yuan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaohui Pan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
40
|
Lei Z, Singhania RR, Lee DJ. Agricultural waste reclamation and utilization. BIORESOURCE TECHNOLOGY 2022; 351:127059. [PMID: 35339653 DOI: 10.1016/j.biortech.2022.127059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|